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Dynamical analysis in scalar field cosmology
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We give a general method to find exact cosmological solutions for scalar-field dark energy in the
presence of perfect fluids. We use the existence of invariant transformations for the Wheeler De Witt
(WdW) equation. We show that the existence of a point transformation under which the WdW
equation is invariant is equivalent to the existence of conservation laws for the field equations, which
indicates the existence of analytical solutions. We extend previous work by providing exact solutions
for the Hubble parameter and the effective dark-energy equation of state parameter for cosmologies
containing a combination of perfect fluid and a scalar field whose self-interaction potential is a power
of hyperbolic functions. We find solutions explicity when the perfect fluid is radiation or cold dark
matter and determine the effects of non-zero spatial curvature. Using the Planck 2015 data, we
determine the evolution of the effective equation of state of the dark energy. Finally, we study the
global dynamics using dimensionless variables. We find that if the current cosmological model is
Liouville integrable (admits conservation laws) then there is a unique stable point which describes
the de-Sitter phase of the universe.
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1. INTRODUCTION

The discovery of the accelerated expansion of the universe (see [1] and references therein) has opened a new window
in cosmological studies. Indeed, the underlying physical process responsible for this phenomenon is considered as one
of the fundamental problems in cosmology. Within the framework of general relativity, scalar fields provide possible
dark energy models which can describe, but not so far explain, this acceleration. Scalar field models require the choice
of a self-interaction potential V (φ) for the scalar field φ. The considerations of a specific potential V (φ) is done by
an adhoc requirement (ansatz). In this manner various candidates have been proposed in the literature, such as an
inverse power law, exponential, hyperbolic and the list goes on (for review see [2] and references therein). One such
ansatz, which we shall consider in the following, has been done by Rubano and Barrow [3] (see also [4]) who found
that if the scalar field behaves as a perfect fluid then the potential V (φ) ∝ sinhp(qφ), where the constants q, p are
given in terms of observable cosmological parameters, namely the dark-energy equation of state (EoS) parameter and
Ωm0.
Obviously it is important to proposed potentials which are realistic and at the same time lead to exactly soluble

models in the FLRW spacetime. The reason for employing the Noether symmetries is that Noether symmetries
provide us with the Noether integrals which facilitate the analytic solution of the field equations. As an example, in
extended theories of gravity, where the Birkhoff theorem is not guaranteed, the Noether approach provides a means of
describing the global dynamics using the first integrals of motion [5]. Furthermore, besides the technical possibility of
reducing the dynamical system, the first integrals of motion always give rise to conserved currents that are not only
present in physical space-time but also in configuration spaces (see discussion in [7]). In space-time such currents are
linear (momentum, angular momentum etc.) but in configuration space the conserved quantities appear as relations
between dynamical variables [6]. The latter implies that in the configuration space (minisuperspace), the first integrals
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are considered as ”selection rules” for scalar field potentials and coupling functions in the case of modified gravity
theories. The above features have inspired many authors to propose the admittance of a Noether (point or dynamical)
symmetry by the field equations as a selection rule for dark-energy models, including those of modified gravity [8–19].
In particular it has been shown that the dynamical Noether symmetries are associated with the Killing tensors

of the space [19, 20] and that the Noether point symmetries are related to the homothetic algebra of the space (see
[22] and references therein). Therefore the requirement of a Noether symmetry is indeed a geometric demand hence
independent of the particular dynamics.
In scalar field cosmology the system develops in minisuperspace whose geometry is defined by the field equations.

Therefore the requirement that the field equations admit a Noether symmetry becomes, according to the above results,
a geometric requirement on a geometry which is inherent to the system.
In this work by using a more general geometric criterion, i.e. by employing the Lie point symmetries of the Wheeler-

DeWitt (WdW) equation, we extend the work of Rubano and Barrow [3] to a general family of hyperbolic scalar-field
potentials V (φ).
In section 2, we give the basic theory of the scalar-field cosmology in a FLRW spacetime. The basic definitions and

results from the Lie and Noether point symmetries of partial differential equations and the application in the WdW
equation are presented in section 3. In section 4, we consider our cosmological model, which includes a hyperbolic
family of scalar field potentials with a perfect fluid with constant equation of state parameter wm. We study the
existence of Lie point symmetries of the WdW equation, where we find that for our model the WdW equation admits
Lie point symmetries if the free parameters of the potential and the parameter wm are related. In section 5 we apply
the Lie point symmetries of the WdW equation in order to construct invariant solutions of the WdW equation and
exact solutions of the field equations. Also, in section 6 we perform a dynamical analysis by studying the fixed points
of the field equations in the dimensionless variables for the general model and we show that when the cosmological
model is Liouville integrable (the model admits conservation laws), there is a unique stable point which describes the
de Sitter universe. Finally, in section 7 we draw some conclusions.

2. SCALAR-FIELD COSMOLOGY

We start with the Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime with line element (c ≡ 1)

ds2 = −dt2 + a2(t)
1

(1 + K
4 x

2)2
(dx2 + dy2 + dz2). (1)

The total action of the field equations is written as

S = SEH + Sφ + Sm, (2)

where SEH =
∫

dx4
√−gR is the Einstein-Hilbert action, R is the Ricci scalar of the underlying space, Sφ is the action

of the scalar field

Sφ =

∫

dx4
√−g

[

−1

2
gµνφ;µφ;ν + V (φ)

]

, (3)

and Sm =
∫

dx4
√−gLm is the matter term. We assume that φ inherits the symmetries of the metric (1) therefore

φ(t) and consequently φ;ν = φ̇δ0ν where φ̇ = dφ
dt
.

From the action (2), we have the Einstein field equations [2]

Rµν − 1

2
gµνR = κT̃µν (4)

where κ = 8πG ≡ 1, Rµν is the Ricci tensor and T̃µν is the total energy momentum tensor given by T̃µν ≡ Tµν+Tµν(φ).
Tµν is the energy-momentum tensor of baryonic matter and radiation and Tµν(φ) is the energy-momentum tensor
associated with the scalar field φ. Modeling the expanding universe as a fluid (which includes radiation, matter and

DE) with 4−velocity uµ, proper isotropic density ρm and proper isotropic pressure Pm gives T̃µν = −P gµν + (ρ +
P )uµuν , where ρ = ρm + ρφ and P = Pm + Pφ. The variable ρφ denotes the energy density of the scalar field and Pφ

is the corresponding isotropic pressure. Moreover the parameters (ρφ, Pφ) of the scalar field are given by

ρφ ≡ 1

2
φ̇2 + V (φ) , Pφ ≡ 1

2
φ̇2 − V (φ). (5)
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For the FLRW spacetime, for comoving observers (uµ = δµ0 ), the Einstein field equations (4) are

H2 =
κ

3
(ρm + ρφ)−

K

a2
(6)

and

3H2 + 2Ḣ = −κ(Pm + Pφ)−
K

a2
, (7)

where H(t) ≡ ȧ/a is the Hubble function.
Furthermore, assuming that the scalar field and matter do not interact, we have the two conservation laws

ρ̇m + 3H(ρm + Pm) = 0 (8)

ρ̇φ + 3H(ρφ + Pφ) = 0 (9)

while the corresponding equation of state (EoS) parameters are given by wm = Pm/ρm and wφ = Pφ/ρφ. In what

follows we assume a constant wm, so that ρm = ρm0a
−3(1+wm) (wm = 0 for cold matter and wm = 1/3 for radiation),

where ρm0 is the matter density at the present time. Generically, some high-energy field theories suggest that the
dark energy EoS parameter may be a function of cosmic time (see, for instance, [24]).
Replacing (5) in (9) we have the Klein-Gordon equation

φ̈+ 3Hφ̇+ V,φ = 0 (10)

where V,φ = dV
dφ

. Furthermore the corresponding dark energy EoS parameter is

wφ =
Pφ

ρφ
=

(φ̇2/2)− V (φ)

(φ̇2/2) + V (φ)
(11)

which means that when wφ < − 1
3 then φ̇2 < V (φ). On the other hand, if the kinetic term of the scalar field is

negligible with respect to the potential energy, i.e. φ̇2

2 ≪ V (φ), then the equation of state parameter is wφ ≃ −1.
From the above analysis it becomes clear that the unknown quantities of the problem are a(t), φ(t) and V (φ)

whereas we have only two independent differential equations available namely Eqs. (7) and (10). Therefore, in
order to solve the system of differential equations we need to make an additional assumption (ansatz). This usually
concerns the functional form of the scalar field potential V (φ). In the literature, due to the unknown nature of DE,
there are many forms of this potential which describe differently the physical features of the scalar field (for instance
see [2–4, 25–32]).
As far as the exact solution of the field equations (6), (7) and (10) is concerned there are few solutions with spatial

curvature [33, 34] and even fewer solutions are known for a perfect fluid and a scalar field [19, 35–38]. A special
solution for a spatially flat FLRW spacetime (K = 0) which contains a perfect fluid with a constant equation of state
parameter Pm = (γ − 1)ρm and a scalar field with a constant equation of state parameter wφ = γφ − 1 = Pφ/ρφ, has
been found in [3]. Specifically in [3] it has been shown that under these assumptions one solves the field equations
and finds the potential V (φ):

V (φ) = 3H2
0 (1− Ωm0)

(

1− γφ
2

)

(

1− Ωm0

Ωm0

)

γφ
γ−γφ

[

sinh

(√
3
γ − γφ√

γφ
(φ− φ0)

)]− 2γφ
γ−γφ

. (12)

Evidently, this solution is a special solution, in the sense that it exists for specific initial conditions, for example with
wφ (z) constant.
In the following we consider a spatially-flat FLRW spacetime with a perfect fluid Pm = (γ − 1) ρm and a scalar

field and assume that the potential has the generic form

V (φ) = V0 [α cosh (pφ) + β sinh (pφ)]
q
, (13)

where V0, α, β, p,and q are constants. This potential (13) is a generalization of (12) and our aim is to determine
exact solutions of the field equations for a particular relation between the constants p, q of the potential (13) and the
barotropic parameter γ of the perfect fluid.
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3. PRELIMINARIES

In this section, we show that if the WdW equation admits Lie symmetries which form an Abelian Lie algebra, then
the WdW equation is Liouville integrable; that is, the field equations can be solved by quadratures.

3.1. Lie and Noether point symmetries

A Lie symmetry of a differential equation H = H(xi, uA, uA,i , u
A
,ij) is the generator of the one parameter point

transformation which leaves invariant the differential equationH . That means that ifX =ξi(xk, uB)∂i+η
A(xk, uB)∂ηA

is a Lie symmetry for H, then there exists a function λ such that the following condition holds [39, 40]

X
[2](H) = λH , modH = 0 (14)

where X
[2] = X+ ηAi ∂uA

,i
+ ηAij∂uA

,ij
, is the second prolongation vector1 of X.

The importance of Lie symmetries is that each symmetry can be used to reduce the number of dependent variables.
Solutions which follow from the application of Lie symmetries are called invariant solutions.
For differential equations which arise from a variational principle there exists a special class of Lie symmetries, the

Noether symmetries. Noether symmetries are Lie symmetries which leave the action integral invariant. According to
Noether’s theorem to each Noether symmetry there corresponds a conserved Noether current.
The condition for a Noether symmetry is that there exists a vector field Ai = Ai(xi, u) such that the following

condition is satisfied:

X
[1]L+ LDiξ

i = DiA
i . (15)

The corresponding Noether current Ii is defined by the expression

Ii = ξk
(

uAk
∂L

∂uAi
− L

)

− ηA
∂L

∂uAi
+Ai . (16)

and it is conserved, that is, it satisfies the relation DiI
i = 0 [39].

As we discussed above, the method of using the Noether symmetries of the cosmological field equations has been
applied by many authors in scalar-field cosmology, in f(R) gravity and other modified gravity theories. Recently
[23, 41], it has been proposed that the cosmological model will be determined by the existence of Lie symmetries of
the WdW equation of quantum cosmology.
This selection rule is more general than that imposed by the Noether symmetries of the field equations, because, as it

has been shown in [41], the WdW equation is possible to admit Lie point symmetries while the Lagrangian of the field
equations does not admit Noether point symmetries. In the following we discuss the application of Lie symmetries
in the WdW equation. Specifically, we discuss the reduction process and we show how to construct Noetherian
conservation laws for a conformally related Lagrangian of the field equations from the Lie point symmetries of the
WdW equation.

3.2. Minisuperspace and invariant solutions of the WdW equation

The Lagrangian of the field equations in minimally coupled scalar field cosmology in a spatially flat FLRW spacetime
with a perfect fluid with a constant equation of state parameter Pm = (γ − 1) ρm is

L
(

a, ȧ, φ, φ̇
)

= −3aȧ2 +
1

2
a3φ̇2 − a3V (φ)− ρm0a

−3(γ−1). (17)

The field equations are the Euler-Lagrange equations of (17) with respect to the variables (a, φ) and are equations
(7) and (10). As the Lagrangian is independent of time, we also have the Hamiltonian constraint (6), which, in terms
of the momenta pa = ∂L

∂ȧ
, pφ = ∂L

∂φ̇
, becomes

− 1

12a
p2a +

1

2a3
p2φ + a3V (φ) + ρm0a

−3(γ−1) = 0. (18)

1 Where ηAij...,jn = Djn

(

ηAij...jn−1

)

− uA
,ij...jn−1k

Dj

(

ξk
)

and Di is the total derivative.
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Finally, the field equations are equivalent to the following Hamiltonian system:

ȧ = − 1

6a
ṗa , φ̇ =

1

a3
pφ , ṗφ = −a3V,φ,

ṗa = − 1

12

p2a
a2

+
3

2

p2φ
a4

− 3a2V (φ) + (3γ − 3) ρm0a
−3γ+2 = 0.

The WdW equation is the Klein Gordon equation which is defined by the conformal Laplacian operator. The
general conformal Klein Gordon equation is:

∆Ψ +
n− 2

4 (n− 1)
R
(

xk
)

Ψ+ Veff
(

xk
)

Ψ = 0, (19)

where ∆ = 1√
|g|

∂
∂xi

(

√

|g| ∂
∂xj

)

is the Laplacian operator, gij is the metric of the space and n = dim gij . We brake the

Lagrangian (17) in two parts. The kinematic part which we consider as a Riemannian space with dimension n = 2,
and line element

dŝ2 = −6ada2 + a3dφ2 (20)

which we call the minisuperspace, and the dynamic part which is defined by the potential Veff (a, φ) =
2a3

[

V (φ) + ρm0a
−3γ
]

. Specifically, the minisuperspace is a 2-dimensional Lorentz manifold whose coordinates are
the scale factor and the scalar field. The symmetries of this space are related to the Lie and the Noether symmetries
of the dynamical field equations. The metric of the minisuperspace is defined by the kinematic part of the Lagrangian
(17) for the dynamics of the field. The rest of the Lagrangian is considered to be the ”effective potential” of the
dynamical system that is defined by the gravitational and scalar fields. Therefore, using the minisuperspace (20) the
WdW equations becomes

∆Ψ + 2a3
[

V (φ) + ρm0a
−3γ
]

Ψ = 0, (21)

where the Laplacian operator ∆ is given by

∆ ≡ − 1

6a

(

∂2

∂a2
+

∂

∂a

)

+
1

a3
∂2

∂φ2
. (22)

In [23], it was proved that the Lie point symmetries of equation (19) are related to the conformal algebra of the
minisuperspace gij . More specifically, it has been shown that:
A. The general form of the Lie point symmetry vector is

X = ξi
(

xk
)

∂i +

[

(2− n)

2
ψΨ+ a0Ψ

]

∂Ψ, (23)

where ξi
(

xk
)

is a conformal Killing vector of the minisuperspace, with conformal factor ψ
(

xk
)

.
B. The Lie point symmetry condition which constrains the potential is LξVeff + 2ψVeff = 0.
We require now that equation (19) admits as Lie point symmetry the vector (23). Then under the coordinate

transformation xi → yi so that ξi
(

xk
)

∂i → ∂J , the Lie symmetry vector (23) becomes

X = ∂J +

[

2− n

2
ψΨ+ a0Ψ

]

∂Ψ. (24)

There exist two equivalent methods to reduce the WdW equation by means of the symmetry vector (24).
a) In the first method we calculate the zero-order invariants from the Lagrange system (b 6= J),

dyb

0
=
dyJ

1
=

dΨ
(

2−n
2 ψ + a0

)

Ψ
, (25)

which turn out to be

yb, Ψ
(

yb, yJ
)

= Φ
(

yb
)

exp

[∫ (

2− n

2
ψ + a0

)

dyJ
]

. (26)
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b) The second method is to write the Lie point symmetry as a Lie Bäcklund symmetry. The Lie point symmetry
(24) is equivalent to the contact symmetry

X̄ =

(

ΨJ −
(

2− n

2
ψ + a0

)

Ψ

)

∂Ψ, (27)

from which we obtain the differential equation

ΨJ −
(

2− n

2
ψ + a0

)

Ψ = a1Ψ. (28)

We set a0 + a1 = Q0 and find that the solution of the reduced equation is

Ψ
(

yb, yJ
)

= Φ
(

yb
)

exp

[∫ (

2− n

2
ψ +Q0

)

dyJ
]

(29)

from which it follows again that the coordinate yJ is factored out from the solution of the wavefunction Ψ
(

yb, yJ
)

.

In the WKB approximation, Ψ
(

xk
)

∼ eiS(x
k) the WdW equation reduces to a (null) Hamilton-Jacobi equation.

The latter can be seen as the Hamilton-Jacobi equation of a Hamiltonian system moving in the same geometry under
the conformal Laplace operator of the WdW equation and with the same potential. Specifically, the WdW equation
(21) in scalar field cosmology provides the null Hamilton-Jacobi equation:

− 1

12a

(

∂S

∂a

)2

+
1

2a3

(

∂S

∂φ

)2

+ a3V (φ) + ρm0a
−3(γ−1) = 0. (30)

Furthermore, in [23] it was also shown that the symmetries of the WdW equation can be used in order to find
Noether point symmetries for classical particles. However, the null Hamilton-Jacobi equation is separable if the n-
dimensional Hamiltonian system admits n conservation laws ΦI (symmetries) i.e. n corresponding Noether symmetries
which are independent and in involution, i.e. {ΦI ,ΦK} = 0 where {., .} denotes the Poisson bracket. If this is the
case, then the Hamiltonian system is Liouville integrable [42]. That means that it is possible for the WdW equation
to admit an invariant solution and at the same time the classical Hamiltonian system to be not integrable. Therefore,
in order for the WdW equation to admit an invariant solution and the Hamiltonian system to be Liouville integrable,
the n- dimensional WdW equation must admit at least n− 1 independent Lie point symmetries, XI , which form an
Abelian Lie algebra. If this is the case, the zero-order invariants of these n − 1 Lie point symmetries will give the
solution of the WdW equation in the form

Ψ
(

x̄n, x̄J
)

= Φ(x̄n) exp

[

n−1
∑

J=1

∫ (

2− n

2
ψ −QJ

)

dx̄J

]

, (31)

where QJ are constants, J = 1, 2, ..., n− 1, and the function Φ (x̄n) satisfies a linear second-order ODE. That is, when
the field equations are Liouville integrable by Noether point symmetries then there exists a coordinate system where
the WdW equation admits n oscillatory terms in the solution and vice versa. It is important to note that this result
is more general and includes the one given in [13] when ψ

(

xk
)

= 0; that is, if one considers the Killing algebra of the
minisuperspace only. We conclude that for the reduction/solution of the WdW we may consider directly the Lie point
symmetries of the WdW equation which are given in terms of the CKVs of the space instead of restricting ourselves
to the Noether point symmetries only, as has been done in [13].
Below, we study the Lie point symmetries and the WdW equation for the potentials of the form (13) which generalize

the work done in [3, 4].

4. LIE POINT SYMMETRIES OF THE WHEELER-DEWITT EQUATION

We are considering a scalar field cosmological model which contains a quintessence scalar field with the potential of
Eq.(13) and a perfect fluid with equation of state parameter wm = (γ − 1). Under these assumptions the Lagrangian
of the field equations (17) becomes

L
(

a, ȧ, φ, φ̇
)

= −3aȧ2 +
1

2
a3φ̇2 − V0a

3 [α cosh (pφ) + β sinh (pφ)]q − ρm0a
−3(γ−1). (32)
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From previous work on Noether point symmetries in scalar-field cosmology [19], and on dynamical symmetries, [19]
we know that this Lagrangian admits conservation laws when: a. the potential reduces to the exponential potential
i.e. β = ±α, and b. we have the so called Unified Dark Matter (UDM) potential (see Paliathanasis et al. [19] and

references therein), i.e. p =
√
6
4 and q = 2, when the extra fluid is dust, namely (wm, γ) = (0, 1).

In the following we consider α 6= β which implies that the current analysis generalizes the previous works of [3, 19].
The Hamiltonian (18) of the field equations for the Lagrangian (32) in terms of the momenta pa, and pφ, is

− 1

12a
p2a +

1

2a3
p2φ +

(

V0a
3 [α cosh (pφ) + β sinh (pφ)]

q
+ ρm0a

−3(γ−1)
)

= 0, (33)

and the WdW equation (21) is

− 1

12a
Ψ,aa +

1

2a3
Ψ,φφ − 1

12a2
Ψ,a +

(

V0a
3 [α cosh (pφ) + β sinh (pφ)]q + ρm0a

−3(γ−1)
)

Ψ = 0. (34)

Applying the results of [23], we find that the second-order partial differential equation (34) admits the generic Lie
point symmetry vector

X = αX1 + βX2 + a0Ψ∂Ψ (35)

where a0 is a constant2,

X1 = a
3µ
2

[√
6

6
a sinh

(√
6

4
µφ

)

∂a + cosh

(√
6

4
µφ

)

∂φ

]

(36)

X2 = a
3µ
2

[√
6

6
a cosh

(√
6

4
µφ

)

∂a + sinh

(√
6

4
µφ

)

∂φ

]

. (37)

and the constants p, q, γ are related as follows:

p =

√
6

4
µ , q = − 4

µ
− 2 , γ = µ+ 2. (38)

That is, the effective potential of the field equations is

Veff =



V0a
3

[

α cosh

(√
6

4
µφ

)

+ β sinh

(√
6

4
µφ

)]− 4
µ
−2

+ ρm0a
−3(µ+1)



 . (39)

Therefore, for µ = −1, we have that q = 2, γ = 1 i.e. we have the UDM potential with dust (for the exact solution
and the observation constraints of that model see [19]).
If the perfect fluid is a barotropic fluid, that is the barotropic index γ ∈ [1, 2] then, from (38), µ ∈ [−1, 0) since

µ 6= 0. However, if we require the perfect fluid to have a negative equation of state parameter, like a cosmological
constant, then γ ∈ [0, 2) which means that µ ∈ [−2, 0). Furthermore, when ρm0 = 0, i.e. there is no extra fluid, we
have that µ ∈ R∗. In the following, we apply the Lie symmetry vector (35) in order to construct the invariant solution
of the WdW equation (34) and to solve the null Hamilton-Jacobi equation of the Hamiltonian (33) in order to reduce
the order of the field equations. In the following section we study the case αβ = 0 and in appendix B we present the
general solution for αβ 6= 0.

5. EXACT SOLUTIONS FOR THE cosh / sinh POTENTIAL

In this section we determine the exact solution of the field equations and of the WdW equation for the quintessence
scalar field. We consider the case α = 1, β = 0 (the case α = 0, β = 1 is equivalent to that case). Under the
coordinate transformation3:

a =
(

x2 − y2
)− 1

3µ , φ =
2
√
6

3µ
arctanh

( y

x

)

, (40)

2 The fields X1,X2 are CKVs of the minisuperspace (20).
3 We assume µ < 0. However when ρm0 = 0 it is possible to have µ > 0. In that case all calculations remain valid provided we replace
µ = −ν in (39) and in the subsequent coordinate transformations.
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the effective potential (39) becomes

Veff = V0
(

x2 − y2
)

1+µ
µ x−

4
µ
−2 (41)

and the WdW equation is

(

x2 − y2
)

1
µ
+1
[

Ψ,yy −Ψ,xx +
(

2V ′
0x

− 4
µ
−2 + 2ρm0

)

Ψ
]

= 0 (42)

where V ′
0 = 3

8µ
2V0, ρ

′
m0 = 3

8µ
2ρm0. In these coordinates the Lie point symmetry vector (35) is X = ∂y + a0Ψ∂Ψ.

Therefore, the solution of equation (42) admits an oscillatory term, i.e. Ψ (x, y) = ea0yΦ (x) where

Φ,xx −
(

2V ′
0x

− 4
µ
−2 + 2ρ′m0 + a20

)

Φ = 0. (43)

Furthermore, in the WKB approximation, Ψ ∝ eiS and equation (42) becomes

(

x2 − y2
)

1
µ
+1

[

(

∂S

∂y

)2

−
(

∂S

∂x

)2

+ 2V ′
0x

− 4
µ
−2 + 2ρ′m0

]

= 0, (44)

which is the null Hamilton-Jacobi equation which describes the field equations. The solution of (44) is

S (x, y) = c1y ±
∫ √

c21 + 2ρ′m0 + 2V ′
0x

− 4
µ
−2. (45)

Therefore, the field equation is reduced to the following two-dimensional system,

(

x2 − y2
)−( 1

µ
+1)

ẋ = ∓
√

c21 + 2ρ′m0 + 2V ′
0x

− 4
µ
−2 ,

(

x2 − y2
)−( 1

µ
+1)

ẏ = c1. (46)

In order to simplify the system (46) further we apply the transformation dτ =
(

x2 − y2
)

1
µ
+1
dt = a−3(µ+1)dt, and

the dynamical system becomes

x′ = ∓
√

c21 + 2ρ′m0 + 2V ′
0x

− 4
µ
−2 , y′ = c1 (47)

The exact solution of the system (47) is expressed in terms of elliptic functions4.
We perform a numerical integration of the non-linear system (46) and in fig. 1 we give the evolution of the equation

of state parameter for the scalar field wφ (a) and for the total fluid wtot (a) for various values of the constant c1 in
the case µ = −1. For µ = −1 the extra perfect fluid is dust, i.e. (wm, γ) = (0, 1). Concerning the values of the
cosmological parameters, we use the Planck priors [50], namely Ωm0 = 0.308 and H0 = 67.8 km/s/Mpc which imply
ρm0 = 3Ωm0H

2
0 ≃ 4.25 × 103, in units of κ = 8πG ≡ 1. From fig.1, we observe that the scalar field mimics the

cosmological constant for small values of the constant c1, however for large values of c1 the scalar field has an EoS
parameter wφ > −1. We find that within a physical range of the above cosmological parameters the corresponding
dark energy EoS parameter deviates by ∼ 1 − 2%. Furthermore, from the evolution of wtot(a) we see that there is a
matter-dominated epoch. However, as the parameter c1 increases, this epoch has shorter duration. In what follows
we study the case c1 = 0 and express analytically the scalar field and the Hubble function in terms of the scale factor.

5.1. Subcase c1 = 0.

When c1 = 0, from (46) we have y (t) = y0, hence from (40) it follows that x2 = y20 + a−3µ. Furthermore, from the
transformation (40) and from (46) we find that

wφ (a) =
y20

[

Ωm0

ΩΛ0
+
(

y20 + a−3µ
)− 2

µ
−1
]

− a−3µ
(

y20 + a−3µ
)− 2

µ
−1

y20

[

Ωm0

ΩΛ0
+ (y20 + a−3µ)

− 2
µ
−1
]

+ a−3µ (y20 + a−3µ)
− 2

µ
−1

(48)

4 It is easy to see that when µ = −1 then dτ = dt, which is the UDM solution for ω2 = 0 of [19].
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FIG. 1: The evolution of the equation of state parameters wφ (a) for the scalar field and wtot (a) for the total fluid for the
Lagrangian (32) with α = 1, β = 0. In (46) we have taken the minus sign and µ = −1 (dust fluid: wm = 0). For the numerical
solution we use (x, y)

t→0 = (0.01, 0.0099) , log(V0) = 4, ρm0 = 3Ωm0H
2
0 with Ωm0 = 0.308 and H0 = 68Km/s/Mpc (or

ρm0 = 4.25× 103 in units of 8πG ≡ 1). The solid line is for log(c1) = 0; the dashed line is for log(c1) = 1; the dotted line is for
log(c1) = 2.

where we have set

ΩΛ0 =
V0
3H2

0

, Ωm0 =
ρm0

3H2
0

. (49)

Here, we would like to note that we call ΩΛ0 the density parameter of the cosmological constant-like term and Ωm0

the parameter of the perfect fluid5.
Therefore, for the scalar field density ρφ (a) we have:

ρφ (a) = 3ΩΛ0H
2
0a

−6

[

y20

(

Ωm0

ΩΛ0
+
(

y20 + a−3µ
)− 2

µ
−1
)

+ a−3µ
(

y20 + a−3µ
)− 2

µ
−1
]

. (50)

Then (6) implies that

E2(a) =
H2(a)

H2
0

= Ωm0a
−3(µ+2) +ΩΛ0a

−6

(

y20

[

Ωm0

ΩΛ0
+
(

y20 + a−3µ
)− 2

µ
−1
]

+ a−3µ
(

y20 + a−3µ
)− 2

µ
−1
)

. (51)

We note that if y20 + a−3µ ≈ a−3µ then

E2(a) = Ωm0a
−3(µ+2) +ΩΛ0

(

1 + y20

[

Ωm0

ΩΛ0
a−6 + a3µ

])

. (52)

If y0 = 0, then (52) becomes E2(a) = Ωm0a
−3(µ+2) + ΩΛ0 which is obvious because when y0 = 0, we have φ = 0

and V (φ) = V0, which means that the scalar field acts as a cosmological constant. Furthermore, from (51) and
H (a = 1) = H0, we have the constraint

(

1 + y20
)

[

Ωm0 +ΩΛ0

(

1 + y20
)− 2

µ
−1
]

− 1 = 0. (53)

In the following section we consider special values of the barotropic constant γ = µ+ 2.

5 In general, for y0 6= 0, hold Ωm0 + ΩΛ0 6= 1; however the equality holds only when the constant y0 = 0 [V (φ) = V0] which means that
the scalar field act as a cosmological constant, i.e. wφ = −1, see eq. (53).
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5.1.1. Dust fluid versus the effective dark energy EoS

When the perfect fluid is dust then µ = −1, γ = 1 (wm = 0 for other cases see appendix A) Eq.(51) takes the
following form

E2(a) = Ωm0a
−3 +ΩΛ0

[

1 + 2y20a
−3 + y20

(

Ωm0

ΩΛ0
+ y20

)

a−6

]

= Ωm0a
−3 +∆H(a) . (54)

It should be mentioned that the last term ∆H(a) of the normalized Hubble function (54) introduces a cosmological
constant-like fluid, dust and stiff matter. Furthermore, from (53) we have the following algebraic equation

ΩΛ0y
4
0 + (2ΩΛ0 +Ωm0) y

2
0 + (Ωm0 +ΩΛ0 − 1) = 0 (55)

hence, the discriminant of the polynomial (55) (for y20) is

D = (2ΩΛ0 +Ωm0)
2
+ 4ΩΛ0 (1− Ωm0 − ΩΛ0) , (56)

and D ≥ 0 when (1− Ωm0 − ΩΛ0) ≥ 0. Recall that Ωm0 ∈ [0, 1] ,ΩΛ0 ∈ (0, 1], and because y20 > 0 we have the solution

y20 =

√

(Ωm0)
2
+ 4ΩΛ0 − (2ΩΛ0 +Ωm0)

2ΩΛ0
. (57)

Let us now compute the effective dark energy EoS wφ,eff for the scalar field model introduced above. It is well
known that one can express the effective dark energy EoS parameter in terms of the normalized Hubble parameter
[43]

wφ,eff (a) =
−1− 2

3
d lnE
d lna

1− Ωm(a)
, (58)

where Ωm(a) = Ωm0a
−3

E2(a) . Inserting the second equality of Eq.(54) into Eq.(58), the effective dark energy EoS

parameter takes the following form (see [44]):

wφ,eff (a) = −1− 1

3

d ln∆H

d ln a
(59)

which implies that any modifications to the effective EoS parameter are included in the second term of Eq. (59).
Inserting Eq. (54) into Eq. (59) it is straightforward to obtain a simple analytical expression for the effective dark
energy EoS parameter:

wφ,eff (a) = −1 +
2y20a

−3 + 2y20(
Ωm0

ΩΛ0
+ y20)a

−6

1 + 2y20a
−3 + y20(

Ωm0

ΩΛ0
+ y20)a

−6
. (60)

5.1.2. The total case

Our dynamical system is integrable in the case of a single perfect fluid. Here, we introduce two perfect fluids
(for example dust and radiation). Consider that we have dust (wm = 0) and another perfect fluid with equation of

state parameter Pf = wfρf (for radiation wf = 1/3), and
(

Ωf0

ΩD0

)

≪ 1. The latter implies that the equation of state

parameter which is associated with the two perfect fluids is

w̄m =
Pm + Pf

ρm + ρf
=

wfρf

ρm + ρf
=

wf

(

Ωf

Ωm

)

1 +
(

Ωf

Ωm

) ≈ wf

(

Ωf

Ωm

)

, w̄2
m ≈ 0 (61)

that is, γ = 1+ w̄m and µ = −1+ w̄m. When wf > 0 we have that w̄m > 0 and when wf < 0 holds we have w̄m < 0.
We replace (61) in (51) and perform a Taylor expansion near w̄m = 0 (γ = 1 or µ = −1). We find

E2(a) = E2
γ=1(a)− 3Ωm0a

−3 ln (a) w̄m +ΩΛ0F (a) w̄m (62)
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FIG. 2: The evolution of the equation of state parameters wtot (a) for the total fluid for the Lagrangian (32) with α = 1, β = 0
where in (46) we take the minus sign and c1 = 0. For the numerical solution we use (x, y)

t→0 = (0.01, 0.0099) , log(V0) = 4
and ρm0 = 4.25×103 . The solid line is for µ = −1 [dust: (wm, γ) = (0, 1)], the dash-dotted line is for µ = −0.95 and the dotted
line is for µ = −1.05.

where the normalized Hubble parameter E2
γ=1(a) is given by Eq. (54) and

F (a) = 2 ln
(

y20 + a3
) (

1 + y20a
−3
)2 − 6

(

y20 + a3
)

a−3 ln a

where F (a→ 1) = 2 ln
(

y20 + 1
) (

1 + y20
)2

and when y0 = 0, F (a) = 0. In fig. (2) we give the numerical solutions of
the total EoS parameter wtot (a) for µ = 1± 0.05 and c1 = 0.
In appendix A, we give the exact solutions for the Hubble function, H (a), for the cases where γ = 4

3 (radiation

fluid) and γ = 2
3 (curvature-like fluid).

6. DYNAMICAL ANALYSIS

In order to complete our analysis of the model with Lagrangian (32), we perform a dynamical analysis of the field
equations by studying the fixed points of the field equations. We introduce the new dimensionless variables [2, 45]

x =
φ̇√
6H

, y =

√
V√
3H

, Ωm =
ρm
3H2

, λ = −V,φ
V

(63)

and the lapse time N = ln a. In the new variables the field equations reduce to the following first-order ODEs

dx

dN
= −3x+

√
6

2
λy2 +

3

2
x
[

(1− wm)x2 + (1 + wm)
(

1− y2
)]

(64)

dy

dN
= −

√
6

2
λxy +

3

2
y
[

(1− wm)x2 + (1 + wm)
(

1− y2
)]

(65)

dλ

dN
= −

√
6λ2 (Γ− 1)x (66)

where Γ =
V,φφV

V 2
,φ

and the Friedmann equation (6) gives the constraint Ωm = 1− Ωφ, where Ωφ = x2 + y2.

In this case the second Friedmann equation (7) becomes

2

3

Ḣ

H2
= −1− wm − (1− wm)x2 − (1 + wm)

(

1− y2
)

(67)
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TABLE I: Fixed points and cosmological parameters

Point (x,y, λ) Ωm wtot wφ Acceleration

O (0, 0, λ) 1 wm ∄ wm < − 1
3

A(±) (1, 0,±qp) 0 1 1 No

B(±) (−1, 0,±qp) 0 1 1 No

C (0, 1, 0) 0 −1 −1 Yes

D(±)

(

±
√

6
6
qp,

√

1− (qp)2

6
,±qp

)

0 −1 + (qp)2

3
−1 + (qp)2

3
|qp| <

√
2

E(±+)

(

±
√
6(1+wm)

2qp
,
√

6
√

1−w2
m

2qp
,±qp

)

1− 3(1+wm)

(qp)2
wm wm wm < − 1

3

E(±−)

(

±
√
6(1+wm)

2qp
,−

√
6
√

1−w2
m

2qp
,±qp

)

1− 3(1+wm)

(qp)2
wm wm wm < − 1

3

TABLE II: Eigenvalues of fixed points

Point m1 m2 m3

O 0 3
2
(1 +wm) − 3

2
(1− wm)

A(±) 3 (1− wm) ±2p
√
6 3∓

√
6

2
qp

B(±) 3 (1− wm) ∓2p
√
6 3±

√
6

2
qp

C −3 (1 + wm) − 3
2

(

1−
√

1− 4qp2
)

− 3
2

(

1 +
√

1− 4qp2
)

D(±) −3 (1 + wm) + (qp)2 −3 + (qp)2

2
2qp2

E(±,±)
6
q
(1 + wm) − 3

4

[

(1− wm) + ∆
qp

]

− 3
4

[

(1− wm)− ∆
qp

]

which gives that the total EoS parameter wtot as a function of wm, x and y:

wtot = wm + (1− wm) x2 − (1 + wm) y2. (68)

Furthermore, the EoS parameter wφ for the scalar field is wφ = x2−y2

x2+y2 . Note that at any point (x0, y0, λ) , from (67)

the solution of the scalar factor is a power law as long as wtot = const.; that is, a (t) ∝ t
2

3(1+wtot) for wtot 6= −1 and
a (t) = a0e

H0t for wtot = −1 .
In the following we consider in (32) β = 0, so that the potential of the scalar field is V (φ) = V0 cosh

q (pφ) [46–48].

For this potential we write Γ (φ) as a function of λ, i.e. Γ (λ) = 1 + qp2

λ2 − 1
q
, and equation (66) becomes

dλ

dN
= −

√
6

q
(qp− λ) (qp+ λ)x. (69)

Equations (64), (65) and (69) describe an autonomous dynamical system in the E3 space. Furthermore from the
constraints 0 ≤ Ωφ ≤ 1, y ≥ 0, the variables (x, y) are bounded in the ranges x ∈ [−1, 1], y ∈ [0, 1] from which follows
that that the points (x, y) belong to a half disk; however for the parameter λ there is no constraint that implies that
λ ∈ R [45, 49]. Furthermore, we consider wm ∈ (−1, 1). The fixed points of the dynamical system (64), (65) and
(69) and the corresponding cosmological parameters are given in Table I. The eigenvalues of the linearized dynamical
system near the fixed points are given in table II6.
Point O exists for all values of the parameter λ and corresponds to the matter epoch (Ωm = 1) ; the total EoS

parameter is wtot = wm . Since there exists at least one positive eigenvalue, m2 > 0, the point O is always unstable.
At this point the universe accelerates if and only if wm < − 1

3 . At the points A(±) and B(±) the universe is dominated
by the kinetic energy of the scalar field (Ωm = 1, V (φ) = 0) which means that the scalar field acts as a stiff fluid,
i.e. ρφ ∝ a−6 which provides a decelerating universe. These points exist when λ = ±qp, for arbitrary q, p. For these

6 Where in table II ∆ =

√

(1− wm)
(

24 (1 +wm)2 − (7 + 9wm) (qp)2
)
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FIG. 3: Phase portrait in the x−y plane and in the E3 space for the potential V (φ) = V0 cosh
q (pφ) . Left-hand figures are for

the variables (p, q, wm) = (1,−1.5, 0) and the right-hand figures are for the variables (p, q, wm) = (1,−3, 0) . For (pq)2 > 3, the
stable points are the points E(±) (scaling solutions) while for (pq)2 < 3 the two stable points are the points D±. The solid lines
are for the initial condition λ = pq, the dashed lines for λ = −pq, and the dotted lines for λ = 0.

points there exist positive eigenvalues of the linearized system, m1 > 0, for wm ∈ (−1, 1), hence these critical points
are always unstable.
Point C is the de Sitter solution, (Ωm = 0, wtot = −1) where the scalar field acts as a cosmological constant and

the matter component vanished. This point exists for all values of the constants q, p and could be the future attractor
of the universe. From the eigenvalues of Table II for that point we have that it is stable when q > 0 (for a similar
solution see [51]). The points D(±) correspond to a scalar field dominated universe (Ωm = 0) and exist only when

|qp| <
√
6. The total EoS parameter is that of the scalar field wφ = −1 + (qp)2

3 which gives an accelerated universe

when |qp| <
√
2. The points D(±) are stable for q < 0 and |qp| <

√

3 (1 + wm). Hence, we see that D(±) are stable

points and describe an accelerated universe when wφ < − 1
3 and |qp| <

√
2. Furthermore, in the limit q → 0−, these

points correspond to the de Sitter universe; when q → 0− then V (φ) → V0.

Finally, the points E(±,±) are the so called ’scaling’ solutions where Ωm = 1− 3(1+wm)

(qp)2
and the scalar field mimics

the matter component of the universe, i.e. wφ = wm. The points E(±,+) exist when qp >
√

3 (1 + wm) and they are

stable when q, p < 0 whereas the points E(±,−) exist when qp < −
√

3 (1 + wm) and are stable when q < 0, p > 0.

The total EoS parameter is wtot = wm so they lead to an accelerated universe when wm < − 1
3 .

In fig. 3, we give the two-dimensional phase portrait in the x − y plane and the three-dimensional phase portrait
of the model with values (p, q, wm) = (1,−1.5, 0) and (p, q, wm) = (1,−3, 0). We observe that for (pq)2 < 3 the two
stable points are the points D(±) whereas for (pq)

2 > 3 the stable points are E(±,−).
It is important to study the case when the constants q, p, wm are related to the constant µ so as to render the

integrable field equations (38). This is the case we studied in the previous section. Since we considered wm ∈ (−1, 1)
we have that µ ∈ (−2, 0).
Hence, for the integrable case we have that the points O, A(±), B(±), D(±) exist and they are always unstable.

The point O has wtot < − 1
3 when µ ∈

(

−2,− 4
3

)

and the points D(±) describe an accelerated universe so long as

µ ∈
(

−2,−2 + 2
√
3

3

)

. The point C exists and it is the unique stable point. Finally, the tracker solutions, i.e. points

E(±,±), do not exist for µ ∈ (−2, 0). The existence and the stability of the fixed points for general values q, p and for
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TABLE III: Fixed points and their stability for the general potential and for the integrable subcases

Point Existence Stability Stability for µ ∈ (−2, 0) Acceleration

O p, q ∈ R∗ Unstable Unstable µ ∈
(

−2,− 4
3

)

A(±) p, q ∈ R∗ Unstable Unstable No

B(±) p, q ∈ R∗ Unstable Unstable No

C p, q ∈ R∗ Stable for q ∈ R∗+ Stable Yes

D(±) |qp| <
√
6 Stable for q ∈ R∗− , |qp| <

√

3 (1 + wm) Unstable µ ∈
(

−2,−2 + 2
√

3
3

)

E(±,+) qp >
√

3 (1 + wm) Stable for q ∈ R∗− , p < 0 ∄ ∄

E(±,−) qp < −
√

3 (1 +wm) Stable for q ∈ R∗− , p > 0 ∄ ∄
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FIG. 4: Phase portrait in the x−y plane and in the E3 space for the potential V (φ) = V0 cosh
q (pφ) with variables (p, q, wm) =

(

−
√
6

4
, 2, 0

)

, which corresponds to the integrable case for µ = −1. The point C is the unique stable point. The points D(±)

act as attractors in the plane (x− y) for λ = ±
√
6

2
. From the right-hand plot we observe that the solutions reach a boundary

where Ωm0 = 0, wφ > −1 and from there they move to the de Sitter point C. The solid lines are for initial condition λ = pq,
the dashed lines for λ = −pq, and the dotted lines for λ = 0.

the integrable case are given in Table III.
In fig. 4 we give the two-dimensional phase portrait in the x− y plane and the three-dimensional phase portrait of

the the model with values (p, q, wm) =
(

−
√
6
4 , 2, 0

)

, which correspond to the integrable case for µ = −1. The point

C is the unique stable point. We observe that the points D(±) act as attractors in the plane (x− y) for λ = ±
√
6
2

and the solutions reach the boundary where Ωm = 0, and move to the de Sitter points (wφ = −1). It is important to
note that the existence of conservation laws in the field equations which follow from the Lie point symmetries of the
WdW equation, i.e. the dynamical system is Liouville integrable, gives us constraints on the free parameters of the
model so that there exists a unique stable point which describes the de Sitter universe.

7. CONCLUSIONS

We have applied Lie symmetry methods in order to extend the works of Rubano and Barrow [3] and Paliathanasis
et al. [19] in scalar field cosmology for a general family of potentials, V (φ). We have shown that there exists a unique
connection between the Lie point symmetries of the WdW equation and the conservation laws of the field equations.
We considered a general form of V (φ) which contains hyperbolic functions for a scalar field with a perfect fluid and
we have investigated the existence of Lie point symmetries of the WdW equation. This approach is more general than
the application of Noether point symmetries. We recovered the result of [3], that is, that in scalar field cosmology
amongst the variety of V (φ) potentials the hyperbolic types play a key role because they admit conservation laws.
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Moreover, based on the Lie point symmetries of the WdW equation, we have obtained the exact solutions of the field
equations. Finally, we have performed a dynamical system analysis by studying the fixed points of the field equations
in dimensionless variables. We found various dynamical cases among which, if the current cosmological model is
Liouville integrable there is a unique stable point which describes the de-Sitter universe as a late-time attractor for
the dynamics.
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Appendix A: Solutions with radiation and curvature

Here we provide some details concerning the solutions of section 5.1. Specifically, for a radiation perfect fluid, γ = 4
3

(hence µ = − 2
3 (wm = 1/3) and Ωr0 ≡ Ωm0) Eq.(51) gives

E2 (a) =
H2 (a)

H2
0

= Ωr0a
−4 +ΩΛ0

[

1 + 3y20a
−2 + 3y40a

−4 + y20

(

Ωr0

ΩΛ0
+ y20

)

a−6

]

. (A1)

On the other hand, when γ = 2
3 (or µ = − 4

3 ), the perfect fluid has an equation of state wm = − 1
3 (which can also

be seen as the curvature term in a non-flat FLRW spacetime); then ΩK0 ≡ Ωm0 and:

E2 (a) =
H2 (a)

H2
0

= ΩK0a
−2 +ΩΛ0

[

√

y20 + a4a−2 + y20

(

ΩK0

ΩΛ0
+
√

y20 + a4
)

a−6

]

. (A2)

This is a solution of the scalar field cosmology in a curved FLRW spacetime.

Appendix B: Exact solution for a general potential

In the general case where α 6= 0 and β = 1 we apply the following coordinate transformations,

a =

[

(

x− y

α

)2

− y2
]− 1

3µ

, φ =
2
√
6

3µ
arctanh

(

y

x− y
α

)

. (B1)

In the new coordinate system the WdW equation becomes

[

(

x− y

α

)2

− y2
]

1+µ
µ
[

−
(

1− 1

α2

)

Ψ,xx +
2

α
Ψ,xy +Ψ,yy +

(

2V ′
0α

− 4
µ
−2x−

4
µ
−2 + 2ρ′m0

)

Ψ

]

= 0, (B2)

where V ′
0 = 3

8µ
2α− 4

µ
−2V0, ρ

′
m0 = 3

8µ
2ρm0 and the Lie symmetry vector is (35) X = ∂y + a0Ψ∂Ψ. Therefore, the

invariant solution of the WdW equation (B2) is Ψ (x, y) = ea0yΦ̄ (x) where Φ̄ (x) satisfies the following second-order
ODE

[

−
(

1− 1

α2

)

Φ,xx +
2α0

α
Φ,x +

(

2V ′
0x

− 4
µ
−2 + 2ρ′m0 + α2

0

)

Φ

]

= 0. (B3)

When α = 1, which is the case of the exponential scalar field, from (B3) we have

Φ̄ (x) = exp



−
(

2ρ′m0 + a20
)

2a0
x+

V ′
0

a0

(

4
µ
+ 1
)x−

4
µ
−1



 . (B4)

Furthermore, in the WKB approximation the WdW equation (B2) becomes the null Hamilton-Jacobi equation

[

(

x− y

α

)2

− y2
]

1+µ
µ

[

−
(

1− 1

a2

)(

∂S̄

∂x

)2

+
2

α

(

∂S̄

∂x

)(

∂S̄

∂y

)2

+

(

∂S̄

∂y

)2

+
(

2V ′
0x

− 4
µ
−2 + 2ρ′m0

)

]

= 0 (B5)
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with solution of the form S̄ (x, y) = S1 (x) + c1y, where

S1 (x) = ∓ α

1− α2

∫ (

c1 +

√

2V ′
0 (α

2 − 1)x−
4
µ
−2 + α2c21 + 2 (a2 − 1)ρ′m0

)

, |α| 6= 1 (B6)

and

S1 (x) =

∫ (

−V
′
0

c1
x−

4
µ
−2 − 1

2
c1 −

ρ′m0

c1

)

dx , α = 1. (B7)

From the solution of the Hamilton-Jacobi equation (B5) we can reduce the equivalent Hamiltonian system of the
field equation to the following system of first order equations

ẋ =

[

−
(

1− 1

α2

)

px +
1

α
py

] [

(

x− y

α

)2

− y2
]

1+µ
µ

, (B8)

ẏ =

[

1

α
px + py

] [

(

x− y

α

)2

− y2
]

1+µ
µ

, (B9)

where px = ∂S̄
∂x

and py = ∂S̄
∂y

.

In order to make the reduced system simpler, we apply the transformation dτ = a−3(µ+1)dt, and the system
(B8)-(B9) becomes

x′ = −
(

1− 1

α2

)

px +
1

α
py , y′ =

1

α
px + py. (B10)

For the exponential potential (α = 1), from system (B10) we find the solution in closed form. The solution is

x (τ) = c1τ + c0, (B11)

y (τ) =
V ′
0

c21

(

4
µ
+ 1
) (c1τ + c0)

− 4
µ
−1 − ρ′m0

c1
τ +

c1
2
τ + y0, (B12)

where the scale factor is a (τ) =
(

x2 (τ)− 2x (τ) y (τ)
)− 1

3µ . This is the solution of the exponential scalar field with
matter in the Einstein frame. Recall that the matter has an equation of state parameter of the form wm = µ+ 1.

1. Special solution with ρm0 = 0, c1 = 0

When ρm0 = 0 and c1 = 0, from the dynamical system (B10) we have the solution

x (τ) =

[(

1

µ
+ 1

)

x0τ + x1

]
µ

2(1+µ)

, y (τ) = − α

α2 − 1
x (τ) − y0. (B13)

where x0 = ε
α

√

2V0 (α2 − 1), and ε = ±1.
In the case of µ = −1 the solution of the system (B10) is

x (τ) = x1e
x0τ , y (τ) = − α

α2 − 1
x (τ) − y0 (B14)

(recall that for µ = −1, we have dt = dτ). Hence, the solution for the scale factor is

a (t) =

[

α2x21
α2 − 1

e2x0t − α2 − 1

α2
y20

]
1
3

. (B15)

Furthermore, from the singularity condition a (0) = 0, we have that y20 =
α4x2

1

α2−1 which implies a (t) =

a1
(

e2x0t − 1
)

1
3 , where α1 =

(

α2x2
1

α2−1

)
1
3

. We obtain H (t) = 2x0

3
e2x0t

e2x0t−1
, and t (a) = 1

2x0
ln

[

1 +
(

a
a1

)3
]

. There-

fore, we can express the Hubble function in terms of the scale factor, i.e.

E2(a) =
H2(a)

H2
0

= ΩΛ0 + Ω̃m0a
−3 +Ωsf0a

−6 (B16)
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where

ΩΛ0 =
4

9

x20
H2

0

, Ω̃m0 =
8

9

x20
H2

0

a31 , Ωsf0 =
4

9

x20
H2

0

a61

which means that the scalar field introduces an effective dark matter component, namely Ω̃m(a) = Ω̃ma
−3/E2(a) in

the cosmic expansion.
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