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Abstract

In his 2011 work, Maas has shown that the law of any time-reversible continuous-
time Markov chain with finite state space evolves like a gradient flow of the relative
entropy with respect to its stationary distribution. In this work we show the converse
to the above by showing that if the relative law of a Markov chain with finite state
space evolves like a gradient flow of the relative entropy functional, it must be time-
reversible. When we allow general functionals in place of the relative entropy, we show
that the law of a Markov chain evolves as gradient flow if and only if the generator
of the Markov chain is real diagonalisable. Finally, we discuss what aspects of the
functional are uniquely determined by the Markov chain.
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1 Introduction

The seminal paper of Jordan, Kinderlehrer, and Otto [3] identified Markov processes
in the continuous setting as gradient flows of the entropy using the Wasserstein distance.
This understanding lead to many new results (see Villani [6] for an overview). More
recently, Maas [4] considered Markov chains with finite state space and showed that, in
this case, the Wasserstein distance does not allow this identification. Instead, assuming
a time-reversible Markov chain, he was able to construct a different metric that allows
this identification. Different constructions have been given in [1, 5] and the setting used
is also described in [2].

The construction of the metric is involved and uses time-reversibility at several places.
This further motivates our study of the converse of these statements. For this we will
first introduce the setting used and define the gradient flow.

We consider continuous-time irreducible Markov chain with finite state space X =

{0, 1, . . . , d}. We denote its generator by Q ∈ RX×X where for i 6= j the entry Qij is the
transition rate from state i to state j and Qii = −

∑
j 6=iQij .

Given the initial probability distribution µ of the Markov chain, the probability
distribution after time t will be given by µetQ. Note that the transition matrix etQ acts
on the right on the row vector µ and the evolution of the law is captured by the Markov
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Characterisation of gradient flows on finite state Markov chains

semigroup etQ. Since the Markov chain is irreducible, there exists a unique stationary
distribution π to which µetQ will converge as t→∞.

For the definition of a gradient flow, let P be the space of probability distributions
on X with positive mass for any state. Then P can be naturally understood as the
d-dimensional sub-manifold {v ∈ RX :

∑
i∈X vi = 1 and vi > 0 ∀i ∈ X} of RX . Under this

identification, the tangent space at any point is

T = {v ∈ RX :
∑
i∈X

vi = 0}.

Given a functional F : P 7→ R and a Riemannian metric g on P, the gradient flow
ρ : R+ 7→ P is determined by the differential equation

g|ρ(t)(ρ̇(t), v) = −dF|ρ(t)(v) ∀v ∈ T, t ∈ R+.

That is ρ̇ equals −dF under the identification of the tangent space and the cotangent
space through the metric g.

We say that the gradient flow under g of F equals the flow associated to the semigroup
etQ if for all µ ∈ P the trajectory t 7→ µetQ equals the gradient flow ρ(t) with ρ(0) = µ.

From the continuous setting a natural functional is the relative entropy H with respect
to the stationary state π, which is defined by

H(ρ) = −
∑
i∈X

ρi log
πi
ρi
.

Throughout this work the relative entropy is understood with respect to the stationary
distribution of the considered Markov chain.

The result by Maas [4] now is: There exists a metric g on P such that the gradient
flow under g of the relative entropy H equals the flow associated to the semigroup etQ.

First we show that the metric is not unique:

Theorem 1.1. For d ≥ 2, consider a continuous-time irreducible Markov chain with finite
state space X = {0, 1, . . . , d}, generator Q, and stationary distribution π. Let F : P 7→ R

be a differentiable functional and g a Riemannian metric on P. If the flow associated to
the semigroup etQ equals the gradient flow of F under the metric g, then for ρ ∈ P with
ρ 6= π, there exists another metric g̃ on P such that g̃ 6= g at ρ and such that the gradient
flow of F under the metric g̃ still equals the flow associated to the semigroup etQ.

As converse of the construction we show:

Theorem 1.2. Consider a continuous-time irreducible Markov chain with finite state
space X = {0, 1, . . . , d}, generator Q, and stationary distribution π. If the flow associated
to the semigroup etQ equals the gradient flow of F ∈ C2 under a Riemannian metric
g ∈ C1 on P, then, with g|π as metric at π,

(a) g|π is uniquely determined by Q and F,

(b) Q can be computed from g|π and F,

(c) Q is real diagonalisable,

(d) Q is time-reversible if F is the relative entropy H.

Conversely, if Q is real diagonalisable, then there exists a Riemannian metric g and a
smooth functional F on P such that the gradient flow of F under the metric g equals the
flow associated to the semigroup etQ.
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This result shows that the assumption of time-reversibility in the construction of
the metric by Maas is necessary and cannot be relaxed. Moreover, the results for the
generator Q come from the differentiability around the equilibrium distribution π, so
that the theorem holds as long as there is a neighbourhood of π in which the Markov
semigroup etQ equals the gradient flow.

Remark 1.3. Theorems 1.1 and 1.2 are obtained by analysing the Riemannian structure
of the gradient flow and thus can be formulated for general gradient flows on finite-
dimensional manifolds. For this, part (d) of Theorem 1.2 can be formulated with a
weighted `2-norm, i.e. Q is symmetric with respect to this norm, if F is the squared
distance to π under this `2-norm. In fact, relating the results to Q acting on the bigger
space RX makes the proofs slightly longer.

Combining this theorem with Maas’ result gives our main theorem.

Theorem 1.4 (Characterisation of Markov chains). Consider a continuous-time irre-
ducible Markov chain with finite state space and generator Q.

• The Markov chain is time-reversible if and only if there exists a metric g such that
the flow associated to the semigroup etQ equals the gradient flow under g ∈ C1 of
the relative entropy with respect to the stationary distribution.

• The Markov chain has a real diagonalisable generator Q if and only if there exists
a metric g ∈ C1 and a functional F ∈ C2 such that the flow associated to the
semigroup etQ is the gradient flow of F under g.

The characterisation of real diagonalisable generators Q shows for example that
Markov chains that also have an oscillatory behaviour cannot be described by gradient
flows.

Finally, we remark that the relative entropy H depends on the generator Q only
through the equilibrium distribution π. Moreover, any functional F that allows to
construct a gradient flow for all time-reversible Markov chains must have a similar
Taylor expansion around π. More precisely:

Theorem 1.5. Fix a finite state space X , a distribution π ∈ P and a functional F : P 7→ R

in C2. Suppose that, for every generator Q defining an irreducible time-reversible
Markov chain with state space X and stationary distribution π, there exists a Riemannian
metric g ∈ C1 on P such that the gradient flow of F under the metric g equals the flow
associated to the semigroup etQ. Then there exists a positive constant α such that

dF|π = dH|π = 0 and d2F|π = α d2H|π,

where H is the relative entropy with respect to π.

Here we use the notation dF|π to denote the first derivative of F at the point π, which
we understand as linear map from T to R. With d2F|π we denote the second derivative
at the point π, which is a linear map from T × T to R.

The assumption on the functional F is not empty, because Maas’ result states that the
relative entropy H with respect to π is a functional satisfying the assumption. Moreover,
it cannot be strengthened to uniqueness. For this, another functional is the quadratic
form F defined by F|π = dF|π = 0 and d2F|π = αd2H|π for some α > 0. This satisfies
the assumption, because for any generator Q the constant metric g given by the value
g|π in part (a) of Theorem 1.2 indeed defines a Riemannian metric with the required
identification.

Remark 1.6. In [4], Maas considered continuous-time Markov chains obtained from an
irreducible discrete-time Markov chain with transition matrix K by choosing the jump
times according to a Poisson process. The resulting generator is Q = K − I and, by
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analogy with continuous-time diffusion processes, the semigroup etQ is also called a heat
flow.

By time-rescaling, this is no restriction to the class of Markov chains for the study
of gradient flows because, for any generator Q, we can find some α > 0 such that
K = I + αQ is non-negative along the diagonal and K defines a transition matrix. Now
given a functional F, if we can find a metric g such that the flow associated to the
semigroup et(αQ) equals the gradient flow of F under g, then the flow associated to the
semigroup etQ equals the gradient flow of F under the rescaled metric g/α.

2 Characterisation of Markov chains

Recall that for an irreducible Markov chain the evolution µetQ converges to the
unique stationary distribution π for any µ ∈ P. Hence µQ vanishes if and only if µ = π.
With this observation, we can construct a perturbation of the metric in order to prove
Theorem 1.1.

Proof of Theorem 1.1. Let e1 be the vector field given by µQ at µ ∈ P. For a small
enough neighbourhood V ⊂ P of ρ, we can find smooth vector fields e2, . . . , ed such that
e1, . . . , ed is a basis of T at every µ ∈ V . Let η be a smooth cutoff functional with compact
support, vanishing outside V , and satisfying η(ρ) 6= 0. Then define another metric g̃ by

g̃|µ(ei, ej) =

{
g(ei, ej)|µ + η(µ)a if i = j = 2,

g(ei, ej)|µ otherwise,

for µ ∈ V and a constant a ∈ R. Outside of V , define g̃ = g.
If a is small enough, g̃ is still positive definite and is therefore a metric. Moreover, g̃

creates the same gradient flow, because for every µ ∈ P and any v ∈ T

g̃|µ(µQ, v) = g̃|µ(e1, v) = g|µ(e1, v) = g|µ(µQ, v).

For the characterisation at the equilibrium distribution, we use the assumed differen-
tiability of g and F.

Proof of Theorem 1.2. The equality of the flow associated to the semigroup etQ and the
gradient flow implies that the time derivatives of both evolutions agree at every state
π + h with h ∈ T . This means that, for all v ∈ T ,

g|π+h((π + h)Q, v) = −dF|π+h(v). (2.1)

Since πQ = 0, this implies that dF must vanish at π. Moreover, it simplifies Equation (2.1)
to

g|π+h(hQ, v) = −dF|π+h(v).

Let M = d2F|π, then the Taylor expansion around h = 0 shows by the assumed regularity
of g and F that

g|π(hQ, v) +O(‖h‖2) = −M(h, v) +O(‖h‖2).

As this holds for arbitrary h ∈ T , the linear terms must agree. Hence,

g|π(wQ, v) = −M(w, v) ∀v, w ∈ T. (2.2)

Furthermore, we claim that the restriction of Q to T defines an automorphism on
T . Since Q preserves the probability mass (i.e.

∑
i∈X Qji = 0 for j ∈ X ), its range is

inside T . If Q was not an automorphism, a v ∈ T satisfying vQ = 0 would exist by the
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Rank-Nullity Theorem. But then, for small enough α, also π + αv would be a stationary
state, contradicting the irreducibility of the Markov chain.

Hence Equation (2.2) determines the value of g|π for all arguments, which proves
part (a) of the theorem.

Given g|π and M , Equation (2.2) determines vQ · w for all v, w ∈ T , because g|π is a
positive form. By the mass conservation vQ ∈ T , so that this determines vQ for all v ∈ T .
Since πQ = 0, this determines Q and shows part (b).

In order to prove part (c) let f1, . . . , fd be a basis of T which is orthonormal under
g|π, i.e. g|π(fi, fj) = δij . Let Q̄ be the matrix corresponding to the generator Q in this

basis, i.e. fiQ =
∑d
j=1 Q̄ijfj for i = 1, . . . , d. Also let M̄ be the matrix corresponding to

M in this basis, i.e. M̄ij = M(fi, fj). Then Equation (2.2) becomes

xQ̄ · y = −xM̄ · y ∀x, y ∈ Rd.

Hence Q̄ = −M̄ . Since the partial derivatives of F commute, M̄ is symmetric. Therefore,
Q̄ is real diagonalisable and Q̄ has d real eigenvectors in T . Since π is another eigenvector
of Q not in T , this implies that Q is real diagonalisable, which is the statement of part
(c).

For the converse of the theorem, we assume that Q is diagonalisable and we need to
construct a suitable functional and metric on P. For this, fix eigenvectors π, f1, . . . , fd
of Q with eigenvalues 0, λ1, . . . , λd. Since π is the only stationary distribution, λi 6= 0

for i = 1, . . . , d. As Q maps into T , this shows that f1, . . . , fd is a basis of T . Define the
constant Riemannian metric g on P by

g(fi, fj) = δij ,

and the functional F : P 7→ R by

F(π +

d∑
i=1

aifi) =
1

2

d∑
i=1

(−λi)a2i .

Then at any state µ = π +
∑d
i=1 aifi ∈ P we have, for j = 1, . . . , d,

g(µQ, fj) = λjaj and − dF|µ(fj) = λjaj .

Hence the flow associated to the semigroup etQ and the gradient flow agree, because
their time derivatives agree for every probability distribution µ ∈ P.

For the remaining part (d), the functional F is the relative entropy H. The second
derivative d2H|π of H at π is given by

M(w, v) =
∑
α∈X

wαvα
πα

for v, w ∈ T . Let Π ∈ RX×X be the diagonal matrix with diagonal entries (π)i∈X . Then,
by the calculated form of M , we have vΠ−1 · w = M(v, w) for all v, w ∈ T .

Over T , the metric g has an inverse b at π which is defined by g|π(v, wb) = v · w for
v, w ∈ T and is a positive definite symmetric automorphism on T . Define the symmetric
matrix a ∈ RX×X by va = vb for v ∈ T and 1a = 0, where 1 is the vector with all entries
1.

Since b is an automorphism on T , Equation (2.2) implies g(vQ, ua) = −vΠ−1 · (ua) for
all u, v ∈ T . By the construction of a, this shows that for all u, v ∈ T

vQ · u = −vΠ−1a · u. (2.3)
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Since πQ and πΠ−1a both vanish, Equation (2.3) also holds for v = π. Hence it holds
for all v ∈ RX which shows Q · u = −Π−1a · u for all u ∈ T .

By the conservation of probability Q · 1 = 0 and by the symmetry of a also a · 1 = 0,
so that Q · u = −Π−1a · u holds for all u ∈ RX . This shows

ΠQ = −a.

Since a is symmetric, this shows that Q satisfies the detailed balance equation, i.e. that
the Markov chain is time-reversible.

The remaining Theorem 1.5 is reduced to the following lemma.

Lemma 2.1. Assume the hypothesis of Theorem 1.5. Then F and H have a minimum
at π, and the derivatives M = d2F|π and N = d2H|π are positive non-degenerate forms
on T . For every v ∈ T vanishing in exactly one state, there exists αv ∈ R+ such that
M(v, ·) = αvN(v, ·).

With this lemma the theorem can be proved.

Proof of Theorem 1.5. By the previous lemma F and H have a minimum at π so that
dFπ = dHπ = 0.

If d = 1, then M and N from the lemma correspond to positive scalars so that there
exists a positive scalar α satisfying the required relation M = αN .

Hence, assume d ≥ 2. For two states v, ṽ ∈ T vanishing only in one common state,
the constants αv and αṽ of the lemma must agree. If v and ṽ are linearly dependent,
then this follows directly from the bilinearity of M and N . Otherwise, for small enough
λ ∈ R, also v + λṽ is in T and vanishing in exactly one state. Hence the lemma applies to
this state and by linearity follows

αv+λṽN(v + λṽ, ·) = αvN(v, ·) + λαṽN(ṽ, ·).

Since N is non-degenerate, the functionals N(v, ·) and N(ṽ, ·) are linearly independent,
so that the equation implies αv+λṽ = αv and αv+λṽ = αṽ and thus, as claimed, αv = αṽ.

Hence, for i ∈ X , there exists ᾱi such that M(v, ·) = ᾱiN(v, ·) holds for v ∈ T with
vi = 0 and vj 6= 0 for j 6= i. By continuity of M(v, ·) and ᾱiN(v, ·) with respect to v, the
result also holds for all v ∈ T with vi = 0.

If d ≥ 3 then for i, j ∈ X there exists v ∈ T with vi = vj = 0 which implies that all ᾱi
for i ∈ X agree. If d = 2, we can consider v = (1 −1 0) and ṽ = (0 1 −1) with αv = ᾱ2

and αṽ = ᾱ0. Then v + ṽ satisfies the lemma as well so that as before ᾱ0 = ᾱ2. Likewise,
ᾱ0 = ᾱ1 and all ᾱi agree.

The common value α of the ᾱi for i ∈ X is the claimed constant satisfying d2F|π =

αd2H|π. Since the derivatives d2F|π and d2H|π are positive forms, the constant α must
be positive.

The remaining lemma is proved by considering suitable Markov chains.

Proof of Theorem 2.1. Since π has positive mass for every state i ∈ X , there exists
a time-reversible irreducible Markov chain with stationary state π. Consider such a
Markov chain with generator Q and let g be a metric such that the flow associated
to the Markov semigroup etQ is the gradient flow of F under g. Then for any initial
probability state µ ∈ P the value F(µetQ) is decaying as t increases. Hence F must have
a minimum at π. As in the proof of Theorem 1.4, Equation (2.2) must hold and g|π and Q
are non-degenerated over T . Hence M = d2F|π must be non-degenerated and positive,
because F has a minimum at π. Since H satisfies the assumptions imposed on F, this also
holds for H.
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If d = 1, there exists no such state v ∈ T . Thus assume d ≥ 2 henceforth. Moreover,
label the states such that vd = 0 and identify M , N and g|π with the corresponding
matrix, i.e. M(v, w) = vM · w, and N(v, w) = vN · w, and g|π(v, w) = vg|π · w for all
v, w ∈ T .

Then, Equation (2.2) implies M−1Q = −g|−1π . Hence M−1Q is symmetric and thus
M−1QM = QT . Likewise N−1QN = QT and thus MN−1QNM−1 = Q. Therefore, if v is
an eigenvector of Q, then vMN−1 is again an eigenvector of Q with the same eigenvalue.

We finish the proof of the lemma by showing that v and w := vMN−1 are proportional.
For this, we show wd = 0 and wivj = viwj for all i, j = 0, 1, . . . , d − 1 by constructing
suitable Markov chains whose generator Q has the eigenvector v.

For the first part, let λ > 0 and consider the time-reversible irreducible Markov chain
with stationary state π and generator matrix

Q = Π−1



−π0λ 0 0 . . . 0 π0λ

0 −π1λ 0 . . . 0 π1λ

0 0 −π2λ . . . 0 π2λ
...

...
...

. . .
...

...
0 0 0 . . . −πd−1λ πd−1λ

π0λ π1λ π3λ . . . πd−1λ −(1− πd)λ


.

The eigenspace for −λ is {u ∈ T : ud = 0} and contains v. Hence, wd = 0.
By further relabelling the states, it suffices to show for the second case w0v1 = v0w1.

For this, let λ > 0 and consider the Markov chain with generator

Q = Π−1



−π0λ− β0 µ 0 . . . 0 π0λ+ β0 − µ
µ −π1λ− β1 0 . . . 0 π1λ+ β1 − µ
0 0 −π2λ . . . 0 π2λ
...

...
...

. . .
...

...
0 0 0 . . . −πd−1λ πd−1λ

π0λ+ β0 − µ π1λ+ β1 − µ π2λ . . . πd−1λ γ


where

β0 = µ
π0v1
v0π1

, β1 = µ
π1v0
v1π0

, γ = −(1− πd)λ− µ
π0v1
v0π1

− µπ1v0
v1π0

+ 2µ.

By choosing µ > 0 small enough, this defines an irreducible time-reversible Markov
chain with stationary state π and vQ = −λv. Hence, w is again an eigenvector with
eigenvalue −λ. From the first component, we find the required ratio

−λw0 = −λw0 − µ
v1w0

v0π1
+ µ

w1

π1
⇒ v1w0 = v0w1.
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