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Motivated by recent experiments, we consider the hydrodynamic capture of a microswimmer near a stationary spherical obstacle.

Simulations of model equations show that a swimmer approaching a small spherical colloid is simply scattered. In contrast,

when the colloid is larger than a critical size it acts as a passive trap: the swimmer is hydrodynamically captured along closed

trajectories and endlessly orbits around the colloidal sphere. In order to gain physical insight into this hydrodynamic scattering

problem, we address it analytically. We provide expressions for the critical trapping radius, the depth of the “basin of attraction,”

and the scattering angle, which show excellent agreement with our numerical findings. We also demonstrate and rationalize

the strong impact of swimming-flow symmetries on the trapping efficiency. Finally, we give the swimmer an opportunity to

escape the colloidal traps by considering the effects of Brownian, or active, diffusion. We show that in some cases the trapping

time is governed by an Ornstein-Uhlenbeck process, which results in a trapping time distribution that is well-approximated as

inverse-Gaussian. The predictions again compare very favorably with the numerical simulations. We envision applications of the

theory to bioremediation, microorganism sorting techniques, and the study of bacterial populations in heterogeneous or porous

environments.

1 Introduction

Microorganisms and other self-propelling bodies in viscous

fluids are known to traverse complex trajectories in the pres-

ence of boundaries. One basic interaction with a plane wall,

observed in experiments with Escherichia coli bacteria and

spermatozoa, is that the cells may accumulate near the surface

due to a combination of hydrodynamic and steric effects1–7.

Another effect, associated with the rotation of helical flagella

and a counter-rotation of the cell body in E. coli, is that flagel-

lated bacteria swim in large circles when they are near a solid

boundary8, and in circles of opposite handedness near a free

surface9. The orientations of swimming bodies, even those

hydrodynamically bound to the surface, are non-trivial and de-

pend on the geometry of the swimmer and its mechanism of

propulsion7,10–17.

The attraction and trapping of microorganisms near surfaces

may lead to the development of biofilms18,19, and possible in-

fection of medically implanted surfaces20. Other biophysi-

cal properties may also be important; for example, Chlamy-

domonas algae cells scatter from a flat wall due to contact
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between its flagella and the surface, so that the interaction is

highly dependent on the body and flagellar lengths and geome-

tries21, and the tumbling of E. coli is suppressed near surfaces

due to increased hydrodynamic resistance22. From a bioengi-

neering perspective, sorting and rectification devices have also

been constructed at the microscale which exploit the interac-

tions of microorganisms and asymmetric surfaces (including

funnels and gears)23–28. In some cases, steric collisions or

near-field lubrication forces may dominate long-range hydro-

dynamic effects6,29,30.

Naturally, interactions with geometrical boundaries is not

specific to living organisms, and also applies to the synthetic

self-propelled colloids that have been extensively studied over

the last five years31–38. A recent experiment by Takagi et al.39

showed that a self-propelled synthetic swimmer in a field of

passive colloidal beads displays its own complex trajectory.

The path includes a billiard-like motion between colloids, in-

termittent periods of entrapped, orbiting states near single col-

loids, and randomized escape behavior (see Fig. 1). Takagi et

al.39 argued that short-range hydrodynamic interactions and

steric effects were sufficient to understand their experimental

results. Brown et al. explored an extension of these dynamics

to swimming through a “colloidal crystal,” where a synthetic

swimmer hops from colloid to colloid with a trapping time that

depends on fuel concentration, whereas E. coli trajectories are

rectified into long, straight runs40.

In this article, we set out to understand quantitatively the
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Fig. 1 Snapshots from the experiments of Takagi et al.38,

reproduced with permission. The swimming trajectory of a

self-propelled body in a colloid-filled bath includes a billiard-like

motion between colloids, intermittent periods of entrapped and

orbiting states, and randomized escape behavior.

hydrodynamic scattering of a swimming body by a station-

ary spherical obstacle. We develop a semi-analytical model

to describe the trajectory of a model swimmer based on far-

field hydrodynamic interactions and hard-core repulsion. Us-

ing numerical simulations of this minimal model, we demon-

strate that: (i) the swimmer can be hydrodynamically trapped

by colloids above a critical size, (ii) sub-critical interactions

involve only short residence times on the surface, and (iii) that

model “puller” swimmers may be trapped by much smaller

colloids than are necessary to trap “pusher” swimmers. The

critical colloid size for the entrapment of pusher particles is

found to scale quadratically with the inverse of the swimmer

dipole strength, and for puller particles with only the inverse

of the dipole strength. The residence time for sub-critical in-

teractions is also considered, as is the size of the “basin of at-

traction” around the colloid below which a swimmer can be

drawn into the surface. A scaling law for the basin radius

is deduced, resulting in a mastercurve onto which all of the

numerically simulated values collapse. A semi-analytical ex-

pression is also provided for the total scattering angle in the

case of sub-critical colloid size. Finally, with the introduction

of Brownian fluctuations, swimmers trapped in the determin-

istic setting are shown to escape randomly. The distribution of

trapping times are analyzed for a range of colloid sizes, swim-

mer types, and diffusion constants. In some cases the trapping

time is governed by an Ornstein-Uhlenbeck process, which re-

sults in trapping time distributions that are well-approximated

as inverse-Gaussian. The predictions are again found to match

the numerical simulations closely.

The paper is organized as follows. In §2 the mathematical

model is presented. Analytical formulae for swimming veloc-

ities are developed using the image singularity system of Os-

een and the application of Faxén’s Law. The resulting swim-

ming trajectories are described in §3, where we obtain a crite-

rion for deterministic hydrodynamic capture. In addition, the

scattering dynamics is derived for near-obstacle interactions,

the basin of attraction is shown to collapse to a power-law,

and trapping of puller-type swimmers is shown to be possible

using a much smaller colloid. In §4 we consider the effects

of translational and rotational fluctuations, which have dis-

tinct consequences on entrapment, escape, and the statistics

of swimming in random media. The trapping time distribu-

tion is explored for varying dipole strength, colloid size, and

diffusion constant. We conclude with a discussion in §5.

2 Mathematical model

We begin by describing a mathematical model for the dynam-

ics of self-propulsion near a stationary spherical obstacle. In

an unbounded fluid the body is assumed to swim unhindered at

a speed U along a director ê, but it can deviate from its straight

path in the presence of a background flow u. For mathemat-

ical convenience, the swimmer body is assumed to take the

shape of an ellipsoid with semi-major axis length a and aspect

ratio γ . Scaling velocities upon U and lengths upon a, the po-

sition x0(t) and orientation ê(t) of the swimmer are provided

by Faxén’s Law41,

dx0

dt
= ê+ ũ,

dê

dt
= Ω̃ΩΩ× ê, (1)

where ũ and Ω̃ΩΩ are the hydrodynamic contributions to the dy-

namics which are zero in an unbounded quiescent fluid.

Consider the introduction of a single spherical colloid of

dimensionless radius A placed at the origin. The setup is il-

lustrated in Fig. 2a. The unit vectors r̂ and r̂⊥ are defined at

each moment in time relative to the line joining the centers of

the swimmer and sphere. The angle between the swimming

director ê and the line perpendicular to the line of centers is

denoted by θ , and the centroid of the swimmer is located a

distance h from the colloid surface. In addition to the hydro-

dynamic impact on the trajectory, the distance and angle of

the swimmer relative to the sphere also changes in time due

simply to geometry, as illustrated in Fig. 2b. Combining the

hydrodynamic and geometric contributions to the swimming

dynamics, the translational and angular swimming velocities

in terms of h and θ are given by

dh

dt
= sin(θ)+ r̂ · ũ, (2)

dθ

dt
=

1

A+h

(

cos(θ)+ r̂⊥ · ũ
)

+(r̂⊥× r̂) · Ω̃ΩΩ. (3)

When the swimmer makes contact with the surface, we as-

sume a simple rigid-body interaction. Specifically, when geo-
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u = 0
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Fig. 2 (a) Illustration of the colloid/swimmer system. A swimming

body of dimensionless length 2 swims in a direction ê. Its centroid

lies a distance h away from the surface of a spherical colloid of

radius A. The angle between the director ê and the line

perpendicular to the line of centers is denoted by θ . (b) The distance

h and relative angle θ change even when the body swims straight

due to the geometry.

metrical contact with the surface occurs, θ is still allowed to

vary according to Eq. (2), but h varies only if ḣ > 0, so that the

swimmer cannot penetrate the colloid. When the swimmer is

in contact with the wall we therefore write

dh

dt
= max{sin(θ)+ r̂ · ũ,0}. (4)

This is equivalent to the swimmer experiencing a hard wall

repulsion (Heaviside potential) with no torque. The geometry

and propulsive mechanism of a swimmer may also result in

short-range body torques very close to the surface, but for the

sake of model simplicity we do not include them.

2.1 Far-field hydrodynamics

Thus far we have not assumed anything about the ambient flow

field local to the swimming body, or about the flow field gen-

erated by the swimming motion. Let us first summarize the

approach that we take in this paper in order to model the inter-

play between the swimmer propulsion and the fluid flow. The

flow field generated by the swimming motion is approximated

by its leading order approximation far from the body. This

simplified flow takes the form of a singular solution to the un-

derlying Stokes equations of viscous fluids7,42–44. Images of

the fundamental singularity solutions to the Stokes equations

have been used to derive flows in the upper-half plane with no-

slip boundary conditions45,46. Those flow fields, along with

an application of Faxén’s Law, result in a description of the

trajectory of a self-propelled body near a wall3,6,7 or a stress-

free surface7. A similar technique may be used to find the

flow generated by a point force external to a sphere with a no-

slip boundary condition, as derived by Oseen47, and it is used

here to derive the hydrodynamic effect of the colloid on the

swimming body. We now describe these steps for the present

case in greater detail.

Although the fluid flow near a swimming organism is com-

plex and depends on both the swimmer geometry and the

propulsive mechanism, the flow far from the body may be

represented as a multipole expansion of the velocity field so

produced. The flow-field far from a neutrally buoyant self-

propelled body at leading order is given by

u(x) = α SD(x−x0; ê)+O
(

|x−x0|3
)

, (5)

where

SD(x, ê) =
x

|x|3
(

3(ê ·x)2

|x|2 −1

)

(6)

is a symmetric force dipole43. The value of the coefficient α
may be measured for a given microorganism. Recent experi-

mental measurement of the flow produced by a swimming E.

coli cell was performed by Drescher et al.6, for which α was

approximately α = 0.6. Swimmers with α > 0 are known as

pushers, and those with α < 0 are known as pullers48. We

henceforth focus our attention on values of α on this scale

which is also relevant to synthetic microswimmers.

2.2 Image singularity system and method of reflections

We denote the singular solutions to the Stokes equations

placed internal to the spherical body, selected so as to can-

cel the fluid velocity on the surface |x| = A, by u∗(x) =
S∗

D(x− x∗0, ê), where x∗0 = (A2/|x0|2)x0 is the image point of

the swimming body inside of the sphere (details are given in

Appendix A). By introducing the image system, the fluid flow

given by

u(x) = α [SD(x−x0; ê)+S∗
D(x−x∗0; ê)] , (7)

is such that u = 0 on the surface of the colloid, as shown

in Fig. 3 for θ = 0 and θ = π/4. The total flow no longer

satisfy the appropriate boundary conditions on the surface of

the swimming body. Instead, there results a net force and

torque on the swimmer associated with the image flow, which

when balanced with translational and rotational drag return the

leading-order hydrodynamic effect of the colloid on the swim-

ming trajectory.

Returning to Eq. (1), Faxén’s Law for an ellipsoidal particle

results in the expressions

ũ = u∗(x0)+O

( |u∗(x0)|
h2

)

, (8)

Ω̃ΩΩ =
1

2
∇×u∗(x0)+Γê×E∗(x0) · ê+O

( |u∗(x0)|
h3

)

, (9)
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Fig. 3 The flow fields due to a pusher (α > 0) near a sphere, with θ = 0 (left) and θ = π/4 (right). The flow field for θ = 0 case suggests a

hydrodynamic attraction to the colloid, while the θ = π/4 case suggests an extra hydrodynamic repulsion from the colloid. A puller (α < 0)

generates the identical flow field but with velocity signs reversed. The flow field is singular at the swimmer center; the velocity near the

swimmer is not shown here for the sake of clarity.

where Γ = (1− γ2)/(1+ γ2), γ is the body aspect ratio, and

E∗ = (∇u∗+∇(u∗)T )/2 is the symmetric rate of strain tensor.

The full expressions for ũ and Ω̃ΩΩ are included in Appendix

B, and we will use these full expressions in numerical simu-

lations, but for the sake of mathematical tractability we now

also consider the leading order dynamics assuming h/A ≪ 1.

Caution must be taken here, as we are expanding expressions

valid for 1/h2 ≪ 1 (see Eq. 8) in the small parameter h/A. In

other words, it is important that A ≫ 1 for what follows (the

colloid must be much larger than the swimmer).

Inserting the expressions for ũ and Ω̃ΩΩ into Eqs. (2)-(3), we

find the following model equations for the dynamics,

dh

dt
= sin(θ)− 3α

8h2
(1−3sin2 θ), (10)

dθ

dt
=

1

A
cosθ − 3α

64h3
[4−Γ(3− cos2θ)]sin2θ . (11)

Eqs. (10)-(11) in the limit as A → ∞ have been used by other

authors to study self-propulsion near infinite plane walls3,6,7.

We observe that the leading order variation in the dynamics

from the infinite-wall case is due solely to the geometric ef-

fect, and not to variations in the hydrodynamic effects. Note

that the far-field hydrodynamic approximations of swimming

bodies were found to give surprisingly accurate results for mo-

tion near an infinite plane wall, as compared to solutions of the

full Stokes equations for Janus swimmers of varying eccen-

tricity, for motion as close as fractions of a body length away

from the surface7.

3 Hydrodynamic collision: entrapment and

scattering

Previous studies of self-propulsion near infinite plane wall sur-

faces have shown that pushers (α > 0) swimming nearly par-

allel to the wall are attracted to a planar surface by a pas-

sive hydrodynamic interaction. Pullers (α < 0), meanwhile,

are repelled in this configuration. With these effects in mind,

we now look to the case of a finite colloid size. Note that

in this deterministic setting, the swimmer is confined to the

plane spanned by the swimming director and the line of cen-

ters between the swimmer and the colloid; coordinates can be

defined so that the swimmer is confined to the x− y plane, for

instance.

We begin by investigating numerically the dynamics of a

dipole swimmer using the complete far-field approximation

(Eq. (2) with no assumption that h/A ≪ 1, as described in

Appendix B). We show in Fig. 4 the trajectories of a spher-

ical pusher with strength α = 0.8 and initial position x0 =
−40x̂+0.1ŷ and orientation ê(0) = x̂ as it swims towards col-

loids centered about the origin of varying sizes. For small col-

loid sizes, A = 5 and A = 10, the swimmer makes hard contact

with the sphere, then turns and travels along the colloid until

escaping from the surface. The colloid of size A = 15 makes

escape more difficult but the swimmer is eventually able to

propel freely away from the sphere. However, for all col-

loid sizes larger than A ≈ 15.1, the colloid captures the swim-

mer. The swimmer is trapped in a periodic orbit and endlessly

propels past the surface of the colloid, as shown for the case

A = 20.

More generally, the critical colloid size for entrapment, de-
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Fig. 4 A spherical dipole pusher (α = 0.8) with initial position

x0 =−40x̂+0.1ŷ and orientation ê(0) = x̂ swims towards colloids

of radius A = 5, 10, 15, and 20 in the time t : 0 → 120. The critical

colloid size for entrapping a swimmer with α = 0.8 is Ac ≈ 15.1.

The simulations are produced by integrating numerically the full

system of Eqs. (39)-(40).

noted by Ac, depends on the dipole strength α and the aspect

ratio of the swimmer. The critical colloid size for entrapping

a spherical pusher or puller is shown in Fig. 5 along with pre-

dictions to be described in the following section. The size of

the colloid is found to scale as 1/α2 when α > 0 (for pushers)

and as 1/|α| for pushers.

3.1 Estimating the critical trapping radius

One of the primary goals of this paper is to estimate the rela-

tionship between the dipole strength, α , and the critical col-

loid size Ac. Linearizing Eqs. (10)-(11) about θ = 0 (swim-

ming parallel to the colloidal surface), pushers are found to be

attracted to the surface and pullers are repelled from the sur-

face, just as in the infinite wall case3. However, unlike the

dynamics near a plane wall, for finite colloid size A we now

have θ̇ > 0 when θ = 0 as a consequence of the topographical

curvature. Hence, θ = 0 is no longer an equilibrium pitching

angle and the body cannot swim parallel to the surface for any

sustained period of time. Linearizing the system about θ = 0,

dh

dt
= θ − 3α

8h2
+O

(

θ 2
)

, (12)

dθ

dt
=

1

A
− 3α(2−Γ)

16h3
θ +O

(

θ 2
)

, (13)

we find an equilibrium solution h⋆ =
(

9α2A(2−Γ)/4
)1/5

/2

and θ ∗ =
(

3α/[4A2(2−Γ)]
)1/5

.

Let us focus first on the pusher case. Here we see that

θ ∗ > 0 for α > 0. The normalized equilibrium distance h⋆/A

decreases with increasing A as expected (a larger sphere gives

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1
0

10

20

30

40

α

Ac

0.2 0.4 0.6 0.8 1
0

50

100

150

200

Computed

64/9α2

α

Ac

(b)

(a)

Computed

8/3|α|

Fig. 5 (a) The critical colloid size for entrapment, Ac, as a function

of the dipole strength α for a spherical “pusher” swimmer. Values

computed using initial position x0 = (A+1)ŷ and Θ = 0 are shown

as symbols, and the prediction Ac = 64/9α2 as a solid line. The

theory is strongest for smaller dipole strengths and larger colloid

sizes, where the escape angle is smaller and the linearized equations

are more accurate. (b) The same, for puller swimmers, along with

the theoretical prediction of Ac = 8/3|α|.

a larger hydrodynamic attraction), but surprisingly increases

with α due to the effect of the dipole strength on the rotation

rate. However, it is not difficult to show that this solution is

not asymptotically stable, and instead corresponds to a saddle

point in the dynamics. Instead, given the nature of the hy-

drodynamic attraction, we expect hydrodynamic capture to be

achieved when there is a balance between hydrodynamics and

some other physical repulsion, which we model here as an ef-

fective hard-core interaction. We can then estimate a criterion

for entrapment by fixing h = h̄ when the swimming body is

in contact with the colloid (h̄ = 1 for a spherical swimmer).

We recall that when hard contact is established, we still allow

the pitching angle θ to evolve. Consistent with the lineariza-

tion about small θ we set h = h̄ ≈ γ in Eq. (13), and we infer

the pitching angle for which the geometric and hydrodynamic

effects are in balance:

θ ⋆ =
16h̄3

3Aα(2−Γ)
· (14)

We note that θ ⋆ vanishes in the infinite-wall or infinite dipole

strength limit, Aα → ∞. Recalling that Γ = (1− γ2)/(1+ γ2),
the predicted equilibrium angle is monotonically increasing

in the swimmer aspect ratio γ from a value of zero for a very

slender swimmer (γ = 0,Γ= 1) to a positive value of 8/(3Aα)
for a spherical pusher (γ = 1,Γ = 0). Physically, a slender
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Fig. 6 (Top) Pullers (α =−0.8) swim towards a sphere of size

A = 20, released from initial points x0 =−40x̂+2.5 jẑ where j

ranges from 0 to 8, and angle Θ0 = 0 in the lab frame. The

trajectories are computed for t : 0 → 100, and in each case the

swimmer comes to a steady equilibrium at the location shown,

generally much earlier than t = 100. (Bottom) The flow-field

directions (flow strength is not indicated) created by a puller

swimming towards the surface of a large colloid.

swimmer is able to draw nearer to the colloid, where the hy-

drodynamic attraction is more significant, thereby making the

surface of the colloid hydrodynamically more akin to an infi-

nite plane wall.

This equilibrium pitching angle may now be used to pro-

pose a criterion for hydrodynamic capture. The question of es-

cape now reduces to determining whether or not ḣ in Eq. (10)

is positive when θ = θ ∗. A positive value of ḣ indicates that

the swimmer moves away from the surface. Using the same

linearization about θ = 0 and inserting θ ∗ above into Eq. (12)

(with h= h̄ fixed) we obtain a critical colloid size Ac for which

ḣ = 0:

Ac =
128h̄5

9α2(2−Γ)
· (15)

For colloid sizes A > Ac we predict hydrodynamic capture;

conversely for A < Ac the hydrodynamic attraction cannot trap

the swimmer, which will continue to rotate until it reaches a

critical pitching angle θe for escape (the angle for which ḣ

becomes positive),

θe =
3α

8h̄2
, (16)

which is notably independent of the colloid size A. For a

spherical swimmer we therefore predict a critical colloid size

for capture of

Ac =
64

9α2
. (17)

Is this capture criterion borne out by full numerical inte-

gration of Eq. (2)? Returning to Fig. 5a we find a very close

agreement between this criterion and the numerically deter-

mined critical colloid sizes for a range of dipole strengths with

the estimate above. The theory is strongest for smaller dipole

strengths and larger colloid sizes, where the escape angle is

smaller and the linearized equations are more accurate.

Pullers, however, act very differently near the colloid. For a

spherical puller (α < 0,Γ = 0), upon examination of Eq. (11)

we see that the angle for which the swimmer is directly fac-

ing the surface and is motionless there, θ =−π/2, is linearly

stable as long as the colloid is of size A = 8/(3|α|) or larger,

which is considerably smaller than the colloid size required to

trap a pusher for the range of α most relevant to microorgan-

isms. Figure 6 shows the trajectories of non-interacting pullers

with α =−0.8 swimming towards a sphere of size A = 20. In

each case, the swimmer quickly reaches a steady equilibrium

at the location shown in Fig. 6. We should therefore expect

to see dramatic entrapment of such swimmers on trajectories

which bring the swimmer almost directly into contact with the

colloid. The “suction” in the direction of locomotion requires

such a direct impact; an oblique interaction would result in a

hydrodynamic repulsion, as depicted by the flow field shown

in Fig. 3 but with the sign of the velocity everywhere reversed.

The estimate of the critical colloid size is compared again to

the results of the numerical simulations in Fig. 5b, and once

again we obtain excellent agreement.

3.2 Basin of attraction

We next investigate the basin of attraction, i.e. the domain in

space over which the particle is eventually captured by the

colloid. In the regime studied, with h/A ≪ 1 and α = O(1),
the basin of attraction has a radius not much larger than the

colloid itself. For instance, even with A = 200 and α = 0.8,

if a spherical swimmer is initially placed parallel to the sur-

face, the initial distance from the colloid below which the

body is trapped is approximately h = 2.5, smaller than three

body lengths away. For A = 20, the value is smaller still and

the spherical swimmer in this case must be placed closer than

h = 1.5 from the surface, only a percentage of its size away
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Fig. 7 Basin of attraction. For a spherical swimmer placed initially parallel to the surface, θ(0) = 0, h⋆ denotes the critical initial distance

from the colloid above which the particle escapes, and below which entrapment ensues. (a) The critical initial distance for a selection of dipole

strengths, shown where the colloid size is larger than the critical size for entrapment. (b) The curve collapses upon plotting against α2A to a

power law scaling with exponent 1/5. The solid line is the prediction from Eq. (20). (Inset) The trend continues over five orders of magnitude

in α2A.

from the colloid. In general, we therefore expect that hydro-

dynamic trapping may be a strong effect, but only for particles

that are on a trajectory that leads to a direct contact with the

obstacle.

In Fig. 7a we show the initial value of h, with θ(0) = 0 (ini-

tial swimming is parallel to the surface) such that the swimmer

is captured at the colloid surface. This basin depth, defined

by h = h⋆, naturally increases with both increasing dipole

strength α and colloid size A. Here again, as in the estima-

tion of the critical colloid sizes leading to capture, the quantity

α2A is found to play a critical role. Plotting h⋆ as a function

of α2A reveals a collapse of the data to a single mastercurve,

h⋆ ≈ h⋆(α2A), for almost the complete range of A and α con-

sidered, as shown in Fig. 7b.

In order to estimate theoretically the basin depth, h⋆, we

consider a spherical swimmer, Γ = 0, and perform a Taylor

expansion of the dynamics at small times, h(t) = h0 + h1t +
h2t2 + . . . , θ(t) = θ1t +θ2t2 + . . . . Inserting these expansions

into Eqs. (12)-(13) and matching terms of like powers of t, we

find

h(t) = h0 −
3α

8h2
0

t +

(

1

2A
− 9α2

64h5
0

)

t2 + . . . , (18)

θ(t) =
t

A
− 3α

16Ah3
0

t2 + . . . . (19)

Using the expression for h(t) up to quadratic terms in t,

the distance from the colloid is seen to be minimal when

tmin = 12Aαh3
0/(32h5

0 − 9α2A). Setting this value to unity

would seem to distinguish whether the swimmer makes even-

tual contact with the colloid, but this results in a poor approx-

imation. Instead, we look to the equation for θ(t) at this mo-

ment in time. The angle θ(tmin) = 3α/8h(tmin)
2 is an unstable

fixed point for the dynamics as noted earlier (see Eq. 13). For

a value θ(tmin) smaller than this critical value the swimmer

will collapse towards the colloid, while for larger values the

swimmer will escape. Using the quadratic expressions in time

above, and setting θ(tmin) = 3α/8h(tmin)
2 as the boundary

case, we arrive at an equation for the initial height h0, which

approximates the critical capture distance h⋆,

h⋆ = ρ1/5(α2A)1/5, (20)

where the prefactor ρ1/5 ≈ 0.96 corresponds to the only

real zero of a third order polynomial, 16384ρ3 − 24192ρ2 +
10611ρ − 1458 = 0. This analytical prediction is in excel-

lent agreement with the results from the numerical simulations

(solid curve in Fig. 7b). We stress that the scaling (α2A)1/5,

which reflects the subtle interplay between self-propulsion,

contact, and hydrodynamic reorientation, could not have been

anticipated from a dimensional analysis alone.

3.3 Scattering by a spherical obstacle

Now that we have gained intuition about the physical mecha-

nisms responsible for swimmer capture, we lay out a compre-

hensive description of the scattering process in the case of a

spherical pusher swimming toward a spherical obstacle. Fig-

ure 8 provides a general picture of the scattering dynamics,

where we fix the colloid size to A = 20. The initial orienta-

tion angle in the lab frame is Θ0 = sin−1(x̂ · ê(0)) = 0, and the

swimmer is initially located at a position x0 = −40x̂+ y0ŷ,

where y0 is called the impact parameter.
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Fig. 8 Scattering of a spherical swimmer with initial position x0 =−40x̂+ y0ŷ and orientation Θ0 = 0 by a spherical colloid of fixed size

A = 20. (a) Fixing the dipole strength to α = 0.6, the scattering angle ∆Θ is non-monotonic in the impact parameter y0. (b-c) Fixing the

impact parameter to y0 = 0.1, the scattering angle is also non-monotonic in the dipole strength α . Swimmers with α > 0.67 become

hydrodynamically bound to the colloid, corresponding to a singularity in the scattering angle. For α extremely close to its critical value the

swimmer may wind around the colloid multiple times before departing from the surface (see Fig. 10). (d) The scattering angle for a range of

impact parameters and dipole strengths, from simulations. Contours are shown for multiples of 5◦. (e) The analytical prediction from Eq. (27).
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Figure 8a shows the trajectories of a swimmer with α = 0.6
near a colloid of size A = 20, where we vary the impact pa-

rameter y0. The interaction of the swimming body with the

spherical surface need not be long lived in order for the swim-

mer to be redirected dramatically. The amount of time spent

in close contact with the sphere decreases monotonically with

increasing y0. In contrast, the scattering angle displays non-

monotonic variations with the impact parameter, as seen in

Fig. 8b. Of particular note, the impact with y0 = A has only a

brief period of contact with the sphere, but the hydrodynamic

attraction to the surface is sufficiently strong to induce a strong

scattering of the swimming trajectory, which results in a scat-

tering angle as large as ∆Θ ≈ −18◦. The swimmer for which

y0 = A/4, on the other hand, interacts with the colloid for a

longer period of time, but it departs from the surface in such a

way as to result in a positive change in the swimming angle,

even though the interaction is much more dynamic. Compar-

ing all four cases shown it is clear that the scattering angle can

be positive or negative, small or large, and is rather sensitive

to the swimmer’s trajectory of approach.

Furthermore, we observe that the scattering angle is also

non-monotonic in the dipole strength. In Fig. 8c we plot the

trajectories of spherical pushers of varying dipole strength α
through their interactions with a colloid of radius A = 20.

The case α = 0 (no hydrodynamic interactions) results in no

change in the swimming director, only a lateral translation in

space as the swimmer slowly pushes past the spherical obsta-

cle. The final swimming direction is not a simple monotonic

function of α , as shown in Fig. 8d, and a singularity appears

in the scattering angle as α approaches a critical value for en-

trapment.

The variation of the deflection angle as a function of the

impact parameter y0 is shown in Fig. 8e for the same dipole

strengths as in Fig. 8c (in which the impact parameter is fixed

to y0 = 0.1). A rapid transition is observed for impact pa-

rameters very near to A. The scattering angle is nearly zero

for values h0/A not much larger than one (recall the small

depth of the basin of attraction), indicating that the effective

cross-section of the colloid is not significantly different from

its diameter even though hydrodynamic interactions are long-

ranged. The capture of the swimmer is again clearly revealed

by the singularity in the scattering plot for α = 0.8.

3.4 Estimating the scattering angle

We now proceed to estimate the scattering angle of a spherical

pusher that impacts a colloid of sub-critical size for entrap-

ment, A < Ac. In order to do so we decompose the scattering

process into three steps (see Fig. 9): (i) the approach toward

the colloid during which hydrodynamic interactions modify

the orientation of the swimmer at a distance, (ii) the sliding

of the swimmer over the colloid surface, and (iii) the escape

θe

de

Θ0
−Θe

−θ
(in)
0

y0

Fig. 9 Scattering interaction of a swimming body with a colloid of

sub-critical size for entrapment, A < Ac. The impact angle with no

hydrodynamic interaction is denoted by θ
(in)
0 , the impact parameter

is y0, the distance travelled along the surface by de, and the escape

angle by θe. The total scattering angle in the lab frame is given by

∆Θ = Θe −Θ0.

during which the hydrodynamic interactions act again at a dis-

tance.

The approach (step i) may be described using Eqs. (12)-

(13). We define the contact time as t = 0, at which point the

body is oriented at an angle θ0, assumed to be small, and h= 1.

Before impact, approximating the distance from the surface as

h = 1+ θ0t for t < 0 and that θ ≈ θ0, then the body rotation

may be estimated by integrating the hydrodynamic effect on

rotation alone (ignoring the geometric part of Eq. (13)),

∆Θ−∞→0 =−3α

8

∫ 0

−∞

θ0

[1+θ0t]3
dt =

3α

16
. (21)

Therefore, with the unimpeded impact angle illustrated in

Fig. 9 given by θ
(in)
0 = sin−1(y0/A)−π/2, then the adjusted

impact angle is estimated as θ0 = θ
(in)
0 +3α/16.

Next we describe the sliding motion of the swimmer in con-

tact with the colloid (step ii). Integrating Eq. (13) with initial

condition θ(0) = θ0, we find

θ(t) = θ ∗+(θ0 −θ ∗)e−3αt/8, (22)

where θ ∗ = 8/(3αA) is the fixed point of θ̇ when h = 1. The

time at which θ reaches the escape angle θe = 3α/8 is there-

fore

te =
8

3α
log

(

1−θ0/θ ∗

1−A/Ac

)

, (23)

with Ac = 64/9α2 > A, and the distance traveled is approx-

imated simply by de = te. When the swimmer is in contact

with the colloid, the dynamics of Θ(t) is given generally by

Θt = θt − cosθ(t)/A ≈ θt − 1/A. Integrating from t = 0 to

t = te, the variation in the swimmer’s orientation angle while
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the swimmer slides along the surface is

∆Θ0→e = (θe −θ0)−
de

A
· (24)

Finally, as the swimmer escapes from the colloid surface

(step iii) we have the initial conditions h(te)= 1 and θ(te)= θe

which set the initial conditions of Eqs. (12)-(13). Once again

carrying out a Taylor expansion for small time, we find for

t > te that h(t) = h̃(t − te)+O((t − te)
5), where

h̃(t) = 1+

(

1

A
− 1

Ac

)(

1

2
t2 +

α

16
t3 +

9α2

256
t4

)

. (25)

Again assuming that θ̇ is small so that here θ ≈ θe = 3α/8,

then the remainder of the body rotation is also found by inte-

grating numerically only the hydrodynamic effect on rotation,

∆Θe→∞ =−9α2

64

∫

∞

0

dt

h̃(t)3
. (26)

That this expression is negative indicates that the hydrody-

namic interaction causes the swimmer to rotate back towards

alignment with the colloid surface after departure.

Combining steps (i-iii), we obtain the total scattering angle

∆Θ =
3α

16
+

π

2
− sin−1

(y0

A

)

− te

A
− 9α2

64

∫

∞

0

dt

h̃(t)3
, (27)

with te given in Eq. (23) using θ0 = sin−1(y0/A)− π/2 +
3α/16. In the limit of no hydrodynamic interaction with the

colloid, α → 0, the expression above returns zero, as expected.

Fixing the colloid size to be A = 20, the scattering angle as a

function of the impact parameter y0 and the dipole strength

α from the estimate above is shown in Fig. 8e, alongside the

values determined by numerical simulations in Fig. 8d. We

observe a close agreement between the two, with the predic-

tion systematically overestimating the scattering angle in this

case by a few degrees.

An alternative way to quantify the swimmer-colloid inter-

action is to measure the number of orbits (or fraction of an

orbit) around the colloid travelled by the swimmer before es-

cape, given by the ratio W = de/(2πA)≈ te/(2πA). The result

in Eq. (23) suggests that the residence time is continuous in its

rapid increase to infinity as A → Ac. However, due to the log-

arithmic dependence on 1−A/Ac, unless A is extraordinarily

close to Ac the swimmer will undergo only a partial orbit be-

fore departure. For a very rough bound, taking θ0 = −π/2

and θe = π/2, and setting A = Ac(1− ε) for some small posi-

tive ε , then W = log(2/ε −1)/[4(1−ε)], so that even one full

revolution around the colloid requires ε ≤ 0.043, or A must

be within 4% of Ac for the swimmer to make one complete

orbit around the colloid. Figure 10 shows the fraction of the

orbit traversed, computed for the simulations shown in Fig. 4,

which shows precisely this logarithmic singularity as A ap-

proaches the critical colloid size, Ac.

13 13.5 14 14.5 15
0.1

0.2

0.3

0.4

W

A

α = 0.8

Fig. 10 Fraction of an orbit traversed around the spherical surface

before escape from a colloid of subcritical size, A < Ac.

4 Fluctuation-induced escape from a colloidal

trap

The dynamics of swimming microorganisms are anything but

smooth and deterministic. Whether because of thermal fluctu-

ations (Brownian motion) or other complex biological behav-

iors (e.g., run-and-tumble locomotion of E. coli), randomness

plays an important role in the trajectories of microorganisms

and synthetic microswimmers. To evaluate the robustness of

our findings for the deterministic problems studied in the pre-

vious section, we now consider the effects of fluctuations on

the interaction dynamics between the swimming body and the

colloid. We confine our study to the case of pushers (α > 0).
To gain some intuition about the effects of random fluctu-

ations, the full nonlinear model is solved with the addition of

noise. We model the trajectory of a swimmer considering the

effect of random forces and torques on the translational, and

rotational dynamics by Langevin equations,

dx

dt
= (ê+ ũ)+

√
6Dηηη(t), (28)

dê

dt
=
(

Ω̃ΩΩ+
√

4Dr ηηηR(t)
)

× ê, (29)

where ê is the unit direction of swimming, and ũ and Ω̃ΩΩ

are contributions from the hydrodynamic interaction with

the colloid (§2). Forces and torques from thermal fluctu-

ations are proportional to normalized Gaussian white noise

in three-dimensions, ηηη(t), and on a sphere, ηηηR(t), where

〈ηi(t)η j(t
′)〉= δi jδ (t− t ′) and 〈(ηR)i(t)(ηR) j(t

′)〉= δi jδ (t−
t ′).

In an infinite viscous fluid, the dimensionless constants of

translational diffusion, D and rotational diffusion, Dr, are re-

lated by an application of the fluctuation-dissipation theorem
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D = 5 · 10−4

D = 2 · 10−3

Fig. 11 Twenty instances of swimming trajectories for a pusher (α = 0.8) near a sphere of radius A = 20 with initial position x0 =−40x̂ and

orientation ê(0) = x̂, computed for t : 0 → 120. (Left) The dimensionless diffusion constant is D = 5 ·10−4 and many of the instances remain

hydrodynamically bound at t = 120. Color coding / shading indicates the final position along the z-axis with darker swimmers coming out of

the page and lighter swimmers going into the page. The colloid boundary may be inferred. (b) The same, but with a larger diffusion constant,

D = 2×10−3. In this case none of the swimmers are bound to the colloid at t = 120.

and insertion of the mobilities of a sphere, so that Dr = 3D/4,

though this relation in general will depend on h. For this first

exploration we will assume the relation Dr = 3D/4.

Using this framework we now show how noise allows mi-

croswimmers to escape hydrodynamic traps. We show in

Fig. 11 twenty instances of the swimming trajectory of a

spherical swimmer with α = 0.8 near a colloid of size A = 20,

released from x(0) = −40x̂ with initial orientation e(0) = x̂.

A forward Euler method is used to integrate the stochastic dif-

ferential equations with time-step size ∆t = 0.001. Simulating

the dynamics in the time interval from 0 to 120, the first panel

shows that in a few instances with D = 5×10−4 the swimmer

makes contact with the colloid surface but then escapes, never

to return, while many others remain trapped in this time inter-

val. Meanwhile, the second panel shows the same swimmer

but with a dimensionless diffusion constant four times larger,

D = 2× 10−3, and in this case there is but one instance for

which the swimmer remains trapped at the surface by the end

of the simulation. In the limiting case of very high disorder,

diffusive behavior overwhelms any hydrodynamic effects, and

the trajectory essentially behaves as a Brownian motion with

reflection on the spherical obstacle.

In Fig. 12a we plot the distance from the surface, h, and

the pitching angle, θ , as functions of time for two instances

in the case D = 2 × 10−3; we have initialized the system

with the body close to the colloid and parallel to the surface,

h(0) = 1.001, and θ(0) = 0. In one instance the swimmer

stays close to the surface for nearly the duration of the time

interval considered while in the second instance the swimmer

departs from the surface much earlier. In both cases the dis-

tance h(t) does not remain fixed, and instead the body leaves

from the spherical surface to distances of variable size repeat-

edly throughout, though in each case the swimmer is drawn

back towards the colloid. The intermittent departures are due

to translational fluctuations, and the hydrodynamic attraction

rapidly brings the swimmer back to the surface. The rotational

diffusion and deterministic dynamics, however, act in concert

to rotate the body until it is oriented with nearly the determin-

istic escape angle, θe = 3α/8 for a spherical swimmer (§3), at

which point a small translational or rotational fluctuation can

result in particle escape. We show in Fig. 12b the pitch angle

in time for each of the instances shown in Fig. 12a, along with
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Fig. 12 (a) The distance to the colloid, h(t), for two instances of swimmers with h(0) = 1.001 and θ(0) = 0, and diffusion constant

D = 2×10−3. The intermittency of near-surface swimming is due to translational Brownian fluctuations, and the hydrodynamic attraction

rapidly returns the swimmer to the surface. (b) The local pitching angle, θ(t), for the same two instances as in (a). Eventual escape in this

regime of (A,α,D) is due to θ nearing the deterministic escape angle, θe = 3α/8 for spherical swimmers, in concert with random fluctuations.

the deterministic escape angle, displayed as a dashed line.

The time spent close to the colloid, or trapping time, is now

a random quantity and we seek to understand its distribution.

There are at least two natural ways to define trapping times.

The first is to measure the first time the swimmer has escaped

from the surface out to a specified distance r, Th = mint{t :

h(t)> r}, which we refer to as the h−trapping time. Alterna-

tively, the trapping time can be studied by looking at the first

time that the swimmer reaches a suitable angle for escape in

the deterministic setting, Tθ = mint{t : θ(t) > θe}, which we

refer to as the θ -trapping time. The swimmer may not com-

plete its escape and the dynamics near the wall may include

numerous intermittent residences on the surface, a fact that is

not captured by this second definition of trapping time. How-

ever, Tθ is easier to analyze than Th, and we have observed in

simulations that in many cases the body rotation governs par-

ticle escape. In Fig. 13 we compare Tθ to Th for a threshold

value of r = 1.5 for two cases, (A,α,D) = (20,0.8,0.002) and

(A,α,D) = (80,0.4,0.002) (fixing α2A). In the first case, we

find that Tθ is seen to be a nearly perfect proxy for Th as seen

in Fig. 12. For a smaller dipole strength, however, the escape

angle is smaller; once the swimmer achieves this orientation

it does not swim directly away from the colloid, and instead

may reside near the surface for a longer time so that Th > Tθ .

Reducing the threshold value r draws Th closer to Tθ .

4.1 Distribution of trapping times

To gain intuition about the trapping time, we turn to the

full simulations. In Fig. 14 we plot the empirical distribu-

0 20 40 60 80 100
0

20

40

60

80

100

Th

Tθ

0
0

20

20

40

40

60

60

80

80

100

100

(A,α, D) = (20, 0.8, 0.002)

(A,α, D) = (80, 0.4, 0.002)

Fig. 13 Trapping times Th (with threshold value r = 1.5) and Tθ are

compared for two cases, from 200 trials. The dashed line indicates

Th = Tθ . A smaller dipole strength corresponds to a smaller escape

angle, so that the swimmer resides near the surface for longer before

escaping, and Th > Tθ .

tions of the trapping time from 104 independent simulations,

where the body is placed initially at h(0) = 1.001 and par-

allel with the surface, θ(0) = 0. A threshold of r = 1.5 is

chosen in the definition of Th. The distribution depends on

the diffusion constant, dipole strength, and colloid size. For

(A,α,D) = (20,0.8,0.002) (Fig. 14a) it is clear that the dis-

tribution is not exponential, which may have been expected,
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but instead clearly shows a peak at a finite typical escape time.

Increasing the diffusion constant to D = 0.004 (Fig. 14b) de-

creases the expected time, intuitively. The mean escape time is

also reduced if instead the dipole strength is reduced (α = 0.2
in Fig. 14c). However, increasing the colloid size to A = 320

so that α2A is identical to that in Fig. 14a results in a similar

distribution.

In order to understand these empirical distributions, we

aim to understand the θ -trapping time, Tθ , by turning to the

stochastic differential equation for θ from Eq. (29),

dθ

dt
=

1

A
cosθ − 3α

16h3
sin2θ +

√
2D

A+h
η(t)+

√

3D

2
ηR(t),

(30)

where η(t) and ηR(t) are independent one-dimensional Gaus-

sian white noise fluctuations. In the regime A ≫ 1 the contri-

bution of η(t) can be disregarded. Linearizing about θ = 0,

and setting h = 1, the pitching angle during contact with the

colloid is seen to satisfy an Ornstein-Uhlenbeck process,

dθ

dt
=

(

1

A
− 3α

8
θ

)

+

√

3D

2
ηR(t). (31)

The distribution of trapping times f (t) (the first passage

time) for the Ornstein-Uhlenbeck process with drift, Eq. (31),

has been a research topic of its own49–54. There are no known

exact expressions for the distribution, with the exception of

asymptotically valid distributions and one for a specific pa-

rameter relationship.

We draw attention to a few special cases. First, when the

diffusion constant D is large, the angle θ is dominated by

the noise term, and the dynamics is primarily governed by a

Wiener process. The first passage time of a Wiener process is

well studied, it has an inverse-Gaussian distribution,

f (t) =
λ√
2πt3

exp

(

−λ (t −µ)2

2µ2t

)

, (32)

where µ = E[T ] is the mean of the distribution and λ =
µ3/Var[T] is a shape parameter. For large D, f (t) tends to-

wards a Lévy distribution. A second setting in which the pro-

cess is approximately governed by a Wiener process is when

the colloid size is just larger than the critical size for determin-

istic entrapment, Ac = 64/(9α2). In that case the deterministic

component of Eq. (31) becomes small and negative as θ ap-

proaches the escape angle, θe = 3α/8. At this point, the deter-

mination of the escape time is dominated by diffusion, and we

again expect an inverse-Gaussian distribution for the trapping

time. In Fig. 14a-b we have overlaid on the empirical trapping

time distributions the inverse-Gaussian profile, using param-

eters µ and λ as calculated from the empirical data. Even

though the diffusion constant is relatively small, and the col-

loid size is about twice as large as the critical colloid size,

(A = 20, whereas Ac ≈ 11), the inverse-Gaussian distribution

gives a remarkably accurate depiction of the trapping time in

the full simulations.

A third situation that results in an approximately inverse-

Gaussian distribution is when the dipole strength α > 0 is

small, in which case Eq. (31) appears as a Wiener process with

drift. Recall that a smaller dipole strength also corresponds to

a smaller escape angle. The inverse-Gaussian profile is again

seen to match the empirical values closely in Fig. 14c, where

α = 0.2. Note that this is not a trapping colloid in the de-

terministic setting, since A < Ac, which ensures that the body

will escape in finite time even if there are no fluctuations; this

is known as the “suprathreshhold regime”54.

The small dipole effect can be counteracted, however, by

a large colloid size (including the limit of an infinite plane

wall). Setting A = 320 so that α2A is identical to that used

in Fig. 14a, the distribution is found to be similar, though

with a much longer tail, and the inverse-Gaussian approxima-

tion is in fact more accurate here. Had we only focused on

Eq. (31), when A ≫ Ac and the diffusion constant is not too

large, the dynamics are in the “subthreshhold” regime and the

distribution is well approximated as a Poisson (exponential)

distribution54. The exponential distribution of trapping times

was suggested in the model studied by Takagi et al.38. How-

ever, in practice we do not observe an exponential distribu-

tion. Tθ is not a good proxy for Th when α is relatively small,

and Eq. (31) does not completely specify the escape dynam-

ics. The issue of escape from an infinite plane wall was also

taken up by Drescher et al.6, who noted that the escape time

is very sensitive to the ratio of translational and rotational dif-

fusion constants, which in turn depend on the distance from

the wall. In general, the trapping time distribution from the

Ornstein-Uhlenbeck process in Eq. (31) resembles something

in between exponential and inverse-Gaussian52,54.

4.2 Mean trapping time

While closed-form expressions of the distribution function are

not known for the general case of the Ornstein-Uhlenbeck pro-

cess, Eq. (31), the moments of the distribution are known51. It

is useful to first linearize the equations around the equilibrium

pitching angle on the surface, θ ∗ = 8/(3αA), and to define

variations around this point as θ̃ = θ − θ ∗, so that (setting

h = 1),

dθ̃

dt
=−3α

8
θ̃ +

√

3D

2
ηR(t). (33)

We seek the time for which θ = θe = 3α/8, the deter-

ministic escape angle (i.e., the first time when θ̃ = θ̃e =
3α/8−8/(3αA)). The trapping time T = Tθ of the Ornstein-

Uhlenbeck process with no drift has moments that may be
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Fig. 14 Empirical distributions, f (t) = ∂tP(T ≤ t) for the trapping time T = Tθ , from 104 trials by numerical simulation. (a)

(A,α,D) = (20,0.8,0.002), with inverse-Gaussian distribution overlaid. The computed mean µ , standard deviation σ , and shape parameter

λ = µ3/σ2 are (µ,σ ,λ ) = (38.4,20.3,137). (b) (A,α,D) = (20,0.8,0.004), and inverse-Gaussian distribution with

(µ,σ ,λ ) = (25.1,13.2,90.2). (c) (A,α,D) = (20,0.2,0.002), with (µ,σ ,λ ) = (6.33,1.61,98.6). (d) (A,α,D) = (320,0.2,0.002), with

(µ,σ ,λ ) = (43.7,35.9,64.7).
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Fig. 15 Contours of the mean trapping time, E[Tθ ], with α = 0.8 as a function of the diffusion constant D and the colloid size A, starting from

h(0) = 1 and θ(0) = 0: (a) from the simple estimate in Eq. (36); (b) from numerical integration of Eq. (34); (c) and from full simulations

using 100 trials for each of 720 parameter pairs (A,D) out to a time t = 100.

written in a recursive structure in terms of special functions,

E[T k] = k

∫ θ̃e

θ̃0

dz
2

σ2W (z)

∫ z

−∞

dxW (x)E[T k−1], (34)

where

W (x) =
1

σ
√

πτ
exp

(

− x2

σ2τ

)

, (35)

and we have defined τ = 8/(3α) and σ =
√

3D/2 (see

Ref.51). An estimate of the mean trapping time may be found

by assuming that θ̃0 and θ̃e are small. In the event that

θ(0) = 0, we find

E[T ] =
∫ θ̃e

θ̃0

dz
2

σ2W (z)

∫ z

−∞

dxW (x)

≈
√

πα

4D
+

4

3AD

(

9α2A

128
−1

)

, (36)

(see Appendix C). Intuitively, we find that factors which in-

crease the mean trapping time are: smaller diffusion constant,

larger dipole strength, and larger colloid size. Yet again, the

product α2A appears; recall the similarity of the distributions

in Fig. 14a&d, where α2A is fixed.

Figure 15a shows contours of this simple estimate of the

mean trapping time as a function of the diffusion constant and

colloid size in the case θ(0) = 0. The value computed by in-

tegrating Eq. (36) numerically is then displayed in Fig. 15b,

which shows qualitative agreement with the simple estimate,

but a considerable departure either when the colloid is large

and the diffusion constant is small. Finally, contours of the

mean trapping time as determined from simulation of 720 dif-

ferent parameter sets (A,D), each using 100 trials and com-

puting up to t = 100, are shown in Fig. 15c, indicating that

the linearization of the full system about small θ used to write

Eq. (31) gives a very accurate picture of the full dynamics for

a wide region of the parameter space.

5 Conclusion

In this paper, we have studied the scattering and capture of

model micro-swimmers by spherical obstacles. Predictions

were given for a critical colloid size, Ac, as a function of the

dipole strength and the body geometry, for which hydrody-

namic capture is possible. For situations in which the swim-

ming body is in contact with the colloid but eventually escapes

(when A < Ac), we provided analytical estimates of the res-

idence time near the surface, the escape angle, the distance

travelled along the spherical surface, and the net scattering ef-

fect of the complete interaction with the colloid. We also in-

vestigated the basin of attraction for pushers near the colloid,

and while not generally much larger than the spherical radius,

we provided a power law scaling of the basin size in terms of

the dimensionless parameter α2A with exponent 1/5. The di-

mensionless number α2A featured prominently in our work,

including its appearance in the critical colloid size Ac. Due
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to the smallness of this attraction region around the sphere for

all but the largest colloids and dipole strengths, we expect that

entrapment may occur robustly, but only if the particle makes

a very direct initial contact with the sphere. This is consistent

with the statement by Drescher et al.6 that “hydrodynamics

is practically irrelevant if the bacterium is more than a body

length away from the surface.”

We also considered the contribution of Brownian fluctua-

tions to the dynamics. We demonstrated that a swimmer which

would be trapped at the surface in the deterministic case may

in the fluctuating case experience an occasional rotation which

results in its escape. The residence on the colloid surface can

be intermittent, and the colloid may simply act as a pure re-

flection obstacle in the case of a large diffusion constant. In

some cases the residence time was found to be governed by an

Ornstein-Uhlenbeck process, which resulted in a trapping time

with asymptotic inverse-Gaussian distribution. An analytical

estimate of the mean trapping time was derived, comparing fa-

vorably to its computed value for a wide range of colloid sizes

and diffusion constants.

In addition to Brownian fluctuations, some microorganisms

exhibit random changes in their direction at exponentially dis-

tributed random times (“run-and-tumble” locomotion55). Ge-

ometric defects in synthetic microswimmers can also lead to

more complicated random behavior which in turn may have

long term consequences for macroscopic diffusion38. The ef-

fects of non-Gaussian fluctuations will be considered in future

work. In the study of living organisms, flagellar activity may

have dramatic effects on entrapment when the body is in con-

tact with a surface21, which presents another interesting direc-

tion of study.

The theory provided in this paper might allow for a more

complete model of bacterial populations in an inhomogeneous

or porous medium, and we envision applications in bioremedi-

ation and microorganism sorting techniques. In future experi-

ments, numerous scalings provided in the paper can be tested.

Specifically, we hope to see measurements of: the scaling of

the critical colloid size for entrapment in the strength of the

dipole for both pushers and pullers, the scaling of the basin

of attraction with dipole strength and colloid size, the scat-

tering angle as a function of the impact parameter and dipole

strength, and the distribution of trapping times in the thermal

fluctuations.
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G.R. Moreno-Flores acknowledges funding by Fondecyt grant
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6 Appendix A: Image system for a no-slip

sphere

The fluid velocity due to a point force of magnitude f located

at at point y in the fluid, and its image system, derived such

that the fluid velocity on the sphere |x| = A is zero, is written

as u j(x) = (S jk + S∗
jk) fk/(8πµ). With y∗ = (A2/|y|2)y the

image point inside the sphere, and r = |x−y∗|, we have47

S jk =
δ jk

|x−y| +
(x j − y j)(xk − yk)

|x−y|3 , (37)

S∗
jk fk =

−Aδ jk

|y|r − A3

|y|3
(x j − y∗j)(xk − y∗k)

r3

− |y|2 −A2

|y|
{y∗jy

∗
k

A3r
− A

|y|2r3
[y∗j(xk − y∗k)+ y∗k(x j − y∗j)]

+
2y∗jy

∗
ky∗m(xm − y∗m)

A3r3

}

− (|x|2 −A2)Φ,

Φ =
|y|2 −A2

2|y|3
{

−
3(x j − y∗j)yk

Ar3
+

Aδ jk

r3
−3A

(x j − y∗j)(xk − y∗k)

r5

−
2y∗jyk

Ar3
+

6yk

Ar5
(x j − y∗j)y

∗
m(xm − y∗m)

+
3A

|y∗|
(x j − y∗j)y

∗
kr2 +(x j − y∗j)(xk − y∗k)|y∗|2 +(r−|y∗|)r2|y∗|δ jk

r3|y∗|(r|y∗|+ xmy∗m −|y∗|2)

− 3A

|y∗|
(|y∗|(x j − y∗j)+ ry∗j)(y

∗
kr2 −|y∗|2(xk − y∗k)+(xk −2y∗k)r|y∗|)

r2|y∗|(r|y∗|+ xmy∗m −|y∗|2)2

− 3A

|y∗|
x jy

∗
k + |x||y∗|δ jk

|x||y∗|(|x||y∗|+ xmy∗m)
+

3A

|y∗|
(|y∗|x j + |x|y∗j)(|y∗|xk + |x|y∗k)

|x||y∗|(|x||y∗|+ xmy∗m)2

}

.

(38)

The velocity field for a symmetric Stresslet and its image

system is found by placing two opposing singularities of the

form above in the fluid, with strengths inversely proportional

to the distance between them, and taking the limit as that dis-

tance vanishes.

7 Appendix B: General expression for transla-

tional and angular velocities

Neglecting the higher order derivatives of the velocity field

near the swimming body, we have the following expressions

of the hydrodynamic attraction/repulsion and rotation on the

swimmer (with Ω̃ΩΩ = Ω̃ r̂⊥× r̂):
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ũ =
−3Aα(1−3sin2 θ)(A+h)

2h2(2A+h)2
r̂

+
3A3α

(

2A2 +6Ah+3h2
)

sin2θ

4h2(A+h)3(2A+h)2
r̂⊥, (39)

Ω̃ =
−3αA3 sin2θ

4h3(A+h)2(2A+h)3
×

(

(

2A2 +6Ah+3h2
)

+
ΓQ(θ)

8A2(A+h)2

)

, (40)

where

Q(θ) = A6 −5A4(A+h)2 +10A2(A+h)4 +6(A+h)6

+
(

9A6 −29A4(A+h)2 +34A2(A+h)4 −18(A+h)6
)

cos2θ .

(41)

However, if we assume that A ≫ 1 for fixed h we recover

the infinite plane wall result along with the leading order cor-

rection for a wall of curvature 1/A

ũ =
−3α

(

1− h2

4A2

)

(1−3sin2 θ)

8h2
r̂

+
3α
(

1− h
A
− 3h2

4A2

)

sin2θ

8h2
r̂⊥+O

(

α

h2

(

h

A

)3
)

, (42)

Ω̃ =−3α sin2θ

16h3

{

(

1− h

2A
− 3h2

2A2

)

− Γ

2

(

1+ sin2 θ − h

A
(1−2sin2 θ)− h2

A2

)

}

+O

(

α

h3

(

h

A

)3
)

. (43)

(See7). Note that A ≫ 1 with h/A fixed produces a different

expression, but the swimmer may not feel the wall strongly in

that case.

8 Appendix C

The approximating expression for the mean trapping time is

found for general initial angle θ(0) by assuming θ̃0 and θ̃e are

small, and noting that

∫ 0

−∞

W (x)dx =
1

2
, (44)

for W (x) defined in Eq. (35). Taylor expanding about small z

in the inner integral of Eq. (36) we have approximately that

E[T ] =
∫ θ̃e

θ̃0

dz
2

σ2W (z)

∫ z

−∞

dxW (x)

≈ 2

σ2

∫ θ̃e

θ̃0

dz

{

1

2W (0)
+ z

(

1− W ′(0)
2W (0)2

)}

, (45)

and then using W (0) = (σ
√

πτ)−1, W ′(0) = 0, τ = 8/(3α),
and σ =

√

3D/2 (and setting θ(0) = 0), we arrive at the ex-

pression in Eq. (36).
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Graphical abstract

Geometric capture and escape of a microswimmer colliding with an obstacle

Saverio E. Spagnolie, Gregorio R. Moreno-Flores, Denis Bartolo and Eric Lauga

A colloid larger than a critical size may act as a passive trap for microswimmers. We address
the critical trapping radius, the basin of attraction, the scattering angle for sub-critical colloid
sizes, and the effects of Brownian fluctuations.
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