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Abstract Genome-scale stoichiometric models, con-

strained to optimise biomass production are often used to

predict mutant phenotypes. However, for Saccharomyces

cerevisiae, the representation of biomass in its metabolic

model has hardly changed in over a decade, despite major

advances in analytical technologies. Here, we use the sto-

ichiometric model of the yeast metabolic network to show

that its ability to predict mutant phenotypes is particularly

poor for genes encoding enzymes involved in energy

generation. We then identify apparently inefficient energy-

generating pathways in the model and demonstrate that the

network suffers from the high energy burden associated

with the generation of biomass. This is tightly connected to

the availability of phosphate since this macronutrient links

energy generation and structural biomass components.

Variations in yeast’s biomass composition, within experi-

mentally-determined bounds, demonstrated that flux dis-

tributions are very sensitive to such changes and to the

identity of the growth-limiting nutrient. The predictive

accuracy of the yeast metabolic model is, therefore, com-

promised by its failure to represent biomass composition in

an accurate and context-dependent manner.

Keywords Biomass composition � Flux balance analysis �
Macronutrient limitation � Metabolic modelling � Energy
cost

1 Introduction

When the entire metabolic network is viewed as a multi-

enzyme system, small changes in enzyme concentrations

have been found not to elicit profound changes in the

overall metabolic flux, demonstrating the robustness of

metabolic pathways (Matias Rodrigues and Wagner 2009).

This non-linearity in the relationship between enzyme

activity and metabolic flux indicated that the effect of a

small change in enzyme activity produced a major change

in the flux when the enzyme’s activity was low. This is

explained, by metabolic control theory (Kacser and Burns

1981), as indicating that most enzymes have a negligible

effect on the flux through a pathway unless their activity

level becomes limiting. Metabolic pathways themselves

evolved through natural selection in order to be robust to

both environmental and genetic perturbations, including

mutations (Barve and Wagner 2013; Crow and Simmons

1983; Matias Rodrigues and Wagner 2009; Mayo and

Burger 1997; Snitkin et al. 2008).

Systematic gene deletion studies conducted in the yeast

Saccharomyces cerevisiae showed that \20 % of the

organism’s protein-encoding genes are essential for via-

bility as determined by growth on a rich, glucose-con-

taining medium (Giaever et al. 2002; Winzeler et al. 1999).

Moreover, many deletion mutants were able to grow at

rates equal or close to those of the wild type under a

number of defined environmental conditions, indicating

that the biological networks of the organism provides a

robustness in its internal wiring that buffers against genetic
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variations (Thatcher et al. 1998). This emphasized an

important property of biological networks that had been

recognised previously, namely their resistance to attack at

single node (Albert et al. 2000; Deutschbauer et al. 2005).

Flux balance analysis (FBA) was used to predict meta-

bolic phenotypes under different conditions, such as sub-

strate and oxygen availability, by simply constraining the

appropriate fluxes to predict a particular flux distribution

using linear optimization (Dikicioglu et al. 2008; Gombert

and Nielsen 2000; Kauffman et al. 2003). It was previously

reported that living systems might change their biological

objective when a physiological change was imposed on

them (Almaas et al. 2005). Thus, our understanding of such

changes limits the ability of FBA to correctly describe the

system. Another factor limiting our ability to describe

metabolism using FBA is the accuracy with which the

composition of biomass is represented in the model.

Moreover, accurate biomass representations enhance our

capability to infer suitable cellular objectives in order to

improve the predictive capability of metabolic flux analysis

(Almaas et al. 2005). This is because the composition of

yeast biomass varies in response to the physiological

challenges to which the cells are exposed [reviewed in

(Verduyn et al. 1991)]. Previous studies highlighted the

significance of the experimental determination of biomass

composition in flux calculations in metabolic models,

reporting the need for precise measurements and careful

validation in order to determine flux-derived parameters

(Lange and Heijnen 2001; Wang and Stephanopoulos

1983). Although these workers provided clear outlines of

the experimental and statistical protocols to be used, they

failed to provide a comprehensive analysis of yeast bio-

mass composition.

In this study, we have investigated, in silico, the effect

of nutrient availability and biomass composition on the

distribution of predicted fluxes in the metabolic network of

S. cerevisiae. We first focused on high-flux pathways to

determine whether the magnitudes of the fluxes were

indicative of a high metabolic burden associated with those

pathways or whether they were indicative of misleading

representations of the metabolic network of yeast in the

most recent version of its genome-scale model. We next

investigated how variations in macronutrient availability

and biomass composition affected the predictive abilities of

this model.

2 Materials and methods

2.1 Experimental methods

The wild-type S. cerevisiae diploid strain BY4743 [MATa/

MATa his3D/his3D leu2D/leu2D LYS2/lys2D MET15/

met15D ura3D/ura3D; (Brachmann et al. 1998)] was cul-

tivated in 2L fermenters (Sartorius Stedim Biotech, Ger-

many) with 1L working volume under aerobic conditions

(0.1 vvm, 800 rpm, C80 % dO2 saturation) in synthetic

defined medium (Baganz et al. 1997); all chemicals were

purchased from Merck KGaA, Germany and Sigma-

Aldrich, USA) operated in batch mode. Temperature and

pH were controlled at 30 �C and 4.5, respectively. Fer-

mentations were carried out in triplicate with samples taken

at hourly intervals during the exponential growth phase to

determine glucose and ammonium utilization as well as

ethanol and glycerol production. The dry weight was

determined gravimetrically. Extracellular metabolite con-

centrations were determined enzymatically [R-Biopharm

(Germany) Yellow Line Enzymatic BioAnalysis and Food

Analysis kits (Cat no: 10 139 041 035 Sucrose/D-Glucose,

10 148 270 035 Glycerol, 10 176 290 035 Ethanol, 11 112

821 035 Ammonia)] as described by the manufacturer.

2.2 Metabolic modelling

The Yeast 7.00 stoichiometric model of the S. cerevisiae

metabolic network (Aung et al. 2013) was employed in

FBA. In order to make sure that the results were not

specific to a particular version of the model, and that they

were persistent and intrinsic to any yeast stoichiometric

metabolic model, the analysis was repeated using the first

genome-scale model of yeast [iFF708 (Famili et al. 2003)]

and with Yeast 4.00 [an earlier version of the current model

(Dobson et al. 2010)]. The maximization of biomass pro-

duction with absolute flux minimization was used as the

objective function. The simulations were carried out by

running the COBRA Toolbox (v2.0.3) under MATLAB

R2012b (8.0.0.783, Mathworks, USA) with SBML Tool-

box v4.0.1 and libSBML library v5.0.0b0 using standard

linear optimization techniques (GLPK toolbox). FAME

was also employed as the flux analysis modelling and

visualization environment (Boele et al. 2012). Mutant flux

distributions were also investigated employing the MoMA

algorithm as described in (Segrè et al. 2002). Flux vari-

ability analysis and MoMA analyses were carried out using

the same set-up as that used for the FBA. Medium com-

positions and product concentrations were introduced to

the system as bounding constraints whenever available. In

the absence of experimental measurements, the complex

medium was simulated with 2 % glucose setting the con-

straints for its uptake; the synthetic defined minimal med-

ium was simulated by setting the constraints for the

components of the footprinting medium for the uptake

fluxes (FPM) (Chiu and Segrè 2008). A macronutrient

(glucose, ammonium, sulphate or phosphate) was consid-

ered as limiting at 10 % of its concentration in the original

medium recipe and the system was thus constrained to
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maximally uptake the specified amount from the extracel-

lular environment. Balanced growth with a specific growth

rate of 0.1 h-1 was used unless otherwise specified. The

coefficient of every constituent in the model biomass

equation was varied within a fourfold range of its docu-

mented value to explore the limits of the available solution

space. This range was expanded or contracted as needed for

the sensitivity analysis.

2.3 Data analysis

The multiplicative model of epistasis (lAB - lA 9 lB)
was used to determine the synthetically lethal gene pairs

where no growth was represented as l\ 0.0001 h-1. Only

synthetically lethal interactions, which occur at a frequency

of ca. 1 % across all pairwise combinations of genes in the

S. cerevisiae genome; (Boone et al. 2007), were investi-

gated, and not all cases of epistasis between gene pairs.

Princeton GO Tools was used for the Ontology defini-

tions (accessed in 03/2014) and the Generic Gene Ontology

(GO) Term Finder was employed to conduct the GO term

enrichment analysis using hypergeometric distribution for

multiple hypothesis testing (Boyle et al. 2004).

The flux distribution data were analysed using standard

statistical techniques available in Microsoft Excel and

MATLAB R2012b with Statistics Toolbox (8.0.0.783,

Mathworks, USA). 2-tailed dependent Student’s t test was

used for evaluation of significance for paired samples.

Principal components analysis (PCA) and partial least

squares regression (PLSR) were conducted on z-score

normalized data centred around 0 (l) and scaled by 1 (r).
Singular value decomposition was used in the PCA anal-

ysis. PLSR was conducted on 1740 predictor variables with

73 observations (SBC ? 72 BRs) in each case of

macronutrient limitation. Pearson correlation coefficient

was used for determining the degree of linear dependence

between the fluxes.

3 Results and discussion

3.1 Quasi-steady-state flux balance analysis

and the efficiency with which energy-associated

pathways are utilised

The stoichiometric model of the S. cerevisiae metabolic

network (Aung et al. 2013) was constrained using growth,

substrate consumption, and by-product formation rates

determined for wild-type yeast cells, which were grown at

an apparently constant rate in a chemically defined medium

in carefully controlled batch fermentations. The in silico

distribution of metabolic fluxes was observed to be in good

agreement with the empirical observations during early-to-

mid exponential phase using the optimization of biomass

production with the minimization of absolute fluxes as the

objective function, also taking the alternative optima into

consideration through flux variability analysis (ESM1,

ESM1 and ESM3).

A total of 460 enzyme-encoding genes (whose products

determine 19 % of all fluxes) were associated with reactions

with non-zero fluxes. The fluxes, whose absolute values

were determined to be less than 1 % of the maximum

absolute reaction flux in magnitude, were considered as

inconsequential and were eliminated from this analysis. This

left a set of fluxes associated with 121 unique enzyme-en-

coding genes, which we call the ‘‘highly-elevated flux sub-

network’’ (HFS). The HFS was enriched for enzyme reac-

tions that have low variability as given by the flux variability

analysis and ca. 3 % of yeast’s metabolic reactions were

reported to be always active under different simulated

growth conditions while the remaining reactions are condi-

tionally active and respond to specific environmental chan-

ges, defined as the flux-based plasticity (Almaas et al. 2005).

HFS genes were determined to be significantly enriched

for GO process term ‘‘generation of precursor metabolites

and energy’’ (p value = 9.66E-43). We further identified

a subset of reactions with ‘‘extremely elevated fluxes’’, for

which the magnitude of the computed absolute fluxes was

greater than 10 % of the value determined for the maxi-

mum absolute reaction flux. These reactions are catalysed

by enzymes specified by 31 unique metabolic genes that

are significantly associated with ATP synthesis, coupled

proton transport (p value = 5.94E-36), and amino-acid

catabolic process to alcohol via the Ehrlich pathway (p

value = 5.02E-03) (ESM4, ESM5 and ESM6). It was

previously suggested that the overall intracellular flux

distribution could be minimized since microorganisms

have evolved to maximize enzymatic efficiency in order

achieve rapid growth rates (Bonarius et al. 1996). Despite

the measures taken to reduce the absolute values of the

fluxes distributed within the metabolic network, some sub-

sets of the network were observed to carry a higher load of

the total metabolic burden, this being associated with

higher net fluxes through these pathways. Networks in

which reactions mediated by enzymes that are products of

HFS genes were then investigated for their growth phe-

notypes since we would expect any reduced fitness to be

reflected in reduced growth rate (Schulz zur Wiesch et al.

2010).

3.2 The predictive capability of the model is poor

for genes encoding enzymes of the high flux sub-

network

HFS genes were used as queries for the simulation of the

viability of null mutants, where the predicted and the
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documented growth phenotypes were assigned into Boo-

lean classes of 1 or 0, indicating the presence or absence of

growth. The null hypothesis (H0) to be tested was that the

strains predicted to be inviable in the model-based simu-

lations would indeed prove to be inviable under the con-

ditions for which empirical data were available [complex

medium with 2 % glucose, limited oxygen availability;

downloaded from the SGD (Cherry et al. 2012) database

(http://downloads.yeastgenome.org/curation/literature/phenot

ype_data.tab (03/2014)]. The viable/lethal phenotype could

correctly be predicted for 92 % of the query enzymes

(Table 1; ESM7). A viable phenotype for a strain bearing a

deletion in an HFS gene (96 %) could be more accurately

predicted than those in the entire genome-scale metabolic

network (82 %) (CN). In contrast, the prediction of an

inviable phenotype for deletion mutants of genes encoding

enzymes in the HFS could not be successfully predicted

(45 %). This performance was considerably poorer than

that for predictions carried out on CN (78 %). Furthermore,

essential genes were under-represented in the HFS (8 % of

the genes) in comparison to that in the CN (28 %)

(Table 1; ESM7). Use of minimization of metabolic

adjustment (MoMA), which is proposed specifically for

simulating mutant flux distributions, yielded similarly

inaccurate predictions of essentiality.

Most of the HFS genes were found to be involved in

energy-associated processes and were tightly linked with

central carbon metabolism. The fact that essential genes

were under-represented in this gene set is indicative of

genetic redundancy and the fact that isozymes exist for

many of these fundamental reactions, thus providing

alternative routes and increasing the robustness of this core

network. It may also be the case that the enzymes encoded

by these essential genes were more optimized for their

metabolic function and thus their synthesis represents less

of a metabolic burden to the cell.

We then proceeded to investigate whether the landscape

of interactions between the genes of the HFS were similar to

or different from those of the global genetic interaction

network. We observed that the incorrect predictions of gene

essentiality led to further inaccuracies in the prediction of

synthetic lethal (SL) pairs. Only 2 of the 163 predictions of

SL pairs in the network were experimentally verified leaving

the specificity of the HFS at 8.00 %, which was slightly

lower than that of CN (10.51 %). As might have been pre-

dicted, although the essential genes themselves were under-

represented in the HFS, there was an enrichment of SL

interactions among the genes in the HFS network in com-

parison to that of the global genetic interaction network

(0.08 vs. 2.53 %). This is congruent with the idea that the

presence of many isozymes in this vital subset of the central

metabolic network results in an under-representation of

essential enzymes, but a high proportion of synthetically

lethal interaction between pairs of genes encoding the

enzymes of the HFS. The false-negative interactions were

predicted among 46 genes that encode components of the

electron transport chain complexes I, III and IV. In contrast

to the case of essential genes, the SL pairs were identified to

be over-represented in the sub-network. A recent study on

the characterization of genetic interaction networks in yeast

metabolism also reported a negative correlation between

single-gene deletant fitness in FBA predictions and the FBA

predicted epistasis (Szappanos et al. 2011). The 23 false-

positive interactions in HFS were predicted among 30 genes

whose annotations are significantly enriched for the GO

Process terms ‘generation of precursor metabolites and

Table 1 A comparison of the

predictive ability of HFS and

CN

Viability analysis Synthetic lethality (SL) analysis

CN HFS CN HFS

No. of genes/gene pairs 911 118 281,625 pairs 6441 pairs

Essential gene/SL fraction 28 % 8 % 0.08 % 2.53 %

No. of TP 619 (68 %) 103 (87 %) 281,105 (278,087) 6255 (6126)

No. of FP (Type I error) 132 (14 %) 4 (3 %) 281 (3299) 23 (152)

No. of TN 124 (14 %) 5 (4 %) 33 (40) 2 (7)

No. of FN (Type II error) 35 (4 %) 6 (5 %) 206 (199) 161 (156)

Sensitivitya 95 % 94 % 99.92 % (99.92 %) 97.49 % (97.52 %)

Specificitya 48 % 56 % 10.51 % (1.20 %) 8.00 % (4.40 %)

PPVa 82 % 96 % 99.90 % (98.83 %) 99.63 % (97.58 %)

NPVa 78 % 45 % 13.80 % (16.74 %) 1.23 % (4.29 %)

Predictive successa 82 % 92 % 99.83 % (98.76 %) 97.12 % (95.22 %)

a PPV = TP/(TP ? FP), NPV = TN/(TN ? FN), sensitivity = TP/(TP ? FN), specificity = TN/

(TN ? FP), predictive success = (TP ? TN)/no of genes
b The comparison of the predicted values with documented synthetically sick or lethal (SSL) pairs is

provided in parentheses in the last two columns
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energy’ (p = 5.21 9 10-13), and ‘programmed cell death’

(p = 5.17 9 10-4); see Table 1 and ESM8.

3.3 Stoichiometric model of the yeast metabolic

network indicates a high energy burden

associated with generating biomass

The electron transport chain in S. cerevisiae serves as the

major route of ATP production for cells grown on rela-

tively low concentrations of glucose. Cellular proliferation,

which is associated with biomass production in metabolic

models, is the major energy-consuming process carried out

by the cells. Production of biomass, with its high metabolic

burden in terms of energy requirements, serves as an ideal

platform for the investigation of how sensitive the electron

transport chain (one of the weakest links in the yeast

metabolic model) would be to changes in the chemical

composition of biomass (as represented in the model) as

well as to macronutrient limitation constraints introduced

to the model. For this purpose, the stoichiometric coeffi-

cients of the 36 biomass constituents were individually

varied by an arbitrarily selected factor of two under con-

ditions of nutrient sufficiency as well as under conditions

of limitation for one of four major macronutrients required

for the growth and proliferation of S. cerevisiae in a

chemically-defined nutrient environment: glucose, ammo-

nium, phosphate and sulphate as primary sources of carbon,

nitrogen, phosphorus and sulphur, respectively (ESM9,

ESM10 and ESM11). The empirical data that are available

on the biomass composition of S. cerevisiae indicated that

the previously reported values for the biomass constituents

varied within a 10-fold range of the values that were

implemented in Yeast 7.00 model. The only exception to

this is the lipids, for which even consensus molecular

weights are still unavailable (Albers et al. 1996; Bruinen-

berg et al. 1983; Henry 1982; Oura 1972; Schulze 1995;

Vaughan-Martini and Martini 1993). Therefore, the artifi-

cially created variations in the biomass composition, which

remained within a fourfold range, still yielded results

falling within the possible solution space, whose actual

limits were set by the available empirical data. For con-

venience, we refer to the original biomass composition as

the ‘‘standard biomass configuration (SBC)’’ and the 72 in

silico generated yeast cell configurations with altered bio-

mass composition as ‘‘biomass-reconfigurations (BR)’’

from this point onwards.

Nearly half (49.7 %) of the reactions in the metabolic

network were affected by changing the biomass content

under different conditions of nutrient availability. Growth

rates were determined to be similar under different meta-

bolic reconfigurations for the same environmental condi-

tion. Sulphate limitation did not impair growth as predicted

by the model. However, growth rates were lower for the

case of the three remaining limitations; those of ammo-

nium, glucose and phosphorus, with the highest growth

impairment observed under phosphorus limitation and the

lowest under ammonium limitation (Fig. 1a). A previous

study on the adaptation of S. cerevisiae cells to growth in

nutrient-limited chemostats reported much more con-

strained genotypic and phenotypic outcomes for sulphate-

limited populations in contrast to populations grown under

glucose- or phosphate-limitation (Gresham et al. 2008).

Several fluxes were affected only under a sub-set of con-

ditions with ca. 15–39 % of the total number of reaction

fluxes remaining unchanged across different BR. Although

this value was dependent on the environmental condition

under investigation; numerically, the overall trend across

the SBC and the BR remained similar (Fig. 1b).

We explored how different biomass reconfigurations

affected the in silico distribution of fluxes under non-lim-

iting nutrient conditions and under limited macronutrient

availability. More reactions were affected by varying the

lipid content of biomass under non-limiting conditions and

under sulphate or phosphate limitation. Variations in 1-3

b-D-glucan and glutamate content resulted in variations in a

greater number of fluxes under glucose and ammonium

limitations, respectively. On the other hand, fewer reac-

tions were affected by variations in trehalose content (non-

limiting and glucose-limited environments), cysteine con-

tent (ammonium- and phosphate-limited environment) and

tryptophan content (sulphate-limited environment) in the

metabolic network. More reactions were significantly

affected by increasing (as compared to decreasing) the

structural/storage carbohydrate content of biomass under

non-limiting conditions, glucose, or ammonium limitation

(p value: \0.01, \0.01, and \0.05, respectively); the

dNMP content of biomass under non-limiting conditions,

glucose or sulphate limitation (p value:\0.02,\0.05, and

\0.02, respectively); or the NMP content of biomass under

glucose or phosphate limitation (p value:\0.01 and\0.05,

respectively).

We carried out an orthogonal transformation of the flux

distributions as a function of different BR and the first 3

principal components were sufficient to capture more than

91 % of the total variation in the dataset. The weights of

structural constituents of biomass such as 1-3-b-glucan and

1-6-b-glucan and the lipid content along with alanine,

aspartate, glutamate, and glutamine were the highest

among the biomass constituents (Fig. 1c). The large con-

tribution of the structural constituents of biomass on the

scores was expected since the cell wall constituents com-

prise more than 30 % of the total biomass. The contribu-

tions of the NMP and dNMP variables were similar to that

of the standard configuration, whereas a variation in amino

acid composition resulted in a diverse range of responses

(Fig. 1d). The biomass components causing the highest
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variation in the data were the lipid component, 1-3 b-D-
glucan, 1-6 b-D-glucan, alanine, aspartate, glutamate and

glutamine. Consequently, the highest variation, indicated

by the flux scores, was observed in the fluxes through

transport and other reactions involved in lipid and sphin-

golipid biosynthetic routes in accordance with our earlier

findings.

We then proceeded to investigate whether these obser-

vations could be used as predictors to estimate the flux

response of yeast under conditions of limitation for one of

the macronutrients in the growth medium by employing

PLSR. Thus, we used ammonium-limitation as a predictor

for the landscape under sulphate-limitation (since both

these macronutrients are used in amino acid metabolism).

Glucose-limitation was used as a template for predicting

the distribution of fluxes in response to phosphate-limita-

tion owing to the tightly interwoven roles of these two

macronutrients in energy metabolism. The landscape under

non-limiting conditions was observed to effectively predict

the response observed under glucose, ammonium or sul-

phate limitation with just the first loading predictor and

response loadings explaining more than 80 % of the total

variance among the datasets. Similarly, the distribution of

fluxes under ammonium-limitation could successfully be

utilized as a predictor of the response under sulphate-lim-

itation (Fig. 2a). On the other hand, the set of fluxes sim-

ulated under the non-limiting or glucose-limited in silico

environments failed to predict the response of yeast under

phosphate-limitation, with less than 25 % of the total

variance under phosphate-limitation being explained by the

predictors (Fig. 2b). The metabolic reconfiguration of the

cell in response to variations in its biomass content under

non-limiting environmental conditions served as an ade-

quate template for predicting how flux changes under

glucose, ammonium or sulphate limitations, but not under

phosphate limitation. The availability of phosphate in

sufficient concentrations, being a major parameter in

energy-linked processes, perhaps necessitated a novel

fluxomic rewiring of the metabolic network whereas the

limitation of any one of glucose, ammonium or sulphate

simply reduced the rate of metabolic activity while main-

taining a similar metabolic landscape to that observed

under conditions in which those nutrients were non-

limiting.

The residual profiles across all reactions in the yeast

metabolic network were observed to display similar trends

with the only difference being that the magnitude and

residual values in the response fluxes under phosphate

limitation were higher than in any of the remaining cases

under investigation (Fig. 2c–h). Specifically, the reactions

for which the predicted fluxes had high residuals were

significantly enriched for lipid metabolic processes (p value

\5E-13) indicating a possible inadequacy in the model’s

representation of lipid metabolism.

The flux distributions for both the SBC and the BR were

highly positively correlated (PCC[ 0.85) between non-

limiting and glucose-, ammonium-, or sulphate-limited

conditions; whereas they were uncorrelated (PCC\ 0.5)

between the non-limiting and the phosphate-limited envi-

ronments, except for increasing the structural content of

biomass through 1-3 b-D-glucan, 1-6 b-D-glucan and the

lipid content (PCC[ 0.9). The statistical dependence of

the flux distributions calculated for the BR, in which the

1-3 b-D-glucan, 1-6 b-D-glucan, mannan, or lipid content of

the biomass was increased and lipid, ALA, ARG, ASN,

ASP, GLN, GLN, GLU, PRO or THR content of the bio-

mass was reduced, was low between the nutrient non-

limiting and limiting conditions independent of which

macronutrient was supplied in growth-rate limiting

amounts in the environment (Fig. 3a).

Although we could not observe any correlation between

the impact of reconfiguration on the distribution of the

fluxes and either the fraction of biomass that the recon-

figured constituent represents or the connectivity of that

constituent, a striking feature was observed in the case of

the lipids. Although constituting a relatively small fraction

of the total biomass (0.24 %; as described in Y7.00), they

are involved in a substantial portion of the metabolic net-

work (1471 reactions, 42 % of all enzymic and transport

reactions included in the model) and it is likely that this

high connectivity was the reason behind the large impact of

reconfigurations that we observed when changing the lipid

content of the biomass. Due to the highly connected

structure of metabolic networks, a single perturbation was

previously reported to necessitate the adaptation of the

network to the new state as a whole (Wagner and Fell

2001). Therefore, it is not surprising that the highly con-

nected lipid metabolism was a major contributor of the

variation we have observed in the distribution of fluxes

under the stated conditions. In conjunction with the notion

that it is the high connectivity of the lipid metabolism with

bFig. 1 Variation in fluxes and the principal components analysis of

the flux distributions in response to changes in biomass composition.

Variation in growth-rate predictions under different nutritional

limitations and under non-limiting conditions. Error bars indicate

the variance observed in each dataset as a result of the biomass

reconfigurations (a). The number of reactions whose fluxes remain

unchanged with respect to the standard biomass configuration under

different conditions of nutrient availability is presented as the ‘real’

components of the Fourier transform (b). The different biomass

reconfigurations were anonymously represented as a continuous array

of variations along the abscissa. The bi-plots of the loading vectors (in

blue) and the factor scores (in red) represent the variation in biomass

composition and the simulated reaction flux, respectively. The three

principal components; Component 1, Component 2 and Component 3

cover 84, 4, and 3 % of the variance in the data, respectively (c). The
plot in (d) is a zoomed-in perspective of the region shown in the red

rounded rectangle in (c) (Color figure online)
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the remaining parts of the metabolism rather than the actual

lipid content of the biomass, Nookaew and co-workers

reported the lipid content of the biomass to have only a

minor impact on growth under aerobic growth conditions,

similar to those discussed here (Nookaew et al. 2008). Data

presented and cited in Nookaew et al. (2008) indicate that

lipids represent at least 2 % of yeast biomass, and this low

lipid content of the Yeast X metabolic models in compar-

ison to the previously available models such as iFF708,

iLL672, iMM904, iND750, and iNN800 has been dis-

cussed by Aung et al. (2013). Although the predictive

capability of metabolic models have improved consider-

ably over the years despite the very low and unrealistic

lipid content of the biomass, it does not circumvent the fact

that these correct predictions on growth phenotype are

usually achieved by an unrealistic distribution of the fluxes

across the metabolic network.

3.4 Flux distributions are sensitive to changes

in variations in the biomass composition

The analysis presented above highlighted the fact that there

is a very strong correlation in the distribution of the fluxes

between most pairwise combinations of conditions (either

nutrient limitations or biomass reconfigurations) investi-

gated. In only a minority of such pairs, moderate to low

correlations were found. Since this analysis was carried out

using an arbitrarily selected twofold perturbation of the

biomass composition between the selected conditions, the

immediate questions arising from this observation were

(i) whether the distribution of the fluxes would be affected

by a sharp or a gradual perturbation in a component of the

biomass and (ii) whether the wiring of the intracellular

fluxes would remain unaffected by the magnitude of the

change imposed under any of the physiological conditions

or components of the biomass investigated. Either of these

would indicate how sensitive the changes in the distribu-

tion of fluxes are to variations in biomass composition or

the physiological status. We therefore performed a sensi-

tivity analysis to evaluate the robustness of the differences

and similarities identified in the present findings. Simula-

tion of even very extreme conditions of limited macronu-

trient availability (near-starvation conditions created by

reducing the respective nutrient uptake rates to 1/10000th

of their original values) did not disturb the high correlation

between flux distributions of cells with the SBC grown

under non-limiting environmental conditions, or under

glucose or sulphate limitation. On the other hand, the

predicted flux distributions soon became uncorrelated as

the ammonium available for uptake was reduced from 2 to

1 % of its non-limiting value. The decrease observed in the

correlation was a sharp response rather than a gradual one

(Fig. 3b). Conversely, we reduced the severity of phos-

phate limitation to determine the concentration beyond

which growth under phosphate limitation and in non-lim-

iting conditions become comparable. The correlation

between these two flux distributions suddenly increased at

a nutrient limitation threshold of 11 % and further

increasing the concentration of phosphate up to 15 % of its

non-limiting value resulted in a near-perfect correlation

between the flux distributions (PCC[ 0.99) (Fig. 3c).

This analysis of the robustness of the correlations within

the dataset revealed that under, sulphate or glucose limi-

tation, the calculated fluxes were shown to remain highly

correlated with those of non-limiting nutrient availability,

regardless of the severity of the limitation imposed on

metabolism. On the other hand, a highly sensitive threshold

of nutrient limitation was shown to exist for ammonium

and phosphate, beyond which the distributions of fluxes

were either highly correlated or non-correlated with those

of the non-limiting conditions. Such a sensitive threshold

was also determined to exist for varying the composition of

biomass components in a similar evaluation. L-methionine,

L-alanine, glycogen, and 1-3 b-D-glucan were investigated

for this purpose. Glycogen (10.86 %) and 1-3 b-D-glucan
(17.98 %) are among the most abundant constituents of

biomass whereas L-methionine (0.24 %) and L-alanine

(1.28 %) make markedly small contributions to the total

cell mass. Increasing the L-methionine or glycogen content

of biomass did not affect the overall flux distribution

appreciably, whereas increasing the 1-3 b-D-glucan content

of biomass or decreasing the L-alanine content resulted in

flux distributions that were non-correlated with those of the

flux predictions based on the SBC. A more severe alter-

ation, by further increasing the glycogen content of bio-

mass by 50 %, caused the distribution of fluxes to become

non-correlated with that of the SBC (Fig. 3d). On the other

hand, a relatively high correlation (PCC[ 0.85) between

bFig. 2 Partial least-squares (PLS) regression analysis of flux distri-

butions under different conditions of nutrient availability and the plot

of residuals on the non-zero response fluxes for each reaction. The

plot of the first response loading against the first predictor loading for

the dataset pairs under investigation is displayed. The first initial in

the legend denotes the predictor dataset and the second initial denotes

the response dataset, with the following abbreviations; N non-

limiting, G glucose-limited, A ammonium-limited, S sulphate-limited,

and P phosphate-limited (a). The relative variance explained in

phosphate limitation by that of the predictor, in either non-limiting or

glucose-limited conditions, is given in (b). The residuals were plotted
for each reaction that displays a response across the dataset pairs

under investigation; NG (c), NA (d), NP (e), NS (f), GP (g), and AS

(h) as a measure of the deviation of the simulation from the response

predicted by the PLS regression. The first initial denotes the predictor

dataset and the second initial denotes the response dataset with the

following abbreviations; N non-limiting, G glucose-limited, A ammo-

nium-limited, S sulphate-limited, and P phosphate-limited. Please

note the difference in the y-axis scales between (e) and (g) and the

remaining residual plots
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Fig. 3 Heat map of the correlations among the flux distributions and

the sensitivity analysis associated with the highly correlated and non-

correlated fluxes. The correlations among the flux distributions for 72

biomass-reconfigurations, each represented by a single row in the

map, were summarized for each macronutrient limitation, represented

by tri-columns. For each macronutrient limitation, three sets of

correlation analyses were carried out; between the different biomass

configurations (M) and the standard configuration (WT) under non-

limiting (N) and nutrient-limited (L) conditions, as well as between

non-limiting (N) and nutrient-limited (L) conditions for each

biomass-reconfiguration (a). The variation in the correlation between

fluxes as a response to the severity of the change in limitation or

biomass reconfiguration is displayed in the following plots. The

variation in the correlation between the flux distributions of the

standard biomass configuration simulated for growth under non-

limiting and under either one of glucose, ammonium, or sulphate

limitations is given in (b) and that for growth under non-limiting and

under phosphate limitation is given in (c). The variation in the

correlation between the flux distribution of the standard biomass

configuration and of the reconfigurations achieved by increasing the

glycogen or methionine content of biomass is given in (d). The

variation in the correlation between the flux distributions of the

standard biomass configuration and of the reconfigurations achieved

by increasing the 1-3 b-D-glucan content or decreasing the L-alanine

content of biomass is given in (e)
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the flux distribution of the SBC and those of the 1-3 b-D-
glucan-reconfiguration and the L-alanine-reconfiguration

could only be achieved by making any reconfiguration of

biomass composition differ very little to the standard

configuration, and changing the biomass content only

incrementally (by\1 % and\5 % for the 1-3 b-D-glucan-
reconfiguration and the L-alanine-reconfiguration, respec-

tively) (Fig. 3e). This indicated that the metabolic network

was very sensitive to changes in these major biomass

components, but was rather robust to other changes, as we

have demonstrated in the earlier case.

4 Concluding remarks

Inaccurate description of medium and biomass composi-

tion is a source of false predictions of gene/enzyme

essentiality in yeast metabolic models; a previous study

suggesting that errors in the specification of biomass

composition account for [30 % of the false predictions

involving essential genes (Duarte et al. 2004). We have

identified a link between energy-generating pathways and

the identity of the growth-limiting nutrient with changes in

biomass composition. The representation of phosphate

limitation in flux simulations was observed to be particu-

larly problematic, indicating that the accurate representa-

tion of phosphate metabolism was key to accurately

modelling the metabolic network as well as to its definition

of biomass. However, it should be noted that the high-flux

sub-network was defined using experimental analyses

where cells were grown on a complex, but chemically

defined, medium containing a high glucose concentration,

such that respiratory growth was repressed, even though

oxygen was present. It is clear from our in silico analyses

that a change in these physiological conditions might alter

the high-flux sub-set but, nonetheless, highlight the

importance of representing biomass composition in a

condition-specific manner. All of this emphasises that

more, and more accurate, empirical studies of the bio-

chemical constitution of yeast biomass are essential if the

predictive power of the yeast metabolic model is to be

improved.
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