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We recently obtained a quantum-Boltzmann-conserving classical dynamics by making

a single change to the derivation of the ‘Classical Wigner’ approximation. Here, we

show that the further approximation of this ‘Matsubara dynamics’ gives rise to two

popular heuristic methods for treating quantum Boltzmann time-correlation func-

tions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics

(RPMD). We show that CMD is a mean-field approximation to Matsubara dynam-

ics, obtained by discarding (classical) fluctuations around the centroid, and that

RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts

the frequencies of these fluctuations. These findings are consistent with previous nu-

merical results, and give explicit formulae for the terms that CMD and RPMD leave

out.
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I. INTRODUCTION

Quantum Boltzmann time-correlation functions play a central role in chemical physics,

and are (usually) impossible to calculate exactly. One promising approach is to treat

the statistics quantally and the dynamics classically. The standard way to do this is to

use the linearized semi-classical initial value representation (LSC-IVR or ‘classical Wigner

approximation’),1 but this has the drawback of not satisfying detailed balance. Recently,2

however, we found that a single change to the LSC-IVR derivation gives a classical dynamics

which does satisfy detailed balance. This modified version of LSC-IVR is called ‘Matsubara

dynamics’.

We can summarise Matsubara dynamics as follows: At initial time, the quantum statistics

gives rise to delocalized distributions in position which are smooth functions of imaginary

time. If we constrain the LSC-IVR dynamics to conserve this smoothness (by including

only the smooth ‘Matsubara’ modes—see Sec. II) we find that it satisfies detailed balance,

and gives better agreement than LSC-IVR with the exact quantum result.2 We suspect (but

have not yet proved) that Matsubara dynamics reproduces the time-dependence of the exact

Kubo-transformed time-correlation function up to order ~0, and is thus the correct theory

for describing quantum statistics and classical dynamics.

Matsubara dynamics suffers from the sign problem and is hence impractical, but the

findings just described suggest that it should be the starting point from which to make

further approximations if one wishes to devise practical methods that combine quantum

statistics with classical dynamics. Numerical tests in ref. 2 (see also Fig. 1) showed that

the popular centroid molecular dynamics3,4 (CMD) and ring-polymer molecular dynamics5,6

(RPMD) methods appear to be two such approximations. Here we confirm this, by deriving

the terms that CMD and RPMD leave out from the Matsubara dynamics.7

II. SUMMARY OF MATSUBARA DYNAMICS

Matsubara dynamics approximates the quantum Kubo-transformed time-correlation

function8

CAB(t) =
1

β

∫ β

0

dλTr
[
e−λĤÂe−(β−λ)ĤeiĤt/~B̂e−iĤt/~

]
(1)
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by

CMats
AB (t) = lim

M→∞
C

[M ]
AB (t) (2)

where

C
[M ]
AB (t) =

αM

2π~

∫
dP̃

∫
dQ̃ A(Q̃)e−β[H̃M (P̃,Q̃)−iθM (P̃,Q̃)]

× eLM tB(Q̃) (3)

and αM = ~(1−M) [(M − 1)/2]!2. The position coordinates Q̃ ≡ {Q̃n}, with n = −(M −

1)/2, . . . , (M−1)/2, are the M Matsubara modes, which describe closed paths q(τ) that are

smooth functions of the imaginary time τ (= 0 → β~), where Q̃0 is the centroid coordinate

(see Appendix A);
∫
dQ̃ ≡

∏
n

∫∞
−∞dQ̃n, and P̃ are similarly defined for momentum. The

functions A(Q̃) and B(Q̃) are obtained from the operators Â and B̂ (Appendix A), such

that Â = B̂ = q̂ gives A(Q̃) = B(Q̃) = Q̃0.
9 The propagator eLM t contains the Matsubara

Liouvillian

LM =

(M−1)/2∑
n=−(M−1)/2

P̃n

m

∂

∂Q̃n

− ∂ŨM(Q̃)

∂Q̃n

∂

∂P̃n

(4)

in which the potential energy ŨM(Q̃) is given in Appendix A. The quantum Boltzmann

distribution in Eq. (3) is complex, and contains the Matsubara Hamiltonian

H̃M(P̃, Q̃) =
P̃2

2m
+ ŨM(Q̃) (5)

and the phase

θM(P̃, Q̃) =

(M−1)/2∑
n=−(M−1)/2

P̃nω̃nQ̃−n (6)

where ω̃n are the Matsubara frequencies ω̃n = 2πn/β~. Matsubara dynamics is inherently

classical (meaning that terms O(~2) disappear from the quantum Liouvillian on decoupling

the Matsubara modes, leaving LM), and conserves the Hamiltonian H̃M(P̃, Q̃) and the phase
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θM(P̃, Q̃), and thus satisfies detailed balance.

Clearly Eq. (3) suffers from the sign problem because of the phase θM(P̃, Q̃). Let us

make the coordinate transformation P n = P̃n − imω̃nQ̃−n. This gives

C
[M ]
AB (t) =

αM

2π~

 (M−1)/2∏
n=−(M−1)/2

∫ ∞−imω̃nQ̃−n

−∞−imω̃nQ̃−n

dP n

∫ dQ̃ A(Q̃)e−βR̃M (P,Q̃)eLM tB(Q̃) (7)

where

R̃M(P, Q̃) =

 (M−1)/2∑
n=−(M−1)/2

P
2

n

2m
+

m

2
ω̃2
nQ̃

2
n

+ ŨM(Q̃) (8)

is the ‘ring-polymer’ Hamiltonian familiar from quantum statistics.10–13 Equation (7) is

simply Eq. (3) in disguise, but at t = 0, we can use a standard contour-integration trick14

to shift P onto the real axis, giving

C
[M ]
AB (0) =

αM

2π~

∫
dP

∫
dQ̃ A(Q̃)B(Q̃)e−βR̃M (P,Q̃) (9)

which now contains the (real) ring-polymer distribution,10 and hence no longer suffers from

the sign problem. Unfortunately, this trick does not work for t > 0 (see Sec. IV), so we are

stuck with Eq. (3), which motivates us to find approximations to Matsubara dynamics.

III. CENTROID MEAN-FIELD APPROXIMATION

This approximation can be made if A(Q) is a function of just the centroid Q̃0 (or P̃0),
9

in which case we need only the Matsubara dynamics of the centroid reduced density

b(Q̃0, P̃0, t) =

∫
dP̃′

∫
dQ̃′ e−β[H̃M (P̃,Q̃)−iθM (P̃,Q̃)]

× eLM tB(Q̃) (10)
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where the primes denote integration over all modes except P̃0 and Q̃0. Differentiation with

respect to t, application of Eq. (4), and integration by parts gives

ḃ(Q̃0, P̃0, t) =

∫
dP̃′

∫
dQ̃′ e−β[H̃M (P̃,Q̃)−iθM (P̃,Q̃)]

× L0e
LM tB(Q̃) (11)

where

L0 =
P̃0

m

∂

∂Q̃0

− ∂ŨM(Q̃)

∂Q̃0

∂

∂P̃0

(12)

In the usual way of mean-field dynamics,15 we can split the force on the centroid into

−∂ŨM(Q̃)

∂Q̃0

= F0(Q̃0) + Ffluct(Q̃) (13)

where F0(Q̃0) is the mean field force

F0(Q̃0) = − 1

Z(Q0)

∫
dP̃′

∫
dQ̃′ e−β[H̃M (P̃,Q̃)−iθM (P̃,Q̃)] ∂ŨM(Q̃)

∂Q̃0

= − 1

Z(Q0)

∫
dP

′
∫

dQ̃′ e−βR̃M (P,Q̃) ∂ŨM(Q̃)

∂Q̃0

(14)

(and we have used the t = 0 contour-integration trick to get to the second line),

Z(Q0) =

∫
dP

′
∫

dQ̃′ e−βR̃M (P,Q̃) (15)

and Ffluct(Q̃) is the fluctuation force (defined by Eq. (13) as the difference between the exact

force and F0(Q̃0)). Equation (11) then splits into

ḃ(Q̃0, P̃0, t) =

[
P̃0

m

∂

∂Q̃0

+ F0(Q̃0)
∂

∂P̃0

]
b(Q̃0, P̃0, t)

+

∫
dP̃′

∫
dQ̃′ e−β[H̃M (P̃,Q̃)−iθM (P̃,Q̃)]Ffluct(Q̃)

∂

∂P̃0

eLM tB(Q̃) (16)

This type of expression is encountered in coarse-graining, where the integral is sometimes

approximated by a generalized Langevin term.15 It is an exact rewriting of Eq. (11). Neglect
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of the integral term gives the mean-field approximation

ḃ(Q̃0, P̃0, t) ≃

[
P̃0

m

∂

∂Q̃0

+ F0(Q̃0)
∂

∂P̃0

]
b(Q̃0, P̃0, t) (17)

which is CMD.3,4,16

Thus CMD corresponds to approximating Matsubara dynamics by leaving out the fluc-

tuation term in Eq. (16). This result is not a surprise, and is consistent with previous

numerical findings17 that CMD causes errors through neglect of fluctuations (see Sec. V).

What is new is that Eq. (16) gives an explicit formula for these fluctuations, in the case that

the quantum dynamics can be approximated by Matsubara dynamics.

IV. ANALYTIC CONTINUATION AT t > 0

We now return to Eq. (7), which is just Eq. (3) rewritten in terms of (P, Q̃). Expressing

LM in terms of these coordinates gives

LM = L[RP]
M + iL[I]

M (18)

where

L[RP]
M =

(M−1)/2∑
n=−(M−1)/2

P n

m

∂

∂Q̃n

−

[
mω̃2

nQ̃n +
∂ŨM(Q̃)

∂Q̃n

]
∂

∂P n

(19)

is the RPMD Liouvillian (corresponding to the ring-polymer hamiltonian R̃M(P, Q̃)) and

L[I]
M =

(M−1)/2∑
n=−(M−1)/2

ω̃n

(
P n

∂

∂P−n

− Q̃n
∂

∂Q̃−n

)
(20)

Note that the complete Liouvillian LM does not correspond to a Hamiltonian in (P, Q̃) (be-

cause the transformation from (P̃, Q̃) to (P, Q̃) is non-canonical), and that any resemblance

to RPMD5,6 is at this stage illusory, since the imaginary parts of Pn, n ̸= 0, contribute terms

that cancel out the spring terms in L[RP]
M .

If we now try to shift Pn, n ̸= 0, onto to the real axis, we find that the dynamics generated
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by LM propagates an initial distribution of real phase-space points into the complex plane,

along unstable trajectories. We do not know whether the contour-integration trick remains

valid for such trajectories; even if it does, they appear to be at least as difficult to treat

numerically as the sign problem in Eq. (3).

However, it is possible14 to follow a path along which one gradually moves Pn, n ̸= 0,

towards the real axis whilst gradually discarding L[I]
M , such that the dynamics remains stable

(and the contour-integration trick remains valid) at every point along the path. At the end

of the path, L[I]
M has been completely discarded, and Pn has reached the real axis. This

results in the approximation,

C
[M ]
AB (t) ≃ αM

2π~

∫
dP

∫
dQ̃ A(Q̃)e−βR̃M (P,Q̃)eL

[RP ]
M tB(Q̃) (21)

which is RPMD.5,6,18

A harmonic analysis14 shows that the main effect of discarding L[I]
M is erroneously to

shift the Matsubara fluctuation frequencies to the ring-polymer frequencies. Since L[I]
M does

not act directly on Q̃0, it follows that an RPMD time-correlation function involving linear

operators (for which B(Q̃) = Q̃0 or P̃0) will agree initially with the Matsubara result, but

will then lose accuracy as the errors in the fluctuation dynamics couple to the centroid

through the anharmonicity in ŨM(Q̃). This result is not a surprise, as the ring-polymer

frequencies are known to interfere with the centroid dynamics.6,17 What is new is that we

have identified the approximation made by RPMD, namely the neglect of L[I]
M .

V. DISCUSSION

We have shown that both CMD and RPMD are approximations to Matsubara dynamics,

which, as mentioned in the Introduction, is probably the correct way to describe quantum

statistics and classical dynamics. CMD neglects the Matsubara fluctuation term; RPMD

neglects part of the Matsubara Liouvillian. So far as we can tell, there is no direct physical

justification that can be given for either of these approximations. CMD and RPMD are

useful because, as has long been known,3–6 they preserve detailed balance, and satisfy a

number of important limits. These properties19 (and a few others) can be rederived from

Matsubara dynamics, and are listed in Table I. Note also that CMD and RPMD give the
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same t = 0 leading-order error terms when compared with Matsubara dynamics as with the

exact quantum dynamics.20,21

One new finding, less drastic than it first appears, is that both CMD and RPMD give

qualitatively wrong fluctuation dynamics at barriers. In Matsubara dynamics, some of the

distributions in q(τ) stretch indefinitely over the barrier top, such that a proportion of the

distribution ends up on either side. In CMD and RPMD, all of the distribution ends up

on one side of the barrier (because CMD decouples the fluctuation modes necessary for

stretching over the barrier, and RPMD shifts the frequencies of these modes from imaginary

to real22). However, CMD and RPMD are still powerful tools for estimating quantum

reaction rates, as the exact t = 0 behaviour of these methods (see Table I) ensures that

classical rate theory (in the mean-field centroid or ring-polymer space) gives lower bound

estimates of the t → 0+ quantum transition-state theory rate,23 for the special case of a

centroid dividing-surface (CMD), and for the general case (RPMD).

The main new result of this work is that, in relating CMD and RPMD to Matsubara

dynamics, we have obtained explicit formulae for the terms that are left out, which may

lead to improvements in these methods. For example, it might be possible to include ap-

proximately the Matsubara fluctuation term of Eq. (16) which is missing in CMD, or to

exploit the property that RPMD gives the correct Matsubara force on the centroid.24
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APPENDIX: MATSUBARA MODES

The set of M Matsubara modes Q̃ is defined as2

Q̃n = lim
N→∞

1√
N

N∑
l=1

Tlnql, n = 0,±1, . . . ,±(M − 1)/2 (22)
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where M is odd2 and satisfies M ≪ N ; q ≡ {ql}, l = 1, N , are a set of discrete path-integral

coordinates distributed at equally spaced intervals β~/N of imaginary time, and

Tln =


N−1/2 n = 0√

2/N sin(2πln/N) n = 1, . . . , (M − 1)/2√
2/N cos(2πln/N) n = −1, . . . ,−(M − 1)/2

(23)

The momentum coordinates P̃ are similarly defined in terms of p. Q̃0 and P̃0 are the position

and momentum centroid coordinates. We define the associated Matsubara frequencies ω̃n =

2nπ/β~ such that they include the sign of n, which gives θM(P̃, Q̃) the simple form of

Eq. (6).

The functions A(Q̃) and B(Q̃) in Eq. (3) are obtained by making the substitutions

ql =
√
N

(M−1)/2∑
n=−(M−1)/2

TlnQ̃n (24)

into the functions

A(q) =
1

N

N∑
l=1

A(ql), B(q) =
1

N

N∑
l=1

B(ql) (25)

The Matsubara potential ŨM(Q̃) is obtained similarly, by subsituting for ql in the ring-

polymer potential

UN(q) =
1

N

N∑
l=1

V (ql) (26)

We emphasise that the formulae above and in Sec. II result from just one approximation,

namely decoupling the Matsubara modes from the non-Matsubara modes in the exact quan-

tum Liouvillian (which causes all Liouvillian terms O(~2) to vanish).2
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CMD RPMD

satisfies detailed balance, because the centroid

mean-field force is decoupled from the Matsubara

fluctuations

satisfies detailed balance, because L[RP]
M and L[I]

M [in

Eq. (18)] independently satisfy detailed balance

is the centroid mean-field approximation to

Matsubara dynamics

has the same centroid mean-field approximation as

Matsubara dynamics, namely CMD

is exact for linear TCFs in the harmonic limit, since

the centroid mean-field force is then equal to the

Matsubara force

is exact for linear TCFs in the harmonic limit, since

the neglected term L[I]
M does not act on the centroid

gives the exact centroid-averaged Matsubara

Liouvillian dynamics at t = 0

gives the exact Matsubara Liouvillian dynamics at

t = 0

suffers from the curvature problem in vibrational

spectra because of the neglect of the Matsubara

fluctuations

suffers from spurious resonances in vibrational

spectra because the neglect of L[I]
M shifts the

fluctuation frequencies

gives the mean-field-averaged Matsubara force on the

centroid
gives the exact Matsubara force on the centroid

breaks down completely for non-linear Â and B̂ (see

Fig. 1b) because A(Q̃) and B(Q̃) depend on

non-centroid modes

breaks down more rapidly for non-linear (than for

linear) Â and B̂ (see Fig. 1b) because the neglected

term L[I]
M acts directly on the non-centroid modes

TABLE I. Properties of CMD and RPMD derived from Matsubara dynamics (TCF = time-

correlation function).

Figure Caption

Figure 1 Comparisons of Matsubara, CMD, RPMD and (exact) quantum Kubo-transformed

autocorrelation functions, for the quartic potential V (q) = q4/4, with mass m = 1, at tem-

perature β = 2 (in atomic units). The position autocorrelation functions in (a) are taken

from ref. 2. The position-squared autocorrelation functions in (b) were calculated nu-

merically using the procedure described in ref. 2, with M = 7 Matsubara modes.25 The

differences between the Matsubara and exact quantum results show the importance of real-

time coherence in this model system, the neglect of which (in the Matsubara calculations)

has blue-shifted and broadened the spectrum.
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