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Luft CD, Meeson A, Welchman AE, Kourtzi Z. Decoding the
future from past experience: learning shapes predictions in early
visual cortex. J Neurophysiol 113: 3159–3171, 2015. First published
March 5, 2015; doi:10.1152/jn.00753.2014.—Learning the structure
of the environment is critical for interpreting the current scene and
predicting upcoming events. However, the brain mechanisms that
support our ability to translate knowledge about scene statistics to
sensory predictions remain largely unknown. Here we provide
evidence that learning of temporal regularities shapes representa-
tions in early visual cortex that relate to our ability to predict
sensory events. We tested the participants’ ability to predict the
orientation of a test stimulus after exposure to sequences of
leftward- or rightward-oriented gratings. Using fMRI decoding, we
identified brain patterns related to the observers’ visual predictions
rather than stimulus-driven activity. Decoding of predicted orien-
tations following structured sequences was enhanced after training,
while decoding of cued orientations following exposure to random
sequences did not change. These predictive representations appear
to be driven by the same large-scale neural populations that encode
actual stimulus orientation and to be specific to the learned se-
quence structure. Thus our findings provide evidence that learning
temporal structures supports our ability to predict future events by
reactivating selective sensory representations as early as in primary
visual cortex.
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SUCCESSFUL EVERYDAY INTERACTIONS entail that we exploit infor-
mation about the structure of the environment to interpret the
current scene and predict upcoming events. Recent theoretical
work (Geisler 2008; Petrov et al. 2005) suggests that the brain
achieves this challenge by learning through exposure to the
environment’s statistics. There is accumulating evidence that
mere exposure to stimuli that co-occur in the environment
facilitates our ability to extract spatial and temporal regularities
(for reviews, see Aslin and Newport 2012; Perruchet and
Pacton 2006). However, the brain mechanisms that mediate our
ability to predict upcoming events based on previous knowl-
edge about the environment’s statistics remain largely un-
known.

Previous neuroimaging work has implicated subcortical and
medial temporal lobe regions in the learning of temporal
statistics. In particular, the striatum and hippocampus have
been implicated in learning of probabilistic associations (Pol-
drack et al. 2001; Shohamy and Wagner 2008) and temporal
sequences (Gheysen et al. 2011; Hsieh et al. 2014; Rauch et al.

1997; Rose et al. 2011; Schapiro et al. 2012, 2014; Schendan
et al. 2003a). While these brain regions are thought to be
involved at the initial stages of training, prefrontal regions have
been shown to engage at later learning stages (Leaver et al.
2009; Pasupathy and Miller 2005). Despite accumulating evi-
dence for neural circuits involved in learning temporal regu-
larities, it remains unknown whether this knowledge of tem-
poral statistics facilitates sensory predictions. Here we tested
whether learning of temporal regularities shapes processing in
primary visual cortex and mediates our ability to predict the
identity of upcoming visual stimuli.

We devised a novel paradigm to measure behavioral
performance and brain activity related to visual predictions.
First, we tested the participants’ ability to predict the iden-
tity of a visual stimulus (i.e., grating orientation) after
learning of temporal sequences. Our behavioral results dem-
onstrate that observers learn to exploit temporal regularities
and improve their ability to predict the identity of upcoming
stimuli. Second, using fMRI we tested whether processing
in visual cortex is altered after learning of temporal se-
quences and reflects the observers’ improved ability to
predict the identity of upcoming stimuli. To ensure that we
measured activity related to the observers’ predictions rather
than the presented stimuli, we introduced a long blank
interval between the presentation of temporal sequences and
the test stimulus (Fig. 1A). Despite the low BOLD signal
during this period of no stimulation, we were able to decode
the orientation predicted by the observers in each trial after
training with multivoxel pattern (MVPA) classification
methods. Furthermore, to test whether decoding accuracy
reflected knowledge of temporal structure, we tested brain
activity before and after training when observers were
presented with a random sequence and asked whether a cued
orientation at the end of the sequence matched the test
stimulus. Decoding of cued orientations following a random
sequence did not change after training and was weaker than
decoding of predicted orientations following structured se-
quences, suggesting that learning of temporal structure
shapes predictive representations in primary visual cortex.

MATERIALS AND METHODS

Participants

Sixteen undergraduates from the University of Birmingham (mean
age 21 � 2.6 yr) took part in the study. All participants were naive to
the aims of the study, were right-handed, had normal or corrected-to-
normal vision, had no history of neurological disorders, and gave
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written informed consent. This study was approved by the University
of Birmingham Ethics Committee.

Stimuli

Stimuli comprised grayscale sinusoidal gratings that were pre-
sented at 9° visual angle, spatial frequency that ranged from 0.85 to 1
cycles/° across trials, 100% contrast, and randomized phase. These
gratings were rotated �45° from vertical orientation (90°), resulting
in gratings oriented at either 135° (left) or 45° (right). To avoid local
position adaptation, we randomized the phase and jittered the orien-
tation within a range of 2° across trials. We used these stimuli to
generate two sequences, each comprising eight gratings, as shown
below (1 refers to a leftward-oriented grating and 2 refers to a
rightward-oriented grating):

sequence A : 2 1 2 1 1 2 1 2

sequence B : 1 1 2 1 2 2 1 2

As the two sequences predicted different orientations (sequence A
predicted a rightward-oriented grating; sequence B predicted a
leftward-oriented grating), we generated two more sequences by
replacing leftward with rightward orientations and vice versa while

keeping the sequence structure the same. These sequences were as
follows:

sequence A=� 1 2 1 2 2 1 2 1

sequence B=� 2 2 1 2 1 1 2 1

This manipulation allowed us to counterbalance for the predicted
orientations, as it resulted in sequences that had the same structure but
predicted different orientations (e.g., A and A=) and sequences that had
different structures but predicted the same orientation (e.g., A and B=).
This ensured that decoding of the predicted orientation was not
confounded by the specific orientations used at each temporal position
but related to knowledge of the sequence structure. Analysis of the
behavioral data showed that the participants were equally accurate
across all sequences. This was confirmed by a 2 (sequence type: A vs.
B) � 2 (sequence version: A/B vs. A=/B=) repeated-measures ANOVA,
which showed that there was no significant effect for sequence type
(F1,11 � 0.08, P � 0.783) or sequence version (F1,11 � 2.17, P �
0.169) nor a significant interaction (F1,11 � 0.06, P � 0.816).

Each sequence comprised four leftward- and four rightward-ori-
ented gratings. As all gratings were presented at the same rate,
participants could not use stimulus duration to group elements to-
gether or segment the sequences. Furthermore, to ensure that partic-

Fig. 1. Task design and behavioral performance. A: prediction task: in each trial, participants were presented with a structured sequence of 8 gratings
followed by a blank interval (11.6 s). After this period, a test grating, preceded by a brief cue (black square, 0.5 s), was presented and the participants
had to indicate whether the orientation of the test grating matched their expectation or not. B: control task: the participants were instructed to attend to
the sequence and indicate whether a cued grating (“R” or “L”) matched the orientation of the test stimulus or not. The timing for this task was matched
to the prediction task. C: mean proportion of correct responses for each run across training sessions. Data are shown for 12/16 participants who showed
improvement after training, excluding participants (n � 4) who did not show improvement in the task after training (57% mean performance at the last
training session). Data across runs were fitted with least-squares nonlinear fit. Data are shown for 16 blocks (4 training sessions). One participant
completed only 3 sessions, as performance had already saturated above 80%; the rest of the participants completed either 4 (n � 4) or 5 (n � 7) training
sessions. D: mean proportion of correct responses during scanning before and after training for both prediction and control tasks. Error bars indicate SE.
Behavioral data for all 16 participants showed a similar pattern of results; that is, we observed a significant effect of session (F1,11 � 144.13, P � 0.001)
and task and session interaction (F1,11 � 76.08, P � 0.001).
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ipants did not perform the task simply by memorizing the first
stimulus in the sequence, the orientation of the first stimulus was
randomized in each trial during scanning; that is, for each of the four
sequences half of the trials started with leftward-oriented and the rest
with rightward-oriented gratings. Also, to ensure that participants did
not learn the task simply by memorizing the last orientations in the
sequence, the last three stimuli in each sequence pair (A and B; A= and
B=) were the same across all sequences. These manipulations pre-
served equal frequency of appearance for the two orientations across
trials. Finally, as the frequency of occurrence was matched for the two
grating orientations in the sequence and the participants did not know
how many items each sequence contained, to perform the task par-
ticipants were required to learn the order of the elements in the
sequence (i.e., temporal order associations among pairs or triplets of
oriented gratings).

Stimuli were generated and presented with Psychtoolbox-3 (Brain-
ard 1997). For the behavioral training sessions, stimuli were presented
on a 21-in. CRT monitor (ViewSonic P225f 1,280 � 1,024 pixels, 85
Hz frame rate) at a distance of 45 cm. For the pre- and posttraining
fMRI scans, stimuli were presented with a projector and a mirror setup
(1,280 � 1,024 pixels, 60 Hz frame rate) at a viewing distance of 64
cm. To keep the same visual angle for both training and scanning
sessions, the stimulus size was adjusted according to the viewing
distance.

Design

All participants (n � 16) took part in two pretraining fMRI
sessions, three to five behavioral training sessions, and two posttrain-
ing fMRI sessions. Participants were tested in both the prediction task
(1 pretraining and 1 posttraining scan) and the control task (1 pre-
training and 1 posttraining scan). The order of the scans (prediction
vs. control task) was counterbalanced across participants. After the
pretraining scans, all participants were trained for three to five
sessions in the lab. The number of training sessions was determined
by each participant’s performance: the training stopped when the
participant reached performance higher than 80% correct in all four
runs comprising a training session. The posttraining scans took place
on subsequent days after the last behavioral training session (one scan
in the first and the other in the second day after the last training
session). In addition, the participants completed two scanning runs of
an orientation decoding experiment and two retinotopy localizer
scans.

Behavioral Training

Participants were trained on the prediction task without feedback
for three to five sessions. Participants viewed 16 gratings (each
sequence of 8 gratings was repeated twice in a trial) presented
sequentially on a gray background at the center of the screen. All
stimuli were presented at the same rate; that is, each grating was
presented for 0.3 s, followed by a fixation interval of 0.3 s. Partici-
pants were asked to respond to a test grating that appeared for 0.3 s
surrounded by a red circle (0.3 s). The test stimulus was preceded by
a cue (red dot presented for 1 s) and was followed by a white fixation
dot (1,700 ms). Participants were instructed to respond (the maximum
response time was 2,000 ms), indicating whether the test image had
the same orientation (left vs. right) as the grating they expected to
appear in that position in the sequence. The test stimulus appeared
only in the second repeat of the sequence, and its position was
randomized across trials. The test stimulus could appear in any
position in the sequence except the last three positions; stimuli in
these positions were the same across trials. For each run, 50% of the
test stimuli were presented at the correct orientation for their position
in the sequence. After the participant’s response, the remaining
gratings in the sequence were presented until all 16 stimuli had been
presented, ensuring that all trials had the same length. A black cross

(1 s) indicated the end of the sequence and the start of a new trial.
There was no feedback across all training sessions. In each training
session, participants performed the prediction task for 4 runs of 40
trials each (20 per sequence type) with a minimum 2-min break
between runs. The number of training sessions was determined on the
basis of performance; the participants stopped training after reaching
consistent session accuracy above 80% (all training runs within 1
session had to be above 80%).

After each training session, the participants were asked to complete
a debriefing questionnaire with the following questions: 1) Please
describe any strategies you may have used when responding to this
task; 2) How many of your responses do you think were correct? (1 to
5, from “few correct” to “most correct”); 3) How did you find the
task? (1 to 5, from “very difficult” to “very easy”); 4) How tired did
you feel at the end of each run? (1 to 5, from “very tired” to “not tired
at all”); 5) How many different sequences of stimuli do you think
were presented? In addition, after the last training session, the partic-
ipants were asked to write down the sequences that they thought were
presented during the experiment.

fMRI Design

The participants took part in two pre- and two post-training scans:
one pre- and one posttraining scan for the prediction task and one pre-
and one posttraining scan for the control task. The order of the scans
was counterbalanced: half of the participants did the prediction task in
the first pre- and posttraining scan session, whereas the other half
started with the control task. In addition, the participants completed
two runs of an orientation decoding experiment and two retinotopy
localizer scans (polar angle and eccentricity).

Prediction task scan. Participants completed seven to nine runs (12
trials per run) of the prediction task per scan session (Fig. 1A). Each
run followed an event-related design comprising 12 trials and a
fixation block (15 s) at the beginning and end of the run. Participants
were presented with all four sequences used for training. Each
sequence was repeated once per trial (comprising 8 stimuli), followed
by a test stimulus. For each trial (28.5 s long), a sequence of eight
leftward (135°)- or rightward (45°)-oriented gratings was presented.
Each grating was presented for 0.25 s, followed by fixation for 0.2 s.
The sequence of gratings was followed by a fixation period (11.6 s),
a cue (black square, 0.5 s), a test grating (0.5 s), and a red dot (2 s)
before the start of the next trial. The participants were instructed to
pay attention to the sequence and to respond whether the orientation
of the test grating matched the orientation they expected to follow
from the preceding sequence. To ensure that all participants viewed
the test grating for the same duration and there were no differences in
reaction time across participants, participants were instructed to delay
their response until the red dot appeared after the test grating. After
each trial, there was a fixation period of 10.5 s.

To acquire adequate data (i.e., number of trials) for the fMRI
analysis within the time constraints of the scanning sessions, we used
shorter sequences (single sequence comprising 8 stimuli) during
scanning (instead of 2 repeats of the same 8-item sequence comprising
in total 16 stimuli during training). That is, during scanning partici-
pants were required to predict the orientation of the stimulus in the
ninth temporal position of the trained sequences. Our experimental
design during training (i.e., same presentation duration across stimuli,
variable temporal test position during training) made it unlikely that
the participants had explicit knowledge of the sequence length or
number of sequence repeats, as also indicated by debriefing. Further-
more, to ensure that participants did not simply memorize the first
stimulus in the sequence during scanning, we randomized (across
trials) the orientation of the first stimulus that was then followed by
the remaining seven items in the sequence. Thus it is unlikely that
participants memorized the orientation of stimuli presented at indi-
vidual temporal positions for each of the four trained sequences. In
contrast, it is more likely that participants learned temporal associa-
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tions between sequence items (i.e., pairs or triplets) during training
that remained the same in the test sequences and facilitated their
predictions.

Control task scan. Participants completed seven to nine runs (12
trials per run) of a control task per scan session (Fig. 1B). To test
learning improvement specific to structured sequences, we presented
participants with a random sequence of leftward- and rightward-
oriented gratings that were presented equally often but at randomized
positions within the sequence. To ensure that performance in the
control task was comparable to the prediction task after training, we
asked participants to compare the orientation of the test grating with
a cued orientation presented after the sequence. This allowed us to
compare fMRI activations between tasks (prediction vs. control) with
comparable levels of behavioral performance. Each run followed an
event-related design comprising 12 trials and a fixation block (15 s) at
the beginning and end of the run. The per-trial design for the control
task matched that of the prediction task. Each trial (28.5 s long)
comprised a random sequence of eight leftward (135°)- or rightward
(45°)-oriented gratings (i.e., gratings were presented at random order
in the sequence). Each grating was presented for 0.25 s, followed by
fixation for 0.2 s. This random sequence of gratings was followed by
a cue, “R” or “L” (0.25 s), indicating whether the participants should
remember a rightward- or leftward-oriented grating, respectively. This
cue was followed by a fixation period (11.35 s), a cue (black square,
0.5 s), a test grating (0.5 s), and a red dot (2 s) before the start of the
next trial. The control and prediction tasks were matched on a
trial-by-trial basis for the orientation of expected and remembered
items; that is, the orientation indicated by the cue in the control task
matched the expected orientation in the prediction task on a per-trial
basis. The participants were instructed to pay attention to the se-
quence, remember a grating rotated leftward or rightward as indicated
by the cue, and indicate whether the test grating matched the cued
orientation.

Orientation decoding scan. All participants completed two runs of
an orientation decoding experiment following procedures described
previously (Harrison and Tong 2009). Participants were presented
with the same gratings as in the prediction and control tasks (100%
contrast and oriented either leftward or rightward). Leftward- vs.
rightward-oriented gratings were presented in separate 15-s-long
blocks. Similar to the prediction task scans, to avoid adaptation due to
stimulus repetition, we randomized the phase and jittered the orien-
tation of the gratings within a range of 2° across trials. Each block
comprised 30 gratings. Each grating was presented for 0.25 s, fol-
lowed by a blank interval of 0.25 s. Each run comprised 20 blocks (10
per orientation) and 2 fixation blocks: 1 in the beginning and 1 at the
end of the run. The order of the blocks was randomized across runs.
Participants were asked to perform a contrast change detection task on
the fixation. That is, participants were instructed to press a button
when they detected a contrast change at fixation (twice per block at
random time points).

Retinotopic mapping scans. For each participant we independently
localized regions in the early (V1, V2) and higher (V3v, V3d, and
hV4) visual areas, following standard retinotopic mapping procedures
(e.g., Sereno et al. 1995). Data from polar and eccentricity scans were
collected during either the pre- or posttraining scan session. hV4
comprises the ventral but not the dorsal subregion of V4.

fMRI Data Acquisition

fMRI data were acquired in a 3-T Achieva Philips scanner at the
Birmingham University Imaging Centre using an eight-channel
head coil. Anatomical images were obtained with a sagittal three-
dimensional T1-weighted sequence (voxel size � 1 � 1 � 1 mm,
slices � 175). Functional EPI images were acquired with a high-
resolution gradient echo-pulse sequence covering the occipital and
posterior temporal cortex [20 slices at 1.5 � 1.5 � 2-mm resolu-
tion; matrix size 128 � 128; slice thickness: 2 mm with no gap

between slices; FOV: 192 � 192; repetition time (TR) 1,500 ms;
time to echo (TE) 35 ms].

Eye Movement Recordings

We recorded eye movements (n � 6) with the ASL 6000 Eye-
tracker (Applied Science Laboratories, Bedford, MA; sampling rate:
60 Hz) in the scanner. Eye tracking data were preprocessed with
EyeNal Data Analysis software (Applied Science Laboratories) and
analyzed with custom toolbox based on MATLAB (MathWorks)
software. Because of poor signal quality, data from two participants
were excluded from the analysis. Runs with �10% signal loss were
removed from the analysis. We computed 1) horizontal eye position,
2) vertical eye position, 3) proportion of saccades for each condition
at different saccade amplitude ranges, and 4) number of saccades per
trial per condition during the blank interval following the sequence
presentation, separately for each pretraining (I) and posttraining (II)
session. Histograms of the horizontal and vertical eye positions
peaked and were centered on the fixation at 0°, suggesting that
participants could fixate well both before and after training when
predicting leftward- or rightward-oriented gratings.

Data Analysis

Behavioral data analysis. Performance on the task was assessed by
the accuracy in correctly predicting whether the next grating in the
sequence was left or right. For the training sessions, we averaged the
accuracy for each run of the sequential sessions and estimated a
learning rate by fitting a logarithmic function to the data (Fig. 1C).
Data across runs were fitted (least-squares nonlinear fit) with the
following equation: y � k � log(x) � c, where k is the value of the
curve tangent at x � 1 and c is the value of y for x � 1.

fMRI data preprocessing. Neuroimaging data were analyzed with
Brain Voyager QX (Brain Innovation, Maastricht, The Netherlands).
Anatomical data were used for three-dimensional cortex reconstruc-
tion, inflation, and flattening. Preprocessing of functional data in-
cluded slice scan time correction, three-dimensional motion correc-
tion, linear trend removal, and temporal high-pass filtering (3 cycles).
fMRI data were recorded at high resolution (1.5. � 1.5 mm in plane)
and interpolated to 2 � 2 � 2 mm with trilinear interpolation. Trials
with head motion larger than 1 mm of translation or 1° of rotation or
sharp motion above 0.5 mm (on average 25 trials per session across
areas and tasks) were excluded from the analysis. Runs whose motion
analysis resulted in the exclusion of �50% of the trials were excluded
from further analysis. The functional images were manually aligned to
anatomical data, and the complete data were transformed into Ta-
lairach space. For each observer, the functional imaging data between
the four sessions were coaligned, registering all the volumes for each
observer to the first functional volume of the first run and session. The
retinotopic mapping scans (polar and eccentricity) were also co-
aligned with the first volume of the first run and session. This
procedure ensured a cautious coregistration across sessions.

fMRI decoding. We used a linear support vector machine (SVM)
with a leave-one-run-out cross-validation procedure for pattern clas-
sification. To investigate the link between fMRI activity and the
participants’ responses, we tested the classifier’s performance in
decoding the participant’s prediction (leftward vs. rightward); that is,
if the participant responded that a leftward-oriented test grating was
“correct,” they predicted “left,” if the participant indicated “incor-
rect,” then they predicted “right,” and vice versa. That is, we trained
the classifier to associate fMRI signals with a label (predicted left vs.
predicted right) as indicated by the participant’s response to the test
grating in each trial. To control for potential bias in the classification
due to the unequal numbers of trials responded to as “correct” or
“incorrect” by the participants, we used a cost factor and weighted the
error term during SVM training by the ratio of fMRI patterns related
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to “correct response” over fMRI patterns related to “incorrect
response.”

To select voxels for the pattern classification analysis, we used the
retinotopic mapping scans for each participant. We selected voxels
that corresponded to a stimulus area of 8° of visual angle and were
significantly more activated by the grating stimuli than the fixation (P �
0.05, uncorrected). This procedure allowed us to avoid voxels corre-
sponding to the edges of the grating stimulus (Harrison and Tong
2009). Each voxel time course was z-score normalized for each
experimental run separately. The data pattern for each trial was
generated by shifting the fMRI time series by 3 volumes (4.5 s) to
account for the hemodynamic delay. That is, volumes corresponding
to the no-stimulation period following the sequence, volumes 4–10,
were shifted to volumes 7–13 (Fig. 3 shows fMRI volumes before
shifting to account for the hemodynamic delay). We trained and tested
the classifier during this no-stimulation period (volumes 8–13), ex-
cluding the first volume (volume 7) to avoid interference from BOLD
responses related to the preceding sequence. We performed this
analysis on each of these volumes separately as well as on the average
signal across these volumes. For each cross-validation (from 5 to 9
depending on the number of runs per participant), we used 60–108
patterns (for averaged signals across no-stimulation volumes) for
training the classifier and 12 independent patterns for testing the
classifier’s accuracy. We plotted classifier accuracy across voxels—
starting with voxels that have the highest t-value for gratings vs.
fixation—and selected the 300 most activated voxels in each region of
interest (ROI) for each participant, as pattern classification accuracy
had saturated at this pattern size across areas. We then averaged the
classifier’s accuracy for this pattern size across cross-validations for
each participant.

Generalization of classifier accuracy. To evaluate the correspon-
dence between neural representations for physical and predicted
orientations we followed two different approaches. First, we identified
common voxels across experiments (i.e., informative voxels for both
the classification of the physical and the predicted orientation). That
is, using a recursive feature elimination (RFE) procedure (Ban et al.
2012; De Martino et al. 2008) we identified voxels across visual areas
that contributed (i.e., as indicated by the classifier’s linear weights) to
the decoding of 1) the physical stimulus and 2) the predicted stimulus
orientations using data from the orientation decoding experiment and
the prediction task, respectively. These two RFE analyses were
conducted separately (i.e., the classifiers were trained with a cross-
validation procedure on either the physical or the predicted orienta-
tions), resulting in two sets of voxels: voxels informative for the
classification of the physical stimulus and voxels informative for the
classification of the predicted stimulus. We then ranked voxels in each
visual area resulting from the two RFE analyses and chose voxels that
were informative in both analyses (i.e., 300 most informative voxels).
We used these voxels to train an SVM classifier on fMRI signals
related to physical orientations and tested the accuracy of this classi-
fier in decoding predicted orientations from fMRI data collected when
observers performed the prediction task (i.e., no-stimulation interval
following the sequence presentation). It is important to note that we
ran the RFE analysis and selected voxels separately for each cross-
validation of the MVPA analysis (i.e., decoding of predicted orienta-
tions) to avoid circularity; that is, we excluded the test data from both
the RFE and the decoding analysis. The results from this analysis are
presented in Fig. 5. Second, using the same RFE procedure we
identified the top 300 voxels that contributed (i.e., as indicated by the
classifier’s linear weights) to the decoding of the physical stimulus
using data from the orientation decoding experiment only. We then
used these voxels to train and test the classifier (using a leave-one-
run-out cross-validation procedure) in decoding predicted orientations
from fMRI data collected when observers performed the prediction
task (i.e., no-stimulation interval following the sequence presenta-
tion). The results from the second procedure were similar to those
reported in Fig. 3, suggesting that the generalization of classification

accuracy that we observed could not be simply due to the voxel
selection or MVPA procedure used.

RESULTS

Behavioral Results

We presented participants with a sequence of leftward- and
rightward-oriented gratings (Fig. 1A) and asked them to predict
the next grating in the sequence. We trained participants on this
prediction task without feedback for three to five sessions (as
determined by individual performance). To control for the
possibility that observers memorized specific items in the
sequence or full sequences rather than learning the temporal
structure, we trained participants with four different sequences
and presented all stimuli at the same rate and in a continuous
stream. Furthermore, the position of the test stimulus was
randomized across trials, the last three items were the same
across sequences, and for half of the trials the incorrect test
stimulus was presented.

Before and after training, we tested participants while they
performed the prediction task and a control task. In particular,
for the prediction task we asked participants to indicate
whether the orientation of a test grating matched the orientation
they anticipated following a preceding structured sequence of
gratings (Fig. 1A). For the control task participants were asked
to indicate whether the orientation of a test stimulus matched
the orientation of a cued grating presented after a random
sequence of oriented gratings (Fig. 1B).

Performance on the prediction task improved for most par-
ticipants (12/16 participants improved; 4 participants did not
improve during training, showing 57% mean performance at
the last training session) as they gained more exposure to the
temporal sequences (Fig. 1C). We further focus on the analysis
of the behavioral and fMRI data for the 12 participants that
showed improvement during training and posttraining perfor-
mance higher than 80% correct; the data of the weaker learners
(posttraining performance lower than 65% correct) are consid-
ered below in a separate control analysis. Comparison of
performance in the prediction and control tasks during scan-
ning (Fig. 1D) showed that observers’ performance improved
after training in the prediction task, while performance in the
control task remained high both before and after training.
These results were confirmed by a 2 (task: prediction vs.
control task) � 2 (session: pre- vs. posttest) repeated-measures
ANOVA showing a significant interaction between task and
session (F1,11 � 76.08, P � 0.001), consistent with enhanced
performance after training in the prediction (t11 � �8.50, P �
0.001) but not the control (t11 � 1.42, P � 0.183) task. The
comparable behavioral performance after training for the pre-
diction and control tasks, which involved structured vs. random
sequences respectively, ensured that comparing fMRI activa-
tion patterns between the two tasks reflected learning specific
to the sequence structure that was not confounded by differ-
ences in behavioral performance.

Improvement in the prediction task after training indicates
that participants acquired knowledge of the sequence structure.
Debriefing the participants suggests that this knowledge was
most likely implicit and it was unlikely that the participants
memorized the sequences explicitly. In particular, participants
were significantly more confident in their responses after train-
ing (t11 � �5.03, P � 0.001) and found the task easier (t11 �
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�4.31, P � 0.001) but did not feel significantly more or less
tired (t11 � �1.48, P � 0.166). Interestingly, this was not the
case for weaker learners, who did not report any substantial
changes in their confidence (pretraining mean � 1.5, SD �
0.58; posttraining mean � 1.75, SD � 0.96) or task difficulty
(pretraining mean � 3.50, SD � 1.29; posttraining mean �
2.25, SD � 0.5). Finally, we asked participants to estimate the
number of sequences presented during the experiment; this
number did not change significantly after training (t11 �
�0.41, P � 0.689). Only three participants indicated that
there were four sequences in total, but none of the partici-
pants could explicitly report the sequences correctly. Taken
together, the debriefing data suggest that it was unlikely that
the participants improved in the task by explicitly memo-
rizing the sequences.

fMRI Results: Decoding Predictions in Visual Cortex

To test whether learning of temporal regularities shapes
sensory predictions in visual cortex, we scanned participants
before and after training. For each participant we identified
retinotopic visual areas with high-resolution fMRI and stan-
dard mapping procedures. To test for fMRI signals related to
the participants’ predictions rather than the stimuli per se, we
extracted activity during a blank interval between the temporal
sequences and the test stimulus. Analysis of univariate fMRI
signals (percent signal change from mean BOLD response
across trials) confirmed that BOLD responses during this
no-stimulation period were low and did not differ before vs.
after training (paired t-test for all ROIs, P � 0.05; Fig. 2A).
However, previous studies have shown that neural preference
for orientation can be decoded from no-stimulation intervals in
the visual cortex with MVPA classification analysis (Harrison
and Tong 2009; Kamitani and Tong 2005; Serences et al. 2009;
Tong and Pratte 2012). With this approach, we trained an SVM
classifier to associate responses from each fMRI volume to the
participants’ prediction in each trial and tested the accuracy of
the classifier in predicting the participants’ responses (leftward
vs. rightward predicted orientation) using an independent data
set. In contrast to the univariate signals, this analysis al-
lowed us to successfully decode the orientation predicted by
the participants from fMRI signals during periods of no
stimulation in V1. Importantly, classification accuracy in-
creased after compared with before training (Fig. 2B). In-
spection of the MVPA accuracy time course across volumes
showed that the improvement in decoding performance after
training peaked during the blank interval following the
presentation of the temporal sequence during which partic-
ipants predicted the orientation of the upcoming stimulus
(Fig. 2B). This result reflects learning-dependent changes
specific to processing of predicted orientations in the pri-
mary visual cortex.

To quantify and compare decoding accuracies across visual
areas, we selected and averaged fMRI responses from all
volumes (8–13) that corresponded to the no-stimulation period
during which participants predicted the orientation of the
upcoming stimulus. Consistent with the behavioral results for
the prediction task, decoding of predicted orientations im-
proved significantly after training (Fig. 3). In contrast, for the
control task orientation decoding did not change with training,
consistent with the participants’ behavior in this task.

Comparing decoding accuracies between tasks showed
higher decoding accuracies after training for the prediction
than the control task. In particular, a 2 (session: pre- vs.
posttraining scan) � 2 (task: prediction vs. control) � 6 (ROI:
V1, V2, V3d, V3a, V3v, and hV4) repeated-measures ANOVA
showed a significant interaction between task and session
(F1,11 � 9.77, P � 0.010). Enhanced decoding accuracy after
training for the prediction task was primarily observed in early
visual areas V1 and V2. In particular, the interaction between
task and session was significant in V1 (F1,11 � 6.683, P �
0.025) and V2 (F1,11 � 6.55, P � 0.027), as decoding accuracy
increased after training only for the prediction task (paired
t-test: t11 � �5.03, P � 0.001) but not for the control task (P �
0.783). No significant interactions were observed in V3d and
V3v and hV4 and V3a (F � 1). Furthermore, there was no
three-way interaction (session � task � ROI: F5,75 � 0.545, P �
0.741), as indicated by higher classification accuracy in V1 and
V2 compared with higher visual areas for both the prediction
and the control task. These weaker effects in higher compared
with early (V1, V2) visual areas (effect of ROI: F5,55 � 4.44,
P � 0.002) have been previously observed in fMRI studies

Fig. 2. Univariate vs. multivariate analysis of BOLD signals. A: univariate
mean trial time course (across voxels and participants) of BOLD responses
in V1 (% signal change calculated in relation to the average signal across
the whole run) for the pretraining and posttraining scanning sessions. The
shaded gray area (volumes 8 –13) indicates the volumes used to decode the
participants’ prediction after accounting for the hemodynamic lag. Volume 7 was not
used, to avoid confounding activation from the sequence presentation. B:
mean decoding support vector machine (SVM) accuracy (proportion cor-
rect) per fMRI volume of the participants’ predictions before and after
training. Note that per-volume fMRI signals are noisier than signals
averaged across volumes, resulting in lower multivoxel pattern (MVPA)
accuracy. Error bars indicate SE.

3164 LEARNING TO PREDICT IN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00753.2014 • www.jn.org



testing responses in nonstimulated visual cortex (Harrison and
Tong 2009; Kok et al. 2012, 2013; Smith and Muckli 2010)
and are potentially due to stronger orientation-selective re-
sponses in early visual areas (Kamitani and Tong 2005).

Furthermore, additional analysis after removal of more vol-
umes at the beginning (volumes 8 and 9) and the end (volume
13)—to avoid activity due to stimulation from the sequences or
the test grating—showed the same pattern of results. As in the
main analysis, a 2 (session: pre- vs. posttraining scan) � 2
(task: prediction vs. control) � 6 (ROI: V1, V2, V3d, V3a,
V3v, and hV4) repeated-measures ANOVA showed a signifi-
cant interaction between task and session (F1,11 � 7.80, P �
0.017). Enhanced decoding accuracy after training for the
prediction task was primarily observed in early visual areas V1
and V2. That is, we observed significant effects for session in
V1 (F1,11 � 17.77, P � 0.001) and V2 (F1,11 � 7.92, P �
0.017) but not in V3d, V3v, V3a, and hV4. There was a
significant interaction between session and task in both V1
(F1,11 � 17.3, P � 0.002) and V2 (F1,11 � 11.39, P � 0.006),
consistent with enhanced classification accuracy after training
only for the prediction task.

These results provide evidence for visual cortex representa-
tions that are specific to the learned sequence structure—rather

than random sequences as presented in the control task—and
reflect participants’ predictions. Increased decoding accuracies
after training for the prediction task could not be simply
explained by 1) general familiarity with the stimuli or the task
after training, as these remained the same across tasks, or 2)
differences in the task design. In particular, as both tasks
require a coarse (left vs. right) rather than fine orientation
matching of the predicted or cued orientation to the test
stimulus, participants may hold in memory and potentially
mentally imagine a label or visual image of the predicted or
cued stimulus. The cue in the control task may encourage
participants to keep a label in memory that can be visualized
for comparison to the visual test stimulus, while in the predic-
tion task there is no cue and the participants may verbalize or
visualize their prediction. However, this difference in task
design did not result in significant differences in average fMRI
responses (main effect for task: F1,11 � 0.01, P � 0.905;
interaction between session and task: F1,11 � 0.41, P � 0.537)
during the no-stimulation period, suggesting similar effect of
working memory or imagery processes in early visual cortex
across tasks. In contrast, the key difference between tasks is in
the content (predicted stimulus following a structured sequence
vs. cued physical stimulus following a random sequence) of the

Fig. 3. Comparing MVPA for the prediction and control
tasks. Mean classification accuracy (across volumes 8–13
and participants) of the predicted orientation before and
after training in early visual areas for the prediction and
control tasks. Error bars indicate SE.
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representation accessed by the participants. Thus higher decod-
ing accuracies after training in the prediction task compared
with the control task—despite similar behavioral performance
after training in both tasks (paired t-test: t11 � �1.92, P �
0.082)—suggest that our results indicate predictive represen-
tations specific to the trained structured sequences rather than
differences in working memory or visual imagery processes
across tasks.

Finally, significant correlation of the participants’ perfor-
mance with decoding accuracy in V1 after training (r � .609,
P � 0.036) suggests that selective representations for predicted
orientation relate to the observers’ enhanced ability to predict
upcoming stimuli after training on temporal sequences (Fig.
4A). Interestingly, decoding accuracy did not improve signifi-
cantly after training in any of the visual areas (F � 1) for
participants (n � 4) who did not show improved performance
during training (57% mean performance at the last training
session). A 2 (session: pre- vs. posttraining scan) � 6 (ROI:
V1, V2, V3d, V3a, V3v, and hV4) repeated-measures ANOVA
showed no significant main effects for session (F1,3 � 0.028,
P � 0.878) or ROI or significant interaction (F1,3 � 0.073, P �
0.804) (Fig. 4B). Taken together these results suggest a strong
link between the observers’ ability to predict the identity of
upcoming stimuli after training on temporal sequences and
orientation representations in early visual areas.

Comparing Physical vs. Predicted Orientation
Representations

Finally, we asked whether neural populations—as recorded
at a large scale by fMRI—that encode physical stimulus
orientation may also represent predicted orientation. To this
end, we tested whether activity patterns for predicted orienta-
tions resemble stimulus-driven activity elicited during viewing
of oriented gratings. We collected an independent set of fMRI
data while the participants viewed leftward- vs. rightward-
oriented gratings in separate blocks (45° or 135°). Consistent

with previous studies (Harrison and Tong 2009; Haynes and
Rees 2005; Kamitani and Tong 2005), decoding of orientation
from stimulus-driven activity was successful across visual
areas (Fig. 5A). To evaluate the correspondence between neural
representations for physical and predicted orientations, we
trained an SVM on fMRI signals related to physical orienta-
tions and tested the accuracy of the classifier in decoding
predicted orientations from fMRI data collected when observ-
ers performed the prediction task. Despite stimulus and task
differences between these experiments, we observed general-
ization of classifier performance in V1 and V2 after training
but not in higher areas where orientation selectivity is known
to be weaker. Importantly, we observed improved classification
accuracy for predicted orientations after training, suggesting
that learning temporal sequences modulates neural populations
in early visual cortex involved in the selective processing of
orientation (Fig. 5B). In particular, a 2 (session: pre- vs.
posttraining) � 6 (ROI: V1, V2, V3d, V3a, V3v, and hV4)
repeated-measures ANOVA showed higher classification ac-
curacy after training (i.e., main effect for session: F1,11 �
18.768, P � 0.001). Although there was no significant inter-
action between session and ROI (F1,11 � 1.05, P � 0.400),
improved decoding accuracy after compared with before train-
ing was more prominent in V1 (paired t-test: t11 � �3.62, P �
0.004) and V2 (paired t-test: t11 � �4.16, P � 0.002) but only
marginally significant for V3d (paired t-test: t11 � �1.93, P �
0.080). Similar analysis for the control task (Fig. 5C) did not
show any significant differences after vs. before training in
predicting cued orientations across ROIs [paired t-tests: t11 �
1, not significant (n.s.)]. Comparing generalization of classifier
performance between the prediction and control tasks showed
a significant interaction between task and session (F1,11 �
5.17, P � 0.044), consistent with our main findings suggesting
enhanced predictive representations that are specific to training
with structured than random sequences of items.

Fig. 4. Linking classification accuracy and behavioral
performance. A: correlation between decoding accuracy
for predicted orientations in V1 and performance (% of
correct predictions) in the prediction task. No significant
correlations (P � 0.05) were observed for other visual
areas. B: decoding accuracy across visual areas for the
weak learners (n � 4) in the prediction task before and
after training.

3166 LEARNING TO PREDICT IN VISUAL CORTEX

J Neurophysiol • doi:10.1152/jn.00753.2014 • www.jn.org



Control Analyses

We conducted the following additional analyses to control
for possible alternative explanations of the results.

First, to control for the possibility that our results are due to
random correlations in the data, we conducted the same de-
coding analysis using randomly permuted fMRI patterns (i.e.,
we randomized the correspondence between fMRI data and
labels and performed MVPA for 10,000 iterations). This anal-
ysis resulted in classification accuracies that did not differ from
chance for both pretraining (mean � 50%, SD � 0.05) and
posttraining (mean � 49.8%, SD � 0.054) data (t � 1, n.s.) in
V1. In particular, decoding accuracy for the prediction task was
higher than the 97.5th percentile of the random distribution for
10 of 12 participants after training but only for 2 participants
before training. Similar results were observed across ROIs.
This analysis suggests that our decoding results could not be
simply accounted for by random variations in the data.

Second, we focused on fMRI decoding based on the partic-
ipants’ responses in the prediction task, as our goal was to
understand whether the visual cortex contains information that
relates to behavioral predictions. However, this analysis may
be confounded by differences in the number of correct trials

between sessions, that is, a larger number of correct trials after
compared with before training. To control for this, we first
conducted the same analysis using fMRI signals only for
correct trials for both scan sessions. A 2 (session: pre- vs.
posttraining scan) � 2 (task: prediction vs. control) � 6 (ROI:
V1, V2, V3d, V3a, V3v, and hV4) repeated-measures ANOVA
showed similar improvement of classification accuracies after
training. That is, we observed significantly higher classification
accuracy after than before training in the main task as indicated
by significant session � task interactions for V1 (F1,11 � 20.59,
P � 0.001), V2 (F1,11 � 15.43, P � 0.002), V3a (F1,11 � 8.83,
P � 0.013), and V3d (F1,11 � 5.26, P � 0.043) but not for V3v
(F1,11 � 3.056, P � 0.108) and hV4 (F1,11 � 0.356, P �
0.563). Second, we performed an additional analysis (Fig. 6)
that decoded the expected orientation as determined by the
presented sequence rather than the participants’ prediction. We
found a similar pattern of results, with significantly higher
classification accuracies after than before training across ROIs
(session � task: F1,11 � 10.76, P � 0.007). Interestingly, this
was not the case for weaker learners: prediction accuracies did
not change across sessions, consistent with the results pre-
sented in Fig. 4B. These control analyses suggest that our

Fig. 5. Classifier generalization performance. A: classi-
fication accuracy for decoding the 2 grating orientations
(rightward and leftward) in an independent block design
experiment. B and C: decoding (mean classification
accuracy) of predicted (prediction task, B) and cued
(control task, C) orientations before and after training
using a classifier trained on physical stimulus orienta-
tions.
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results could not be simply explained by differences in task
difficulty between scanning sessions.

Third, is it possible that the difference in the decoding accuracy
for the prediction task before and after training was due to
different strategies adopted by the observers? That is, before
training the participants found the task too difficult and responded
randomly when the test stimulus appeared instead of predicting
the upcoming stimulus. However, low prediction accuracies be-
fore training for the expected orientation as determined by the
presented sequence (Fig. 6) suggest that fMRI patterns in visual
cortex contain information about structured sequences after but
not before training. As this analysis does not rely on the partici-
pants’ responses, low accuracies before training could not be due
to the participants’ response strategy (e.g., guessing).

Fourth, our results could not be simply explained by differ-
ences in participants’ attention between scan sessions, as anal-
ysis of univariate fMRI signals for leftward- and rightward-
oriented gratings did not differ before and after training.
Furthermore, this analysis justifies our choice of MVPA clas-
sification methods for the analysis of predictive representations
that have been shown to be more sensitive than univariate
approaches in extracting selective signals from brain patterns.
Finally, analysis of eye movement recordings did not show any
differences between scanning sessions and between leftward
vs. rightward predicted orientations across sessions, suggesting
that it is unlikely that eye movements could explain our results.
In particular, a 2 (session: pre- vs. posttraining) � 2 (orienta-
tion: left vs. right) repeated-measures ANOVA revealed that
there were no significant effects of session or orientation for
the mean eye position (session: F1,3 � 0.086, P � 0.789;
orientation: F1,3 � 0.29, P � 0.625), mean saccade amplitude
(F1,3 � 2.2, P � 0.230; F1,3 � 0.48, P � 0.536), or number of
saccades per trial per condition (F1,3 � 0.57, P � 0.504; F1,3 � 0.42,
P � 0.564). Also, there was no significant interaction between
session and orientation for the mean eye position (F1,3 � 1.89,
P � 0.263), the number of saccades (F1,3 � 0.55, P � 0.512),
or the saccade amplitude (F1,3 � 0.44, P � 0.55).

DISCUSSION

Our results provide evidence that learning of temporal regular-
ities supports our ability to predict future events by reactivating
selective sensory representations in primary visual cortex. Inter-
estingly, these predictive representations appear to be driven by
the same large-scale neural populations that encode physical
stimulus properties (i.e., orientation) and to be specific to the
learned sequence structure. Furthermore, these representations
reflect our ability to predict future events as indicated by a
significant correlation between fMRI decoding and behav-
ioral improvement in the prediction task after training.

Consistent with our previous behavioral work (Baker et al.
2014), we demonstrate that exposure to temporal regularities in
a scene allows us to accumulate information about its structure
and predict future events. Although we used deterministic
sequences, we ensured that observers learned the global se-
quence structure (i.e., temporal order statistics across items
rather than each item position in the sequence) by matching the
frequency of occurrence of each item (i.e., grating orientation)
in the sequence. Previous studies have suggested that learning
of regularities may occur implicitly in a range of tasks: visuo-
motor sequence learning (Nissen and Bullemer 1987), artificial
grammar learning (Reber 1967), probabilistic category learn-
ing (Knowlton et al. 1994), and contextual cue learning (Chun
and Jiang 1998). In our study, participants were exposed to the
sequences without feedback but were asked to make an explicit
judgment about the identity of the upcoming test stimulus
(leftward- vs. rightward-oriented grating), making them aware
of the dependencies between the stimuli presented in the
sequence. However, debriefing the participants showed that it
was unlikely that the participants explicitly memorized the
sequences, suggesting that they made predictions based on
implicit knowledge of temporal structure.

Our fMRI findings advance our understanding of the brain
mechanisms that support our ability to translate previous
knowledge to future predictions in four main respects. First,
previous imaging and physiology studies suggest that extensive
training on visual detection or discrimination tasks may mod-
ulate processing in primary visual cortex (Bao et al. 2010;
Furmanski et al. 2004; Jehee et al. 2012; Schoups et al. 2001).
Our findings extend beyond this work, showing that mere
exposure to the statistics of the environment alters selectively
orientation representations in primary visual cortex to reflect
the observers’ prediction. Furthermore, recent animal physiol-
ogy studies provide evidence for reactivation of neural re-
sponses in visual cortex when neurons are activated in a
temporal sequence (Eagleman and Dragoi 2012; Gavornik and
Bear 2014). Our study provides novel evidence that such
experience-dependent neural reactivation correlates and may
facilitate the ability of human observers to make predictions of
upcoming sensory events. Although the nature of the signals
that support orientation decoding has been recently debated
(Freeman et al. 2011), here we demonstrate that the same
large-scale neural populations that encode physical orientations
in primary visual cortex encode also the predicted orientations.
Thus our work provides novel evidence that previous knowl-
edge alters processing in primary visual cortex that mediates
our ability to make sensory predictions.

Second, learning of spatial and temporal regularities has been
suggested to engage the striatum and medial temporal lobe re-

Fig. 6. Decoding the expected orientation as determined
by the preceding sequence. Mean classification accu-
racy (across volumes 8–13 and participants) of decod-
ing the expected orientation as determined by the pre-
sented sequence before and after training in early visual
areas. Error bars indicate SE.
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gions (Gheysen et al. 2011; Hsieh et al. 2014; Rauch et al. 1997;
Rose et al. 2011; Schapiro et al. 2012, 2014; Schendan et al.
2003a). For example, studies (Foerde et al. 2006; Poldrack et al.
1999, 2001) using the weather prediction paradigm have impli-
cated these regions in implicit learning of probabilistic associa-
tions. Previous work has implicated mainly striatal regions (e.g.,
caudate and putamen) in implicit learning (Hazeltine et al. 1997;
Rauch et al. 1995) and the medial temporal lobe in both implicit
and explicit learning (Schendan et al. 2003a, 2003b). Our results
suggest interactions between these memory circuits and visual
cortex; that is, learning of temporal structures that is known to
engage this circuit may shape representations in primary visual
cortex that relate to our ability to make sensory predictions. This
is consistent with recent work implicating the hippocampus in
memory of temporal order (for review see Eichenbaum 2013;
Howard and Eichenbaum 2013) and prospective memory of
simulated future events (Ingvar 1985; Szpunar et al. 2013). Fur-
thermore, related work has suggested that associative learning
engaging medial temporal lobe regions modulates processing in
inferotemporal (Meyer and Olson 2011; Miyashita 1993) and area
MT (Schlack and Albright 2007) and early visual (Bosch et al.
2014) cortex. While this previous work has focused on paired
associations, we propose that learning of higher-order regularities
in the context of temporal sequences may employ similar brain
circuits to translate knowledge about temporal structure in medial
temporal lobe to predictions in sensory areas.

Third, there is accumulating evidence for the role of primary
visual cortex in predictive coding. In particular, recent fMRI
(Alink et al. 2010; Harrison et al. 2007; Kok et al. 2012, 2014;
Murray et al. 2002; Schoups et al. 2001; Smith and Muckli
2010; Summerfield and Egner 2009) and neurophysiology
(Guo et al. 2007; Kim et al. 2012; Meyer and Olson 2011;
Perrett et al. 2009) studies have shown that responses in visual
cortex are modulated by spatio-temporal context. These find-
ings have been observed in the context of tasks involving
stimulus anticipation based on paired associations or short-
term history (i.e., probability of occurrence for a preceding
stimulus). Furthermore, higher responses are observed for
unexpected than expected stimuli, consistent with increased
prediction error when sensory signals and top-down expecta-
tions do not correspond (Bastos et al. 2012; Friston 2005;
Summerfield and Egner 2009). Our study extends beyond these
findings in several respects. First, our paradigm allows us to
test how longer-term knowledge acquired through several
training sessions rather than short-term stimulus history affects
prediction in primary visual cortex. Second, our study is the
first to test the role of sequence learning on predictions related
to visual recognition. Previous work on learning temporal
sequences has focused on implicit measures of sequence learn-
ing, such as familiarity judgments or reaction times (Nissen
and Bullemer 1987; for review see Schwarb and Schumacher
2012). Although such paradigms implicate that implicit learn-
ing of temporal sequences facilitates the anticipation of up-
coming events, they do not test whether this knowledge can be
used to explicitly predict the identity of upcoming stimuli. In
contrast, our design allows us to test for neural representations
related to explicit predictions about the identity of an upcoming
stimulus (i.e., grating orientation) rather than anticipation as
revealed typically by implicit measures (e.g., reaction times,
familiarity) of visual recognition. Third, using MVPA classi-
fication methods allows us to test how previous knowledge

affects selective processing of sensory features (i.e., orienta-
tion) related to the observers’ response (i.e., per-trial predic-
tion) rather than simply changes in the overall fMRI magnitude
related to expectation. Decoding predicted orientation during a
no-stimulation period before the test stimulus appears allows
us to investigate the processes involved in predicting upcoming
sensory events, in contrast to previous work investigating
predictive coding based on the error generated when unex-
pected stimuli are presented.

Finally, recent imaging work has highlighted the role of
primary visual cortex in cognitive functions such as working
memory and visual imagery (Albers et al. 2013; Harrison
and Tong 2009; Serences et al. 2009). The prediction task
used in our study involves these processes, as it entails that
participants hold in memory and/or imagine the predicted
stimulus in order to match it to the test stimulus. However,
comparing the prediction task with a control task using
random sequences and a similar design involving the same
processes (i.e., holding in memory and/or imagining a grat-
ing orientation) demonstrates predictive representations in
primary visual cortex that are specific to the knowledge of
structured sequences. In particular, comparing average
fMRI responses for the no-stimulation period between tasks
did not show any significant differences, suggesting that
higher orientation decoding accuracy in the prediction than
the control task cannot be simply due to differences in the
task design. In contrast, the critical difference between tasks
is in the content of the representation accessed by the
participants (predicted orientation following a structured
sequence vs. cued physical orientation following a random
sequence), which we decode using MVPA classification of
fMRI data. This result is further supported by significant
correlation of the participants’ performance in the prediction
task with decoding accuracy in V1 after training. Taken
together these results suggest predictive representations in
early visual cortex following learning of structured se-
quences that cannot be simply explained by differences in
working memory or visual imagery processes across tasks.

In sum, our findings provide evidence that knowledge of
temporal regularities alters processing in primary visual cortex to
support our ability for sensory predictions. The high-resolution
imaging adopted in our study afforded us the signal quality
necessary to reveal activity patterns related to predictive represen-
tations, but it restricted brain coverage to visual cortex. Given the
complex nature of the BOLD signal, it is possible that the fMRI
selectivity that we observed for predicted orientations is enhanced
by feedback from other cortical circuits. Possible candidates
include 1) medial temporal lobe and subcortical areas that are
known to be involved in associative learning and temporal mem-
ory and 2) prefrontal circuits that support rule-based behaviors
and prediction of future events (Bar 2009; Leaver et al. 2009;
Pasupathy and Miller 2005). It is also important to note that—
despite the enhanced sensitivity of our methodology—decoding
reveals neural preferences at the scale of large neural populations
rather than tuning of individual neurons. Therefore, understanding
the cortical circuits that support our ability to translate previous
knowledge to sensory predictions requires further whole brain
connectivity studies combining advanced imaging and neurophys-
iological techniques.
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