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Abstract
The increasing penetration of electric vehicles over the coming decades, taken together with the high
cost to upgrade local distribution networks and consumer demand for home charging, suggest that
managing congestion on low voltage networks will be a crucial component of the electric vehicle
revolution and themove away from fossil fuels in transportation.Here, wemodel themax-flow and
proportional fairness protocols for the control of congestion caused by afleet of vehicles charging on
two real-world distribution networks.We show that the systemundergoes a continuous phase
transition to a congested state as a function of the rate of vehicles plugging to the network to charge.
We focus on the order parameter and itsfluctuations close to the phase transition, and show that the
critical point depends on the choice of congestion protocol. Finally, we analyse the inequality in the
charging times as the vehicle arrival rate increases, and show that charging times are considerably
more equitable in proportional fairness than inmax-flow.

1. Introduction

Electric vehiclesmay become competitive, in terms of total ownership costs, with internal-combustion engine
vehicles over the next couple of decades. Studies in theUnited States and theUK suggest the current power grid
has enough generation capacity to charge 70%of cars and light trucks overnight, during periods of low demand
[1]. A recent survey suggests, however, vehicle owners prefer home charging, would consider charging their
vehicles during the day (typically between 6 and 10 pm), and are unwilling to accept a charging time of 8 h [2].
The time to fully charge the battery of an electric vehicle at home currently varies from18 h (Level 1, in the
United States at 110 V and 15Awith a charge power of 1.4 kW) to 4 h (Level 2, at 220 V, 30Awith a charge power
of 6.6 kW). Alternatively, electric vehicles could charge at public charging stations at Level 3 in less than 30min
[3]. Taken together, consumer behaviour and advances in battery technologymay lead to a rise in peak demand
with the increasing penetration of electric vehicles, overloading distribution networks and requiring local
infrastructure reinforcement [4–7]. To reduce the cost of upgrades to the lastmile of cables, network operators
may need to coordinate charging strategies in away that is both technically and socially acceptable. To achieve
this goal, network designers could implement charging protocols that prioritize the access of a fleet of electric
vehicles to electric power, thus simultaneouslymanaging network congestion and accounting for the fairness of
user allocations.

Through a series of papers, the power grid has recently gained increased visibility in the scientific community
[8, 9], and physicists have helped to increase our understanding of its synchronization [10, 11] and stability
[12, 13]. In parallel, recent advances in optimization and phase transitions [14, 15] suggest that the tools of
critical phenomena and optimization can bemerged, opening up newhorizons. From the point of view of the
distribution network operator, the problemof vehicle charging is tomanage congestion on distribution
networks, while respectingKirchhoff’s laws and keeping voltage drops bounded.Here, we explore two
congestion controlmechanisms:max-flow and proportional fairness.We show that if toomany vehicles plug-in
to the network, charging takes too long,more cars arrive than leave fully charged, and the systemundergoes a
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continuous phase transition to a congested state [16, 17], where the critical point depends on the choice of
congestion control algorithm. By gaining insights into the critical behaviour that naturally emerges with the
increase of the number of vehicles, we hope to help network designers decidewhich algorithms to implement in
the real-world.

2. Themodel

Physicists are familiar with simulated annealing, a global optimizationmethod that can avoid becoming trapped
in a local optimum. In principle, it converges to the global optimum, but in practice this is not guaranteed (see
e.g., [18–21]) because the required theoretical cooling schedules are too slow to use in implementations. In
contrast, convex optimization alwaysfinds the solution, if it exists, independently of the starting point. Convex
optimization problems can be solved efficiently (typically in polynomial time), even for problemswith hundreds
of variables and thousands of constraints, using interior-pointmethods [22]. The burgeoning field of convex
optimization in electricity networks [23–25] is a good example of an application of themathematical framework
developed over the last 20 years. Indeed, the extensive numerical simulationswe present here are only possible
due to techniques developed since 2012 [24–26]. The networks thatwe study are relatively small. The
stochasticity of vehicle arrival times, however, implies solving an optimization problem in each time step if the
state of the system changes. Hence, to gain insights into the steady state of vehicle charging, efficient algorithms
are a necessity at the design stage. Of course, real-world implementations also depend on efficient algorithms,
whichwould need to run online, often in large urban distribution networks.

An optimization problem is determined by a function of a set of variables (the objective function), for which
we seek aminimum, and a set of upper bound constraints that restrict the domain (or feasible set) of those
variables [22]. A point is feasible if it belongs to the feasible set, and is optimal if it is theminimumof the
objective function in the feasible set. An optimization problem is convex if both the objective function and the
constraints are convex, inwhich case the objective function has a globalminimum.A convex relaxation of an
optimization problem P is a convex optimization problem P¢with an enlarged feasible set. If the optimumofP¢
is feasible for P, it is also the optimum for P andwe say the relaxation is exact. Hence, convex relaxations are
more attractive than approximatemethods, such as linearizations, because the feasibility of the relaxed optimum
ofP¢, which can be verified either analytically or numerically, is a certificate of the exactness of the relaxation.

Consider a tree topology, such that electric power is distributed from a root node to electric vehicles that
charge at the nodes. Let t( ) be the feasible set of power allocations at time t, i.e. the set of all allocations of
power to electric vehicles that do not violate the operational constraints of the distribution network. Each
feasible allocation P t t( ) ( )Î is a vector P t P t l N t: 1 ,...,l( ) ( ( ) ( ))= = , whereN(t) is the number of
vehicles in the network at time t. Vehicle l derives a utilityU P tl l( ( )) from the allocated charging powerPl(t), and
wewish to select the allocation thatmaximizes the sumof vehicle utilities [27]. This allocation acts as a network
protocol that distributes network capacity among users, and solves the following problem:

U P t amaximize 1
l

N t

l l
1

( )( ) ( )
( )

å
=

P t t bsubject to . 1( ) ( ) ( )Î

Herewe explore two user utility functions. First, we consider the non-uniquemax-flow allocations given by
U P t P tl l l( ( )) ( )= , i.e. wemaximize the instantaneous aggregate power sent from the root node to the vehicles,
which is a benchmark of efficient network throughput [28]. Such allocations, however, can also leave users with
zero power, which is considered unfair from the user point of view.Hence, we next consider the proportional
fairness allocation.Mathematically, the problem is tofind the feasible allocation thatmaximizes the sumof the
logarithmof user rates, that isU P t P tlogl l l( ( )) ( ( ))= . The proportional fairness allocation is especial, because
the users and the network operator simultaneouslymaximize their utility functions [27]. Furthermore, the
problem is convex, and so can be solved in polynomial time [22], and it can be naturally extended by adding
positive weights to each term in the objective function equation (1a), to account for diversity in user demand or
formore than one user at some nodes [27]. For the compact and convex set t( ) , it can be shown that the
allocation P tPF ( ) thatmaximizes equation (1a), satisfies [27, 29]:
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This allocation is known as proportionally fair, because the aggregate of proportional changes with respect to all
other feasible allocations is non-negative. In other words, equation (2) implies that to increase the instantaneous
power allocated to a vehicle by a percentage ò, we have to decrease a set of other power allocations, such that the
sumof the percentage decreases is larger or equal to ò. In contrast, inmax-flow, to increase the instantaneous
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power allocated to a vehicle by ò, we have to decrease the sumof instantaneous powers allocated to other vehicles
at least by ò. It turns out that fairness and congestion control are two sides of the same coin, because the existing
algorithms for fair allocations alsomanage network congestion [27, 30–35].Moreover, in the analysis of the
parallel problem for communication networks, proportional fairness has emerged as a compromise between
efficiency and fairness with an attractive interpretation in terms of shadowprices and amarket clearing
equilibrium [27, section 7.2].

The simplest flowmodel in electricity networks is the dc power flow,which is a linearization of the ac power
flow equations, and thus can be solvedwith tools of linear programming. It assumes that voltage amplitude is
constant on all nodes, a good approximation at the level of the high-voltage transmission network, but a poor
one on local distribution networks. Indeed, voltage drops are significant in distribution networks, and
determine the network capacity, which leads us to usingmodels of power flow specific to distribution networks
[36].We abstract the distribution network to a rooted directed tree r( ) with node (often called bus) set  , edge
(also called branch) set  , and a root node r (feeder) that injects power into the tree 5. Edge eij Î connects node i
to node j, where i is closer to the root than j, and is characterized by the impedance Z R Xiij ij ij= + , whereRij is
the edge resistance andXij the edge reactance. The power loss along edge eij is given by S t P t Q tiij ij ij( ) ( ) ( )= + ,
where Pij(t) is the real power loss, andQij(t) the reactive power loss. Electric vehicle l receives active power Pl(t)
until charged, but does not consume reactive power [37]—see figure 1(a). The vectorV(t) denotes the voltage
allocated to the nodes. The voltage drop VijD down the edge eij is the difference between the amplitude of the
voltage phasorsVi andVj, assuming node i is closer to the root r than node j [36]. Let j( ) denote the subtree of
the distribution network rooted in node j, with node set j( ) and edge set j( ) . Let P j( ) denote the active
power, and Q j( ) the reactive power consumed by the subtree j( ) —seefigure 1. Kirchhoff’s voltage law applied
to the circuit infigure 1(b) yields (see appendix A):

V t V t V t P t R Q t X 0. 3i j j j ij j ij
2( ) ( ) ( ) ( ) ( ) ( )( ) ( ) - - - =

Vehicle l has a battery with capacityB that charges with the instantaneous powerPl(t) from empty (at arrival
time) to full (at departure time), and the level of battery charge is the time integral of instantaneous power.
Vehicles arrive to the network, choose a node to charge randomlywith uniformprobability, charge until their
battery is full, and lastly leave the network. At each time step, the network solves the congestion control problem
to allocate instantaneous power to the vehicles. Themax-flowproblemmaximizes the instantaneous aggregate
power sent from the root node to the electric vehicles, respecting the constraints of distribution networks: the
voltage drop along edges obeys equation (3), and node voltages are within V V1 , 1nominal nominal(( ) ( ) )a a- +
for 0, 1( )a Î , with 0.1a = typically [36]. Thus, tofind themax-flow allocation of power to the vehicles, we
solve the optimization problem forfixed t:

U t P t amaximize 4
V t l

N t

l
1

( ) ( ) ( )
( )

( )

å=
=

V V t V i bsubject to 1 1 , 4inominal nominal( ) ( ) ( ) ( ) a a- + Î

Figure 1. Schematic illustration of (a) a distribution network, (b) the circuit of a network edge. Electric vehicles choose a charging
nodewith uniformprobability, and plug-in to the node until fully charged, as illustrated by the electric vehicle icons on the network.
Network edge eijhas impedance Z R Xiij ij ij= + . The power consumed by the subtree j( ) rooted at node j (area shaded in purple) is
S P Qij j j( ) ( ) ( )  = + , where vehicles consume real power only, but network edges have both active (real) and reactive (imaginary)
power losses.

5
Wewrite r( ) instead of r, ,( )  to simplify the notation.
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V t V t V t V t P t R Q t X e c0, . 4i j j j j ij j ij ij( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )  - - - = Î

Constraint (4b) sets the limits on the node voltage. Equation (4c) is the physical law coupling voltage to power,
generalized from equation (3) for the subtree j( ) , and encodes bothKirchhoff’s voltage law on network edges
andKirchhoff’s current law applied recursively at each node of the subtree (see appendix B).We do not need to
apply Kirchhoff’s voltage law on network loops, however, because local distribution networks are approximately
trees, and thus are cycle-free. Constraint (4c) is quadratic, hence not convex in general, which implies that the
problem is not directly solvable by polynomial timemethods. To overcome this limitation, wemake a change of
variables in problem (4) by defining aweighted adjacencymatrixW(t), such that edge eij corresponds to the 2× 2
principal submatrixW e t,ij( ) defined by [38, 39]:
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whereW t W tij ji( ) ( )= , becauseV t V t,i j( ) ( ) Î . ThematricesW e t,ij( ) are positive semidefinite, because their
eigenvalues ( 01l = and V Vi j2

2 2l = + ) are non-negative, and rank one because they are of the form vvT.
Hence, constraint (4c) can be replaced by three constraints: the first substitutes the quadratic terms in the
voltageswith linear terms in theW e t,ij( ), and the second and third constraints guarantee that theW e t,ij( ) are
positive semidefinite and rank one.

The solution of problem (4) is on thePareto frontier 6, since wemaximize an increasing function in the
objective. The rank one constraint is nonconvex, but it does not change the Pareto frontier or the optimum
[25, 40], andwe remove it to relax problem (4) to:

U t P t amaximize 6
W t l

N t

l
1

( ) ( ) ( )
( )

( )

å=
=

V W t V i bsubject to 1 1 , 6iinominal
2
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W t W t P t R Q t X e c0, 6ij jj j ij j ij ij( ) ( ) ( ) ( ) ( )( ) ( )  - - - = Î

W e t e d, 0, , 6ij ij( ) ( ) Î

where the generalized inequality in constraint (6d)means theW e t,ij( )matrices are positive semidefinite [41].
The problemof allocating power to vehicles in a proportional fair way has the same constraints as problem

(6), however, the objective function is the sumof the logarithmof the power. It turns out, however, that it is
computationallymore efficient to aggregate vehicles at the nodes, and tomaximize the sumof power allocated to
the nodes, rather than the vehicles. To show this, we observe that all vehicles are equivalent, and thus the power

tPi ( ) allocated to node i is divided equally among the vehicles charging on the node at each time step.Hence, if
one ormore vehicles is charging on node i, each gets the instantaneous power:

P t
t

w t

P
, 7l

i

i

( ) ( )
( )

( )=

where w t ti l

N t
il1

( ) ( )( )å= D=
is the number of electric vehicles charging on node i at time t, and t 1il ( )D = if

electric vehicle l is charging on node i at time t and zero otherwise. Hence, the proportional fair allocation is
given by (see appendix C):

U t w t t amaximize logP 8
W t i

i i( ) ( ) ( ) ( )
( ) 

å=
Î +

V W t V i bsubject to 1 1 , 8iinominal
2

nominal
2( ) ( )( ) ( ) ( ) ( ) a a- + Î

W t W t P t R Q t X e c0, 8ij jj j ij j ij ij( ) ( ) ( ) ( ) ( )( ) ( )  - - - = Î

W e t e d, 0, , 8ij ij( ) ( ) Î

where + is the subset of nodeswith at least one vehicle, andwe can recover the instantaneous power allocated
to electric vehicle l, located at node i, from equation (7). The complexity of the problem (8) thus scales with the
number ∣ ∣ of nodes, which is typically smaller than the numberN(t) of vehicles for large arrival ratesλ.
Similarly, we also aggregated vehicles in the implementation of problem (6), but omit the proof.

To study the behaviour ofmax-flow and proportional fairness as a function of the number of vehicles
arriving at the network to be charged, we implement a discrete simulator that solves the congestion control
problem in discrete time steps, starting with no vehicles charging on the network. Vehicles arrive at the network
in continuous time (following a Poisson process with rateλ) andwith empty batteries, choose a nodewith

6
We say that a power allocation Pl{ } for l= 1,K,N is better than another Pl{ }¢ if P Pl l ¢ for all l, and for some l, P Pl l> ¢. A power

allocation isPareto optimal or efficient if there is no better power allocation. The Pareto frontier of a set is the set of all Pareto optimal points.
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uniformprobability amongst all nodes (excluding the root), and charge at that node until their battery is full, at
which point in time they leave the network. Once a vehicle plugs into a node, the congestion control algorithm
will allocate it an instantaneous power, which is a function of the network topology and electrical elements, as
well as the location of other vehicles.

At each time step, we first checkwhether the number of charging vehicles changed (i.e. vehicles left the
network fully charged, or new vehicles arrived to be charged), and if it has, we solve themax-flowproblem (6)
and the proportional fairness problem (8), which allocate a constant power during the time step to each of the
charging vehicles. Next, we update the status of batteries at the end of the time step. The simulation terminates
when the simulation time reaches the time horizon.We simulated vehicles charging on the realistic SCE 47-bus
and SCE 56-bus distribution networks [38], which are detailed infigure 2. To characterize the systembehaviour
in detail, we varied the arrival rateλ from0 to 1 in steps of 0.05 (0.005 close to the critical points), and for eachλ
valuewe simulated an ensemble of 25 independent realizations of simulation runs, each simulation running for
15 000 time units (150 000 time units close to the critical point).We ran the simulations using CVXOPT [42] on
the ETHZBrutus cluster 7 due to the high computational requirements. The computational time is comparable
formax-flow and proportional fairness and for the 47-bus and 56-bus networks, but it is growswithλ. For
example, to simulate 5 000 time units of the proportional fairness algorithm for 1.0l = on the 47-bus network
takes approximately 40 h, but 4min for 0.05l = .

We set the battery capacityB= 1 for all vehicles, and the nominal voltageV 1nominal = . ScalingVnominal byβ,
for 0,( )b Î ¥ , implies scaling both the the power delivered to vehicles and the battery capacity by 2b . To see
this, observe that problems (4) and (8) are invariant upon the scalingV Vnominal nominalb¢ = ,V t V ti i( ) ( )b¢ = for all
nodal voltages, P t P tl l

2( ) ( )b¢ = , P t P t2( ) ( ) b¢ = and Q t Q t2( ) ( ) b¢ = , and B B2b¢ = . Considering these
scaling properties, our simulations can be extended to values ofV 1nominal ¹ , provided the vehicle capacityB is
rescaled accordingly, andwe use this property to rescale the problemwhen convenient.

3.Numerical results

Wefind critical behaviour that resembles results found in communication networks, in that both systems
undergo a continuous phase transition [43]. In order to characterize this phase transition, we adopt the order
parameter ( )h l that represents the ratio at the steady state between the number of uncharged vehicles and the
number of vehicles that arrive at the network to be charged [43]:

N t

t
lim

1
, 9

t
( ) ( ) ( )h l

l
=

áD ñ
D¥

where N t N t t N t( ) ( ) ( )D = + D - and á¼ñ indicates an average over timewindows of width tD .We
calculate ( )h l in the steady state, that is N t tlimt ( )D µ D¥ . For arrival rates cl l< , all vehicles that plug-in
to the networkwith empty batteries within a large enough timewindow leave fully chargedwithin that period
(free flow phase), but for cl l> some vehicles have towait for increasingly long times to fully charge (congested
phase). The order parameter characterizes the phase transition: 0( )h l = in the free-flow regime, and

0( )h l > in the congested phase, a higher order parametermeaning that queues of charging vehicles build up
more rapidly.

Figure 3 is a plot of the order parameter for the 47- and 56-bus networks and the two congestion control
methods, as a function ofλ. Simulation results shown infigure 3(a) suggest that cl depends on several factors

Figure 2.Topology of the (a) SCE 47-bus and (b) SCE 56-bus networks. Node indexes identify the edges, and edge resistance and
reactance is taken from [38]. Node 1 is the root node in both networks. Nodes 13, 17, 19, 23 and 24 of the SCE 47-bus network (in
lighter colour) are photovoltaic generators, andwe removed them from the network.

7
https://www1.ethz.ch/id/services/list/comp_zentral/cluster/index_EN

5

New J. Phys. 17 (2015) 095001 RCarvalho et al



(the network topology, the complex impedance on the edges, battery capacity,Vnominal, as well as the position of
vehicles on the network). At this resolution of the control parameter, it is unclear, however, whether the critical
point is the same formax-flow and proportional fairness in both networks. To clarify this, we studied the order
parameter with higher resolution close to the critical points—seefigures 3(b) and (c). The critical point is
numerically indistinguishable formax-flow and proportional fairness in the 56-bus network. In the 47-bus
network, however, wefind that cl is larger for proportional fairness than formax-flow.

The numberN(t) of charging vehicles at time tfluctuates widely close to the critical point, and thus it is
difficult to determine cl from figure 3. To overcome this limitation, we adopt the susceptibility-like function
[43]:

t tlim , 10
t

( ) ( ) ( )c l s= D Dh
D ¥

where tD is the length of a timewindow, and t( )s Dh is the standard deviation of the order parameter η. To
compute ( )c l , we first consider a long time series and split it intowindowswith length tD .We next determine
the value of the order parameter in eachwindow, and finally calculate the standard deviation of these values. The
susceptibility displays a singular point at cl (see figure 4) , allowing us to study the dependencies of the critical
arrival rates on the congestion control algorithm, aswell as network topology and size.

Similarly to our analysis of ( )h l , the values of cl are indistinguishable in the 56-bus network. In contrast,
however, in the 47-bus network the singular point of ( )c l is smaller formax-flow than for proportional
fairness. This suggests that proportional fairness charges a slightly larger number of vehicles thanmax-flow, and
is thusmarginallymore efficient, on a neighbourhood of its critical point. To support this conclusion, we show
infigures 4(c) and (d) four representative instances of the time series of the number of vehicles charging on the
47-bus network atλ= 0.39. The numberN(t) of vehicles grows linearly with time inmax-flow in all four cases,
suggesting that the critical point is belowλ= 0.39 for this algorithm. In contrast,N(t) oscillates in proportional
fairness, suggesting that the critical point is aboveλ= 0.39, in agreement with the analysis of ( )c l .

The two congestion control algorithms lead to different allocations of instantaneous power, with
vehicles charging over different time intervals. If there are vehicles on a path p between the root and a leaf

Figure 3. (a)Order parameter η as a function of the arrival rateλ, for the SCE 56-bus (filled symbols) and 47-bus (unfilled symbols)
networks, wherewe apply themax-flow (circular symbols) and proportional fairness (square symbols) algorithms for the simulation
horizon of 1.5 104´ time units.We plot a zoomof the critical region for the (b) 56-bus network and (c) 47-bus network for the longer
horizon of 105 time units. Panel (c) suggests the critical arrival rate is different for themax-flow and proportional fairness algorithms
in the 47-bus network. Symbols show average values over an ensemble of 25 runs and shaded areas represent 95% confidence
intervals.
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node, the voltage dropswith increasing distance from the root, the lower limit voltage constraint (4b) is fulfilled
at equality for one node on p, and nodes further away than that will not receive any power. The objective
function of proportional fairness guarantees that each vehicle gets a positive power allocation, thus the lower
limit voltage constraint is satisfied at equality on the occupied node that is themost distant from the root on p. In
max-flow, however, tomaximize the aggregate power allocated to vehicles that can take all instantaneous power
they are allocated (elastic demand), on a networkwith bounded voltage drops (i.e. capacity), implies also
minimizing the power losses, and this is achieved by allocating all power on p to the closest occupied node from
the root on that path. Formax-flow, this implies vehicles on the path p further away from the root than the
closest occupied nodewill only receive power after all vehicles on this node have left the network fully charged.
In otherwords, undermax-flow, users experience a charging time that depends strongly on their location on the
network: vehicles close to the root charge faster, and vehicles on the tree leavesmay take a very long time to
charge. In contrast, under proportional fairness, the charging times aremore homogeneous, because vehicles
receive instantaneous powers that are alsomore uniform.

To characterize inequalities in the user experience, we analyse theGini coefficient of charging time.
Originally devised as ameasure of inequality in income distributions, theGini coefficient is defined as [44]:

G u v u v f u f v u v
1

2
E

1

2
d d , 11

0 0
[∣ ∣] ∣ ∣ ( ) ( ) ( )ò òm m

= - = -
¥ ¥

where u and v are independent identically distributed randomvariables with probability density f andmeanμ. In
otherwords, theGini coefficient is one half of themean difference in units of themean. The difference between
the two variables receives a small weight in the tail of the distribution, where f u f v( ) ( ) is small, but a relatively
largeweight near themode.Hence,G ismore sensitive to changes near themode than to changes in the tails. For
a random sample (xi, i n1, 2, ,= ¼ ), the empirical Gini coefficient, G, may be estimated by a samplemean

G
x x

n2
. 12

i

n

j

n
i j1 1

2
( )

å å
m

=
-

= =

Figure 4. Susceptibility ( )c l as a function of the arrival rateλ, for the for the (a) SCE 56-bus (filled symbols) and (b) 47-bus (unfilled
symbols)networks, wherewe apply themax-flow (circular symbols) and proportional fairness (square symbols) algorithms for the
time horizon of 105 time units. Vertical lines show the value of the critical points formax-flow (MF) and proportional fairness (PF).
Panel (b) shows the difference in the critical arrival rate for the two congestion control algorithms. To illustrate this difference, we plot
in (c) and (d) representative time series for the 47-bus network forλ= 0.39, showing that, within the time horizon,max-flow is
supercritical, whereas proportional fairness is subcritical. Symbols show average values over an ensemble of 25 runs and shaded areas
represent 95% confidence intervals.
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TheGini coefficient is used as ameasure of inequality, because a sample where the only non-zero value is x
has x nm = and hence G n n1 1( )= -  as n  ¥, whereas G 0= when all data points have the same
value.

We observe infigure 5 that theGini coefficient of the charging time is larger inmax-flow than in
proportional fairness, for each of the networks.Moreover, theGini coefficient increases faster inmax-flow than
in proportional fairness in the non-congested regime, showing that, when the system is stable, vehicles will
experience a faster increase in the inequality of charging times inmax-flow than in proportional fairness, with
the increase of the vehicle arrival rateλ. For comparisonwithwell-knownmeasures of income inequality,
Sweden has aGini of 0.26, theUnited States has aGini of 0.41 and the Seychelles has the highest Gini of 0.66 [45].
The proportional fairness algorithm reaches amaximumGini of 0.45, which is comparable with the level of
inequality in theUS society, and thusmay be judged sociable acceptable. Themax-flow algorithm, however,
reaches aGini of 0.91, whichmeasures a level of inequality considerably higher than present in any
contemporary society.

4.Discussion

In conclusion, we modelled the max-flow and proportional fairness protocols for the control of
congestion caused by a fleet of vehicles charging on distribution networks. We analysed the second order
phase transition that occurs with the increase of the number of electric vehicles that arrive at the
network with empty batteries to be charged, and found that the critical arrival rate cl depends on the
congestion control method. Indeed, we showed numerically on the 47-bus bus network that the onset of
congestion takes place for larger values of λ in proportional fairness than in max-flow. This result is
surprising, because one would expect that, for a chosen arrival rate λ, the maximization of the aggregate
instantaneous power would also lead to a maximization of the energy (the time integral of power), and
hence to a maximization of the number of charged vehicles. This discovery illustrates how the greediness
of max-flow can be sub-optimal in relation to proportional fairness, which is an example of a fair
allocation of instantaneous power.

We analysed the inequality in the charging times as the vehicle arrival rate increases, and showed that
charging times are considerablymore equitable in proportional fairness than inmax-flow. Indeed, vehicles close
to the root get all the power allocation inmax-flow, leaving other vehicles excluded from the network and unable
to charge.Hence, proportional fairness is preferable tomax-flow, not only because it does not exclude users
from the network, but also because the charging times aremore equitable, and it can serve a higher number of

Figure 5.Gini coefficientG of the charging time as a function of the electric vehicle arrival rateλ, for the SCE 47-bus (unfilled
symbols) and 56-bus (filled symbols)networks, wherewe apply themax-flow (circular symbols) and proportional fairness (square
symbols) algorithms.We run the simulation for 15 000 times units, and compute theGini coefficient from the charging time of
vehicles that have charged fully during the simulation. To reduce the effect of a transient regime, we consider only vehicles that are
fully charged after iteration 1000. Vertical lines show the value of the critical points formax-flow (MF) and proportional fairness (PF)
identified from the susceptibility ( )c l for both networks. Symbols show average values over an ensemble of 25 runs and shaded areas
represent 95% confidence intervals.
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vehicles. In conclusion, proportional fairness is a promising candidate protocol tomanage congestion in the
charging of electric vehicles.
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AppendixA. Voltage drop on one edge

The angle θ betweenVi andVj is small in distribution networks [36] (see figure A1 ), and hence the phases ofVi

andVj are approximately the same, and can be chosen so the phasors have zero imaginary components. Since the
phasors are real, we can derive the voltage drop fromKirchhoff’s voltage law applied to the circuit infigure 1(b),
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where the superscript asterisk denotes the complex conjugate transpose.

Appendix B. Active and reactive loads on a subtree

FromKirchhoff’s current law, the active and reactive power consumed by the loads in the subtree rooted in node
k can be computed as:
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where Pij(t) is the active andQij(t) the reactive power dissipated on a cable connecting nodes i and j. The complex
power is given by:

Figure A1.The difference I Zij ij between theVi andVj phasors, decomposed along theVj vector and its orthogonal direction. The
phase angle θ difference betweenVi andVj is small, and hence the voltage drop can be approximated by V I Zij ij ij( )D  R .
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Since, the voltages are real,W t W tij ji( ) ( )= , and thus

P t W t W t W t
R

R X
2 , B4ij ii ij jj

ij

ij ij
2 2( )( ) ( ) ( ) ( ) ( )= - +
+

and

Q t W t W t W t
X

R X
2 . B5ij ii ij jj

ij

ij ij
2 2( )( ) ( ) ( ) ( ) ( )= - +
+

AppendixC. Aggregation of vehicles at the nodes

In proportional fairness, wemaximize the sumof the logarithmof the instantaneous power allocated to electric
vehicles:
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where Pl(t) is the instantaneous power allocated to electric vehicle l, and Pi the instantaneous power allocated to
node i. Tomaximize equation (C1), we solve a problemwith gradient andHessianmatrices that grow in size
with the number of electric vehicles on the network. Amore efficient way to approach the problem is to aggregate
cars for each node i, then solve the optimization problem for the nodes (as if theywere ‘super-cars’), andfinally
distribute the power allocated to each node among the cars on the node. To do this, we remove constant terms in
the objective function equation (C1), yielding:
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