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Abstract  

Mammographic density measures adjusted for age and body mass index (BMI) are heritable 

predictors of breast cancer risk but few mammographic density-associated genetic variants 

have been identified.  Using data for 10,727 women from two international consortia, we 

estimated associations between 77 common breast cancer susceptibility variants and 

absolute dense area, percent dense area and absolute non-dense area adjusted for study, 

age and BMI using mixed linear modeling.  We found strong support for established 

associations between rs10995190 (in the region of ZNF365), rs2046210 (ESR1) and 

rs3817198 (LSP1) and adjusted absolute and percent dense areas (all p <10-5).  Of 41 

recently discovered breast cancer susceptibility variants, associations were found between 

rs1432679 (EBF1), rs17817449 (MIR1972-2: FTO), rs12710696 (2p24.1), and rs3757318 

(ESR1) and adjusted absolute and percent dense areas, respectively. There were 

associations between rs6001930 (MKL1) and both adjusted absolute dense and non-dense 

areas, and between rs17356907 (NTN4) and adjusted absolute non-dense area.  Trends in all 

but two associations were consistent with those for breast cancer risk.  Results suggested 

that 18% of breast cancer susceptibility variants were associated with at least one 

mammographic density measure.  Genetic variants at multiple loci were associated with 

both breast cancer risk and the mammographic density measures. Further understanding of 

the underlying mechanisms at these loci could help identify etiological pathways implicated 

in how mammographic density predicts breast cancer risk. 

Precis:  Findings significantly extend evidence of shared genetic determinants between 

breast cancer risk and mammographic density metrics, likely representing shared etiological 

pathways. 
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Introduction 

Mammographic density refers to the white or light areas on a mammogram, which 

are thought to reflect differing amounts of epithelial and stromal tissue within the breast, as 

distinct from radiographically lucent fatty tissue.  For women of the same age and body 

mass index (BMI), those with more extensive amounts of either absolute or percent dense 

area are more likely to develop breast cancer (1).  The underlying biological processes are 

not clear. 

Twin and family studies have shown that a substantial variation in the 

mammographic density measures could be due to genetic factors (2-4).  Moreover, these 

heritable mammographic density measures are thought to explain about 10-20% of the 

association of family history with breast cancer risk (5, 6). 

Finding genetic variants that are associated with both breast cancer risk and the 

mammographic density measures that predict breast cancer has the potential to reveal 

underlying biological pathways that explain the associations between those mammographic 

measures and cancer, resulting in a better understanding of the etiology of breast cancer. 

The use of large scale genotyping projects to discover common genetic variants (single 

nucleotide polymorphisms, or SNPs) associated with breast cancer risk has opened up the 

possibility of achieving this.  The international DENSNP consortium previously studied the 

associations of 15 independent breast cancer susceptibility variants with age- and BMI-

adjusted mammographic density measures for 17,000 women.  This confirmed prior 

associations found between the variant rs381798 (in the region of LSP1) (7, 8) and adjusted 

absolute and percent density and provided evidence for an association between rs10483813 

(in the region of RAD51L1) and adjusted percent dense area (9).  Two genome-wide 



 Breast Cancer Susceptibility Variants and Mammographic Density 
 

10 
 

association studies (GWAS) conducted by the Markers Of DEnsity (MODE) consortium found 

that there was an association between rs10995190 (in the ZNF365 locus), independently 

shown to be associated with breast cancer risk (10), and adjusted percent dense area, and 

weaker evidence for associations with the variants rs2046210 (in the region of ESR1) and 

rs3817198 (see above) (11).  More recently, we identified novel loci associated with dense 

area (rs10034692 from AREG, rs703556 from IGF1, rs7289126 from TMEM184B, rs17001868 

from SGSME/MKL1), non-dense area (rs7816345 from 8p11.23), and percent density 

(rs186749 from PRDM6, rs7816345 from 8p11.23 and rs7289126 from TMEM184B) (11).  

Furthermore, using a GWAS of both breast cancer and mammographic density, MODE 

investigators found that adjusted percent dense area and breast cancer risk have a shared 

genetic basis that is mediated by, at least in theory, a large number of common variants 

(12). 

A further 41 independent breast cancer susceptibility common variants have been 

discovered by a study of 45,290 cases and 41,880 controls using a custom genotyping array 

designed in part by the Breast Cancer Association Consortium (BCAC) (13).  Of these new 

variants, a recent report from several co-authors found novel associations between breast 

cancer SNPs in 6q25: rs9485372 (TAB2) and rs9383938 (ESR1) with a volumetric measure of 

mammographic density in approximately  5000 Swedish women (14).  They also found novel 

associations between breast cancer SNPs rs6001930 (MKL1) and rs17356907 (NTN4) with 

absolute non-dense volume. Here, we provide the largest and most comprehensive report 

to date of the associations between the current total of 77 known breast cancer 

susceptibility SNPs and three area-based mammographic density measures using data from 

over 10,000 women participating in the DENSNPs and MODE consortia.     
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Methods 

Subjects 

Genotypes, mammographic density measures and information on conventional 

breast cancer risk factors were available for 10,727 self-reported women of European 

Ancestry from 13 studies described previously (4, 9, 11, 15).  A summary of study design, 

sample sizes, mammographic and genotyping characteristics is given in Supplementary 

Table 1.  Each study obtained informed consent and had relevant ethics and institutional 

approvals.  Only anonymised data were used for analyses. 

 

Mammographic density measures  

All mammographic density measurements were performed on digitized analogue films 

taken prior to diagnosis using either the Cumulus (16), Madena (17), or MDEST (18) 

programs.  All approaches apply a thresholding technique to measure total area of the 

breast and absolute dense area, from which percent dense area and absolute non-dense 

area are derived.  Absolute dense and non-dense area values were converted to cm2 

according to the pixel size used in the digitization.  All measurements were conducted by 

observers blind to genotype, case status (if applicable) and breast cancer risk factor data.  

For cases, mammograms prior to diagnosis were used or, when this was not possible, those 

from the contralateral breast taken at the time of diagnosis (Table 1).   

The mammographic density readings were performed on both craniocaudal (CC) and 

mediolateral oblique (MLO) views but these have been consistently shown to have high 

correlation (range of 0.87-0.90) (19). 
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Genotyping 

The 77 currently known independent breast cancer susceptibility SNPs were 

genotyped for the 13 studies either as part of a GWAS (11, 15) or by genotyping of a custom 

Illumina iSelect genotyping array comprising 211,155 SNPs (described in Michailidou et al 

2013 (13) (Table 1).  Quality control was conducted at the study level; for all SNPs in these 

analyses their call rates were >95%. Five SNPs (from 3 studies) with Hardy–Weinberg 

equilibrium P values <0.001 were excluded.    

 

Statistical methods 

Distributions of covariates summarized by frequency and percentages are 

summarized breast cancer status (affected/unaffected).  Primary analyses used individual 

level data and included a fixed study effect to adjust for potential differences due to study.  

Analyses were conducted using the square root of the density measures as the outcome 

variables, and examination of the distributions of the residuals after adjustment for age and 

BMI showed an approximately normal distribution. 

 Primary analyses were conducted using fixed effects ordinary linear regression 

adjusting for age (continuous), 1/BMI, and study.  Analyses considered SNP associations as 

additive by defining an ordinal covariate as the number of copies of the minor allele (0, 1 or 

2) producing per-allele estimates that are reported as beta (β) and standard error (SE).  (For 

imputed genotypes from the two GWAS studies, the imputed allelic dosage values were 

used).  Secondary analyses were performed to evaluate potential confounding with other 

covariates such as case-control status, menopausal status (pre- and perimenopausal 
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combined vs. postmenopausal), and postmenopausal hormone use (ever vs. never use).  To 

measure the extent to which the mammographic measures mediated the SNP associations 

with breast cancer risk we estimated the proportion of change in the regression coefficient 

for each SNP after adjustment for breast cancer status and calculated 95% confidence 

intervals based on methods described by Lin et al (20).  

We performed a series of analyses to test the robustness of the association between 

mammographic density measures and the 77 SNPs.  First we performed an overall test of 

whether there was no association between any of the variants and a given mammographic 

measure by testing whether the distribution of the 77 P-values deviated from the uniform 

distribution on the interval 0, 1.  Fisher’s exact test of uniformity tests the sum of the −2 ln 

Pi across all loci where Pi is the P value for the ith variant, against χ2 distribution with 2n 

degrees of freedom, where n is the number of independent variants (21).  Second, to try to 

determine the “best” model fit (i.e. the set of independent SNPs which give the best–fitting 

model for adjusted breast density) we used Lasso (least absolute shrinkage and selection 

operator) regression, a method which combines estimation and model selection which 

limits overestimation of associations when there are a large number of covariates (22).  The 

final model was chosen by the minimum Schwarz Bayesian Information Criterion (SBC), 

which combines goodness of fit with a penalty based on the number of parameters in the 

model.  Finally, we tried to quantify whether there was information in the other variants 

that did not reach our p-value threshold (see below for details) but which could help further 

explain some of the missing heritability.  For each mammographic density measure we 

removed the most significant variants (p<0.00065, selected by 0.05/77) associated with that 

measure and tested whether the distribution of the remaining p-values was different from 
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zero.  The least informative variant was removed sequentially until there was no evidence to 

reject the null hypothesis.  

Analyses were performed using SAS version 9.3 (SAS Institute, Inc., Cary, NC).  Two 

sided p-values were calculated.  We used a conservative threshold of 0.05/77=0.00065 to 

define statistical significance, while presenting the results for all tested variants.  

 

Results 

Table 2 shows summary characteristics for each study.  The majority of women were 

older than 60 years, more than 80% were postmenopausal, 55% had BMI ≥ 25 kg/m2, and 

35% were breast cancer cases.   

Percent and absolute dense area were negatively associated with age, BMI, parity 

and postmenopausal status and positively associated with postmenopausal hormone 

therapy use (Supplementary Table 1).  Conversely, absolute non-dense area was positively 

associated with age, BMI and parity and negatively associated with hormone therapy use.  

All of the above associations were similar in direction and magnitude for cases and controls 

(data not shown).  None of the density measures were statistically significantly different by 

mammogram view (Supplementary Table 1). 

Of the 77 variants, nine were associated with at least one adjusted mammographic 

density measure, using the threshold of 0.00065 (Table 3, results for all SNPs in 

Supplementary Table 1).  Figure 1 is a forest plot of all 77 breast cancer susceptibility 

variants sorted by magnitude of association with breast cancer risk in these studies; the nine 

variants are highlighted in bold.  The findings confirm  previously identified associations with 

both adjusted percent and absolute dense areas for rs10995190 in the ZNF365 gene 

(β=0.16, SE=0.028, p=8.5x10-9and β=0.25, SE=0.038, p=4.7x10-11, respectively), rs2046210 in 
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the region of ESR1 (β=0.098, SE=0.021, p=2.4x10-6 and β=0.14, SE=0.029, p=1.7x10-6, 

respectively) and rs3817198  in the region of LSP1 (β=0.087, SE=0.021, p=4.4x10-5 and 

β=0.16, SE=0.029, p=1.3x10-7, respectively).  None of these three variants showed evidence 

of association with adjusted non-dense area (Table 3).  There were marginal associations 

between two independent variants (r2=0.003) in the region of RAD51L1; rs999737 (p=0.003 

and p=0.01) with both adjusted percent and absolute dense area (reported in our previous 

DENSNP study (9)) and rs2588809 (p=0.002, p=0.04, and p=0.02) with adjusted percent 

dense area, dense area and non-dense area respectively (Supplementary Table 2).   

Of the 41 recently identified breast cancer loci, we found evidence of novel 

associations between at least one of the adjusted density measures and six variants (Table 

3).  The minor G allele of rs1432679 (EBF1) was positively associated with adjusted dense 

area and negatively associated with adjusted non-dense area, and hence was positively 

associated with adjusted percent density (β=0.087, SE=0.020, p=1.1x10-5).  The minor G 

allele of rs6001930 in the region of MKL1 was negatively associated with both adjusted 

absolute dense and non-dense areas (β=-0.18, SE=0.044, p=3.2x10-5 and β=-0.23, SE=0.048, 

p=1.7x10-6, respectively), but was not associated with adjusted percent density (p=0.04).  

The A allele of rs17356907 in the region of NTN4 was negatively associated with adjusted 

non-dense area (β=-0.12, SE=0.033, p=2.4x10-4), but not with adjusted dense area or 

percent density.  The A allele of rs3757318 (close to ESR1) was positively associated with 

adjusted dense area (β=0.19, SE=0.054, p=4.6x10-4), but not with either of the other density 

phenotypes.  Both rs17817449 (MIR1972-2:FTO) and rs12710696 (2p24.1) were negatively 

associated with adjusted percent and absolute dense area.   Although sample sizes were 

substantially reduced (n<7000), these associations with were similar when analyses were 
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restricted to images from controls only, CC mammogram views, and mammograms within a 

year of covariate information (data not shown). 

Further adjustment for case-control status showed evidence that percent dense area 

and dense area mediated the associations of rs10995190 (ZNF365), rs2046210 (ESR1), 

rs1432679 (EBF1), and rs3817198 (LSP1) with breast cancer risk (Supplementary Table 3).  

There was also evidence that dense area mediated the association of rs3757318 (ESR1) and 

breast cancer, and non-dense area mediated the association of rs1432679 (EBF1) and 

rs6001930 (MKL1) with breast cancer.  These estimates ranged from 4% to 18% of the SNP 

and breast cancer association being explained by density phenotypes (Supplementary Table 

3).  However, adjustment for other additional covariates did not substantially influence the 

regression estimates (data not shown).  The between-study test of heterogeneity p-value 

was >0.05 for all the variants in Table 3, except for the association between rs2046210 

(ESR1) and adjusted dense area (p=0.03). 

When taking a global, as distinct from individual SNP, view we found that of the 77 

variants examined, the nominal p-value was <0.05 for 20 associations with adjusted dense 

area, 18 associations with adjusted percent dense area, and 10 associations with adjusted 

non-dense area comprising in total 25 separate variants (Supplementary Table 2).  For any 

one density measure, by chance alone we would have expected 3.9 (95% CI 1-7) 

associations to be nominally significant at p=0.05.  The distributions of the 77 P-values for 

each of the mammographic measures were not consistent with the uniform distribution 

(puniform<2x10-6 for each density measure), suggesting the existence of true associations 

between at least some breast cancer susceptibility variants and the mammographic density 

measures that predict breast cancer.  From Lasso regression, the ’best fitting’ model for 

adjusted percent dense area included the bolded variants in Table 3 plus three others 
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including rs12710696 (2p24.1), rs4808801 (SSBP4:ISYNA1:ELL) and rs12422552 (12p13.1)  

which when combined explained 1.2% of the variation in the adjusted percent dense area 

trait.  Similarly, the best fitting model from Lasso regression of adjusted dense area included 

the six bolded variants in Table 3 and rs1432679 (EBF1), rs17817449 (MIR1972-2:FTO) and, 

like percent dense area, rs4808801 (SSBP4:ISYNA1:ELL) when combined explained 1.4% of 

the variation in adjusted dense area.  Finally, the best fitting model for adjusted non-dense 

area included only the three bolded variants in Table 3 which when combined explained 

0.4% of the variation.     

When we removed the variants in the best fitting Lasso models for each phenotype 

above noted above, the distribution of the remaining p-values still deviated from the null 

hypothesis of no association between the genetic variants for both percent and absolute 

dense area (p=0.00005 for percent density, p=0.00006 for dense area) but not non-dense 

area (p=0.01).  Sequentially removing the variants most strongly associated with the 

mammographic density measure until the test no longer found deviation from the null using 

a p-value threshold of 0.00065, we found evidence of one more SNP associated with each 

percent dense and absolute dense area (rs999737 and rs6678914,respectively). 

We also compared the QQ plots before and after exclusion of the top 14 breast 

cancer variants (9 identified via ordinary linear regression and 5 others identified via LASSO 

regression) most strongly associated with the mammographic density measures (see Figure 

2).  Based on the analysis described above and  the lack of departure from the 45 degree 

line once the top 14 variants have been removed (indicative of a probable threshold of 

commonly shared variants), we estimate that there is an approximate 18% overlap between 

breast cancer- and mammographic density- associated variants.   
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Discussion 

This is the largest and most comprehensive study to date of the associations 

between breast cancer risk-predicting mammographic density measures and the 77 

independent established breast cancer susceptibility common variants, 41 of which were  

recently identified by large-scale genotyping (13).  In addition to previously reported 

associations between common breast cancer susceptibility SNPs in the regions of ZNF365, 

ESR1 and LSP1 and age- and BMI-adjusted absolute and percent dense area, we found 

strong evidence of novel associations between SNPs with all three adjusted mammographic 

density measures (in the region of EBF1); with adjusted dense area or percent dense area 

(MIR1972-2: FTO, 2p24.1, and another in the region of ESR1 independent of the initially 

reported SNP, rs2046210); adjusted dense and non-dense area (MKL1) and non-dense area 

only (NTN4).  The directions of these associations were consistent with that of their 

associations with breast cancer risk, with the exception of MKL1 and 2p24.1 which were 

both negatively associated with dense area (and percent dense area) but are reportedly 

positively associated with breast cancer risk.  Further, these mammographic measures show 

evidence for mediating the association of several of these SNPs and breast cancer risk.     

These findings are consistent with those recently reported by our co-authors 

Swedish study (14). Despite differences in phenotypes (area vs volume), both studies 

independently showed novel associations between absolute measures of dense tissue with 

rs2046210 (ESR1) and between absolute measures of non-dense tissue with rs17356907 

(NTN4).  Both studies also reported strong negative associations between and absolute 

measures of dense and non-dense tissue with rs6001930 (MKL1).  The other novel 
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association reported in Brand et al (14) between percent dense volume and rs9485372 

(TAB2), a variant associated with breast cancer risk in Asian women, was not investigated in 

this study.  The Swedish study did not replicate the previously reported association with 

rs3817198 (LSP1) nor our novel associations with rs12710696 (2p24.1) and rs17817449 

(MIR1972-2: FTO), underscoring the differences in the volumetric and area phenotypes.  Of 

note, both volumetric and area-based density measures have been shown associated with 

breast cancer risk, with similar magnitude of association (23).     

Whilst the standard approach using linear regression identified nine variants 

associated with mammographic density, the non-uniform distributions of the remaining p-

values suggest that there are additional genetic variants associated with both breast cancer 

risk and the mammographic density measures that predict risk.  In total, there is evidence of 

at least 14 breast cancer susceptibility variants (18%) associated with at least one 

mammographic density measure; approximately 10%, 12% and 4% of the breast cancer 

susceptibility SNPs were associated with percent dense area, dense area and non-dense 

area, respectively.  Our estimate of 18% is consistent with empirical estimates that the 

percentage of overlap between genetic determinants of breast cancer and the risk-

predicting mammographic density measures is 14% (95% CI: 4-39%) (5, 12).    

The nine density-associated variants identified here (using the standard approach) 

account for only a small proportion of the between-woman variation in the three risk-

predicting mammographic density phenotypes (<1.5% for each), but the contribution of the 

true causal variants could be larger.  Also, it has been estimated that there are more than 

1000 loci involved with breast cancer susceptibility (13) and therefore it is possible that a 

considerable subset of these will also be associated with the mammographic density 

measures.  Importantly, several of the SNP associations with breast cancer appear to be 
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mediated by the mammographic density phenotypes.  In fact, 15-20% of the associations of 

variants at ESR1 and EBF1 with breast cancer were mediated by percent dense area or 

dense area.   Understanding which susceptibility loci exert their influence on breast cancer 

risk partially through mammographic density measures could be important for identifying 

subgroups of women who are at a high “genetic” risk for both breast cancer and 

mammographic density.  There is increasing demand for the evidence-base to support 

stratified breast screening programs instead of the “one-size-fits-all” approaches that are 

currently recommended in most countries.  Discriminating between genetic risk due to 

mammographic density and/or breast cancer risk could identify which women may have a 

greater benefit from density reduction strategies and/or additional breast screening 

measures. 

  The biological reasons why mammographic density measures predict breast cancer 

risk are not understood.  There is evidence to suggest that extensive mammographic density 

is causally related to breast cancer rather than a simple correlate of its determinants (24). 

Breast cancer arises from epithelial cells lining the ducts or lobules of the breast and 

mammographic density might represent areas of the breast in which there are higher rates 

of epithelial proliferation, which are likely to increase the risk of somatic mutations, 

epigenetic alterations, and carcinogenesis, and/or slower rates of involution (25, 26).   

This is consistent with our findings that most of the associations between breast 

cancer susceptibility variants and risk-predicting mammographic density phenotypes are 

driven by associations with absolute or percent dense area.  However, the recent discovery 

that at least one breast cancer susceptibility variant (at NTN4) appears to be solely 

associated with adjusted non-dense tissue provides evidence for the hypothesis that non-

dense fatty tissue may play an independent role in the pathogenesis of breast cancer (27); 
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but we did not find mediation of the NTN4-breast cancer association by non-dense area in 

our study.  Further, the fact that the association of adjusted dense area with risk is in the 

opposite direction to that for adjusted non-dense area, and these two measures are 

negatively correlated, raises the possibility that the risk associations with adjusted non-

dense area and adjusted dense area are just the “opposite sides of the same coin” (6).  In 

this regard, it is interesting that the familial correlations are very similar for non-dense area, 

as they are for adjusted percent dense area (28).  Studies that have examined whether 

adjusted absolute non-dense area is independently associated with breast cancer risk have 

produced contradictory results (6, 29-32).       

Variants in the regions of MKL1, ESR1 and ZNF365 were among nine variants 

previously reported to be associated with bra cup size, although none of the variants 

overlap those examined in this study (33).  The ESR1 variant reported by Eriksson et al. is in 

moderate LD with both the ESR1 variants reported on here (r2=0.23 with rs2046210 and 

with rs375318, although the mutual LD between these is just 0.07), and Eriksson’s MKL1 

variant (rs73167017) is also in moderate LD with MKL1 rs6001930 reported here (r2=0.33), 

but the ZNF365 variant, rs7089814, is independent of rs10995190 (r2=0.04).  Within MKL1, 

rs6001930 is correlated with rs5995871 (r2=0.75), which has been recently reported to be 

associated with mammographically-measured female breast size, which correlates strongly 

with non-dense area (34).  Little is known about the functionality of any of the density-

associated variants identified in this study.   

Our study benefited from its large sample size and genotyping performed using the 

same custom Illumina iSelect genotyping array in 11 of the 13 studies.  We also used the 

same strict quality controls for all studies except the two GWAS, and exclusion of data from 

these two GWAS-based studies did not substantially affect the findings reported here (data 
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not shown).  Mammographic density measurements were performed using well-established 

methods shown to have high repeatability by trained observers, with all analyses being 

adjusted for study to reduce the impact of any between-study differences in the type of 

films available, digitizer used, quality of the density readings, and source of covariate data 

and other unmeasured confounders.  We reproduced established associations between the 

three risk-predicting density phenotypes and measured breast cancer risk factors as well as 

prior genetic associations with breast cancer variants. Since over 80% of our sample 

population were postmenopausal, these results are generally applicable to postmenopausal 

women. However, based on previous work using longitudinal twin data, we have shown that 

the familial/genetic component of mammographic density is established before mid-life (35) 

and therefore, we believe that the direction of the associations reported in this study would 

be the same for premenopausal women. 

More than 40 studies have found an association between mammographic density 

and breast cancer risk, many using different qualitative or quantitative methods of 

measuring mammographic density (19, 36).  This suggests that mammographic density, as 

currently measured, is a useful biomarker.  Our previous collaborations (9, 37) have 

demonstrated that data from multiple mammographic density studies can be combined to 

produce internally consistent results.  One reason for this is the very wide variation in 

mammographic density measures within populations, even for women of the same age and 

BMI.    

 In summary, our findings provide further support for shared genetic determinants of 

breast cancer risk and the mammographic density measures that predict risk, presumably 

representing shared etiological pathways.  While the contributions of the genetic risk 

markers identified to date explain little of the phenotypic variance, uncovering the cause of 
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familial aggregation (the so-called “missing heritability”) of the mammographic density 

measures that predict breast cancer could substantially increase understanding of the 

biological pathways involved in the development of the disease.   
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Table 1.  Design, sample size, data collection, mammographic characteristics and genotyping information for the 13 studies 

Study name (reference) Study 
Abbreviation 

Designa Number

Cases/Controls 

Source of covariate data Film viewb Breast sideC Genotyping

(GWAS or 
iCOGS) 

    Reproductive 
variables 

Anthropometry Time between 
mammogram and 
data collection 

 Cases Controls  

Australian Breast Cancer Family 
Study (38-40) 

ABCFS CC Family 103/0 Questionnaire Self report Within 3 years CC Contra n/a iCOGS

Bavarian Breast Cancer Cases 
and Controls (41) 

BBCC CC 512/367 Questionnaire Self report Within 30 days CC Contra Average iCOGS 

European Prospective 
Investigation into Cancer (42) 

EPIC Cohort 86/968 Questionnaire Measured 3 years prior MLO Contra Average iCOGS 

Mayo Clinic Breast Cancer Study 
(43) 

MCBCS CC 677/864 Questionnaire Measured Within 30 days CC Contra L iCOGS 

Melbourne Collaborative Cohort 
Study (44) 

MCCS Nested CC 68/28 Questionnaire Measured 3 years prior CC R R iCOGS

Multiethnic Cohort Study (45, 
46) 

MEC Nested CC 110/101 Questionnaire Self report Within 5 years prior CC Averaged Average iCOGS 

Old Amish Study  Family 0/400 Questionnaire Measured Within 30 days CC n/a L or R GWAS 

Mayo Mammography Health 
Study (4) 

MMHS Nested CC 456/1166 Questionnaire Measured Within 30 days CC Averaged Average iCOGS

Norwegian Breast Cancer Study NBCS CS 0/38 Questionnaire Self report Within 14 days CC n/a L iCOGS 

Nurses Health Study (47, 48) NHS Nested CC 850/849 Questionnaire Self report Within 2 years CC Averaged Average GWAS
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Ontario Familial Breast Cancer 
Registry (38) 

OFBCR Family 73/0 Questionnaire Self report 2-9 years prior CC Contra n/a iCOGS 

Singapore and Sweden Breast 
Cancer Study (49) 

SASBAC CC 869/783 Questionnaire Self report Mean 1 year post MLO Contra L or R iCOGS 

Sisters in Breast Cancer 
Screening (50) 

SIBS Family 0/1359 Questionnaire Measured Within 1 year prior MLO n/a Average iCOGS 

aCC=case-control study; CS=cross-sectional study  
bCC=cranio-caudal view; MLO= medio-lateral oblique view 
cAverage=average from left and right breasts; contra=unaffected contra-lateral breast; L=left breast; n/a=not applicable; R= right breast 
dPrediagnostic films 
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Table 2.  Summary characteristics at time of mammogram and by case status for the participating 
studies  

Characteristic Category Breast cancer 
cases 

Non-cases 

  N % N % 

Age (yrs) <50 542 14.3 776 11.2 

 50-59 1197 31.5 2307 33.3

 ≥ 60 2065 54.3 3840 55.5

   

Parity Nulliparous 466 12.3 775 11.2 

 Parous 3283 86.3 6063 87.6 

 Unknown 55 1.5 85 1.2 

      

Menopausal status Pre-menopausal 611 16.1 1268 18.3 

 Post-menopause 3152 82.9 5575 80.5 

 Unknown 41 1.1 80 1.2 

      

Postmenopausal hormone 
therapy use 

Ever 1848 48.6 2942 42.5

 Never  1710 45.0 2885 41.7 

 Unknown 246 6.5 1096 15.8 

      

BMI (kg/m2) <25 1644 43.2 2751 39.7 

 ≥ 25 2121 55.8 4122 59.5 

 Unknown 39 1.0 50 0.7 

      

Mammographic side, viewa L – CC 426 11.2 1102 15.9 

 R - CC 511 13.4 296 4.3 



 Breast Cancer Susceptibility Variants and Mammographic Density 
 

35 
 

 LR average - CC  1911 50.2 2415 34.9 

 L -  MLO 446 11.7 415 6.0 

 R - MLO 510 13.4 409 5.9 

 LR average - MLO 0 0 2286 33.0

aCC=cranio-caudal; L=left; MLO= medio-lateral oblique; R=right  
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Table 3.  Top associations between common breast cancer susceptibility variants and each of the mammographic measures  
SNP Locus Allelesa Percent dense area Dense area Non-dense area 

   Beta 
Estimateb 

Standard 
Error 

P-value Beta 
Estimateb 

Standard 
Error 

P-value Beta 
Estimateb 

Standard 
Error 

P-value

Previously reported:           

rs10995190 ZNF365 A/G 0.16 0.03 8.5E-09 0.25 0.04 4.7E-11 -0.005 0.04 0.91 

rs3817198 LSP1 A/G 0.09 0.02 4.4E-05 0.16 0.03 1.3E-07 -0.001 0.03 0.97

rs2046210 ESR1 G/A 0.10 0.02 2.4E-06 0.14 0.03 1.7E-06 -0.02 0.03 0.5

Novel associations:   

rs6001930 MKL1 A/G -0.06 0.03 0.044 -0.18 0.04 3.2E-05 -0.23 0.05 1.7E-06 

rs1432679 EBF1 A/G 0.09 0.02 1.1E-05 0.09 0.03 7.1E-04 -0.11 0.03 4.5E-04 

rs17356907 NTN4 G/A 0.03 0.02 0.16 -0.01 0.03 0.68 -0.12 0.03 2.4E-04 

rs17817449 MIR1972-
2:FTO 

C/A 0.07 0.02 4.4E-04 0.09 0.03 0.001 -0.06 0.03 0.06 

rs3757318 ESR1 G/A 0.07 0.04 0.066 0.19 0.05 4.6E-04 0.12 0.06 5.0E-02 

rs12710696 2p24.1 G/A -0.07 0.02 8.7E-04 -0.10 0.03 5.9E-04 0.03 0.03 0.32

aSecond allele is modeled allele (breast cancer risk allele).   
bOrdinal per risk allele estimate, Age, 1/BMI, study adjusted.  
Bold type denotes SNPs with p<6.5x10-4 for that association. Study heterogeneity p>0.05 for all SNPs apart from the association between rs2046210 and 
adjusted dense area (p=0.03). 



 Breast Cancer Susceptibility Variants and Mammographic Density 

37 
 

Table and Figure Legends  

Table 1.  Design, sample size, data collection, mammographic characteristics and genotyping 

information for the 13 studies 

Table 2. Summary characteristics of the participating studies 

Table 3. The top associations between common breast cancer susceptibility variants and 

each of the risk-predicting mammographic measures  

Figure 1. Associations between the 77 common breast cancer susceptibility SNPs and breast 

cancer (BC), adjusted percent density (PD), adjusted dense area (DA) and adjusted non-

dense area (NDA), ordered by the magnitude of the association with breast cancer 

Figure 2. QQ plots before and after exclusion of the top 14 breast cancer susceptibility SNPs 

most strongly associated with the mammographic density measures: (a) percent density; (b) 

dense area; (c) non-dense area 
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