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Abstract 
Cellular homeostasis depends on the precisely coordinated use of lipids as 
fuels for energy production, building blocks for membrane biogenesis or 
chemical signals for intra and inter-cellular communication. Lipid droplets 
(LDs) are universally conserved dynamic organelles that can store and 
mobilize fatty acids and other lipid species for their multiple cellular roles. 
Increasing evidence suggests that contact zones between LDs and other 
organelles play important roles in the trafficking of lipids and in the regulation 
of lipid metabolism. Here we review recent advances regarding the nature and 
functional relevance of interactions between LDs and other organelles - 
particularly the endoplasmic reticulum (ER), LDs, mitochondria and vacuoles 
– that highlight their importance for lipid metabolism.  
 
Introduction 
Cells have the ability to store metabolic energy in the form of nonpolar or 
“neutral” lipids in ubiquitous organelles, lipid droplets (LDs). Unlike other 
organelles, LDs exhibit a unique topology consisting of a hydrophobic core, 
predominantly of triacylglycerol (TAG) and steryl esters (SE), and coated by a 
phospholipid monolayer, which solubilizes the LD in the cytoplasm and a set 
of proteins involved in LD function. In response to metabolic signals, 
mobilized fatty acids (FAs) and other precursors derived from stored neutral 
lipids are used for a striking variety of functions, including energy production 

via -oxidation, membrane biogenesis for cell growth, protein modification, 
signalling, and even secretion within lipoproteins. Growth and consumption of 
LDs can occur via multiple pathways but ultimately both processes depend on 
the regulated exchange of lipid content between LDs and other organelles 
within an aqueous cytoplasm. Because LDs are not directly connected to the 
vesicular transport pathways, the neutral lipids and phospholipids required for 
their biogenesis must be generated either in situ or arrive from other 
organelles through physical interactions. Here we discuss recent advances 
and highlight open questions on how contacts between LDs and other 
organelles are established and how they regulate lipid metabolism. LD 
biogenesis will not be discussed in detail as it has been comprehensively 
reviewed elsewhere [1-5].  
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LD-ER contact sites 
While it is widely thought that LDs emerge from the ER membrane, the 
mechanisms responsible for the initial stages of their formation are not well 
understood. A popular model proposes that accumulation of neutral lipids 
between the leaflets of the ER bilayer forms an oil droplet or “lens” that 
eventually buds towards the cytoplasm [6], although there is still little direct 
evidence to support it. Whether this budding process is spontaneous or 
assisted by ER proteins is also not clear [7]. Subsequent growth of LDs may 
take place by neutral lipid synthesis either on the LD surface or at the ER, or 
by a “fusion” mechanism that transfers lipid during homotypic LD-LD 
interaction. Regardless of the pathway, neutral lipid addition to the LD core 
must be coupled with addition and remodelling of phospholipids, mostly 
phosphatidylcholine (PC), at the LD surface to enable the coordinated 
expansion of the organelle. 
 
The close apposition of LDs with the ER is conserved from yeasts to 
mammals (Figure 2) but the exact nature of this association remains poorly 
defined. LDs between the two leaflets of the ER have been visualized in cells 
with defects in apolipoprotein B processing [8], which would be consistent with 
a physical continuity between the two organelles. A different arrangement was 
seen by freeze-fracture analysis where both leaflets of the ER bilayer were 
observed external to the LD and enclosed it tightly [9]. More recently, the 
existence of ER-LD conduits was supported by high-pressure freezing 
electron microscopy and tomography analyses depicting direct connections 
between the LD phospholipid monolayer and the adjacent ER in mammalian 
cells “loaded” with excess fatty acids [10*,11*]. Generating such a connection 
is likely to depend upon the generation of negative membrane curvature at the 
ER-LD interface; the role of specific lipids or proteins has yet to be 
established, although a role for diacylglycerol (DAG) has been proposed [12]. 
In yeast where LDs predominantly appear to remain in contact with the ER 
[13, 14*, 15], protein machinery may be required to stabilize the ER-LD 
association.  

There is increasing evidence in recent years suggesting that ER-LD contacts 
provide a conduit for the transport of proteins with metabolic or signalling 
functions on LDs (Figure 1). Such compartmentalization may increase the 
efficiency of metabolic inter-conversions and limit the diffusion of bioactive 
lipids within the ER membrane. Early biochemical studies in yeast provided 
evidence that enzymes involved in neutral lipid synthesis show a dual LD-ER 
localization [16, 17]. Indeed, some of the best-studied examples include TAG 
biosynthetic enzymes. TAG synthesis is initiated by two sequential FA 
acylation reactions on glycerol-3-phosphate, catalysed by GPAT and AGPAT 
enzymes respectively. The resulting phosphatidate (PA) is dephosphorylated 
by PA phosphatase (PAP) to DAG, which is then converted by DGATs to 
TAG. Notably, with the exception of PAP, these enzymes are ER membrane-
bound but move to LDs during conditions of increased TAG synthesis. For 
example, in mammalian cells DGAT2 [18, 19] and acyl-CoA synthetase 3 
[11*] target LDs following the addition of FAs. In yeast, re-localization of the 
DGAT Dga1 enzyme in response to transcriptional induction of TAG 
synthesis, is energy- and temperature- independent, supporting a diffusion-



based transport mechanism through an ER-LD membrane continuity [14*]. FA 
loading of Drosophila cells results in the targeting of all four TAG biosynthetic 
enzymes onto a subpopulation of LDs that expand, while a second class of 
LDs lacking the enzymes remains constant in size [10*]. Other enzymes that 
play key roles in LD homeostasis, like the lipases Tgl1 and Tgl3 in yeast [14*, 
20] or the mammalian lyso-PC acytransferases LPCAT 1 and 2 that remodel 
PC on LDs [21], also partition between ER and LDs.  
 
Because these enzymes behave biochemically like integral membrane 
proteins, their transport from the ER poses the challenge of moving from a 
phospholipid bilayer with an aqueous lumen (ER) to a monolayer with a 
hydrophobic lumen (LD). It was proposed that the presence in the enzymes of 
long hydrophobic domains with a kink, inserted in a hairpin fashion that does 
not span the entire ER membrane, would allow such a transition [22] (Fig. 1). 
Consistently, modifying the hydrophobic domains of LD proteins to disrupt 
their hairpin structure blocks their translocation from the ER [10*, 23, 24]. This 
mechanism may explain the remarkable conservation of LD targeting between 
species despite the lack of apparent linear LD-localization signals [25, 26]. 
However, several proteomic and imaging approaches have now identified 
additional LD proteins with longer membrane-spanning domains, although 
their topology in most cases has not been experimentally determined.  
Whether these proteins are actually resident in an ER domain that 
contaminates LDs during analysis, or whether other mechanisms to 
accommodate membrane proteins on LDs exist, remains to be determined.  
 
Another open question is whether phospholipids are also transferred at ER-
LD contact sites to support LD surface expansion. The phosphocholine 

cytidylyltransferase a (CCT catalyzes the rate-limiting step in the Kennedy 
pathway of PC synthesis and targets LDs during FA loading in fly and 
mammalian cells, although the final step of PC production takes place in the 
ER [27]. Another pathway that remodels PC acyl chains through LPCAT1 and 
2, the Lands cycle, is also active on LDs, but the primary source of the PC 
substrate may be also derived from the ER [21, 28]. Thus, LD growth probably 
depends on a phospholipid transport step, which could take place either 
through lateral diffusion from the ER-LD connections, or via phospholipid 
transport proteins at the zones of ER-LD proximity. However the specific 
mechanisms remain largely mysterious. Evidence for a further role of 
phospholipid metabolism in LD growth has been also provided by genetic 
studies in yeast [29].  
 
A model for the formation of ER-LD contacts has been recently proposed, 
based on a mechanism requiring the GTPase Arf1 and the COPI coat 
complex. These have canonical functions in Golgi to ER retrograde 
membrane and protein trafficking and previous studies have also documented 
a role for Arf1/COPI in the LD targeting of adipose triglyceride lipase (ATGL) 
[30, 31] and TAG biosynthetic enzymes from the ER membrane [32*]. A pool 
of Arf1/COPI localizes on the LD surface and buds micro-droplets from either 
artificial or purified cellular LDs [32*, 33*]. Because this process removes 
phospholipids from the LD monolayer that solubilize the TAG core, it was 
suggested that the resulting increase in LD surface tension drives the 



formation of membrane contacts with the adjacent ER, enabling protein 
transport to the LD [32*]. Thus, Arf1/COPI may act by modifying the physical 
properties of the LD.  
 
Additional pathways for ER-LD contact formation are likely to exist, at least in 
yeast, where COPI mutations do not block the transport of Dga1 to LDs [14*]. 
Another way in which ER-LD contacts could be regulated is by the assembly 
of protein-protein complexes at the interface between the two organelles. This 
has been suggested by studies in C.elegans where the DAG acyltransferase 
DGAT2 on LDs was shown to bind the ER-localized acyl-CoA synthetase 
FATP1 that generates the FA substrate of DGAT2 [34]. There is growing 
evidence that neutral lipid biosynthetic enzymes can form complexes to 
facilitate substrate channeling, although evidence for a general role of protein-
protein interactions in tethering LDs to the ER is currently missing. 
 
LD-LD contact sites  
LDs tend to cluster together under certain conditions or when specific proteins 
are over-expressed [35-39]. However, for the most part these observations of 
changes in LD proximity do not conclusively document direct contact sites 
between adjacent LDs. Furthermore, the biological importance of this 
proximity to one another remains largely unknown; one notable exception is 
the role of Fsp27 (fat specific protein of 27 kDa, also known as Cidec) in 
mediating formation of the large unilocular LDs present in vertebrate 
adipocytes (Figure 1). In this case, cellular knockdown studies [40], mouse 
knockout models [41-43] and a human with biallelic loss-of-function mutations 
in CIDEC [44], clearly indicate that Fsp27 is required for the formation of a 
unilocular LD and that, in its absence, adipocytes accumulate smaller 
multiloculated LDs which permit higher rates of lipolytic fatty acid release 
(presumably due, at least in part, to the relative increase in LD surface area 
and hence access of lipases to the LD). This ultimately limits the maximal lipid 
storage in adipose tissue in vivo; instead lipid accumulates in the liver and 
induces insulin resistance in the absence of Fsp27 [43, 45]. 
 
Gong et al [46*] were the first to show that Fsp27 localises to membrane 
contact sites between abutting LDs, where it appears to form stable „contacts‟ 
between the LDs. This enables net unidirectional transfer of neutral lipid from 
the smaller to the larger LD via a slow (typically over hours) transfer process, 
for which the term „permeation‟ has been suggested [2]. The internal pressure 
difference (which is higher in the smaller LD) provides the „driving force‟ for 
this neutral lipid transfer. This process is thought to be distinct from much 
faster LD coalescence events which have been observed in vitro and the in 
vivo relevance of which are still debated; current consensus suggests that 
coalescence probably does not occur in vivo, although depleting surface PC 
or the addition of certain pharmacological agents can destabilise LDs and 
promote this type of rapid fusion [47, 48]. LD permeation has also been 
observed using CARS imaging in differentiating adipocytes, where it was 
possible to precisely document the additive effect of several „permeation‟ 
events on LD volume and measure factors influencing the rate of lipid transfer 
between LDs [49, 50*]. The latter suggests that this depends primarily on the 
volume of the smaller LD. Recent studies have suggested that several 



additional proteins, including perilipin 1 [51] and Rab8 [52] enhance the rate of 
lipid transfer mediated by Fsp27, although the mechanistic basis underlying 
these observations is still unknown. It also remains unclear at this stage 
whether Fsp27 is involved in the formation of a channel or „pore‟ between the 
LDs, or facilitates lipid transfer by another mechanism.   
 
LD-Mitochondria/peroxisome interactions 

Catabolism of LD-derived fatty acids through -oxidation takes place in 
mitochondria in metazoans, or peroxisomes in yeasts and plants. Extensive 
fatty acid trafficking is therefore likely to take place between LDs and these 
organelles (Figure 1). Increased fatty acid flux from LDs induces mitochondrial 
biogenesis, highlighting the close interplay between the two organelles [53]. 
Close association of LDs with mitochondria, or peroxisomes, has previously 
been described in many cell types. For example, a fluorescence 
complementation assay in yeast described protein interactions between LDs 
and mitochondria or peroxisomes [54]. Moreover, in yeast cells using oleate 
as a carbon source, LDs develop stable contacts with peroxisomes, termed 
“pexopodia”, that were proposed to facilitate peroxisomal fatty acid import and 

contain several -oxidation enzymes [55]. In mammalian oxidative tissues that 
require high fatty acid fluxes for their energy demands, LDs often localize near 
mitochondria [56]. High levels of perilipin 5, which is most highly expressed in 
oxidative tissues, result in clustering of mitochondria around LDs in skeletal 
and heart muscle [57-59]. Close LD-mitochondrial association and proper 
mitochondrial fusion are required for the distribution and oxidation of 
lipolytically released fatty acids within the mitochondrial network during 
starvation [60*]. These observations imply a role of LD-mitochondrial contacts 
in the channelling of mobilized fatty acids although it is also possible that both 
organelles contact a common ER subdomain through which fatty acids and 
other lipids traffic. Protein machinery mediating LD-mitochondrial contacts 
has, to date, not been described. 
 
Lipid transport between LDs and mitochondria is likely to be bidirectional. In 
cell types such as adipocytes, hepatocytes or yeast, PC can be synthesized 
by either the Kennedy pathway or by the methylation of mitochondrial-derived 
phosphatidylethanolamine (PE), catalysed by PEMT [61]. PEMT localizes to 
the mitochondrial-associated ER membrane (MAM). In adipocytes, PEMT is 
found in close proximity to LDs and may use mitochondrial PE for the 
synthesis of PC on LDs [62]. How these two biosynthetic processes could be 
coupled remains unknown. An analogous communication may also take place 
between LDs and peroxisomes as the latter are the sites of ether-linked lipids, 
which are also present in LDs [63].  
 
LD-Vacuole/lysosome interactions 
In addition to the activity of cytosolic lipases, fatty acids can be mobilized from 
LDs through macroautophagy in mammalian cells. This process is known as 
lipophagy and involves the sequestration of small, or portions of larger, LDs in 
the autophagosome [64]. Genetic and pharmacological inhibition of autophagy 
leads to accumulation of LDs in different cell types. Therefore, proteins that 
control autophagic flux and are also associated with LDs may specifically 
control lipophagy. The small GTPase Rab7, whose activity is required for 



autolysosome formation, associates with LDs and is required for lipophagy. 
This association increases during β-adrenergic receptor stimulation and is 
inhibited by perilipin 1 on the surface of LDs under basal conditions [65]. 
Moreover, Rab7 activation during nutrient stress also increases the 
association of Rab7-positive compartments with LDs [66]. Similarly, 
chromosome 19 open reading frame 80 (C19orf80) associates with LDs 
during thyroid hormone stimulation and mediates lipophagy in human 
hepatoma cell lines [67]. 
 
In budding yeast, LDs associate with the vacuolar membrane and are 
incorporated into the vacuole through microautophagy, which requires the 
core machinery of autophagy [68, 69]. Although both nitrogen starvation and 
stationary phase induce lipophagy in yeast, vacuolar incorporation of LDs may 
proceed through different mechanisms. In fact, stationary phase induces the 
formation of liquid disordered and sterol-rich liquid ordered microdomains on 
the vacuolar membrane, which are not formed during nitrogen starvation [70]. 
During stationary phase-induced lipophagy, LDs associate with the sterol-rich 
liquid-ordered microdomains, which mediate the vacuolar internalization of 
LDs [69]. Interestingly, lipophagy is required for maintenance of these 
vacuolar microdomains, probably by providing the sterols stored in LDs [69]. 
 
LDs may also contribute to the initiation of autophagy. Recent work in 
mammalian cells provides evidence that LDs interact with autophagosomes 
during starvation and TAG is mobilized by the neutral lipase PNPLA5 that 
localizes on LDs [71]. The resulting DAG is converted into PC via the 
Kennedy pathway, suggesting a role for TAG in the formation of membrane 
phospholipids required for autophagosome biogenesis [71]. TAG is also 
required for autophagosome formation in budding yeast, although the 
underlying mechanisms remain currently unknown [72]. 
 
Conclusion and perspective 
Lipid synthesis is highly compartmentalized in eukaryotic cells and therefore 
regulated contacts between LDs and other organelles are likely to be critical 
for cellular homeostasis. LD tethering to organelles may result in more 
efficient channeling of lipid intermediates from LDs explaining, perhaps, why 
lipolysis-derived FAs are used by cells more efficiently over other sources of 
FAs. How LD-organelle contacts are established, maintained and regulated in 
response to metabolic cues remains poorly understood. The unique topology 
of LDs may dictate novel modes of membrane interactions and the function of 
specific lipid and protein components awaits further investigation. Moreover, 
the spatial organization of LDs, and the role of the ER network that contacts 
most other organelles, in controlling LD-organelle interactions is also not well 
understood. Although we focused here on LD contacts with four organelles, 
LDs apparently manifest a much broader repertoire of interactions including 
caveolae, components of the endocytic machinery and pathogens such as 
viruses or bacteria.  It is likely that future studies on the regulation of LD 
contacts will lead to a better understanding of lipid metabolism, with important 
implications for prevalent human diseases such as obesity, diabetes, fatty 
liver and cancer.  
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Figure legends 
Figure 1. Topology and roles of key LD-organelle contact sites in lipid 
metabolism. (a) LD-ER interaction zones. Selective partitioning of lipid 
metabolic enzymes (in blue) from the ER to the LD phospholipid monolayer 
through ER-LD membrane “bridges” controls LD homeostasis. These include 
enzymes of the de novo TAG biosynthetic pathway, phospholipid remodelling, 
TAG mobilization or other. TAG may be also channelled to LDs from the ER 
via these LD-ER contacts though poorly characterized mechanisms (dashed 
arrow). Phosphatidylcholine (PC, in green) from the adjacent ER can be 
added during LD growth via lipid transport proteins or lateral diffusion. (b) LD-
LD contact sites are established by CIDE-proteins (e.g. Fsp27) and mediate 
directional neutral lipid exchange from the smaller to the larger LD. (c) 
Mitochondrial-LD contacts are thought to channel lipolytically-derived fatty 

acids (FAs) destined for -oxidation but their molecular basis remains elusive. 
Such contacts may also provide mitochondrial-derived 
phosphatidylethanolamine (PE) for the synthesis of PC destined to coat LDs. 
MAM: Mitochondrial associated membrane.  
 
Figure 2. Morphology of LD-organelle interactions as visualized by light and 
electron microscopy. (a) Organelle-LD interactions in budding yeast as 
visualized by electron tomography of cryofixed/freeze substituted samples. 
ER, Endoplasmic reticulum; LD, Lipid droplet; M, Mitochondria; N, Nucleus; 
SV, Secretory vesicles; V, Vacuole. Bar, 100 nm. (b) Electron microscopy of 
LD-ER contacts in Vero cells. Bar, 1000 nm. (c) LD-ER association as 
visualized by fluorescence microscopy in budding yeast; LDs, seen in red, 
localize primarily in contact with the cortical and nuclear ER, in green. Bar, 5 

m. (c) Electron microscopy of LD-mitochondrial contacts in Vero cells. Bar, 
1000 nm. Image (a), courtesy of Maja Radulovic and Sepp D. Kohlwein 
(University of Graz) and Yannick Schwab (EMBL); images (b) and (d), 
courtesy of Charles Ferguson and Robert Parton (University of Queensland). 
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