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ABSTRACT

Consistency of Einstein’s gravitational field equation Gµν ∝ Tµν imposes a “conservation

condition” on the T -tensor that is satisfied by (i) matter stress tensors, as a consequence

of the matter equations of motion, and (ii) identically by certain other tensors, such as the

metric tensor. However, there is a third way, overlooked until now because it implies a “non-

geometrical” action: one not constructed from the metric and its derivatives alone. The new

possibility is exemplified by the 3D “minimal massive gravity” model, which resolves the

“bulk vs boundary” unitarity problem of topologically massive gravity with anti-de Sitter

asymptotics. Although all known examples of the third way are in three spacetime dimen-

sions, the idea is general and could, in principle, apply to higher-dimensional theories.
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It is now 100 years since Einstein wrote down, after a long struggle, his gravitational

field equations,

Gµν = (8πG)Tµν , (1)

where Tµν is the matter stress tensor, G is Newton’s gravitational constant and Gµν is

the Einstein tensor, defined in terms of the metric gµν and its Ricci tensor Rµν , and

Ricci scalar R, by

Gµν = Rµν −
1

2
gµνR . (2)

The stress tensor satisfies, as a consequence of the matter field equations, the “conser-

vation condition”

DµTµν = 0 , (3)

where D is the usual covariant derivative in a gravitational background. In flat space

this condition implies conservation of energy and momentum in the matter fields. It

was this condition that led Einstein to the Einstein tensor: he needed to construct

from the metric a tensor Gµν satisfying the Bianchi identity

DµGµν ≡ 0 . (4)

However, one can turn the logic around: it is because the Einstein tensor satisfies

the Bianchi identity that the tensor Tµν appearing on the right-hand side of the Einstein

field equations (1) must satisfy the conservation condition (3). This perspective leads

to the following question. How many ways are there to construct a tensor Tµν satisfying

(3)? Certainly, one may take Tµν to be a matter stress tensor, but another obvious

possibility is to choose Tµν ∝ gµν . The conservation condition is an identity for this

tensor, which can be viewed as a dark-energy contribution to the stress tensor, but it

can also be taken over to the left-hand side to give us the modified field equation

Gµν + Λgµν = (8πG)Tµν , (5)

where Λ is a constant, the “cosmological constant” introduced by Einstein himself in

1917. But this is just a special case: for any diffeomorphism invariant functional I[g],

the tensor

Iµν =
1√
− det g

δI[g]

δgµν
(6)

satisfies the Bianchi-type identity

DµIµν ≡ 0 . (7)

Taking all such tensors over to the left hand side we arrive at a generalisation of the

Einstein field equations of the form

Eµν = (8πG)Tµν , (8)

where Eµν is a symmetric tensor satisfying DµEµν ≡ 0. It will have the form

Eµν = Λgµν + σGµν + . . . , (9)
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where σ is a dimensionless number and the omitted terms are higher-dimension tensors

with coefficients that have dimensions of increasing powers of inverse mass.

To return to our question, we have now seen that there are two standard ways to

construct a tensor satisfying the conservation condition (3). Either:

1. The condition is satisfied as a consequence of the matter field equations, and the

tensor contributes to the matter stress tensor,

or:

2. It is satisfied identically by means of a Bianchi-type identity, and the tensor

contributes to the gravitational tensor Eµν .

However, there is one other logical possibility; a “third way”. Any abstract discussion

would make it appear very unlikely that it could be realised in practice, so we will

instead present an example. The example is “minimal massive gravity” (MMG) [1],

which describes an interacting massive graviton in three spacetime dimensions (3D).

Our starting point will be the third-order field equation of “topologically massive

gravity” (TMG) [2], which propagates a single spin-2 mode of mass µ. Allowing for a

cosmological constant, the TMG field equation is (8) with

Eµν = Λgµν + σGµν +
1

µ
Cµν . (10)

Here, Cµν is the Cotton tensor, defined as

Cµν =
1√
− det g

εµ
τρDτSρν , (11)

where the S-tensor is the 3D Schouten tensor

Sµν = Rµν −
1

4
gµνR . (12)

The Cotton tensor is symmetric and traceless, and it satisfies a Bianchi identity; the

corresponding action is the Lorentz-Chern-Simons action for the affine connection.

Much of the interest in 3D gravity models derives from the potential simplifications

of a lower dimension for the quantum theory. For 3D models with anti-de Sitter

(AdS) asymptotics there is the prospect of defining a quantum gravity theory via

a holographically dual 2D conformal field theory (CFT). A necessary condition for

unitarity in this context is that the (left/right) central charges of the CFT (which

differ in a parity-violating theory like TMG) are both positive. Additional unitarity

requirements are that the bulk spin-2 mode be non-tachyonic and have positive energy.

Given a 3D gravitational action, all these requirements can be checked in a semi-

classical approximation: by linearization about an AdS background for the bulk spin-2

mode, and by consideration of the asymptotic symmetry algebra [3] for the CFT central

charges. It turns out that there is no choice of TMG parameters for which all these
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unitarity conditions are satisfied [4] (and the same is true of “new massive gravity”,

which propagates a parity doublet of massive spin-2 modes [5]). This is known as the

“bulk-boundary clash” because the bulk mode has negative energy when both central

charges of the boundary CFT are positive, although all bulk unitarity conditions must

also have a CFT interpretation. Attempts to circumvent this problem by including

higher-derivative modifications of the E-tensor (10) do not succeed [6] [7].

However, there is a third way to modify the TMG equation. To see this, consider

the tensor

Jµν =
1

2 det g
εµ

ρσεν
τηSρτSση . (13)

This does not satisfy the conservation condition identically; in fact√
− det g DµJ

µν = ενρσSρ
τCστ 6≡ 0 . (14)

However, if we use the source-free TMG equation to express the Cotton tensor as a

linear combination of the Schouten tensor and the metric tensor, then we see that the

right-hand-side of this equation vanishes identically. The J-tensor therefore satisfies

the conservation condition as a consequence of the TMG field equation. This suggests

the “third way”:

3. A tensor T may satisfy the conservation condition as a consequence of the grav-

itational field equation itself.

The obvious difficulty with this idea is that we change the equation as soon as we

include the new tensor as a source. It seems that it would take a miracle for J to

continue to satisfy the conservation condition as a consequence of the gravitational

field equation when J itself is included in this equation, but miracles of this type are

not excluded!

For the case in hand, if we take our source tensor to be

Tµν = − γ

µ2
Jµν , (15)

for some dimensionless constant γ, then the sourced equation implies that the Cotton

tensor is now a linear combination of the Schouten tensor, metric tensor and the J-

tensor. Using this expression, we find that√
− det g DµJ

µν = −γ
µ
ενρσSρ

τJστ ≡ 0 . (16)

The final identity is due to the specific form of J and the symmetry of the Schouten

tensor, so the J-tensor is still conserved! We have now verified the consistency of the

“minimal massive gravity” equation

Λgµν + σGµν +
1

µ
Cµν +

γ

µ2
Jµν = 0 , (17)

which is still a third-order equation because the J-tensor is only second order. This

equation provides an explicit and simple example of the third way. It demonstrates
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that it may be possible to include, in a gravitational field equation, tensors constructed

entirely from the metric that do not satisfy a Bianchi identity.

In such cases there will be no “geometrical” action; i.e. one constructed entirely

from the metric. Nevertheless, at least for our MMG example, there is an action

involving auxiliary fields [1]. We will not present it here, although it is fairly simple;

instead we address the puzzle of how an action with auxiliary fields is possible when

their elimination appears to give us an action for the metric alone, in contradiction to

our claim that no such action exists.

A set of fields is “auxiliary” if the field equations allow us to solve for them in

terms of the other fields. The MMG action is such that the field equations determine

the auxiliary fields in terms of the metric and its curvature tensor, such that the

remaining equation for the metric alone is precisely (17). However, back-substitution

into the action is legitimate only if the equations used to solve for the auxiliary fields

are equivalent, jointly, to the equations obtained by variation with respect to them. In

the MMG case, the equation obtained by variation of the metric is needed to solve for

the auxiliary fields, and this makes back-substitution into the action illegitimate. This

will be the case for any action that yields “third-way consistent” field equations.

To summarise: despite the fact that its left-hand side does not satisfy a Bianchi

identity, the MMG equation (17) is derivable from an action. This could have been just

a curiosity but it turns out to be essential to the resolution of the “bulk-boundary clash”

of massive 3D gravity. Linearization shows that MMG propagates a single massive spin-

2 mode and a full Hamiltonian analysis shows that there are no other bulk degrees of

freedom, just like TMG. However, the AdS boundary properties of MMG differ from

those of TMG: provided γ < 0 one can choose parameters to arrange for both central

charges of the asymptotic conformal symmetry algebra to be positive [1]. Allowing for

equivalences, there is a single connected region in the MMG parameter space for which

all unitary conditions accessible to a semi-classical analysis are satisfied [8].

Third-way consistency has another surprising consequence, which we again illustrate

using MMG. Let us add a source tensor T to the right-hand side of the MMG equation:

Λgµν + σGµν +
1

µ
Cµν +

γ

µ2
Jµν = Tµν . (18)

For TMG, we may choose T to be a matter stress tensor, but this choice is not possible

for non-zero γ; i.e. for MMG. In fact, consistency requires that

DµT
µν =

γ

µ
√
− det g

ενρσSρ
τTστ . (19)

Given a matter stress tensor T one can find a corresponding source tensor T that

solves this equation [9], but it is quadratic in T ! A corollary is that some solutions

of MMG can exhibit qualitatively different behaviour when compared to analogous

solutions of TMG because the tensor T need not satisfy energy conditions imposed on

T . In particular, big-bang singularities of TMG cosmological solutions with an ideal

fluid source are absent in MMG [9].
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To conclude, we have illustrated the possibility of a “third way” to construct con-

sistent gravitational field equations using the example of “minimal massive gravity”,

and we have discussed its physical relevance in this context. All known examples are

in 3D, and there is an analog for 3D Yang-Mills theory [10], but the basic idea is

dimension independent. It may be that there exist higher-dimensional gravitational

models with field equations that are similarly third-way consistent. In view of this, it

is perhaps worth recalling that one of the assumptions of Lovelock’s generalisations of

the second-order Einstein field equations to spacetimes of arbitrary dimension is that

all terms satisfy a Bianchi identity [11]. The possibility of a “third way” in higher

dimensions calls into question this assumption.
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