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Abstract

Positron Emission Tomography (PET) is an imaging technique which can be used to inves-

tigate chemical changes in human biological processes such as cancer development or neuro-

chemical reactions. Most dynamic PET scans are currently analyzed based on the assumption

that linear first order kinetics can be used to adequately describe the system under observation.

However, there has recently been strong evidence that this is not the case. In order to pro-

vide an analysis of PET data which is free from this compartmental assumption, we propose

a nonparametric deconvolution and analysis model for dynamic PET data based on functional

principal component analysis. This yields flexibility in the possible deconvolved functions

while still performing well when a linear compartmental model setup is the true data generat-

ing mechanism. As the deconvolution needs to be performed on only a relative small number

of basis functions rather than voxel by voxel in the entire 3-D volume, the methodology is both

robust to typical brain imaging noise levels while also being computationally efficient. The

new methodology is investigated through simulations in both 1-D functions and 2-D images

and also applied to a neuroimaging study whose goal is the quantification of opioid receptor

concentration in the brain.
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1 Introduction

Positron Emission Tomography (PET) is anin-vivo neuroimaging technique for studying biologi-

cal processes in humans. It is almost unique amongst the major neuroimaging modalities, in that it

can be used to study neurochemical concentrations and associated changes in a quantifiable way.

PET works on the principle of using an injected radioactive tracer compound specifically designed

for the biological process of interest and tracking its presence throughout the target organ through

the emitted radiation of the radioactively decaying compound. It is a quantitative technique, as op-

posed to say functional Magnetic Resonance Imaging (fMRI), in that the amount of radiochemical

injected can be used to establish the concentrations present in the target organs. This has led it to

be almost universally used in the diagnosis of certain cancers through fluorodeoxyglucose (FDG)

PET scans, which as a surrogate for glucose, can be used to target tissues with high metabolic

rates, such as tissues containing cancer cells. Indeed, it is not only used for cancer diagnosis and

localization in the brain, but also throughout the body (Gambhir, 2002, Hsieh, 2012).

In addition to diagnostic and clinical usage, PET also can be used to investigate neurochemical

processes to help further understanding of the brain. Individual neurochemical transmitter systems

can be targeted through the design of radiotracers that mimic the behavior of these chemicals. As

might be imagined, this involves considerable complex radiochemistry to design suitable radiola-

belled tracers which can be detected by the PET camera. However, there are now many tracers

available to target systems in addition to metabolism such as the dopamine system (Wagner et al.,

1983), the serotonergic system (Drevets et al., 1999) and the opioid receptor system (Jones et al.,

2004). Indeed, it is the last of these, the opioid system, that is the motivation for this work. The

opioid system controls the brain’s reaction to pain (Pasternak, 1993), and has been associated with

a number of conditions and diseases including changes in emotional responses (Filliol et al., 2000),

addiction (Wise, 1996) and Alzheimer’s disease (Jansen et al., 1990). The data which will be an-

alyzed later in this paper is taken from part of a large study on the role of the opioid system in
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Epilepsy. It is of great interest to get accurate quantifiable estimates of opioid receptor concentra-

tions and densities throughout the brain in normal subjects as a precursor to understanding the role

of receptor changes in disease diagnosis, prognosis and treatment.

PET scans, in a similar way to fMRI scans, consist of 3-D volumes of data recorded over

time, leading to large data sets with time courses from millions of spatial locations (voxels). The

time courses associated with PET data are characteristically non-linear in that, being associated

with chemical reactions, they are routinely modelled as coming from ordinary differential equation

(ODE) systems, where first order linear kinetics can be used to model the data (Gunn et al., 2001).

These kinetics are routinely associated with compartmental models, which consist of abstract com-

partments within each voxel. The transfer of material from one compartment to another is assumed

to follow a first order ODE. For more information on compartmental models see Godfrey (1983).

However, there is increasing evidence both from biological experiments and statistical analysis

that such models are not adequate for the data (O’Sullivan et al., 2009), not least because each

voxel represents an inhomogeneous mixture of cells leading to a mixture of compartmental pro-

cesses (assuming the compartmental assumption is even made). Therefore compartmental analysis

can produce both biased and incomparable estimates across the brain. In addition, fitting meth-

ods which are stable for large numbers of voxels, such as non-negative least squares, tend to have

parameter dependent bias, while methods such as non-linear least squares tend to be somewhat

unstable (Peng et al., 2008).

In order to account for the model discrepancies while still maintaining a robust approach to

model fitting, this paper explores a nonparametric deconvolution model for PET analysis. The

input (through the blood flow to the brain) can be measured online to all extents and purposes

continuously with virtually no measurement error relative to the error in the measured voxelwise

PET data, as the sampling on the measured radioactivity of the blood is done outside the body

using a sensitive blood monitor via an arterial canula to produce a smooth continuous input curve

(Lammertsma et al., 1991). This allows one of the functions in the deconvolution to be known
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(i.e. this is not a blind deconvolution problem), but the inherent difficulties of deconvolving the

noisy measured output function are all still present. We present a new methodology for deconvo-

lution and analysis of data. This new methodology works when there are multiple observations

of the convolved functions, and can also be used when the functions are possibly dependent on a

covariate.

The analysis is based on using functional principal component analysis (FPCA). Our method-

ology involves a presmoothing step to reconstruct the image, followed by a deconvolution step to

recover the impulse response function. Presmoothing decreases the noise in the data, hence can

reduce overall potential biases in further analysis, as even though smoothing itself introduces a

small bias, in many non-linear situations, parameter or functional biases can be noise level depen-

dent. In parametric non-linear models such as compartmental models, this is well known (Peng

et al., 2008), while here the errors in the observed functions are somewhat similar to those in mea-

surement error models, which yield biases in traditional regression analysis. The presmoothing

also produces functions that are smoother than the original data, making subsequent deconvolu-

tion easier, as large independent measurement errors tend to result in considerable instability in

deconvolution settings.

As for the deconvolution approach, ours differs from traditional deconvolution methods and has

inherent computational advantages in that we treat the sample of dynamic PET data on all voxels

as functional data, and apply FPCA to reduce the dimension of the data, so that the deconvolution

only needs to be performed on the mean and eigenfunctions of the data. This has substantial

computational advantages as while there are millions of spatial voxel locations, often only a few

basis functions in the FPCA basis are needed to adequately describe the temporal curves, requiring

only a very small number of actual deconvolutions to be performed. Moreover, it is not the actual

deconvolutions that are the focus of the PET study. Of primary interest in many PET studies is

the volume of distribution,VT , the integral of the impulse response function of the system at each

voxel. Under various biological assumptions,VT can be used to determine the receptor density
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of the underlying neurotransmitter (Innis et al., 2007). As advocated in O’Sullivan et al. (2009),

this will be approximated by the integral of the deconvolved response function generated from the

observed data, which in itself is a more meaningful measure as it is less dependent on the particular

compartmental model fit assumed.

The paper proceeds as follows. In the next section, the moderately general methodology, in-

spired by PET data, is introduced for deconvolution of multiply observed functions through the

use of FPCA. In section 3, the methods are assessed through simulation, not only on 1-D func-

tions, but also on moderately realistic 2-D image slices where both spatial correlations and non-

homogeneous noise models, typical of those found in PET studies, are used. In section 4, the

methods are applied to measured [11C]-diprenorphine scans taken from healthy volunteers and are

used to provide voxelwise quantification of receptor concentration without resorting to compart-

mental assumptions. The final section discusses some of the possible extensions of this work.

2 Methodology

Let Ci(t) be the concentration curve of voxeli in PET analysis, wherei is a generic index repre-

senting a spatial location. The conventional assumption is that

Ci(t) = (I ⊗ Mi)(t) =
∫ t

0
I (t − s)Mi(s)ds, (2.1)

whereI (t) is a known input function andMi(t) is the unknown impulse response function (IRF)

of voxel i. We assume that the input functionI (t) is smooth and positive over the entire range of

the integration. This is true in practice given the nature of the input function being the amount of

tracer in the blood plasma. In reality,Ci(t) is not observed, but rather, a noise contaminated version

of Ci(t) exp(−λt) is observed (Aston et al., 2000) at discrete time points,t = t1, . . . , tp whereλ is

the known decay constant of the radioisotope (in the case of11C, this is 5.663×10−4s−1.). Suppose

there aren voxels andp observations per voxel. Hence the observations for theith voxel are
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Yi j = Xi(t j) + εi j , whereXi(t j) = Ci(t j) exp(−λt j) andεi j are independent noise fori = 1, . . . , n

and j = 1, . . . , p. Here, the independence assumption on the errors in time can be largely justified

on the basis of the independent Poisson decay nature of radioactivity (Carson and Lange, 1985),

while the implications of assuming spatial independence will be discussed later.

The goal of PET analysis is to estimate the volume of distribution (VT) at each voxeli, which is

VT(i) =
∫ τ

0
Mi(t)dt, whereτ is the end of the experimental time (and is typically taken to be infinity

in parametric modelling). In order to estimateVT , it is necessary to estimate the IRFMi(t) through

deconvolution. As we are using a nonparametric estimator in the deconvolution, it is not possible

to extrapolate theVT to infinity (as this would require a parametric model), but this finite truncated

version could well be preferred in many situations (O’Sullivan et al., 2009), particularly given the

known difficulties of function extrapolation.

2.1 Spatial Curve Pre-regularization

With the presence of noise in the output dataYi j , our first step is to reconstructXi(t) for all voxels.

Instead of handling these temporal curves voxel by voxel, we borrow spatial information from all

voxels by applying a spatially adapted smoother toYi j across all time points (t) and spatial/voxel

locations, denoted asZi for the ith voxel. Depending on the dimension of the image, a three

(for 2D images) or four (for 3D images) dimensional smoother is used to reconstruct the latent

signals. For the PET data in Section 4,Zi is three-dimensional, so a four-dimensional smoother

is employed. This may seem a formidable task, given the large amount of available data (32

time points and 150,784 brain voxels), but it is feasible if one adopts an computationally efficient

approach. For those who are interested in the theoretical parts of this step, the following are the

specific assumptions we make. We assume that the orders of bandwidths are all of the same order

ash. We also assume that the second derivatives ofXi(t), the variable bandwidth functionhT(t),

formally defined in section 2.2, and the variance ofXi(t) are continuous and bounded. For ak-
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dimensional smoother,h→ 0 andnphk → ∞.

Let X̂i(t) be the smoothed estimate ofXi(t). Specifically,

X̂i(t) = b̂i,0, (2.2)

whereb̂i = arg min
b i=(bi0,...,bi4)

n∑

k=1

p∑

j=1

Kk j,h(zi , t)

×




Yk j − bi,0 −

3∑

`=1

bi,`(zi` − zk`) − bi,4(t − t j)





2

,

Kk j,h(zi , t) = 1
βĥT (t)hz1hz2hz3

K(zi1−zk1
hz1

, zi2−zk2
hz2

, zi3−zk3
hz3

,
t−t j

βĥT (t)
) is a four-dimensional kernel function (an Epanech-

nikov kernel was used in the data analysis),zi is the spatial location for voxeli, h’s are the band-

widths in the spatial coordinates,ĥT(t) is the variable bandwidth andβ is the calibration coefficient

for ĥT(t). The kernel functionK is assumed to be a symmetric probability density function with

bounded support. Note that constant bandwidths are employed for spatial coordinates (in the appli-

cation, one bandwidth is chosen for all three dimensions), but an adaptive local bandwidth for the

time dimension is applied (see section 2.2 for details). The reconstructed concentration function

for Ci(t) is

Ĉi(t) = X̂i(t) exp(λt). (2.3)

If a kernel estimator is chosen, a product kernel can be applied to save computational time,

which is equivalent to smoothing each coordinate of time and space sequentially.

2.2 Variable Bandwidth

In most PET analysis, particularly in the spatial domain, smoothing is based on heuristic assess-

ments determined by the individual researcher. Here we propose to use data driven methods to

select the bandwidth choices. A constant bandwidth is suitable for the spatial coordinates as the

covariance structure, while subtly changing across the image, does not vary substantially. How-

ever, in the time coordinate, due to the denser measurements at the beginning of the time period
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and the sharp peak near the left boundary, a non-constant bandwidth is required. To retain the peak

without compromising the performance at other temporal locations, a locally adaptive bandwidth

function is recommended and applied in our analysis. Essentially, a smaller bandwidth is preferred

near the peak location, while larger bandwidths are used near the right boundary where the curve

is relatively flat. This is also consistent with the fact that the noise in PET data can be crudely seen

as being Poisson distributed due to the radio labeled nature of the data (Carson and Lange, 1985).

We undertook the following pragmatic approach to design such a bandwidth function. First,

a number of time locations (nb) (t(1), . . . , t(nb)), where the time-course data were observed, were

selected (we usednb = 13 in the application, which was approximately 1/3 of the time points

in the time course). At each location, the bandwidthhT(t) at locationt was chosen such that the

interval [t − hT(t), t + hT(t)] contains at least four observations. Further, boundary correction was

employed to ensure the resulting bandwidth function was positive whent was close to zero. A

fourth order polynomial was applied to the pair set{(hT(t(i)), t(i))|i = 1, . . . , nb} to obtain a smooth

bandwidth function. The resulting bandwidth functionĥT(t) (shown in Figure 1) was further mul-

tiplied by a constantβ. The constantβ serves to facilitate calibration of the final local bandwidths,

because the choice of local bandwidths forhT(t) was subjective, and thusβ, which was determined

by cross-validation, allowed this subjective choice to be adapted to the data. This form of band-

width selection has been shown to work well in previous studies on smoothing prior to parametric

compartmental modelling (Jiang et al., 2009).

While several tuning parameters need to be chosen for the analysis, this is not uncommon in

PET, as data is usually smoothed to increase the signal to noise ratio or to facilitate population

studies. However, as mentioned above, most analyses use the default settings of whatever software

package is being used, while we here prefer to determine a good choice of bandwidth through cross

validation.

For every bandwidth candidate, each time, we randomly removencv voxels, use the observa-

tions of the remainingn − ncv voxels to estimate the mean functions of the removed voxels. This
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procedure repeatsN times and we choose the bandwidth minimising the mean squared errors be-

tween fitted curves and observations. We setncv = 1 andN = 5000 in our data analysis. The

bandwidths for space and time are selected sequentially to save computation time.

2.3 Deconvolution Based on FPCA

With the concentration curve reconstructed for each voxel, one can perform deconvolution vox-

elwise to recover the IRF. However, attempting to perform automated deconvolution over such a

large number of functions is inherently problematic and computationally costly. Alternatively, we

take the viewpoint that the concentration curves are random curves, a.k.a. functional data (Ramsay

and Silverman (2005)), so a functional approach can be employed to model these curves. Since

convolution is a linear operator, it is advantageous to adopt a linear mixed-effects model approach

to represent these functional data. Since we do not assume that the shapes of the IRFs are known

a-priori, a nonparametric basis function is the preferred choice and we adopt parsimonious basis

functions through principal component analysis.

Principal component analysis is a popular dimension reduction approach for multivariate data

and has been extended to functional data that are in the form of random curves and termed FPCA.

Many different FPCA approaches have been developed, such as by Dauxois, Pousse, and Romain

(1982), Rice and Silverman (1991), Boente and Fraiman (2000), Cardot (2000), and Yao et al.

(2005). We adopt a similar approach as Yao et al. (2005) but with a slightly different model

that was advocated in Jiang et al. (2009) for PET time course data. Specifically, a multiplicative

random effects model was proposed there, motivated by the likely randomness in chemical rates

(induced by spatially varying neurochemical receptor densities, for example) leading to multiplica-

tive changes in the curves. Thus, we adopt the following modified Karhunen-Loève decomposition

of Ci(t), which includes an additional random effect termAi0 on the mean function:

Ci(t) = Ai0μ(t) +
∑

k

Aikφk(t), (2.4)
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whereμ(t) = E{Ci(t)} is the mean function,E(Ai0) = 1, φk(t) are the eigenfunctions of the co-

variance ofCi(t) − Ai0μ(t) with the corresponding non-increasing eigenvalueζk, andAik is thek-th

functional principal component score.

In general deconvolution is an ill-posed problem. However, due to the positivity of the input

function I (t), (2.1) and (2.4) imply that

Mi(t) = Ai0μ
d(t) +

∑

k

Aikφ
d
k(t), (2.5)

whereμ(t) = (I ⊗ μd)(t) andφk(t) = (I ⊗ φd
k)(t). Therefore, deconvolution only has to be performed

on the mean function and the likely small number of eigenfunctions needed to give a good rep-

resentation of the data. This has considerable computational savings compared to performing it

on hundreds of thousands of spatial voxels, and is one of the main advantages of our approach. It

should, however, be noted at this point thatφd
k(t) do not necessarily form an eigendecomposition

of Mi(t) (as deconvolution does not necessarily preserve orthogonality) but are rather a basis of the

deconvolved space.

To perform the deconvolution, we consider the following strategy, which will be illustrated on

μ(t). Suppose thatμ(t) or an estimate of it is available at timess0, s1, . . . , sm, wheres0 = 0 and

sm = τ. Let μT = (μ(s1), . . . , μ(sm)). Whenm is large,μ ≈ Aμd, where

A =




I (s1)
s1
2 0 0 . . . 0

I (s2)
s1
2 I (s2 − s1)

s2
2 0 . . . 0

...
...

. . .
...

I (sm) s1
2 I (sm− s1)

s2
2 I (sm− s2)

s3−s1
2

... I (sm− sm−1)
sm−sm−2

2




, (2.6)

andμd = (μd(s0), . . . , μd(sm−1))T . The matrixA can be seen as a linear discretisation of the convo-

lution integral. Therefore, we can obtain an estimate ofμd by

μ̂d = arg min
μ d

‖μ − Aμd‖2. (2.7)
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This allows the deconvolution procedure to be framed as a linear regression problem, allowing

the use of the usual standard least squares formulation. In the measured data analysis and simula-

tions in the next sections, we interpolated the smoothed PET time courses tom = 250 to balance

computational complexity with discretisation error.

This is of course not the only possible deconvolution strategy that could be used, and many

others exist in the literature, including spline based deconvolution as used in O’Sullivan et al.

(2009, 2014). However, it is very simple and computationally efficient to implement, and as will

be seen in the simulations produces reasonable estimates of the deconvolved curves.

2.4 Estimation of FPCA

Since the mean functionμ(t) and eigenfunctionsφk(t) associated with the concentration function

Ci(t) are unknown, they need to be estimated first before one can implement the deconvolution in

(2.7).

Estimation of the mean function μ(t). One could use the mean function of the reconstructed

Ĉi(t) in (2.3). However, asĈi(t) results from smoothing, the bias inherited at this step in the

reconstruction leads to a biased estimate ofμ (this is particularly affected by the smoothing being

later combined with the decay correction, which is an exponential transform). We thus estimate

μ through the sample mean ofYi j . Let Y∙ j = 1
n

∑n
i=1 Yi j be the cross-sectional mean (without any

smoothing) of the observed dataYi j at timet j. The estimate forμ(t) is

μ̂(t) = Y∙ j exp(λt), for t = t j , (2.8)

= the linear interpolated value of ˆμ(tk) andμ̂(tk+1), for tk < t < tk+1.

The resulting linearly interpolated estimate ˆμ(t) is unbiased att = t j for all j = 1, . . . , p, and has a

smaller bias at othert than the mean of̂Ci(t). Of course, other interpolating schemes such as cubic

spline interpolation could be substituted at this point, but linear interpolation is faster and seems to

work well for PET data.
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Estimation of Ai0. The estimate of the multiplicative coefficient at voxeli is

Âi0 =

∫ τ

0
Ĉi(t)μ̂(t)dt/

∫ τ

0
(μ̂(t))2 dt, (2.9)

whereμ̂(t) is the estimate of the mean functionμ from (2.8) andĈi(t) is from (2.3). It should, of

course, be noted here that the resultingAi0 will not necessarily have the usual property of having

expectation one. This results from estimating theAi0 from the smoothed data while the mean

function is derived from the unsmoothed data. However, in practice the difference between the two

is small, and considerably less variable estimation results from using smoothed data to estimate

Ai0 (a classic bias-variance trade-off).

Estimation of the eigenfunctionsφk andprincipal component scores. We estimate the covari-

ance function by the sample covariance ofĈi(t j)− Âi0μ̂(t j), whereĈi is from (2.3),Âi0 is from (2.9),

andμ̂ is from (2.8). Specifically,

Γ̂(t j , tk) =
1
n

n∑

i=1

{Ĉi(t j) − Âi0μ̂(t j)}{Ĉi(tk) − Âi0μ̂(tk)} (2.10)

for 1 ≤ j, k ≤ p. Once the covariance is obtained, the eigenfunctions can be estimated by solving

the eigen-equations at a dense grid. Letφ̂k(t) be the estimate ofφk(t), The principal component

scoresAik can be estimated by

Âik =

∫ τ

0
{Ĉi(t) − Âi0μ̂(t)} φ̂k(t) dt. (2.11)

Number of components.The number of eigenfunctionsL for voxel i is selected by

R2(i, L) = 1−
var

{
Yi(t) − Ĉi(t, L) exp(−λt)

}

var{Yi(t)}
, (2.12)

whereĈi(t, L) = Âi0μ̂(t)+
∑L

k=1 Âikφ̂k(t). The aboveR2 is an ad hoc measure for the goodness of fit,

but provides a useful summary of how much additional information is gained by adding a further

eigenfunction. For the simulation and data analysis in later sections, we adopted a simple rule to

selectL by settingL = k whenR2(i, k+ 1)− R2(i, k) < 0.025.
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After the number of componentsL is selected byR2, the IRFs can be reconstructed through

(2.5) and its associatedVT can be estimated by integration of the IRF. Specifically, at theith voxel,

these estimates are:

M̂i(t, L) = Âi0μ̂
d(t) +

L∑

k=1

Âikφ̂
d
k(t), (2.13)

V̂T(i, L) = Âi0

∫ τ

0
μ̂d(t)dt+

L∑

k=1

Âik

∫ τ

0
φ̂d

k(t)dt. (2.14)

The details of our approach are summarized in Algorithm1.

Algorithm 1 Deconvolving PET withFPCA.
Input: The set of PET time course data{Yi j ; i = 1, . . . , n, j = 1, . . . , p};
Output: TheVT of each voxeli;

1: Pre-Processing

Pre-processYi j by (2.2) and reconstructCi(t) by (2.3);

2: FPCA

1. Estimate the mean functionμ(t) by (2.8);

2. Estimate the covariance functionΓ(s, t) by (2.10);

3. Perform eigen-decomposition onΓ̂(s, t) to obtainφ̂k(t);

Calculate the PC scores by (2.11);

4. Select the number of eigenfunctionsL by (2.12);

3: Deconvolution

Perform deconvolutions on ˆμ(t) and{φ̂1(t), . . . , φ̂L(t)} via (2.7);

4: CalculateVT for each voxel by (2.14);

3 Simulation Studies

The proposed methodology is firstly evaluated on simulated data, both on 1-D functions and then

in more realistic image settings using 2-D image phantoms.
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3.1 One Dimensional Function Simulations

Before showing our formal image simulation studies, we would like to demonstrate the use of the

deconvolution strategy via FPCA and assess how well it works for general functional data. First,

we assume the target functions (IRFs in PET imaging data) can be represented as

Mi(t) = μM(t) +
2∑

k=1

Bikψk(t),

whereBik are random variables andψk(t) are basis functions. Specifically, we simulate the mean

function μM(t) = .0049 exp(−.0005t) + .0018 exp(−.0112t) and ψ1(t) = c1 sin(2πt/2000) and

ψ2(t) = c2 cos(2πt/2000), wherec1 andc2 are constants which normalise the basis functions in

theL2−norm. Specifically,

c1 =
1

√∫ 2000

0
sin2(2πt/2000)dt

and c2 =
1

√∫ 2000

0
cos2(2πt/2000)dt

.

Also, the random coefficients (Bi1 andBi2) for the basis functions are generated fromN(0, .12) and

N(0, .052) respectively. The random functions are then convolved with an arterial input function

taken from the [11C]-diprenorphine study of the next section truncated at 2000 seconds. The data

observed are further contaminated with independent measurement errors at the observation times,

Yi(t) = (I ⊗ Mi)(t) + ε,

whereε ∼ N(0,22) and where notationally we assume that the errors are only present at the ob-

servations, not over the entire continuum. This toy example contains 200 curves with observations

made at 200 equally spaced time points and the first eight observed noisy curves are shown in

Figure 2. The MATLAB package PACE (Yao et al., 2005) was applied to obtain the mean function

and eigenfunctions for the observed functions. Figure 3 indicates that our deconvolution strategy

via FPCA performs very well for regular functional data. As the FPCA utilizes information across

all curves, this improves the deconvolution.
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In addition to the FPCA approach, we compared several other approaches. O’Sullivan et al.

(2009) proposed an approach which worked well for region of interest (ROI) data in FDG-PET.

It was based on a spline deconvolution of the response function. We implemented an analogous

spline based deconvolution (SP), using a weight function suitably chosen for the simulations. We

also examined deconvolution as used within the FPCA procedure on a curve-by-curve (CC) basis.

However, both the spline deconvolution and the CC deconvolution of the same data is much less

accurate (see Figure 3) with a 10 fold increase in mean integrated squared error (MISE) between

the FPCA approach and the CC approach (MISE, FPCA: 0.0879× 10−3, CC: 0.8160× 10−3, SP:

0.5045× 10−3), with the spline approach performing slightly better than the CC approach except

at the boundaries, but still less well than the FPCA approach. Similar results (not shown) were

obtained if the input function was replaced by a known function, such as a scaled gamma function,

rather than the input function from the measured data.

3.2 Image Based Simulations

In the context of using PET data, the structure of the data is considerably more complex than was

used in the 1-D function simulations above. In particular, there is considerable spatial correlation in

the measured data due to both the inherent underlying biological physiology as well as the blurring

induced by the resolution of the PET camera. Theoretically, weak dependence of this sort is not an

issue for FPCA (Ḧormann and Kokoszka, 2010, 2013). However, from a practical point of view,

the performance of the proposed methodology is now assessed in light of these factors.

3.2.1 Simulated Data Generation

In order to assess the effect of different regions, simulations was performed using a brain phantom

(Shepp-Vardi phantom, 128× 128 pixels) with five different regions of varying sizes (Figure 4).

Different signals were placed in each of the regions based on random parameters which also de-

15
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
2:

57
 2

4 
N

ov
em

be
r 

20
15

 



ACCEPTED MANUSCRIPT

pended on the type of simulation being performed. The level ofVT randomness in each region was

about 6.5% roughly equivalent to the voxelwise variability observed within regions in the measured

data (Jiang et al., 2009). Finally, the data was blurred using a standard Gaussian blurring kernel,

with FWHM of 6mm, with the voxels in the image being presumed to be 2 mm× 2 mm (as this is

a 2 dimensional simulation) before time independent Gaussian errors with variance proportional to

the averaged signal were added. The proportionality of this last measurement error results from the

quasi-Poisson nature of errors resulting from Poisson radioactive decay (the reconstruction renders

the errors not strictly Poisson, and as such a Gaussian approximation is used in the simulations).

We will compare four deconvolution strategies, the FPCA and spline based (SP) methods from

the 1-D simulations and an additional two based on PET parametric models. The curve-by-curve

method for the 1-D simulations was also implemented but found to be considerably worse than

either FPCA or SP methods (results not shown), so was not considered further. For completeness,

the techniques used are now detailed in full. The first is the standard compartmental model based

deconvolution based on first order linear ODEs. Given the non-negativity in the parameter values

for the model, this can be solved using non-negative least squares (Lawson and Hanson, 1974),

known as PET spectral analysis in the PET literature (Cunningham and Jones, 1993). This analy-

sis will be performed using the standard software DEPICT. Jiang et al. (2009) showed borrowing

spatial information can reduce the noise and thus improve theVT estimates by PET spectral analy-

sis. Therefore, an additional comparison will be made with spectral analysis after the data has been

pre-processed (pDEPICT). Similarly the approach of O’Sullivan et al. (2009) will also be applied

to the presmoothed data (with results being worse if presmoothing is not preformed). Finally, the

proposed FPCA methodology will be considered. AsVT is the parameter of interest in the PET

study, this will be the target of interest in the simulations.
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3.2.2 Image Simulation 1: Compartmental Regions

This first image based simulation was designed to assess the performance of the proposed method-

ology where a true compartmental structure

Ci(t) =
(
αi1e

βi1t + αi2e
βi2t

)
⊗ I (t)

was present everywhere, in this case a two compartmental model. This, of course, favors the DE-

PICT method, where a compartmental structure is assumed, but given that compartmental models

are routinely used in PET analysis, and have proved to be useful models in such cases, it is some-

thing that is of interest to assess. The values used in each region, along with its size are given

in Table 1, where the parameters,αi j , βi j were chosen to coincide with physiologically plausible

parameters values from PET studies.

When comparing the MSE ofVT estimates, Table 2 indicates that the FPCA approach and

pDEPICT (DEPICT with presmoothing) outperform standard spectral analysis (DEPICT) in all

five regions even though the data are generated from compartment models. pDEPICT performs

better in regions 2, 3 and 4 while FPCA performs better in the rest of the regions. These findings

are not too surprising as the data are generated from compartment models which are in favor of

the DEPICT approach and Jiang et al. (2009) also has showed borrowing spatial information to

reconstruct the signals can further improve theVT estimates by DEPICT due to noise reduction.

However, as can also be seen, a completely nonparametric FPCA approach is still competitive even

in this situation where it is possible to assume the correct model structure. However, as expected,

the nonparametric approach (SP) which does not involve FPCs performs very badly due to the

high noise levels in a voxelwise analysis. In particular, the SP performance is often reasonable, but

occasionally has issues at the boundaries (as was seen in Figure 3), which can yield large values of

MSE.
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3.2.3 Image Simulation 2: Non-compartmental regions

The purpose of this second simulation is to investigate how these four approaches perform when

the IRFs are not generated from compartment models. Again, we use the brain phantom image

with five different regions; however, we replace the IRFs in regions 2 and 4 with scaled survival

functions while the other three regions remain the same, thus incorporating a mixture of both

compartmental and non-compartmental regions in the simulation. The level ofVT randomness in

these two regions is again taken to be are around 6.5%. The blurring procedure in the final step is

identical to simulation 1. Here is the scaled survival function for region 2,

Mi(t) =
1

200

[

1−
∫ t

0
{0.7 fi1(u/60)+ 0.3 fi2(u/60)}du

]

, (3.1)

where fi1(t) and fi2(t) are gamma probability density functions (pdf’s) with parameters (αi1, βi1)

and (αi2, βi2) andαi1 ∼ N(1.5, .052), αi2 ∼ N(10, .52), βi1 ∼ N(2, .22) andβi2 ∼ N(1.5, .12). The

fraction 1
200 is to make the integral ofMi(t) close to a real value (≈ 1.97). In region 4, the scaled

survival function is

Mi(t) =
1
70

[

1−
∫ t

0
{0.8 fi1(u/60)+ 0.2 fi2(u/60)}du

]

, (3.2)

where fi1(t) and fi2(t) are gamma pdf’s with parameters (αi1, βi1) and (αi2, βi2) andαi1 ∼ N(2, .152),

αi2 ∼ N(15, .12), βi1 ∼ N(2.5, .22) andβi2 ∼ N(2, .152). The fraction 1
70 is to make the integral of

Mi(t) close to a real value (≈ 8.54). The parameters are provided in Table 3. The IRF of region 4

has a marked deviation from a compartmental (sum of exponential) structure, while region 2 much

more closely resembles a traditional exponential decay, even though it is in fact not expressible as

such.

Table 4 shows the MSE ofVT estimates of the three approaches. As in simulation 1, the

FPCA approach outperforms DEPICT in all five regions. pDEPICT outperforms DEPICT except

in region 4 and the FPCA approach outperforms pDEPICT in regions 1, 4 and 5. This simulation

shows that the preprocessing procedure carried out in pDEPICT can help the DEPICT approach to
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improve theVT estimates when compartmental conditions are satisfied; however, it does not always

work well. If the true IRFs are close to the assumed compartmental structure, as in region 2, the

gains from a model based deconvolution can outweigh the model misspecification errors. However,

in situations, such as in region 4, where the true IRF is markedly different from a compartmental

structure, borrowing spatial information from neighboring voxels can result in worse estimates

not only against the nonparametric FPCA deconvolution, but even against the standard DEPICT

result where no spatial information is taken into account. On the contrary, the FPCA approach

estimates the IRFs nonparametrically and thus the performance is more robust and relatively stable

regardless of the model structure. Again, a voxelwise nonparametric deconvolution strategy is

not competitive, with SP again suffering from large discrepancies in a few of the simulation runs,

resulting in very large MSE values overall.

From the MSE of the estimated functions in region 2 and particularly in region 4, we see that

the FPCA approach captures the function shape nicely while DEPICT can not do so due to its

parametric model restrictions. This is emphasised in Figure 5 which examines the pointwise MSE

of the reconstructed curves in Regions 2 and 4, as well as the MISE. It should be noted at this

point though that simply using MISE as a target in this case would indicate that both approaches

perform similarly. However, asVT is the primary interest, we focused on this, and as can be seen

in the Table 4, there is a large improvement in MSE forVT in Region 4 using FPCA.

4 Measured11C-diprenorphine data

We apply the nonparametric FPCA approach to a set of dynamic PET scans from a measured [11C]-

diprenorphine study of normal subjects, for which an arterial input function is available. The main

purpose of the study is to produce a population of normal controls to build an understanding of

opioid receptor densities in normal brain. Multiple subjects were scanned, some once, some twice.

We will analyse this data and focus particularly on the repeated scan data, as this analysis will aim
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to ensure that the methodology is applicable across a range of subjects with reasonable test-retest

reproducibility. While reproducibility cannot be equated with the truth, it is somewhat reassuring

if the methods yield relatively similar estimates on the same subject in repeated scans. The scans

which are analysed here are part of a study into the relationship between opioid receptors and

Epilepsy, and the subjects here are from a normal population for the quantification of opioid recep-

tor distribution. In particular, accurate quantification ofVT is required as this is a measure related

directly to receptor density. In addition, it is well known that for the tracer [11C]-diprenorphine,

any particularly compartmental model does not easily fit the data for all voxels (Hammers et al.,

2007), so the investigation of a nonparametric approach is of particular relevance here.

The description of the data here follows from Jiang et al. (2009), although in that paper only

one subject was considered, but the rest were similarly acquired. Each normal control subject

underwent either one or two 95-min dynamic [11C]-diprenorphine PET baseline scans. The subject

was injected with 185 MBq of [11C]-diprenorphine. PET scans were acquired in 3D mode on a

Siemens/CTI ECAT EXACT3D PET camera, with a spatial resolution after image reconstruction

of approximately 5 mm. Data were reconstructed using the reprojection algorithm (Kinahan and

Rogers, 1989) with ramp and Colsher filters cutoff at Nyquist frequency. Reconstructed voxel sizes

were 2.096 mm× 2.096 mm× 2.43 mm. Acquisition was performed in listmode (event-by-event)

and scans were rebinned into 32 time frames of increasing duration. Frame-by-frame movement

correction was performed on the dynamic [11C]-diprenorphine PET images.

The three most promising approaches used in the simulation studies are applied, DEPICT,

pDEPICT and the nonparametric FPCA procedure, as the data is on the voxel level, and thus

curve-by-curve methods are both unstable and computationally intractable so not considered fur-

ther. We first introduce the results of FPCA on a single subject (no. 2913, who only had one scan,

and was randomly chosen for discussion here, although is indicative of the way the analysis per-

forms in general). Figure 6 shows the estimated mean function and its deconvolved function. The

deconvolved mean function deviates from the shape which would be expected from a sum of expo-
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nential functions. Figure 7 shows the first three eigenfunctions together with their corresponding

deconvolved functions. The eigenfunctions indicate the variation from the mean function among

voxels.

Figure 8 shows the numbers of components needed to reconstruct the latent signals and the im-

pulse response functions. Spatial clusters exist and it gives indications about the concentration of

pain receptors in specific spatial locations. Figure 9 shows theVT estimates of FPCA approach and

DEPICT approach and their differences. TheVT estimates by FPCA are about 12.4% lower than

those by DEPICT, while pDEPICT was similar to that of DEPICT (approximately 2.2% lower,

data not shown). Positive biases of 10% or more are not uncommon for parameter values in the

range of those present here (bias is parameter dependent) for PET compartmental models when an-

alyzed with spectral analysis (see Peng et al. (2008)), and as such the estimates provided by FPCA

are closer to what might be expected from previous simulation results. Thus, the FPCA yields

results which are more quantitatively plausible for comparison across a population. In particular,

as differences in PET studies between patients and controls tend to be small, and bias is parameter

dependent when using non-linear models, plausible quantitative estimates, which do not rely on

particular compartmental assumptions, would allow greater confidence in differences found.

The results from the test-retest analysis from the seven subjects who had this data available

are given in Table 5 and Figure 10. Taking the figure first, we see that the test-retest variability

of both DEPICT and FPCA are roughly similar in corresponding brain regions. This is reassuring

as the FPCA procedure is considerably more flexible than the model based DEPICT estimates.

In addition, there is evidence of spatial smoothness in the reproducibility which is physiologically

more interpretable from the FPCA approach than the DEPICT approach. Turning to Table 5, we see

that there is considerable correspondence between the test-retest results from DEPICT and FPCA.

The pooled results show that there are similar levels of variation at different threshold levels. This

is important, as the receptor densities are only of interest at somewhat higherVT values. Indeed

there is also less variation within the test-retest values for the FPCA procedure. For individual
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subjects, the results are fairly balanced with some subjects having smaller test-retest differences

with FPCA and others with DEPICT at different threshold levels. However, in almost all cases, the

variability in the test-retest results is smaller with FPCA than with DEPICT.

From a computational point of view, the time for the nonparametric deconvolution is very

competitive to the parametric modeling approach. The proposed procedure took approximately

8.5 mins to analyze a single PET scan, which compares with approximately 10 mins for DEPICT

to perform an equivalent analysis (all computations carried out on an Intel core i7 CPU M620

2.67GHz with 4GB RAM).

5 Discussion

We have presented a functional data analysis approach to the problem of mass deconvolution in

neuroimaging. By expressing the deconvolution problem via a functional principal component

basis expansion, it is possible to dramatically reduce the required computational complexity. The

methodology has been shown to work well both in generic 1-D function deconvolution and also in

more realistic image based simulations, while also producing physiologically plausible results in a

real data analysis, without resorting to modelling assumptions that are challengeable at best.

The approach to the methodology here has been to take as simple approach as possible for

each inherent step. This, of course, could be relaxed, and much more complex algorithms for

deconvolution could be investigated in the place of the simple linear deconvolution suggested here.

In addition, different methods for choosing the number of eigenfunctions to examine or how the

smoothing is performed could also be changed, but without any significant effect on the application

of the methodology. However, even the simple approach taken in this paper has been shown to be

very effective when used in real data analysis (Zanderigo et al., 2015).

It would be possible to carry out a nonparametric analysis using different basis functions us-

ing methods such as those explored in O’Sullivan et al. (2014) for FDG. There a segmentation
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algorithm is used to determine the basis functions and is shown to work well for FDG. However,

when using segmentation algorithms, it is often hard to know how many basis functions to use,

particularly for tracers such as [11C]PK-11195, a marker for neurodegeneration, which has little

spatial coherence, and it is not clear that the resulting decomposition would always be identifiable.

However, the eigenbasis approach as proposed here would be equally valid in such a situations and

by definition always yields an identifiable basis.

We have here suggested the use of the multiplicative random effects model for the FPCA anal-

ysis. This could be replaced with the more usual standard FPCA decomposition. However, it has

been shown previously (Jiang et al., 2009) that this model is a natural model for PET, given the

compartmental assumptions usually made in data modelling, both in terms of its interpretation as

well as its empirical performance, and for this reason we have concentrated on it here. It should, of

course, be noted that the use of smoothed estimates for the curves, but unsmoothed data to estimate

the mean yields the possibility that the functions of the data used to generate the principal compo-

nent scores will not be eigenfunctions. However, asymptotically (as the smoothing bandwidth goes

to zero), these will be consistent estimates. For finite samples, these will still be a completely valid

function basis to express the data, albeit not necessarily the finite sample eigenfunctions. However,

the gains in using smoothed data to control the noise is considerable over the use of raw curves for

deconvolution.

PET volumes are intrinsically 3-D tomographic reconstructions. However, the reconstruction

process has not been the focus here, but with suitable modification, the methods introduced in this

paper could be incorporated into reconstruction in a similar way to compartmental analysis (eg

Wang and Qi (2009)), although we have preferred to carry out our analysis in the standard clinical

setting directly using the reconstructed data. It is also true that in some PET settings a compart-

mental model is likely to be a good choice. However, we are advocating using a nonparametric

approach due to any particular model being unlikely to be true across the brain for all voxels and

indeed model selection for compartmental models is one of the major challenges for practitioners.
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One drawback of there not being a formal model in the nonparametric case is thatVT does not have

the same direct biological interpretation. However, in many cases, the resulting nonparametricVT

will be similar in spirit to that of the compartmental model, and the biological models used to make

links from VT to receptor density, for example, could be updated in line with the finite time nature

of the experiment (and after all the experiment really is only performed over a finite time horizon).

One interesting line of future research would be to use a mixture approach to the modelling in-

volving both compartmental and nonparametric approaches where some form of model evidence

is used to help in the estimation of a common parameter such asVT .

The methodology presented here is naturally appealing for PET data, given that it reduces the

number of deconvolutions from several hundred thousand to four or five. However, it is also a

candidate for deconvolution for neuroimaging in general, where in modalities such as fMRI, there

is interest in deconvolving hemodynamic response functions from the data (Wang et al., 2013,

Zhang et al., 2012). A similar FPCA setup to deconvolve fMRI data could therefore be used,

although care would need to be taken and additional regularisation used in the deconvolution step,

as the null space of the linear operator will be non-zero for fMRI data (due to the negative dip in

the hemodynamic response), unlike the case for PET data. Indeed, under suitable assumptions, the

approach that has been proposed is applicable in many situations where there are replicates of the

curves present, allowing the deconvolution to be treated from a functional data perspective.
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Hörmann, S. and P. Kokoszka (2010). Weakly dependent functional data.Ann. Statist. 38, 1845–

1884.
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Table 1: Parameters for first 2-D image simulation.
Region Size αi1 αi2 βi1 βi2 VT

1 9614 - - - - 0
2 5351 0.0060 - 0.0030 - 2.00
3 701 0.0040 0.0023 0.0008 0.01034.98
4 14 0.0068 0.0009 0.0007 0.02039.24
5 704 0.0007 - 0.0377 - 0.02
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Table 2: Averaged MSE (s.e.) ofVT ’s based on 50 runs for five different regions in first 2-D
simulation

Region 1 2 3 4 5

FPCA
0.0114 0.0832 0.4943 0.6228 0.0433

(0.0012) (0.0109) (0.1471) (0.8306)(0.0076)

DEPICT
0.1306 0.2204 0.5549 0.6730 0.1741

(0.0113) (0.0076) (0.0507) (0.4069)(0.0149)

pDEPICT
0.0248 0.0601 0.2335 0.2594 0.0505

(0.0033) (0.0049) (0.0481) (0.2238)(0.0086)

SP
0.0155 1.1710 7.7870 19.5207 0.2936

(0.0014) (0.0849) (0.4739) (4.4023) 0.0424
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Table 3: Parameters for second 2-D image simulation.
Region Size αi1 αi2 βi1 βi2 VT

1 9614 - - - - 0
2 5351 Equation (3.1) 1.97
3 701 0.0040 0.0023 0.0008 0.01034.98
4 14 Equation (3.2) 8.54
5 704 0.0007 - 0.0377 - 0.02
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Table 4: Averaged MSE (s.e.) ofVT ’s based on 50 runs for five different regions in second 2-D
simulation.

Region 1 2 3 4 5

FPCA
0.0116 0.0968 0.3695 0.7045 0.0429

(0.0013) (0.0111) (0.1293) (0.4041)(0.0063)

DEPICT
0.1325 0.2405 0.5545 0.9142 0.1774

(0.0105) (0.0106) (0.0496) (0.4033)(0.0170)

pDEPICT
0.0257 0.0747 0.2475 1.1158 0.0529

(0.0028) (0.0059) (0.0491) (0.5028)(0.0087)

SP
0.0152 1.1346 7.9536 22.8747 0.2917

(0.0014) (0.0894) (0.5365) (5.3599)(0.0471)
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Table 5: Averaged absolute normalised difference for [11C]-diprenorphine data. We consider the

following measure|V̂T 1−V̂T 2|
V̂T 2

if V̂T2 > δ to evaluate the difference between two experiments. The
analysis results from seven individual subjects are pooled and summarised in the last row. Four
differentδ’s (5,10,15, and 20) are used.

FPCA DEPICT
Experiments 5 10 15 20 5 10 15 20
244 v.s.247 .186 (.117) .184 (.082) .176 (.070) .148(.037) .122 (.121) .086 (.070) .060 (.047) .049 (.036)

1031 v.s.1033 .131 (.157) .088 (.072) .073 (.055) .055(.040) .158 (.170) .110 (.093) .087 (.069) .067 (.053)
1248 v.s.1258 .175 (.111) .166 (.056) .180 (.041) .203(.034) .144 (.120) .124 (.073) .147 (.063) .163 (.051)
1680 v.s.1774 .243 (.229) .175 (.149) .104 (.079) .063(.053) .283 (.260) .181 (.154) .115 (.111) .320 (.354)
1794 v.s.1798 .238 (.221) .184 (.143) .170 (.084) .262(.033) .295 (.231) .260 (.175) .293 (.129) .365 (.132)
3427 v.s.3497 .134 (.130) .093 (.064) .060 (.041) NaN .166 (.161) .106 (.084) .094 (.068) .168 (.101)
3568 v.s.3715 .193 (.183) .137 (.110) .094 (.077) .076(.062) .202 (.191) .132 (.107) .095 (.076) .099(.085)

Pooled .185 (.175) .146 (.110) .113 (.078) .080(.067) .196 (.196) .142 (.127) .121 (.109) .081(.083)
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Figure 1: The resulting locally adaptive bandwidth for PET time-course data.
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Figure 2: First eight observed curves of the 200 curves in the 1D simulation.
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Figure 3: Estimated deconvolved functions and true target function in 1D simulation corresponding
to the curves in Figure 2 along with the pointwise MSE for each method.
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Figure 4: Phantom Image: each of the five different regions used in the simulations are indicated.

Region 1 Region 2 Region 3 Region 4 Region 5
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Figure 5: MSE of the different methods in the regions which are not compartmental models in the
2-D image simulations.
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Figure 6: Estimated (deconvolved) mean function for subject 2913
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Figure 7: The First Three Estimated (deconvolved) Eigenfunctions for subject 2913
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Figure 8: The numbers of components needed to reconstruct the latent signals and the impulse re-
sponse functions for subject 2913. This indicates that the numbers of components are not randomly
distributed in the brain but rather exhibit spatial correlation.
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Figure 9: TheVT estimates of FPCA approach and DEPICT approach and their differences for
subject 2913. TheVTs estimated by FPCA are in general smaller than those by DEPICT withVTs
reduced about 12.4%.
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Figure 10: TheVT estimates of a test and a retest scan from a single subject who had two scans
(numbered 1031 and 1033). In addition the percentage change between the two is given for both
DEPICT and the FPCA procedure. The difference is truncated at 40% as all voxels above this had
estimatedVT close to 0.
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