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Abstract. We consider integral geometry inverse problems for unitary connections
and skew-Hermitian Higgs fields on manifolds with negative sectional curvature.
The results apply to manifolds in any dimension, with or without boundary, and
also in the presence of trapped geodesics. In the boundary case, we show injectivity
of the attenuated ray transform on tensor fields with values in a Hermitian bundle
(i.e. vector valued case). We also show that a connection and Higgs field on a
Hermitian bundle are determined up to gauge by the knowledge of the parallel
transport between boundary points along all possible geodesics. The main tools are
an energy identity, the Pestov identity with a unitary connection, which is presented
in a general form, and a precise analysis of the singularities of solutions of transport
equations when there are trapped geodesics. In the case of closed manifolds, we
obtain similar results modulo the obstruction given by twisted conformal Killing
tensors, and we also study this obstruction.
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1. Introduction

There has been considerable activity recently in the study of integral geometry
problems on Riemannian manifolds. Part of the motivation comes from nonlinear
inverse problems such as boundary rigidity (inverse kinematic problem), scattering
and lens rigidity, or spectral rigidity. It turns out that in many cases, there is an
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underlying linear inverse problem that is related to inverting a geodesic ray transform,
i.e. to determining a function or a tensor field from its integrals over geodesics. We
refer to the survey [PSU14b] for some of the recent developments in this direction.

One of the main approaches for studying geodesic ray transforms is based on energy
estimates, often coming in the form of a Pestov identity. This approach originates
in [Mu77] and has been developed by several authors, see for instance [PS88, Sh94,
PSU14b]. A simple derivation of the basic Pestov identity in two dimensions was
given in [PSU13]. There it was also observed that the Pestov identity may become
even more powerful when a suitable connection is included. This fact was used in
[PSU13] to establish solenoidal injectivity of the geodesic ray transform on tensors
of any order on compact simple surfaces, and it was also used earlier in [PSU12]
to study the attenuated ray transform with connection and Higgs field on compact
simple surfaces.

The results of [PSU12, PSU13] were restricted to two-dimensional manifolds. In
the preprint [PSU14d] much of the technology was extended to manifolds of any
dimension, including a version of the Pestov identity which looks very similar to the
two-dimensional one in [PSU13]. However, the arguments of [PSU14d] do not consider
the case of connections.

The main aim of this paper is to generalize the setup of [PSU14d] to the case
where connections and Higgs fields are present. We will state a version of the Pestov
identity with a unitary connection that is valid in any dimension d ≥ 2 (similar
identities have appeared before, see [Sh00, Ve92]). This will have several applications
in integral geometry problems. We will mostly work on manifolds with negative
sectional curvature, which will be sufficient for the integral geometry results. In the
boundary case, we also invoke the microlocal methods of [G14b, DG14] that allow to
treat negatively curved manifolds with trapped geodesics. In this paper we do not
employ the new local method introduced in [UV12], which might be effective in the
boundary case when d ≥ 3 if the method could be adapted to the present setting.

1.1. Main results in the boundary case. Let (M, g) be a compact connected
oriented Riemannian manifold with smooth boundary and with dimension dim (M) =
d ≥ 2. In this paper we will consider manifolds (M, g) with strictly convex boundary,
meaning that the second fundamental form of ∂M ⊂ M is positive definite. Let
SM = {(x, v) ∈ TM ; |v| = 1} be the unit sphere bundle with boundary ∂(SM) and
projection π : SM →M , and write

∂±(SM) = {(x, v) ∈ ∂(SM) ; ∓〈v, ν〉 > 0}

where ν is the the inner unit normal vector. Note that the sign convention for ν and
∂±(SM) are opposite to [PSU14d].

We denote by ϕt the geodesic flow on SM and by X the geodesic vector field on
SM , so that X acts on smooth functions on SM by

Xu(x, v) =
∂

∂t
u(ϕt(x, v))

∣∣∣
t=0
.
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If (x, v) ∈ SM denote by `+(x, v) ∈ [0,∞] the first time when the geodesic starting
at (x, v) exits M in forward time (we write `+ =∞ if the geodesic does not exit M).
We will also write `−(x, v) := −`+(x,−v) ≤ 0 for the exit time in backward time. We
define the incoming (−) and outgoing (+) tails

Γ∓ := {(x, v) ∈ SM ; `±(x, v) = ±∞}.
When the curvature of g is negative, the set Γ+ ∪ Γ− has zero Liouville measure (see
section 6), and similarly Γ± ∩ ∂(SM) has zero measure for any measure of Lebesgue
type on ∂(SM).

We recall certain classes of manifolds that often appear in integral geometry prob-
lems. A compact manifold (M, g) with strictly convex boundary is called

• simple if it is simply connected and has no conjugate points, and
• nontrapping if Γ+ ∪ Γ− = ∅.

For compact simply connected manifolds with strictly convex boundary, we have

negative sectional curvature =⇒ simple =⇒ nontrapping.

Also, any compact nontrapping manifold with strictly convex boundary is contractible
and hence simply connected (see [PSU13, Proposition 2.4]).

In this paper we will deal with negatively curved manifolds that are not necessarily
simply connected and may have trapped geodesics. We briefly give an example in
which all our results are new and non-trivial. We consider a piece of a catenoid, that is,
a surface M = S1×[−1, 1] with coordinates (u, v) and metric ds2 = cosh2 v(du2+dv2),
see Figure 1.

Figure 1. A catenoid

It is an elementary exercise to check that the boundary is strictly convex and
that the surface has negative curvature. The equations for the geodesics are easily
computed: there is a first integral (Clairaut’s integral) given by u̇ cosh2 v = c and a
second equation of the form v̈ = tanh v(u̇2 − v̇2). The curves t 7→ (±t, 0) are trapped
unit speed closed geodesics and the union of the tails Γ+ ∪ Γ− is determined by the
equations u̇ cosh2 v = ±1.
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X-ray transform. Let (M, g) be a compact manifold with strictly convex boundary,
and denote by M◦ its interior. Given a function f ∈ C∞(SM), the geodesic ray
transform of f is the function If defined by

If(x, v) =

∫ `+(x,v)

0

f(ϕt(x, v)) dt, (x, v) ∈ ∂−(SM) \ Γ−.

Thus If encodes the integrals of f over all non-trapped geodesics going from ∂M into
M . By [G14b, Proposition 4.4] (for the existence) and [G14b, Lemma 3.3] (for the
uniqueness), when the curvature is negative, there is a unique solution u ∈ L1(SM)∩
C∞(SM \ Γ−) to the transport equation

Xu = −f in the distribution sense in SM◦, u|∂+(SM) = 0,

and one can define If by
If = u|∂−(SM)\Γ− .

It is not possible to recover a general function f ∈ C∞(SM) from the knowledge of
If . However, in many applications one is interested in the special case where f arises
from a symmetric m-tensor field on M . To discuss this situation it is convenient to
consider spherical harmonics expansions in the v variable. For more details on the
following facts see [GK80b, DS11, PSU14d]. Given any x ∈M one can identify SxM
with the sphere Sd−1. The decomposition

L2(Sd−1) =
∞⊕
m=0

Hm(Sd−1),

where Hm(Sd−1) consists of the spherical harmonics of degree m, gives rise to a spher-
ical harmonics expansion on SxM . Varying x, we obtain an orthogonal decomposition

L2(SM) =
∞⊕
m=0

Hm(SM)

and correspondingly any f ∈ L2(SM) has an orthogonal decomposition

f =
∞∑
m=0

fm.

We say that a function f has degree m if fk = 0 for k ≥ m+ 1 in this decomposition,
and we say that f has finite degree if it has degree m for some finite m. We understand
that any f having degree −1 is identically zero.

Solenoidal injectivity of the X-ray transform can be stated as follows.

If f has degree m and If = 0, then f = −Xu for some smooth u with
degree m− 1 and u|∂(SM) = 0.

This has been proved in a number of cases, including the following:

• compact simple manifolds if m = 0 [Mu77] or m = 1 [AR97];
• compact simple manifolds with non-positive curvature if m ≥ 2 [PS88];
• compact simple manifolds if d = 2 and m ≥ 2 [PSU13];
• generic compact simple manifolds if d ≥ 3 and m = 2 [SU05];
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• manifolds foliated by convex hypersurfaces if d ≥ 3 and m ≤ 2 [UV12, SUV14];
• compact manifolds with strictly convex boundary and non-positive curvature

[G14b].

Attenuated ray transform. Next we discuss the attenuated geodesic ray transform
involving a connection and Higgs field. For motivation and further details, we refer
to Section 2 and [PSU12, Pa13].

Let (M, g) be a compact negatively curved manifold with strictly convex boundary.
We will work with vector valued functions and systems of transport equations, and
for that purpose it is convenient to use the framework of Hermitian vector bundles.
Let E be a Hermitian vector bundle over M , and let ∇ be a connection on E . We
assume that ∇ is unitary (or Hermitian), meaning that

(1.1) Y 〈u, u′〉E = 〈∇Y u, u
′〉E + 〈u,∇Y u

′〉E
for all vector fields Y on M and sections u, u′ ∈ C∞(M ; E). Both denominations,
unitary and Hermitian, are of common use in the literature and here we will use
them indistinctively. Let also Φ be a skew-Hermitian Higgs field, i.e. a smooth section
Φ : M → Endsk(E) where Endsk(E) is the bundle of skew-Hermitian endomorphisms
on E .

If SM is the unit sphere bundle of M , the natural projection π : SM →M gives rise
to the pullback bundle π∗E and pullback connection π∗∇ over SM . For convenience
we will omit π∗ and denote the lifted objects by the same letters as downstairs (thus
for instance we write C∞(M ; E) for the sections of the original bundle E over M , and
C∞(SM ; E) for the sections of π∗E). As in the case of functions, we can decompose
the space of L2 sections as L2(SM ; E) =

⊕∞
m=0Hm(SM ; E); see Section 3.

The geodesic vector field X can be viewed as acting on sections of E by

(1.2) Xu := ∇Xu, u ∈ C∞(SM ; E).

If f ∈ C∞(SM ; E), the attenuated ray transform of f is defined by

(1.3) I∇,Φf = u|∂−(SM)\Γ−

where u ∈ L1(SM ; E) ∩ C∞(SM \ Γ−; E) is the unique solution of the transport
equation (here M◦ is the interior of M)

(X + Φ)u = −f in the distribution sense in SM◦, u|∂+(SM) = 0.

We refer to Proposition 6.2 for the proof of the existence and uniqueness of solution.
The following theorem proves solenoidal injectivity of the attenuated ray transform
(with attenuation given by any unitary connection and skew-Hermitian Higgs field)
on any negatively curved manifold with strictly convex boundary.

Theorem 1.1. Let (M, g) be a compact manifold with strictly convex boundary and
negative sectional curvature, let E be a Hermitian bundle over M , and let ∇ be a
unitary connection and Φ a skew-Hermitian Higgs field on E. If f ∈ C∞(SM ; E) has
degree m and if the attenuated ray transform of f vanishes (meaning that I∇,Φf = 0),
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then there exists u ∈ C∞(SM ; E) which has degree m− 1 and satisfies

f = −(X + Φ)u, u|∂(SM) = 0,

where X is defined by (1.2).

Note in particular that for m = 0, the above theorem states that any f ∈ C∞(M ; E)
with I∇,Φf = 0 must be identically zero. The conclusion of Theorem 1.1 is also known
for compact simple two-dimensional manifolds (follows by combining the methods
of [PSU12] and [PSU13]; this result even for magnetic geodesics may be found in
[Ai13]). We will use the assumption of strictly negative curvature to deal with large
connections and Higgs fields in any dimension.

Parallel transport between boundary points: the X-ray transform for con-
nections and Higgs fields. We now discuss a related nonlinear inverse problem,
where one tries to determine a connection and Higgs field on a Hermitian bundle E in
(M, g) from parallel transport between boundary points. This problem largely mo-
tivates the present paper; for more details see [PSU12]. Given a compact negatively
curved manifold (M, g) with strictly convex boundary, the scattering relation

Sg : ∂−(SM) \ Γ− → ∂+(SM) \ Γ+, (x, v) 7→ ϕ`+(x,v)(x, v)

maps the start point and direction of a geodesic to the end point and direction. If
E is a Hermitian bundle, ∇ is a unitary connection and Φ a skew-Hermitian Higgs
field, we consider the parallel transport with respect to (∇,Φ), which is the smooth
bundle map T∇,Φ : E|∂−(SM)\Γ− → E|∂+(SM)\Γ+ defined by T∇,Φ(x, v; e) := F (Sg(x, v))
where F is a section of E over the geodesic γ(t) = π(ϕt(x, v)) satisfying the ODE

∇γ̇(t)F (γ(t)) + Φ(γ(t))F (γ(t)) = 0, F (γ(0)) = e.

The following theorem shows that on compact manifolds with negative curvature and
strictly convex boundary, the parallel transport between boundary points determines
the pair (∇,Φ) up to the natural gauge equivalence.

Theorem 1.2. Let (M, g) be a compact manifold of negative sectional curvature with
strictly convex boundary, and let E be a Hermitian bundle on M . Let ∇ and ∇̃ be
two unitary connections on E and let Φ and Φ̃ be two skew-Hermitian Higgs fields.

If the parallel transports agree, i.e. T∇,Φ = T ∇̃,Φ̃, then there is a smooth section
Q : M → End(E) with values in unitary endomorphisms such that Q|∂M = Id and
∇̃ = Q−1∇Q, Φ̃ = Q−1ΦQ.

The map (∇,Φ) 7→ T∇,Φ is sometimes called the non-abelian Radon transform, or
the X-ray transform for a non-abelian connection and Higgs field.

Theorem 1.2 was proved for compact simple surfaces (not necessarily negatively
curved) in [PSU12], and for certain simple manifolds if the connections are C1 close
to another connection with small curvature in [Sh00]. For domains in the Euclidean
plane the theorem was proved in [FU01] assuming that the connections have small cur-
vature and in [Es04] in general. For connections which are not compactly supported
(but with suitable decay conditions at infinity), [No02] establishes local uniqueness
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of the trivial connection and gives examples in which global uniqueness fails. The
examples are based on a connection between the Bogomolny equation in Minkowski
(2 + 1)-space and the scattering data T∇,Φ considered above. As it is explained in
[Wa88] (see also [Du10, Section 8.2.1]), certain soliton solutions (∇,Φ) have the prop-
erty that when restricted to space-like planes the scattering data is trivial. In this
way one obtains connections in R2 with the property of having trivial scattering data
but which are not gauge equivalent to the trivial connection. Of course these pairs
are not compactly supported in R2 but they have a suitable decay at infinity.

1.2. Main results in the closed case. Let now (M, g) be a closed oriented Rie-
mannian manifold of dimension dim (M) = d ≥ 2. The geodesic ray transform of a
function f ∈ C∞(SM) is the function If given by

If(γ) =

∫ L(γ)

0

f(ϕt(x, v)) dt, γ ∈ G,

where G is the set of periodic unit speed geodesics on M and L(γ) is the length of γ. Of
course it makes sense to consider situations where (M, g) has many periodic geodesics.
A standard such setting is the case where (M, g) is Anosov, i.e. the geodesic flow of
(M, g) is an Anosov flow on SM , meaning that there is a continuous flow-invariant
splitting

T (SM) = E0 ⊕ Es ⊕ Eu
where E0 is the flow direction and the stable and unstable bundles Es and Eu satisfy
for all t > 0

(1.4) ‖Dϕt|Es‖ ≤ Cρt, ‖Dϕ−t|Eu‖ ≤ Cη−t

with C > 0 and 0 < ρ < 1 < η. Closed manifolds with negative sectional curvature
are Anosov [KH95], but there exist Anosov manifolds with large sets of positive
curvature [Eb73] and Anosov surfaces embedded in R3 [DP03]. Anosov manifolds
have no conjugate points [Kl74, An85, Ma87] but may have focal points [Gu75].

If (M, g) is closed Anosov and if f ∈ C∞(SM) satisfies If = 0, the smooth
Livsic theorem [dMM86] implies that Xu = −f for some u ∈ C∞(SM). The tensor
tomography problem for Anosov manifolds can then be stated as follows:

Let (M, g) be a closed Anosov manifold. If f has degree m and if
Xu = −f for some smooth u, show that u has degree m− 1.

We wish to consider the same problem where a connection and Higgs field are
present. Let E be a Hermitian bundle, ∇ be a unitary connection on E and Φ a skew-
Hermitian Higgs field. Using the decomposition L2(SM ; E) =

⊕∞
m=0Hm(SM ; E) as

before, the operator X = ∇X acts on Ωm = Hm(SM ; E) ∩ C∞(SM ; E) by

X = X+ + X−
where X± : Ωm → Ωm±1 (see Section 3). The operator X+ is overdetermined elliptic,
and X− is of divergence type.

There is a possible obstruction for injectivity of the attenuated ray transform: if
u ∈ Ker(X+) ∩ Ωm+1 and u 6= 0, then setting f = −X−u we have Xu = −f where
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f has degree m but u has degree m + 1. Thus the analogue of Theorem 1.1 for
closed manifolds can only hold if Ker(X+) is trivial. We call elements in the kernel
of X+|Ωm twisted Conformal Killing Tensors (CKTs in short) of degree m. We say
that there are no nontrivial twisted CKTs if Ker(X+|Ωm) = {0} for all m ≥ 1. The
dimension of Ker(X+|Ωm) is a conformal invariant (see Section 3). In the case of the
trivial line bundle with flat connection, twisted CKTs coincide with the usual CKTs,
and these cannot exist on any manifold whose conformal class contains a metric with
negative sectional curvature or a rank one metric with nonpositive sectional curvature
[DS11, PSU14d].

The following result proves solenoidal injectivity of the attenuated ray transform on
closed negatively curved manifolds with no nontrivial twisted CKTs, and also gives
a substitute finite degree result if twisted CKTs exist.

Theorem 1.3. Let (M, g) be a closed manifold with negative sectional curvature, let
E be a Hermitian bundle, and let ∇ be a unitary connection and Φ a skew-Hermitian
Higgs field on E. If f ∈ C∞(SM ; E) has finite degree, and if u ∈ C∞(SM ; E) solves
the equation

(X + Φ)u = −f in SM,

then u has finite degree. If in addition there are no twisted CKTs, and f has degree
m, then u has degree max{m− 1, 0} (and u ∈ Ker(X+|Ω0) if m = 0).

We conclude with a few results on twisted CKTs. The situation is quite simple on
manifolds with boundary: any twisted CKT that vanishes on part of the boundary
must be identically zero. The next theorem extends [DS11] which considered the case
of a trivial line bundle with flat connection. This result will be used as a component
in the proof of Theorem 1.1 (for Γ = ∂M and π−1Γ = ∂(SM)).

Theorem 1.4. Let (M, g) be a compact Riemannian manifold, let E be a Hermitian
bundle, and let ∇ be a unitary connection on E. If Γ is a hypersurface of M and for
some m ≥ 0 one has

X+u = 0 in SM, u ∈ Ωm, u|π−1Γ = 0,

then u = 0.

We next discuss the case of closed two-dimensional manifolds. If (M, g) is a closed
Riemannian surface with genus 0 or 1, then nontrivial CKTs exist even for the flat
connection on the trivial line bundle (consider conformal Killing vector fields on the
sphere or flat torus). The next result considers surfaces with genus ≥ 2, and gives a
condition for the connection ensuring the absence of nontrivial twisted CKTs. The
proof is based on a Carleman estimate.

To state the condition, note that if E is a Hermitian vector bundle of rank n and
∇ is a unitary connection on E , then the curvature fE of ∇ is a 2-form with values
in skew-Hermitian endomorphisms of E . In a trivializing neighborhood U ⊂ M ,
∇ may be represented as d + A where A is an n × n matrix of 1-forms, and the
curvature is represented as dA + A ∧ A, an n × n matrix of 2-forms. If d = 2 and
if ? is the Hodge star operator, then i ? fE is a smooth section on M with values in
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Hermitian endomorphisms of E , and it has real eigenvalues λ1 ≤ . . . ≤ λn counted
with multiplicity. Each λj is a Lipschitz continuous function M → R. Below χ(M)
is the Euler characteristic of M .

Theorem 1.5. Let (M, g) be a closed Riemannian surface, let E be a Hermitian
vector bundle of rank n over M , and let ∇ be a unitary connection on E. Denote by
λ1 ≤ . . . ≤ λn the eigenvalues of i ? fE counted with multiplicity. If m ≥ 1 and if

2πmχ(M) <

∫
M

λ1 dV and

∫
M

λn dV < −2πmχ(M),

then any u ∈ Ωm satisfying X+u = 0 must be identically zero.

The conditions for λ1 and λn are conformally invariant (they only depend on the
complex structure on M) and sharp: [Pa09] gives examples of connections on a
negatively curved surface for which λ1 = K (the Gaussian curvature), so one has∫
M
λ1 dV = 2πχ(M), and these connections admit twisted CKTs of degree 1. Fur-

ther examples of nontrivial twisted CKTs on closed negatively curved surfaces are in
[Pa12, Pa13].

For closed manifolds of dimension d ≥ 3, our results on absence of twisted CKTs
are less precise but we have the following theorem.

Theorem 1.6. Let (M, g) be a closed manifold whose conformal class contains a
negatively curved manifold, let E be a Hermitian vector bundle over M , and let ∇ be
a unitary connection. There is m0 ≥ 1 such that Ker(X+|Ωm) = {0} when m ≥ m0

(one can take m0 = 1 if ∇ has sufficiently small curvature) .

We also obtain a result regarding transparent pairs, that is, connections and Higgs
fields for which the parallel transport along periodic geodesics coincides with the
parallel transport for the flat connection. This closed manifold analogue of Theorem
1.2 is discussed in Section 9.

Open questions. Here are some open questions related to the topics of this paper:

• Does Theorem 1.1 hold for compact simple manifolds when d ≥ 3, or for
manifolds satisfying the foliation condition in [UV12]? The result is known
for compact simple two-dimensional manifolds [PSU12, PSU13, Ai13].
• Does Theorem 1.3 hold for closed Anosov manifolds? This is known if d = 2

and one has the flat connection on a trivial bundle [DS03, PSU14c, G14a].
• Do the results above remain true for general connections and Higgs fields (not

necessarily unitary or skew-Hermitian)? If d = 2 this is known for line bundles
(see [PSU13]) and domains in R2 [Es04]. Another partial result for d = 2 is
in [Ai14].
• Can one find other conditions for the absence of nontrivial twisted CKTs on

closed manifolds when d ≥ 3 besides Theorem 1.6? Is this a generic property?

Structure of the paper. This paper is organized as follows. Section 1 is the in-
troduction and states the main results. In Section 2 we explain the relation between
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attenuated ray transforms and connections, and include some preliminaries regarding
connections on vector bundles. Section 3 proves the Pestov identity with a connec-
tion, introduces operators relevant to this identity, and discusses spherical harmonics
expansions and related estimates. In Section 4 we use the Pestov identity to prove
the finite degree part of Theorem 1.3 (both in the boundary and closed case). Section
5 begins the study of twisted CKTs, proves Theorem 1.3 in full and also proves Theo-
rem 1.4. Section 6 finishes the proof of Theorem 1.1 using regularity results obtained
via the microlocal approach of [G14b]. Section 7 proves the scattering data result
(Theorem 1.2), Section 8 discusses twisted CKTs in two dimensions and proves The-
orem 1.5, and the final Section 9 discusses transparent pairs and a simplified analogue
of Theorem 1.2 for closed manifolds.

Acknowledgements. C.G. was partially supported by grants ANR-13-BS01-0007-
01 and ANR-13-JS01-0006. M.S. was supported in part by the Academy of Finland
(Centre of Excellence in Inverse Problems Research) and an ERC Starting Grant
(grant agreement no 307023). G.U. was partly supported by NSF and a Simons
Fellowship.

2. Attenuated ray transform and connections

In this section we motivate briefly how connections may appear in integral geometry,
and collect basic facts about connections on vector bundles (see [Jo05] for details).
Readers who are familiar with these concepts may proceed directly to Section 3.

Euclidean case. We first consider the closed unit ball M = {x ∈ Rd ; |x| ≤ 1} with
Euclidean metric. If f ∈ C∞(M), the attenuated X-ray transform IAf of f is defined
by

IAf(x, v) =

∫ `+(x,v)

0

f(x+ tv) exp

[∫ t

0

A(x+ sv, v) ds

]
dt, (x, v) ∈ ∂(SM),

where SM = M × Sd−1 is the unit sphere bundle, ∂(SM) = ∂M × Sd−1 is its
boundary, `+(x, v) is the time when the line segment starting from x in direction v
exits M , and A ∈ C∞(SM) is the attenuation coefficient. If A = 0, then IA is the
classical X-ray transform which underlies the medical imaging methods CT and PET.
The attenuated transform arises in various applications, such as the medical imaging
method SPECT [Fi03] or the Calderón problem [DKSU09], and often A has simple
dependence on v. We will consider attenuations of the form

A(x, v) =
d∑
j=1

Aj(x)vj + Φ(x)

where Aj,Φ ∈ C∞(M).
Define the function

u(x, v) :=

∫ `+(x,v)

0

f(x+ tv) exp

[∫ t

0

A(x+ sv, v) ds

]
dt, (x, v) ∈ SM.
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Then clearly If = u|∂(SM). A computation shows that u satisfies the first order
differential equation (transport equation)

(2.1) Xu(x, v) +

[
d∑
j=1

Aj(x)vj + Φ(x)

]
u(x, v) = −f(x), (x, v) ∈ SM,

where X is the geodesic vector field acting on functions w ∈ C∞(SM) by Xw(x, v) =
∂
∂t
w(x+ tv, v)|t=0. The inverse problem of recovering f from IAf can thus be reduced

to finding the source term f in (2.1) from boundary values of the solution u.
We now give a geometric interpretation of the transport equation (2.1). Complex

valued functions f ∈ C∞(M) may be identified with sections of the trivial vector

bundle E := M × C. The complex 1-form A :=
∑d

j=1 Aj(x) dxj on M gives rise to a
connection ∇ = d+ A on E , taking sections of E to 1-form valued sections via

∇f = dMf + Af, f ∈ C∞(M).

The projection π : SM →M induces a pullback bundle π∗E and pullback connection
π∗∇ over SM . Since E is the trivial line bundle, one has π∗E = SM ×C, sections of
π∗E can be identified with functions in C∞(SM), and π∗∇ is given by

(π∗∇)u = dSMu+ (π∗A)u, u ∈ C∞(SM).

The geodesic vector field X is a vector field on SM , and induces a map X := (π∗∇)X
on sections of π∗E given by

Xu(x, v) = Xu(x, v) + [
d∑
j=1

Aj(x)vj]u(x, v), u ∈ C∞(SM).

The transport equation (2.1) then becomes

(2.2) Xu+ (π∗Φ)u = −π∗f
where u and π∗f are now sections of π∗E , and Φ is a smooth section from M to the
bundle of endomorphisms on E (Higgs field).

Hermitian bundles. The above discussion extends to more general vector bundles
over manifolds. Let (M, g) be a compact oriented Riemannian manifold with or
without boundary, having dimension d = dim (M). Let E be a Hermitian vector
bundle over M having rank n ≥ 1, i.e. each fiber Ex is an n-dimensional complex
vector space equipped with a Hermitian inner product 〈 · , · 〉 varying smoothly with
respect to base point.

We assume that E is equipped with a connection ∇, so for any vector field Y in M
there is a C-linear map on sections

∇Y : C∞(M ; E)→ C∞(M ; E)

which satisfies ∇fY u = f∇Y u and ∇Y (fu) = (Y f)u + f∇Y u for f ∈ C∞(M) and
u ∈ C∞(M ; E). There is a corresponding map

∇ : C∞(M ; E)→ C∞(M ;T ∗M ⊗ E).
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If E is trivial over a coordinate neighborhood U ⊂ M and if (e1, . . . , en) is an or-
thonormal frame for local sections over U , then ∇ has the local representation

∇(
n∑
k=1

ukek) =
n∑
k=1

(duk +
n∑
l=1

Akl u
l)⊗ ek,

∇Y (
n∑
k=1

ukek) =
n∑
k=1

(duk +
n∑
l=1

Akl u
l)(Y )ek

where A = (Akl ) is an n × n matrix of 1-forms in U , called the connection 1-form
corresponding to (e1, . . . , en). Locally one writes

∇ = d+ A.

We say that ∇ is a unitary connection (or Hermitian connection) if it is compatible
with the Hermitian structure:

Y 〈u, u′〉 = 〈∇Y u, u
′〉+ 〈u,∇Y u

′〉, Y vector field, u, u′ ∈ C∞(M ; E).

Equivalently, ∇ is Hermitian if in any trivializing neighbourhood the matrix (Akl ) is
skew-Hermitian.

If ∇ is a connection on a complex vector bundle E , we can define a linear operator

∇ : C∞(M ; Λk(T ∗M)⊗ E)→ C∞(M ; Λk+1(T ∗M)⊗ E)

for k ≥ 1 by requiring that

∇(ω ∧ u) = dω ∧ u+ (−1)kω ∧∇u, ω ∈ C∞(M ; Λk(T ∗M)), u ∈ C∞(M ; E)

where ω ∧ u is a natural wedge product of a differential form ω and a section u. The
curvature of (E ,∇) is the operator

fE = ∇ ◦∇ : C∞(M ; E)→ C∞(M ; Λ2(T ∗M)⊗ E).

This is C∞(M)-linear and can be interpreted as an element of C∞(M ; Λ2(T ∗M) ⊗
End(E)), where End(E) is the bundle of endomorphisms of E . If E is trivial over U
and ∇ = d + A with respect to an orthonormal frame (e1, . . . , en) for local sections
over U , then

fE(
n∑
k=1

ukek) =
n∑

k,l=1

(dAkl + Akm ∧ Aml )ul ⊗ ek.

Locally one writes

fE = dA+ A ∧ A.
If E and ∇ are unitary, then dA+ A ∧ A is a skew-Hermitian matrix of 2-forms and
fE ∈ C∞(M ; Λ2(T ∗M)⊗ Endsk(E)).

Pullback bundles. Next we consider the lift of ∇ to the pullback bundle over SM .
Let π : SM →M be the natural projection. The pullback bundle of E by π is

π∗E = {((x, v), e) ; (x, v) ∈ SM, e ∈ Ex}.
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Then π∗E is a Hermitian bundle over SM having rank n. The connection ∇ induces
a pullback connection π∗∇ in π∗E , defined uniquely by

(π∗∇)(π∗u) = π∗(∇u), u ∈ C∞(M ; E).

In coordinates π∗∇ looks as follows: if U is a trivializing neighbourhood of E and
if (e1, . . . , en) is an orthonormal frame of sections over U , then (ẽ1, . . . , ẽn) where
ẽj = ej ◦ π is a frame of sections of π∗E over SU , and

(π∗∇)(
n∑
k=1

ukẽk) =
n∑
k=1

(dSMu
k +

n∑
l=1

(π∗Akl )u
l)⊗ ẽk, uk ∈ C∞(SU).

Later we will omit π∗ and we will denote the pullback bundle and connection just by
E and ∇ (we will also write ej instead of ẽj = ej ◦ π).

3. Pestov identity with a connection

In this section we will state and prove the Pestov identity with a connection. We
will also give several related inequalities that will be useful for proving the main
results.

3.1. Unit sphere bundle. To begin, we need to recall certain notions related to the
geometry of the unit sphere bundle. We follow the setup and notation of [PSU14d]; for
other approaches and background information see [GK80b, Sh94, Pa99, Kn02, DS11].

Let (M, g) be a d-dimensional compact Riemannian manifold with or without
boundary, having unit sphere bundle π : SM → M , and let X be the geodesic
vector field. We equip SM with the Sasaki metric. If V denotes the vertical subbun-
dle given by V = Ker dπ, then there is an orthogonal splitting with respect to the
Sasaki metric:

(3.1) TSM = RX ⊕H⊕ V .

The subbundle H is called the horizontal subbundle. Elements in H(x, v) and V(x, v)
are canonically identified with elements in the codimension one subspace {v}⊥ ⊂ TxM
by the isomorphisms

dπx,v : V(x, v)→ {v}⊥, Kx,v : H(x, v)→ {v}⊥,

here K(x,v) is the connection map coming from Levi-Civita connection. We will use
these identifications freely below.

We shall denote by Z the set of smooth functions Z : SM → TM such that
Z(x, v) ∈ TxM and 〈Z(x, v), v〉 = 0 for all (x, v) ∈ SM . Another way to describe
the elements of Z is a follows. Consider the pull-back bundle π∗TM over SM . Let
N denote the subbundle of π∗TM whose fiber over (x, v) is given by N(x,v) = {v}⊥.
Then Z coincides with the smooth sections of the bundle N . Notice that N carries a
natural scalar product and thus an L2-inner product (using the Liouville measure on
SM for integration).
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Given a smooth function u ∈ C∞(SM) we can consider its gradient ∇u with
respect to the Sasaki metric. Using the splitting above we may write uniquely in the
decomposition (3.1)

∇u = ((Xu)X,
h

∇u,
v

∇u).

The derivatives
h

∇u ∈ Z and
v

∇u ∈ Z are called horizontal and vertical derivatives
respectively. Note that this differs from the definitions in [Kn02, Sh94] since here all
objects are defined on SM as opposed to TM .

Observe that X acts on Z as follows:

(3.2) XZ(x, v) :=
DZ(ϕt(x, v))

dt
|t=0

where D/dt is the covariant derivative with respect to Levi-Civita connection and
ϕt is the geodesic flow. With respect to the L2-product on N , the formal adjoints

of
v

∇ : C∞(SM) → Z and
h

∇ : C∞(SM) → Z are denoted by −
v

div and −
h

div
respectively. Note that since X leaves invariant the volume form of the Sasaki metric
we have X∗ = −X for both actions of X on C∞(SM) and Z. In what follows, we will
need to work with the complexified version of N with its natural inherited Hermitian
product. This will be clear from the context and we shall employ the same letter N
to denote the complexified bundle and also Z for its sections.

3.2. Hermitian bundles. Consider now a Hermitian vector bundle E of rank n over
M with a Hermitian product 〈 · , · 〉E , and let ∇E be a Hermitian connection on E (i.e.
satisfying (1.1)). Using the projection π : SM → M , we have the pullback bundle
π∗E over SM and pullback connection π∗∇E on π∗E . For convenience, we will omit
π∗ and use the same notation E and ∇E also for the pullback bundle and connection.

Remark on notation. The reader may have noticed that we have adorned the
notation for the unitary connection with the superscript E . The reason for doing so
at various points in what is about to follow is to make sure that there is a clear signal
of the influence of the connection in the vertical and horizontal components. We hope
this will not cause confusion.

If u ∈ C∞(SM ; E), then∇Eu ∈ C∞(SM ;T ∗(SM)⊗E), and using the Sasaki metric
on T (SM) we can identify this with an element of C∞(SM ;T (SM) ⊗ E), and thus
we can split according to (3.1)

∇Eu = (Xu,
h

∇ Eu,
v

∇ Eu), Xu := ∇EXu

and we can view
h

∇ Eu and
v

∇ Eu as elements in C∞(SM ;N ⊗ E). The operator X
acts on C∞(SM ; E) and we can also define a similar operator, still denoted by X, on
C∞(SM ;N ⊗ E) by

(3.3) X(Z ⊗ e) := (XZ)⊗ e+ Z ⊗ (Xe), Z ⊗ e ∈ C∞(SM ;N ⊗ E)



THE X-RAY TRANSFORM FOR CONNECTIONS 15

where X acts on Z by (3.2). There is a natural Hermitian product 〈 · , · 〉N⊗E on

N ⊗ E induced by g and 〈 · , · 〉E . We define
h

div E and
v

div E to be the adjoints of −
h

∇ E

and −
v

∇ E in the L2 inner product.
Next we define curvature operators. If R is the Riemann curvature tensor of (M, g),

we can view it as an operator on the bundles N and N ⊗ E over SM by the actions

(3.4) R(x, v)w := Rx(w, v)v, R(x, v)(w ⊗ e) := (Rx(w, v)v)⊗ e

if (x, v) ∈ SM , w ∈ {v}⊥, and e ∈ E(x,v). The curvature of the connection ∇E on E
is denoted fE ∈ C∞(M ; Λ2T ∗M ⊗ Endsk(E)) and it is a 2-form with values in skew-
Hermitian endomorphisms of E . In particular, to fE we can associate an operator
F E ∈ C∞(SM ;N ⊗ Endsk(E)) defined by

(3.5) 〈fEx (v, w)e, e′〉E = 〈F E(x, v)e, w ⊗ e′〉N⊗E ,

where (x, v) ∈ SM, w ∈ {v}⊥, e, e′ ∈ E(x,v).
Next we give a technical lemma which expresses F E in terms of the local connection

1-form A ∈ C∞(U ;T ∗M⊗Endsk(Cn)) of ∇E in a local orthonormal frame (e1, . . . , en)
of E over a chart U ⊂M . In that basis, the curvature fE can be written as the 2-form
fE = dA + A ∧ A. We pull back everything to SM (including the frame) and also
view A as an element of C∞(SU ; Endsk(Cn)) by setting A(x, v) := Ax(v).

Lemma 3.1. In the local orthonormal frame (e1, . . . , en), the expression of F E in
terms of the connection 1-form A is

F E = X(
v

∇A)−
h

∇A+ [A,
v

∇A]

as elements of C∞(SU ;N ⊗ Endsk(Cn)).

Proof. Note that we can interpret the claim as an identity for n×n matrix functions

with entries in N , where X,
v

∇,
h

∇ act elementwise. Write A = (Akl )
n
k,l=1, where each

Akl is a scalar 1-form. Since v 7→ Akl (x, v) is linear, 〈
v

∇Akl (x, v), w〉 = Akl (x,w). From
this we easily derive

g([A,
v

∇A](x, v), w) = A(x, v)A(x,w)− A(x,w)A(x, v) = (A ∧ A)x(v, w)

where g( · , w) acts elementwise. We just need to prove that

g(X(
v

∇A)(x, v)−
h

∇A(x, v), w) = (dA)x(v, w).

It suffices to check this equality when A is a scalar 1-form.
Let ev(t) denote the parallel transport of v along the geodesic γw(t) determined by

(x,w). Similarly, let ew(t) denote the parallel transport of w along the geodesic γv(t)
determined by (x, v). By definition of dA:

(dA)x(v, w) =
d

dt
|t=0Aγv(t)(ew(t))− d

dt
|t=0Aγw(t)(ev(t)).
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But by definition of
h

∇ we have

d

dt
|t=0Aγw(t)(ev(t)) = g(

h

∇A(x, v), w)

since the curve t 7→ (γw(t), ev(t)) ∈ SM goes through (x, v) and its tangent vector
has only horizontal component equal to w. Finally

〈X
v

∇A(x, v), w〉 = 〈D
dt
|t=0

v

∇A(γv(t), γ̇v(t)), ew(0)〉

=
d

dt
|t=0〈

v

∇A(γv(t), γ̇v(t)), ew(t)〉

=
d

dt
|t=0Aγv(t)(ew(t))

and the lemma is proved. �

3.3. Pestov identity with a connection. We begin with some basic commutator
formulas, which generalize the corresponding formulas in [PSU14d, Lemma 2.1] to the
case of where one has a Hermitian bundle with unitary connection. The proof also
gives local frame representations for the operators involved (this could be combined
with [PSU14d, Appendix A] to obtain local coordinate formulas)

Lemma 3.2. The following commutator formulas hold on C∞(SM ; E):

[X,
v

∇ E ] = −
h

∇ E ,(3.6)

[X,
h

∇ E ] = R
v

∇ E + F E ,(3.7)

h

div E
v

∇ E −
v

div E
h

∇ E = (d− 1)X,(3.8)

where the maps R and F E are defined in (3.4) and (3.5). Taking adjoints, we also
have the following commutator formulas on C∞(SM,N ⊗ E):

[X,
v

div E ] = −
h

div E ,

[X,
h

div E ] = −
v

div ER + (F E)∗

where (F E)∗ : C∞(SM ;N ⊗ E) → C∞(SM ; E) is the L2-adjoint of C∞(SM ; E) 3
u 7→ F Eu ∈ C∞(SM,N ⊗ E).

Proof. It suffices to prove these formulas for a local orthonormal frame (e1, . . . , en)
of E over a trivializing neighborhood U ⊂ M . The connection in this frame will be
written as d + A for some connection 1-form A ∈ C∞(U ;T ∗U ⊗ Endsk(Cn)), i.e. we
have (using the Einstein summation convention with sums from 1 to n)

∇E(
n∑
k=1

ukek) =
n∑
k=1

(duk +
n∑
l=1

Akl u
l)⊗ ek.
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We alternatively view A as an element in C∞(SU ; Endsk(Cn)) of degree 1 in the
variable v, by setting A(x, v) = Ax(v). We pull back the frame to SU (and con-
tinue to write (ej) for the frame) and the connection. Then we get the local frame
representations

X(
n∑
k=1

ukek) =
n∑
k=1

(Xuk +
n∑
l=1

Akl u
l)ek,

v

∇ E(
n∑
k=1

ukek) =
n∑
k=1

(
v

∇uk)⊗ ek.

Note in particular that
v

∇ E does not depend on the connection. To compute a
local representation for the horizontal derivative, we take an orthonormal frame
(Z1, . . . , Zd−1) of N over SU . We can write

h

∇ E(
n∑
k=1

ukek) =
d−1∑
j=1

n∑
k=1

(duk +
n∑
l=1

Akl u
l)(Zj)Zj ⊗ ek.

Since any 1-form a satisfies
v

∇(a(x, v)) =
∑d−1

j=1 a(Zj)Zj, we obtain

h

∇ E(
n∑
k=1

ukek) =
n∑
k=1

(
h

∇uk +
n∑
l=1

(
v

∇Akl )ul)⊗ ek.

We can now use the above formulas and (3.3) to compute

[X,
v

∇ E ](
n∑
k=1

ukek) =
n∑
k=1

([X,
v

∇]uk −
n∑
l=1

(
v

∇Akl )ul)⊗ ek.

By [PSU14d, Lemma 2.1] we have [X,
v

∇]uk = −
h

∇uk and thus the first identity (3.6)
is proved. We also get

[X,
h

∇ E ](
n∑
k=1

ukek) =
n∑
k=1

([X,
h

∇]uk +
n∑
l=1

(X
v

∇Akl −
h

∇Akl )ul)⊗ ek

+
n∑

k,l,r=1

((Akr
v

∇Arl − (
v

∇Akr)Arl )ul)⊗ ek

which proves the second identity (3.7) by using the fact that [X,
h

∇]uk = R
v

∇uk
([PSU14d, Lemma 2.1]) and Lemma 3.1 which expresses F E in terms of A. The third
formula (3.8) follows similarly: a computation in the local frame gives

(
h

div E
v

∇ E −
v

div E
h

∇ E)(
n∑
k=1

ukek) =
n∑
k=1

((
h

div
v

∇ −
v

div
h

∇)uk)ek −
n∑

k,l=1

(
v

div
v

∇Akl )ulek.
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Since −
v

div
v

∇a = (d − 1)a if a ∈ C∞(SM) corresponds to a 1-form, the last terms

in the sum become (d− 1)Akl u
lek. We also have (

h

div
v

∇ −
v

div
h

∇)uk = (d− 1)Xuk by
[PSU14d, Lemma 2.1] and this achieves the proof of (3.8). �

The next proposition states the Pestov identity with a connection. The proof
is identical to the proof of [PSU14d, Proposition 2.2] upon using the commutator
formulas in Lemma 3.2.

Proposition 3.3. Let (M, g) be a compact Riemannian manifold with or without
boundary, and let (E ,∇E) be a Hermitian bundle with Hermitian connection over M ,
which we pull back to SM . Then

‖
v

∇ EXu‖2 = ‖X
v

∇ Eu‖2 − (R
v

∇ Eu,
v

∇ Eu)− (F Eu,
v

∇ Eu) + (d− 1)‖Xu‖2

for any u ∈ C∞(SM ; E), with u|∂(SM) = 0 in the boundary case. The maps R and
F E are defined in (3.4) and (3.5).

3.4. Spherical harmonics decomposition. We can use the spherical harmonics
decomposition from Section 1 and [PSU14d, Section 3],

L2(SM ; E) =
∞⊕
m=0

Hm(SM ; E),

so that any f ∈ L2(SM ; E) has the orthogonal decomposition

f =
∞∑
m=0

fm.

We write Ωm = Hm(SM ; E)∩C∞(SM ; E), and write ∆E = −
v

div E
v

∇ E for the vertical
Laplacian. Notice that since (E ,∇E) are pulled back from M to SM , we have in a
local orthonormal frame (e1, . . . , en) the representation

∆E(
n∑
k=1

ukek) =
n∑
k=1

(∆uk)ek

where ∆ := −
v

div
v

∇ is the vertical Laplacian on functions defined in [PSU14d, Section
3]. Then ∆Eu = m(m + d − 2)u for u ∈ Ωm. We have the following commutator
formula, whose proof is identical to that of [PSU14d, Lemma 3.6].

Lemma 3.4. The following commutator formula holds:

[X,∆E ] = 2
v

div E
h

∇ E + (d− 1)X.

Recall that if a and b are two spherical harmonics in Sd−1, where a ∈ H1(Sd−1) and
b ∈ Hm(Sd−1), then the product ab is in Hm+1(Sd−1)⊕Hm−1(Sd−1). Thus X splits as
X = X+ + X− where

X± : Ωm → Ωm±1.
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Since the connection is Hermitian, we have X∗+ = −X−.
The following special case of the Pestov identity with a connection (Proposition 3.3)

is very useful for studying individual Fourier coefficients of solutions of the transport
equation. The proof is the same as that of [PSU14d, Proposition 3.5].

Proposition 3.5. Let (M, g) be a compact d-dimensional Riemannian manifold with
or without boundary. If the Pestov identity with connection is applied to functions in
Ωm, one obtains the identity

(2m+ d− 3)‖X−u‖2 + ‖
h

∇ Eu‖2− (R
v

∇ Eu,
v

∇ Eu)− (F Eu,
v

∇ Eu) = (2m+ d− 1)‖X+u‖2

which is valid for any u ∈ Ωm (with u|∂(SM) = 0 in the boundary case).

3.5. Lower bounds. The following results extend [PSU14d, Lemmas 4.3 and 4.4] to
the case where a Hermitian connection is present. The proofs are identical, but we
repeat them for completeness.

Lemma 3.6. If u ∈ C∞(SM ; E) and u =
∑∞

l=m ul with ul ∈ Ωl, then

‖X
v

∇ Eu‖2 ≥

{
(m−1)(m+d−2)2

m+d−3
‖(Xu)m−1‖2 + m(m+d−1)2

m+d−2
‖(Xu)m‖2, m ≥ 2,

d2

d−1
‖(Xu)1‖2, m = 1.

If u ∈ Ωm, we have

‖X
v

∇ Eu‖2 ≥

{
(m−1)(m+d−2)2

m+d−3
‖X−u‖2 + m2(m+d−1)

m+1
‖X+u‖2, m ≥ 2,

d
2
‖X+u‖2, m = 1.

Lemma 3.7. If u ∈ C∞(SM ; E) and wl ∈ Ωl, then

(
h

∇ Eu,
v

∇ Ewl) = ((l + d− 2)X+ul−1 − lX−ul+1, wl).

As a consequence, for any u ∈ C∞(SM ; E) we have the decomposition

h

∇ Eu =
v

∇ E
[
∞∑
l=1

(
1

l
X+ul−1 −

1

l + d− 2
X−ul+1

)]
+ Z(u)

where Z(u) ∈ C∞(SM ;N ⊗ E) satisfies
v

div EZ(u) = 0.
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Proof of Lemma 3.7. By Lemma 3.4,

(
h

∇ Eu,
v

∇ Ewl) = −(
v

div E
h

∇ Eu,wl) = −1

2
([X,∆E ]u,wl) +

d− 1

2
(Xu,wl)

= −1

2
([X+,∆

E ]u+ [X−,∆E ]u,wl) +
d− 1

2
(Xu,wl)

= −1

2
([X+,∆

E ]ul−1 + [X−,∆E ]ul+1, wl) +
d− 1

2
(X+ul−1 + X−ul+1, wl)

=

(
2l + d− 3

2
X+ul−1 −

2l + d− 1

2
X−ul+1, wl

)
+
d− 1

2
(X+ul−1 + X−ul+1, wl)

which proves the first claim. For the second one, we note that

(
h

∇ Eu,
v

∇ Ew) =
∞∑
l=1

((l + d− 2)X+ul−1 − lX−ul+1, wl)

=
∞∑
l=1

1

l(l + d− 2)
(
v

∇ E [(l + d− 2)X+ul−1 − lX−ul+1] ,
v

∇ Ewl)

so

(
h

∇ Eu−
v

∇ E
[
∞∑
l=1

(
1

l
X+ul−1 −

1

l + d− 2
X−ul+1

)]
,
v

∇ Ew) = 0

for all w ∈ C∞(SM ; E). �

Proof of Lemma 3.6. Let u =
∑∞

l=m ul with m ≥ 2. First note that

‖X
v

∇ Eu‖2 = ‖
v

∇ EXu−
h

∇ Eu‖2.

We use the decomposition in Lemma 3.7, which implies that

v

∇ EXu−
h

∇ Eu =

v

∇ E
[(

1 +
1

m+ d− 3

)
(Xu)m−1 +

(
1 +

1

m+ d− 2

)
(Xu)m +

∞∑
l=m+1

wl

]
+ Z

where wl ∈ Ωl for l ≥ m+ 1 are given by

wl = (Xu)l −
1

l
X+ul−1 +

1

l + d− 2
X−ul+1
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and where Z ∈ C∞(SM ;N ⊗ E) satisfies
v

div EZ = 0. Taking the L2 norm squared,

and noting that the term
v

∇ E( · ) is orthogonal to the
v

div E -free vector field Z, gives

‖X
v

∇ Eu‖2 =
(m− 1)(m+ d− 2)2

m+ d− 3
‖(Xu)m−1‖2 +

m(m+ d− 1)2

m+ d− 2
‖(Xu)m‖2

+
∞∑

l=m+1

‖
v

∇ Ewl‖2 + ‖Z‖2.

The claims for m = 1 or for u ∈ Ωm are essentially the same. �

3.6. Identification with trace free symmetric tensors and conformal in-
variance. For E being the trivial complex line bundle, there is an identification
of Ωm with the smooth trace free symmetric tensor fields of degree m on M which
we denote by Θm [DS11, GK80b]. More precisely, as in [DS11] we start with λ :
C∞(M ;⊗mS T ∗M) → C∞(SM) being the map which takes a symmetric m-tensor f
and maps it into the section SM 3 (x, v) 7→ fx(v, . . . , v). The map λ turns out to be
an isomorphism between Ωm and Θm. In fact up to a factor which depends on m and
d only, it is a linear isometry when the spaces are endowed with the obvious L2-inner
products; this is detailed in [DS11, Lemma 2.4] and [GK80b, Lemma 2.9]. There is
a natural operator D := S ◦ ∇ : C∞(M ;⊗mS T ∗M) → C∞(M ;⊗m+1

S T ∗M) where ∇
is the Levi-Civita connection acting on tensors and S : ⊗mT ∗M → ⊗mS T ∗M is the
orthogonal projection from the space of m-tensors to symmetric ones. The trace map
T : ⊗mT ∗M → ⊗m−2T ∗M is defined by

T u(v1, . . . , vm−2) =
d∑
j=1

u(Ej, Ej, v1, . . . , vm−2), vi ∈ TM

where (Ej)j=1,...,d is an orthonormal basis of TM for g. Then the adjoint D∗ = −T ◦∇
is (minus) the divergence operator. Then in [DS11, Section 10] we find the formula

X−u = − m

d+ 2m− 2
λD∗λ−1u,

for u ∈ Ωm. The expression for X+ in terms of tensors is as follows. If P denotes
orthogonal projection onto Θm+1 then

X+u = λPDλ−1u

for u ∈ Ωm. In other words, up to λ, X+ is PD and X− is − m
d+2m−2

D∗. The operator
X+, at least for m = 1, has many names and is known as the conformal Killing
operator, trace-free deformation tensor, or Ahlfors operator.

Under this identification KerX+ consists of the conformal Killing symmetric tensor
fields, a finite dimensional space. It is well known that the dimension of this space
depends only on the conformal class of the metric, but let us look at this in more
detail. Consider a new metric of the form g̃ = e2ϕ g. The first observation is that
the space Θm is the same for both metrics and thus the operator P is also the same
for both metrics. To see how D changes under conformal change, we see from Koszul
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formula that the two Levi-Civita connections ∇ and ∇̃ associated to g and g̃, acting
on 1-forms T ∈ C∞(M ;T ∗M), are related by

(3.9) ∇̃T = ∇T − 2S(dϕ⊗ T ) + T (∇̃ϕ)g̃.

Let D̃ = S∇̃, then since P corresponds to orthogonal projection to the space of
trace-free tensors, the parts involving g̃ will disappear in the computation below
when applying P . We then get for T =

∑
σ∈Πm

Tσ(1)⊗· · ·⊗Tσ(m) ∈ C∞(M ;⊗mS T ∗M)
with Πm the set of permutations of (1, . . . ,m) and Tj ∈ C∞(M ;T ∗M) that

e−2mϕPD̃(e2mϕT ) = PS∇̃T + 2mPS(dϕ⊗ T ).

Since

∇̃Y (Tσ(1) ⊗ · · · ⊗ Tσ(m)) = (∇̃Y Tσ(1))⊗ · · · ⊗ Tσ(m) + · · ·+ Tσ(1) ⊗ · · · ⊗ (∇̃Y Tσ(m)),

the formula (3.9) and symmetrization give

PS∇̃T = PS(∇T − 2mdϕ⊗ T ).

Then we deduce that

(3.10) e−2mϕPD̃(e2mϕT ) = PDT.

If now we have a general Hermitian bundle E with connection ∇E , we can proceed
similarly. The map λ extends naturally to λ : C∞(M ;⊗mS T ∗M ⊗ E) → C∞(SM ; E)
and is an isomorphism between Θm and Ωm where now Θm is the space of trace-free
sections in C∞(M ;⊗mS T ∗M⊗E) and Ωm = Hm(SM ; E)∩C∞(SM ; E). We can define
DE acting on C∞(M ;⊗mS T ∗M ⊗ E) by

DEu := S∇E(u)

where S means the symmetrization S : T ∗M ⊗ (⊗mS T ∗M) ⊗ E → (⊗m+1
S T ∗M) ⊗ E .

Using a local orthonormal frame (e1, . . . , en) the connection ∇E = d + A for some
connection 1-form with values in skew-Hermitian matrices, and in this frame

DE(
n∑
k=1

uk ⊗ ek) =
n∑

k,l=1

(Duk)⊗ ek + S(Akl ⊗ ul)⊗ ek.

Then we get

X+λu = λPDEu
and hence the elements in the kernel of X+ are in 1-1 correspondence with tensors
u ∈ Θm with PDEu = 0. Since in the local frame (e1, . . . , en) we have, using (3.10),
that for u =

∑n
k=1 u

k ⊗ ek

PD̃E(e2mϕu) =
n∑
k=1

e2mϕP(Duk)⊗ ek +
n∑

k,l=1

PS(Akl ⊗ e2mϕul)⊗ ek = e2mϕPDEu

we see that the dimension of the space of twisted conformal Killing tensors is also a
conformal invariant.
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4. Finite degree

In this section we will prove the finite degree part of Theorem 1.3 in the closed
case, as well as its analogue in the boundary case. In Section 5 we will consider
the corresponding improved results (stating that u has degree one smaller than f) in
those cases where twisted CKTs do not exist. The underlying idea of the proof of
finite degree is that for sufficiently high enough Fourier modes, the sectional curvature
overtakes the contribution of the connection and the Higgs field in the Pestov identity.
This idea first appeared in [Pa09] in 2D and its implementation in higher dimensions
is one the contributions of the present paper.

We use the notations of Section 3. For simplicity we first discuss the case where
no Higgs field is present, and prove the following result:

Theorem 4.1. Let (M, g) be a compact manifold of negative sectional curvature with
or without boundary and let E be a Hermitian bundle equipped with a Hermitian
connection ∇E . Suppose u ∈ C∞(SM ; E) solves

Xu = f

where f has finite degree (and u|∂(SM) = 0 in the boundary case). Then u has finite
degree.

The proofs in the closed case and in the boundary case are identical, and we
will henceforth consider only closed manifolds in this section. We give two proofs
of Theorem 4.1. The first proof is based on applying the Pestov identity with a
connection to the tail of a Fourier series, which gives the following result. We use the
notation

T≥mu =
∞∑
k=m

uk, u ∈ L2(SM ; E).

Lemma 4.2. Let (M, g) be a closed manifold such that the sectional curvatures are
uniformly bounded above by −κ for some κ > 0. Let (E ,∇E) be a Hermitian bundle
with Hermitian connection over M , and assume that m ≥ 1 is so large that

λm ≥
2‖F E‖2

L∞

κ2

where λm = m(m+ d− 2), F E is the curvature operator of ∇E defined by (3.5), and

‖F E‖L∞ = ‖F E‖L∞(SM ;N⊗End(E)).

Then we have the inequality

κ

4
‖

v

∇ ET≥mu‖2 ≤ ‖
v

∇ ET≥m+1Xu‖2, u ∈ C∞(SM ; E).

Proof. We will do the proof for m ≥ 2 (the argument for m = 1 is similar). Since
T≥m+1XT≥mu = T≥m+1Xu, it is enough to prove that

κ

4
‖

v

∇ Eu‖2 ≤ ‖
v

∇ ET≥m+1Xu‖2, u ∈ T≥mC∞(SM ; E).
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If u ∈ T≥mC∞(SM ; E), the Pestov identity yields

‖
v

∇ ET≥m+1Xu‖2 +m(m+ d− 2)‖(Xu)m‖2 + (m− 1)(m+ d− 3)‖(Xu)m−1‖2

= ‖
v

∇ EXu‖2

= ‖X
v

∇ Eu‖2 − (R
v

∇ Eu,
v

∇ Eu)− (F Eu,
v

∇ Eu) + (d− 1)‖Xu‖2

which is, using Lemma 3.6 and the fact that the sectional curvatures are ≤ −κ,

≥ (m− 1)(m+ d− 2)2

m+ d− 3
‖(Xu)m−1‖2 +

m(m+ d− 1)2

m+ d− 2
‖(Xu)m‖2

+ κ‖
v

∇ Eu‖2 − (F Eu,
v

∇ Eu) + (d− 1)‖Xu‖2.

We obtain in particular that

κ‖
v

∇ Eu‖2 ≤ ‖
v

∇ ET≥m+1Xu‖2 + (F Eu,
v

∇ Eu).

Using the inequality |(F Eu,
v

∇ Eu)| ≤ 1
2
( 1
κ
‖F E‖2

L∞‖u‖2 + κ‖
v

∇ Eu‖2), we get

κ

2
‖

v

∇ Eu‖2 ≤ ‖
v

∇ ET≥m+1Xu‖2 +
‖F E‖2

L∞

2κ
‖u‖2.

Finally, we have
‖FE‖2L∞

2κ
‖u‖2 ≤ ‖FE‖2L∞

2κλm
‖

v

∇ Eu‖2, and thus if m is so large that

λm ≥
2‖F E‖2

L∞

κ2
,

then we have
κ

4
‖

v

∇ Eu‖2 ≤ ‖
v

∇ ET≥m+1Xu‖2. �

For possible later purposes, we record another lemma which follows easily from the
previous one and states that if Xu is smooth in the vertical variable, then so is u.
(This lemma will not be used anywhere in this paper.)

Lemma 4.3. Let (M, g) and (E ,∇E) as in Lemma 4.2 and assume that m ≥ 1 is so
large that

λm ≥
2‖F E‖2

L∞

κ2
.

Let also ε > 0. There is C = C(κ, ε) > 0 so that for any N ≥ 1 we have

∞∑
k=m+1

λ
N−1/2−ε
k ‖uk‖2 ≤ C

m2ε

∞∑
l=m+1

λNl ‖(Xu)l‖2, u ∈ C∞(SM ; E).
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Proof. By Lemma 4.2,

κ

4
‖

v

∇ ET≥mu‖2 ≤
∞∑

l=m+1

λl‖(Xu)l‖2 =
∞∑

l=m+1

λ1−N
l λNl ‖(Xu)l‖2

≤ λ1−N
m+1

∞∑
l=m+1

λNl ‖(Xu)l‖2.

Thus in particular κ
4
λNm+1‖um+1‖2 ≤

∑∞
l=m+1 λ

N
l ‖(Xu)l‖2. This shows that

∞∑
k=m+1

λ
N−1/2−ε
k ‖uk‖2 ≤ C

m2ε
sup

k≥m+1
λNk ‖uk‖2 ≤ C

m2ε

∞∑
l=m+1

λNl ‖(Xu)l‖2. �

First proof of Theorem 4.1. If (M, g) has sectional curvatures bounded above by −κ
where κ > 0, and if f has degree l, we choose m ≥ 1 so large that λm ≥

2‖FE‖2L∞
κ2

and
also m ≥ l. Then T≥m+1Xu = 0, thus by Lemma 4.2 T≥mu = 0 so u has degree less
or equal to m− 1. �

To deal with the case of nonzero Higgs field, it is convenient to use another proof of
Theorem 4.1. We first give the argument for Φ = 0. If (M, g) has negative curvature
and d 6= 4, the next result implies in particular that

‖X−u‖ ≤ ‖X+u‖, u ∈ Ωm, m sufficiently large.

This is an analogue of the Beurling contraction property that was discussed in [PSU14d]
in the case of the trivial line bundle E = M × C with flat connection.

Lemma 4.4. Let (M, g) and (E ,∇E) as in Lemma 4.2 and assume that m ≥ 1 is so
large that

λm ≥
4‖F E‖2

L∞

κ2

where λm = m(m+ d− 2). Then for any u ∈ Ωm we have

‖X−u‖2 + cm‖u‖2 ≤ dm‖X+u‖2

where cm and dm can be chosen as

cm =
κm

4
, dm =


1, d 6= 3 and m ≥ 2,
d+2
2d−2

, d 6= 3 and m = 1,
1 + 1

(m+1)2(2m−1)
, d = 3.

Proof. Let u ∈ Ωm. From Proposition 3.5 we have the identity

(2m+d−3)‖X−u‖2 +‖
h

∇ Eu‖2− (R
v

∇ Eu,
v

∇ Eu)− (F Eu,
v

∇ Eu) = (2m+d−1)‖X+u‖2.

By Lemma 3.7

‖
h

∇ Eu‖2 = ‖ 1

m+ 1

v

∇ EX+u−
1

m+ d− 3

v

∇ EX−u+ Z(u)‖2

≥ m+ d− 1

m+ 1
‖X+u‖2 +

m− 1

m+ d− 3
‖X−u‖2
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using that Z(u) is L2-orthogonal to the
v

∇ E( · ) terms because
v

div EZ(u) = 0. Thus[
2m+ d− 3 +

m− 1

m+ d− 3

]
‖X−u‖2 − (R

v

∇ Eu,
v

∇ Eu)− (F Eu,
v

∇ Eu)

≤
[
2m+ d− 1− m+ d− 1

m+ 1

]
‖X+u‖2.

The issue is to show that for large m, the term involving R wins over the term
involving F E . Indeed, the assumption on sectional curvature yields

−(R
v

∇ Eu,
v

∇ Eu) ≥ κ‖
v

∇ Eu‖2 = κλm‖u‖2.

On the other hand, since M is compact we have

|(F Eu,
v

∇ Eu)| ≤ ‖F E‖L∞‖u‖‖
v

∇ Eu‖ = ‖F E‖L∞λ1/2
m ‖u‖2.

The assumption on m implies that κ
2
λm ≥ ‖F E‖L∞λ1/2

m , which gives

−(R
v

∇ Eu,
v

∇ Eu)− (F Eu,
v

∇ Eu) ≥ κ

2
λm‖u‖2.

Putting these facts together implies that

‖X−u‖2 + cm‖u‖2 ≤ dm‖X+u‖2

where cm and dm may be chosen as stated. �

Second proof of Theorem 4.1. Let Xu = f where f has degree l. Looking at Fourier
coefficients we have (Xu)k = 0 for k ≥ l + 1, meaning that

X+uk = −X−uk+2, k ≥ l.

Let m ≥ l and let also m satisfy the condition in Lemma 4.4. Using Lemma 4.4 and
the identity above repeatedly, we obtain for any N ≥ 0 that

‖X−um‖2 + cm‖um‖2 ≤ dm‖X+um‖2 = dm‖X−um+2‖2

≤ dmdm+2‖X+um+2‖2 = dmdm+2‖X−um+4‖2 ≤ . . . ≤

[
N∏
j=0

dm+2j

]
‖X−um+2N+2‖.

Since X−u ∈ L2, we have ‖X−uk‖ → 0 as k → ∞. Also, the constant
∏N

j=0 dm+2j

stays finite as N →∞. This shows that um = 0 for m sufficiently large. �

Another immediate consequence of Lemma 4.4 is the following theorem, which
implies Theorem 1.6 when combined with the conformal invariance discussed at the
end of Section 3.

Theorem 4.5. Let (M, g) be a closed manifold satisfying K ≤ −κ for some κ > 0.
Let E be a Hermitian bundle with Hermitian connection ∇, and assume that m ≥ 1
satisfies

m(m+ d− 2) ≥ 4‖F E‖2
L∞

κ2
.

Then any u ∈ Ωm satisfying X+u = 0 must be identically zero.
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In the rest of this section, we explain how to include a Higgs field in Theorem 4.1:

Theorem 4.6. Let (M, g) be a compact manifold with negative sectional curvature,
with or without boundary, let (E ,∇E) be a Hermitian bundle over M with Hermitian
connection, and let Φ be a skew-Hermitian Higgs field. Suppose u ∈ C∞(SM ; E) (with
u|∂(SM) = 0 in the boundary case) solves

(X + Φ)u = f

where f has finite degree. Then u has finite degree.

We will follow the strategy in [Pa12] which considered the case where dim (M) = 2.
Again we will only do the proof for closed manifolds (the boundary case is identical
as long as we insist that u|∂(SM) = 0).

Proof of Theorem 4.6. We first assume that d 6= 3 (the case d = 3 is a little different).
By Lemma 4.4, since the sectional curvature of M is negative, there exist constants
cm > 0 with cm →∞ as m→∞and a positive integer l such that

(4.1) ‖X+um‖2 ≥ ‖X−um‖2 + cm‖um‖2

for all m ≥ l and um ∈ Ωm. Write u =
∑
um. We know that for all m sufficiently

large

(4.2) X+um−1 + X−um+1 + Φum = 0.

Combining (4.1) and (4.2) we derive

(4.3) ‖X+um+1‖2 ≥ ‖X+um−1‖2 + cm+1‖um+1‖2 + ‖Φum‖2 + 2Re(X+um−1,Φum).

The rest of the proof hinges on controlling the term Re(X+um−1,Φum).
Given an element α ∈ Ω1 we write iαu := αu. Multiplication by an element of

degree one has the following property: if u ∈ Ωm, then iαu ∈ Ωm−1⊕Ωm+1 and hence
we may write iαu = i−αu+i+αu where i±αu ∈ Ωm±1. For a smooth section U of the bundle
F := End(E) we write XU ∈ C∞(M ;F) for the element (XU)f := X(Uf) − U(Xf)
if f ∈ C∞(M ; E) is any section (this corresponds to ∇FXU where ∇F is the natural
connection induced by ∇E on F). In a local trivialization where we write ∇E = d+A
for some connection 1-form, one has XU = XU + [A,U ].

We now prove an auxiliary lemma:

Lemma 4.7. The following identity holds for Φ skew-Hermitian:

(X+um−1,Φum) + (X+um−2,Φum−1) = −(um−1, i
−
XΦum)− ‖Φum−1‖2.

Proof. We observe first that

X(Φum) = (XΦ)um + ΦXum = i−XΦum + ΦX−um + i+XΦum + ΦX+um

and thus

X−(Φum) = i−XΦum + ΦX−um.
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Now compute using the above, (4.2) and Φ skew-Hermitian:

(X+um−1,Φum) = −(um−1,X−(Φum))

= −(um−1, i
−
XΦum)− (um−1,ΦX−um)

= −(um−1, i
−
XΦum) + (um−1,Φ(Φum−1 + X+um−2))

= −(um−1, i
−
XΦum)− ‖Φum−1‖2 + (um−1,ΦX+um−2)

= −(um−1, i
−
XΦum)− ‖Φum−1‖2 − (Φum−1,X+um−2)

and the lemma is proved. �

The lemma suggests to consider (4.3) for m and m− 1. Adding them we derive:

‖X+um+1‖2 + ‖X+um‖2 ≥ ‖X+um−1‖2 + cm+1‖um+1‖2 + ‖Φum‖2

+ ‖X+um−2‖2 + cm‖um‖2 + ‖Φum−1‖2

+ 2Re(X+um−1,Φum) + 2Re(X+um−2,Φum−1).

If we set am := ‖X+um‖2 + ‖X+um−1‖2 and we use Lemma 4.7 we obtain

am+1 ≥ am−1 + cm+1‖um+1‖2 + cm‖um‖2 + ‖Φum‖2 − ‖Φum−1‖2 − 2Re(um−1, i
−
XΦum)

≥ am−1 + cm+1‖um+1‖2 + cm‖um‖2 + ‖Φum‖2 − ‖Φum−1‖2 − ‖um−1‖2 − ‖i−XΦum‖
2.

Since M is compact there exist positive constants B and C such that

‖Φf‖2 ≤ (B − 1)‖f‖2

‖i−XΦf‖
2 ≤ C‖f‖2

for any f ∈ C∞(SM ; E). Therefore

am+1 ≥ am−1 + rm

where

rm := −B‖um−1‖2 + cm+1‖um+1‖2 + (cm − C)‖um‖2.

Now choose a positive integer N0 large enough so that for m ≥ N0 equations (4.1)
and (4.2) hold and we have

cm > max{B,C}.
Let m = N + 1 + 2k, where k is a non-negative integer and N is an integer with
N ≥ N0. Note that from the definition of rm and our choice of N we have

rm + rm−2 + · · ·+ rN+1 ≥ −B‖uN‖2.

Thus

am+1 ≥ aN + rm + rm−2 + · · ·+ rN+1 ≥ aN −B‖uN‖2.

From the definition of am and (4.1) we know that aN ≥ cN‖uN‖2 and hence

am+1 ≥ (cN −B)‖uN‖2.
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Since the function u is smooth, also X+u is smooth and X+(um) = (X+u)m must tend
to zero in the L2-topology as m → ∞. Hence am+1 → 0 as k → ∞ which in turns
implies that uN = 0 for any N ≥ N0, thus concluding that u has finite degree as
desired.

We briefly indicate the modifications for dim (M) = 3. Inequality (4.1) changes to

(4.4) dm‖X+um‖2 ≥ ‖X−um‖2 + cm‖um‖2

where

dm = 1 +
1

(m+ 1)2(2m− 1)
.

With the same definitions of am and rm as above one arrives at the inequality

dmam+1 ≥ am−1 + rm.

With this inequality one derives (dm ≥ 1 for all m):(
k∏
j=0

dm−2j

)
am+1 ≥ aN + rm + · · ·+ rN+1 ≥ aN −B‖uN‖2.

From the definition of am and (4.4) we know that dNaN ≥ cN‖uN‖2 and hence(
k∏
j=0

dm−2j

)
am+1 ≥ (

cN
dN
−B)‖uN‖2.

Now we need to choose N0 such that
cN0

dN0
−B > 0. This is possible since cm →∞ and

dm → 1. Since the function u is smooth, X+(um) must tend to zero in the L2-topology
as m → ∞. Hence am+1 → 0 as k → ∞ which in turns implies that uN = 0 for any

N ≥ N0 since
(∏∞

j=0 dm0+2j

)
is a finite constant.

Thus u has finite degree as desired also for dimM = 3. �

5. Twisted CKTs and ray transforms

In Section 4 we proved the finite degree result, Theorem 4.6. In this section we give
the easy argument that improves this result in cases where there are no nontrivial
twisted conformal Killing tensors.

Recall from the introduction that the absence of nontrivial twisted CKTs means
that any u ∈ Ωm, m ≥ 1, satisfying X+u = 0 (with u|∂(SM) = 0 in the boundary case)
must be identically zero.

Theorem 5.1. Let (M, g) be a negatively curved compact manifold with or without
boundary. Assume that the boundary is strictly convex if ∂M 6= ∅. Let (E ,∇E) be
a Hermitian bundle with Hermitian connection and let Φ be a skew-Hermitian Higgs
field. Suppose that f ∈ C∞(SM ; E) has degree m ≥ 0, and that u ∈ C∞(SM ; E)
(with u|∂(SM) = 0 in the boundary case) solves the equation

(X + Φ)u = −f in SM.
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If u has finite degree, and if there are no nontrivial twisted CKTs, then u has degree
max{m− 1, 0}. Furthermore, if m = 0, then one has u = 0 in the boundary case and
u ∈ Ker(X+|Ω0) in the closed case.

Proof. Let first m ≥ 1, and let l be the largest integer for which ul is nonzero. The
claim is that l ≤ m−1, so we argue by contradiction and assume that l ≥ m. Looking
at the degree l+ 1 Fourier coefficients in the identity (X+ Φ)u = −f , we obtain that

X+ul = 0.

Since there are no nontrivial twisted CKTs (note that ul|∂(SM) = 0 in the boundary
case since u|∂(SM) = 0), we have ul = 0. This contradicts the fact that ul was the
largest nonzero Fourier coefficient.

In the case m = 0 the above argument shows that u = u0, and the equation becomes

(X + Φ)u0 = −f0.

Taking degree 1 Fourier coefficients gives Xu0 = 0. In the boundary case we have
u0|∂(SM) = 0 and by Proposition 6.2 this implies that u0 = 0 if the curvature is
negative and ∂M is strictly convex. In the closed case the equation Xu0 = 0 means
that u0 ∈ Ker(X+|Ω0). �

The injectivity result in the boundary case, Theorem 1.1, will require the absence
of twisted conformal Killing tensors vanishing on the boundary. In other words we
would like to prove:

Theorem 5.2. Let (M, g) be a Riemannian manifold and (E ,∇E) a Hermitian bundle
with connection. Let Γ be a hypersurface. Assume there is u ∈ Ωm with X+u = 0 and
u|π−1Γ = 0. Then u = 0.

Proof. By a connectedness argument, the proof reduces to a local statement and
thus it suffices to consider the case of a trivial bundle SM × Cn with a connection
∇E = d+A for some connection 1-form A (with values in skew-Hermitian matrices).
The operator X+ can then be written as X+ = X+ + A+ where X+ is the usual
conformal Killing operator in the trivial bundle SM × Cn acting diagonally, and A+

is an endomorphism acting on SM × Cn (an operator of order 0). For A = 0 this
theorem was proved in [DS11] and we shall use their approach for Step (2) below.
The proof splits in two:

(1) First show that a solution to X+u = 0 is determined by the N -jet of u at a
point, for a suitable N .

(2) Show that if u|π−1Γ = 0, then u vanishes to infinite order at any point in π−1Γ.

These two steps correspond to Theorem 1.1 and 1.3 in [DS11] respectively. Both
items will follow from results in the literature as we now explain. If we think of u
as a trace free symmetric m-tensor then (X+ + A+)u = 0 is equivalent to P(Du +
S(A ⊗ u)) = 0 where D = S∇ is the usual conformal Killing operator (see Section
3), P the projection on trace-free symmetric tensors and S denotes symmetrization
as in Section 3. Since P(D + S(A ⊗ ·)) and PD have the same principal symbol,
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Theorem 3.6 in [Ča08] implies directly that any solution u to P(Du+ S(A⊗ u)) = 0
is determined by the N -jet of u in one point, for some suitable N .

We are left with showing (2) and for this we can employ exactly the same proof
as in [DS11, Lemma 4.1] which is the main lemma showing item (2) for the case
A = 0. To this end, we note that once equations (4.1) and (4.2) in [DS11, Lemma
4.1] are established, the rest the proof runs undisturbed based on these two equations.
The proof is by induction and equation (4.1) in [DS11, Lemma 4.1] is the induction
assumption which just claims that derivatives up to order k vanish.

But we claim that P(Du+S(A⊗ u)) = 0 leads exactly to the same equation (4.2)
in [DS11, Lemma 4.1] even when A is not zero. To see this observe that P(Du +
S(A⊗ u)) = 0 is equivalent to

Du+ S(A⊗ u) = S(g ⊗ v)

where v ∈ Θm−1. In coordinates and using the notation from [DS11] the term S(A⊗u)
is given by

1

m+ 1
(Ai1ui2...im + Ai2ui1i3...im + · · ·+ Aim+1ui1...im).

The coordinates (x1, . . . , xn−1, y) are chosen so that y = 0 defines Γ and they are

normal geodesic coordinates (i.e. gin = δin). But, once we apply the operator ∂k

∂yk
|y=0

to this expression it vanishes so the equation that we obtain is exactly the same as
equation (4.2) in [DS11, Lemma 4.1] and we are done. �

6. Regularity for solutions of the transport equation

6.1. Geometric setup and geodesic flow. We consider a smooth compact Rie-
mannian manifold (M, g) with strictly convex boundary ∂M and we assume that the
sectional curvatures of g are negative. We let X be the geodesic vector field of g on
SM . For convenience of notations and technical purpose, we will extend the vector
field X to a larger manifold with boundary in a way that it has complete flow and
for that purpose we follow very closely the method explained in [G14b, Sec. 2.1]. We

can extend M to a smooth compact manifold M̂ with boundary by adding a very
small collar to M and extend g so that M̂ \M has a foliation by strictly convex hy-

persurfaces, the boundary ∂M̂ is strictly convex, and g has negative curvature. The
geodesic vector field X̂ for g on SM̂ coincides with that of g when restricted on SM .
Each trajectory leaving SM never comes back to SM and hits ∂SM̂ in finite time.
We multiply X̂ by a non-negative function ρ0 ∈ C∞(M̂) which is a function of the

geodesic distance to ∂M in M̂ \M , vanishing only at ∂M̂ , at first order, and equal

to 1 in a neighborhood of M . If π : SM̂ → M̂ is the natural projection, the flow of
π∗(ρ0)X̂ is complete on SM̂ , and the intersection of a flow line for π∗(ρ0)X̂ with SM
is exactly the flow line of X in SM . By abuse of notation, we denote the extension
π∗(ρ0)X̂ of X to SM̂ by X, this allows us to consider X as a vector field with a

complete flow ϕt : SM̂ → SM̂ . We also take an intermediate manifold Me ⊂ M̂
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containing M with the same properties as M , with ρ0 = 1 on Me. By our choice of
Me, the largest time that a flow trajectory spends in SMe \SM is finite and denoted

(6.1) L := sup{t ≥ 0; ∃y ∈ SMe \ SM, ∀s ∈ [0, t], ϕs(y) ∈ SMe \ SM} <∞.

We now describe properties of the geodesic flow in negative curvature; we refer to
Section 2 of [DG14] and to Sections 2.2, 2.3 in [G14b] for more details. For each
point (x, v) ∈ SM , we define the time of escape from SM along the forward (+) and
backward (−) trajectories:

(6.2)
`+(x, v) = sup {t ≥ 0;ϕt(x, v) ∈ SM} ⊂ [0,+∞],

`−(x, v) = inf {t ≤ 0;ϕt(x, v) ∈ SM} ⊂ [−∞, 0].

Then we define the incoming (−) and outgoing (+) tails in SM by

Γ∓ = {(x, v) ∈ SM ; `±(x, v) = ±∞} =
⋂
t≥0

ϕ∓t(SM)

and the trapped set for the flow on SM is the closed (flow-invariant) subset of SM◦

(6.3) K := Γ+ ∩ Γ− =
⋂
t∈R

ϕt(SM).

Here Γ− is the stable manifold of K and Γ+ is the unstable manifold of K for the
flow. Since the curvature is negative, the set K is a hyperbolic set in the sense of
dynamical systems, i.e. it has a decomposition of the form

Tp(SM) = E0(p)⊕ Es(p)⊕ Eu(p), ∀p ∈ K

which is continuous in p and invariant by the flow, where E0 = RX and Es and Eu
are stable and unstable bundles as in (1.4). The bundle Es extends continuously to a
bundle called E− over Γ− and Eu to a bundle called E+ over Γ+ (the fibers are simply
the tangent spaces to each stable/unstable leaf); the differential of the forward flow is
uniformly contracting on E− and uniformly expanding on E+. As in [DG14, Lemma
2.10], there are dual subbundles E∗± ⊂ T ∗Γ±(SM) over Γ± satisfying

E∗+(E+ ⊕ E0) = 0, E∗−(E− ⊕ E0) = 0.

Finally, by Proposition 2.4 in [G14b], if g is negatively curved there exists Q < 0 so
that

(6.4)
V (t) = O(eQ|t|) where

V (t) := Vol({y ∈ SM ; ϕs(y) ∈ SM for |s| ∈ [0, |t|], st > 0}).

The volume is with respect to the Liouville measure dµ. The boundary ∂(SM) has a
natural measure dµν which in local coordinates (x, v) with x ∈ ∂M and v ∈ Sd−1 is
given by dµν = |〈v, ν〉g|dvol∂MdvSn−1 , and we shall always use this measure when we
integrate on ∂(SM). In particular we have that VolSM(Γ+ ∪ Γ−) = 0 and thus also
Vol∂(SM)(Γ± ∩ ∂(SM)) = 0 using that X is transverse to ∂M near Γ± (see [G14b,
Section 2.4] for details).
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6.2. The operator generating attenuated transport and its resolvent. Con-
sider a Hermitian vector bundle E on SM (with a Hermitian product 〈 · , · 〉E), and
let ∇ be a Hermitian connection, i.e.

(6.5) V 〈w,w′〉E = 〈∇Vw,w
′〉E + 〈w,∇Vw

′〉E
for any smooth sections w,w′ of E and any vector field V on SM . Now, let us take
Φ ∈ C∞(SM ; Endsk(E)) a skew-Hermitian potential and we extend E , ∇ and Φ to

SM̂ in a smooth fashion. Note that later E ,∇,Φ will be taken to be pull-back of
bundles, connections and Higgs fields on the base manifold M , in order to use Pestov
identities, but in this section this is not needed. Let X = ∇X be the first order
differential operator acting on sections of E over SM̂ already introduced in (1.2). It

satisfies: for all f ∈ C∞(SM̂ ; E), ψ ∈ C∞(SM̂) and f ′ ∈ C∞c (SM◦; E),

(6.6) X(ψf) = (Xψ)f + ψ(Xf), 〈Xf, f ′〉L2(SM̂ ;E) = −〈f,Xf ′〉L2(SM̂ ;E).

where the L2 space is defined with respect to the Liouville measure on SM . Let us
define

P := −X− Φ

acting on smooth sections of E , which is formally skew-adjoint when restricted to
the space C∞c (SM◦, E). Its propagator U(t) := e−tP is the operator which solves the

equation ∂tU(t)f = −PU(t)f for all f ∈ C∞c (SM̂◦, E) with U(0) = Id. Here U(t)
is well defined as the solution of a non-characteristic first order ODE. If E ' C is
trivial with the trivial connection and Φ = 0, then U(t)f = f ◦ϕt. Note that the first

property of (6.6) on SM̂ implies

(6.7) U(t)(ψf) = (ψ ◦ ϕt)U(t)f, ∀ψ ∈ C∞c (SM̂), ∀f ∈ C∞c (SM̂ ; E).

In particular, for f ∈ C∞c (SM◦
e ; E), U(t)f has support intersecting SMe \ SM if and

only if ϕ−t(supp(f))∩(SMe\SM) 6= ∅. For all f ∈ L2(SM) such that supp(U(t)f) ⊂
SM , one has (using density of C∞c (SM◦) in L2(SM))

(6.8) ||U(t)f ||L2 = ||f ||L2 ,

this follows directly from the fact that X is formally skew-adjoint in SM and that Φ
is skew-Hermitian over SM . Define

T±(t) := {y ∈ SM ; ϕ±s(y) ∈ SM for s ∈ [0, t]}.
Then by definition of the constant L in (6.1) and by (6.8), we can write for f ∈
L2(SMe; E) and t > L

(6.9) ||U(t)f ||L2(SMe) = ||U(L)U(t− L)(f.1T+(t−L))||L2(SMe) ≤ CL||f ||L2(SMe).

with CL = ||U(L)||L2(SMe)→L2(SMe). We obtain

Lemma 6.1. For Re(λ) > 0, the resolvents R±(λ) := (P ±λ)−1 are bounded as maps
on L2(SMe; E) and given in terms of the propagator by the formula

(6.10) R±(λ)f =

∫ ±∞
0

e∓λtU(t)f dt.
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They satisfy (P ± λ)R±(λ)f = f in the distribution sense in SMe, and if f ∈
C0(SM ; E), then R±(λ)f is continuous near ∂±(SM) and (R±(λ)f)|∂±(SM) = 0.

Proof. Let Re(λ) > 0. Then by Cauchy-Schwartz and (6.9)∫ ∓∞
0

e±Re(λ)t||U(t)f ||L2(SMe)dt ≤ Cλ,L||f ||L2(SMe)

for some Cλ,L > 0 depending on Re(λ) and L, thus R±(λ) is bounded on L2. The
other properties are straightforward: the continuity of R±(λ)f near ∂±(SM) is just
ODE regularity and (R±(λ)f)|∂±(SM) = 0 follows from `±|∂±(SM) = 0. For more
details, see [G14b, Lemma 4.1] where it is done for E = C and P = −X. �

We want to define a right inverse for P and thus we let λ→ 0 to define R±(0). The
problem is that this is not bounded on L2(SMe; E), but arguing like in Propositions
4.2-4.4 of [G14b], we can prove, using the properties on the trapped set, that these
operators make sense when acting on Lp spaces, and Sobolev spaces of positive order.
We refer to [Hö83] for definitions and properties of wavefront set of distributions
(which is denoted by WF below).

Proposition 6.2. The resolvent R±(λ) extends continuously to Re(λ) ≥ 0 as a family
of bounded operators for s ∈ (0, 1/2) and any p <∞

R±(λ) : Hs
0(SMe; E)→ H−s(SMe; E), R±(λ) : L∞(SMe; E)→ Lp(SMe; E)

that satisfies (P ± λ)R±(λ)f = f in the distribution sense in SMe, and for f ∈
C0(SMe; E) the expression (6.10) holds true also in Re(λ) ≥ 0 as an element in
Lp(SMe; E). If f ∈ C∞(SM ; E) is extended by 0 outside SM , the section u± :=
R±(0)f is smooth in SM \ Γ∓ and its wavefront set over SM◦ is

(6.11) WF(u±) ∩ T ∗SM◦ ⊂ E∗∓,

the restriction u±|∂(SM) makes sense as a distribution satisfying

(6.12) ∀p <∞, u±|∂(SM) ∈ Lp(∂(SM)), u±|∂±(SM) = 0.

Finally, the restriction of u± to SM is the only L1(SM ; E)∩C∞(SM \Γ∓; E) section
which satisfies Pu± = f in SM in the distribution sense and u±|∂±(SM) = 0.

Proof. For any δ > 0, the resolvents R±(λ) admits a meromorphic extension in
Re(λ) > −δ as bounded operators R±(λ) : Hs

0(SMe; E) → H−s(SMe; E) for 0 <
s < Cδ for some C > 0 depending on the Lyapunov exponents. The meromorphic
extension and boundedness is proved in Lemmas 4.2-4.4 of [DG14] (see also the re-
mark after Lemma 4.2 in [DG14] for the sharp Sobolev exponent in the case where P
is formally skew-adjoint near the trapped set K). The fact that R±(λ) is continuous
in Re(λ) ≥ 0 follows essentially from the proof of Proposition 4.2 in [G14b]: using
(6.7) we have pointwise estimates for u+(λ; y) := (R+(λ)f)(y)

||u+(λ; y)||E ≤
∫ ∞

0

χ(ϕt(y))||U(t)f(y)||Edt ≤ C||f ||L∞
∫ ∞

0

χ(ϕt(y))dt
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if χ ∈ C∞c (SM̂◦) is non-negative, equal to 1 on SMe and supported in a very small
neighborhood of SMe (here C > 0 depends only on L). Then the proof of [G14b,
Prop. 4.2] can be applied verbatim and using (6.4), we obtain that for each p < ∞
there is C > 0 such that for all Re(λ) ≥ 0

||u+(λ)||Lp(SMe;E) ≤ C||f ||L∞(SMe;E).

The wave-front set properties (6.11) and (6.12) are obtained exactly as in (the proof
of)[G14b, Prop 5.5]: they are direct consequences of the analysis in [DG14, Lemma
4.5] of the wavefront set of the Schwartz kernel of the resolvent R±(0) and the compo-
sition of wavefront sets given by [Hö83, Th. 8.2.13]. The vanishing of u± on ∂±(SM)
is easy and holds the same way as for Re(λ) > 0. The fact that u±|SM is the only
L1 solution of Pu± = f in SM vanishing at ∂∓SM and smooth outside Γ∓ is also
clear: the difference of two such solutions would be an L1 section in kerP that is
smooth in SM \Γ∓ and such sections are uniquely determined in SM \Γ∓ from par-
allel transports of elements of E|∂∓SM\Γ∓ along flow trajectories of X, and are thus
determined in a set of full Liouville measure by their value at ∂∓SM \Γ∓, using that
Vol(Γ+ ∪ Γ−) = 0. �

In fact, the exponential decay (6.4) implies that

∃α > 0, f ∈ Cα(SMe; E) =⇒ ∃s > 0, R±(0)f ∈ Hs(SMe; E),

see [G14b, Prop. 4.2] for the argument.
Before stating the next corollary we recall that I∇,Φ denotes the attenuated ray

transform defined in (1.3).

Corollary 6.3. Assume that I∇,Φf = 0 with f ∈ C∞(SM ; E), then there exists a
unique u ∈ C∞(SM ; E) such that (X + Φ)u = −f and u|∂(SM) = 0.

Proof. Let u± := R±(0)f so that Pu± = f in SM vanishing on ∂±(SM). Since
I∇,Φf = 0 and Γ± ∩ ∂±(SM) has measure 0, we have u+|∂−(SM) = I∇,Φf = 0 as
an L1(∂−(SM)) function, thus by the last statement of Proposition 6.2 we obtain
u− = u+. By Proposition 6.2, this implies that u+ = u− ∈ C∞(SM \K) and using
(6.11) together with the fact that E∗− ∩E∗+ is the zero section over the trapped set K
we conclude that

WF(u+) ⊂WF(u+) ∩WF(u−) = ∅.
This shows that u := u+ is smooth in SM and (X+ Φ)u = −f with u|∂(SM) = 0. �

We can now easily prove the main injectivity result for the attenuated ray transform
in the boundary case:

Proof of Theorem 1.1. Suppose f ∈ C∞(SM ; E) has degree m and I∇,Φf = 0. By
Corollary 6.3 there is a unique u ∈ C∞(SM ; E) with (X+Φ)u = −f and u|∂(SM) = 0.
Theorem 4.6 implies that u has finite degree. Since there are no nontrivial twisted
CKTs in the boundary case (Theorem 5.2), Theorem 5.1 implies that u has degree
m− 1. �
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6.3. Scattering operator for X+Φ. In this section, we shall describe the regularity
of the solutions u ∈ L1(SM ; E) of the transport equation

(6.13) (X + Φ)u = 0 in distribution sense in SM, u|∂−(SM) = ω

where ω ∈ C∞(∂−(SM); E). Clearly, if ω is supported in ∂−(SM) \ Γ−, the solution
u is unique and smooth, just as in the non-trapping case, and its support is disjoint
from Γ+ ∪ Γ−. This allows to define the scattering operator for P

(6.14) S∇,Φ : C∞c (∂−(SM) \ Γ−; E)→ C∞c (∂+(SM) \ Γ+; E), S∇,Φω := u|∂+(SM).

We follow closely the results of section 4.3 in [G14b], in particular Proposition 4.6 of
this article.

Proposition 6.4. Let (M, g) be a negatively curved manifold with strictly convex
boundary, let E be a Hermitian bundle with Hermitian connection on SM and let
Φ be a smooth skew-Hermitian potential. Then for each ω ∈ C∞(∂−(SM); E), there
is a unique solution u of (6.13) in L1(SM ; E), which in addition is in Lp(SM ; E)
for all p < ∞ and in C∞(SM \ Γ+; E). The map ω 7→ u is continuous as operator
L∞(∂−SM ; E) → Lp(SM ; E) for all p < ∞. Moreover, the operator S∇,Φ of (6.14)
extends as a unitary operator

S∇,Φ : L2(∂−(SM); E)→ L2(∂+(SM); E)

and if S∇,Φω ∈ C∞(∂+(SM); E) with ω ∈ C∞(∂−(SM); E), then u ∈ C∞(SM ; E).

Proof. Let us first show that S∇,Φ extends as a unitary map, we follow the proof
of Lemma 3.4 in [G14b]. If ω1, ω2 are in C∞c (∂−(SM); E) and u1 and u2 are the
C∞c (SM \ (Γ− ∪ Γ+); E) solutions of Pui = 0 with ui|∂−(SM) = ωi, then

0 =

∫
SM

〈Pu1, u2〉E + 〈u1, Pu2〉Edµ = −
∫
SM

〈Xu1, u2〉E + 〈u1,Xu2〉Edµ

=−
∫
SM

X(〈u1, u2〉E)dµ =

∫
∂−(SM)

〈ω1, ω2〉Edµν −
∫
∂+(SM)

〈S∇,Φω1,S∇,Φω2〉Edµν .

This implies that S∇,Φ is a unitary operator for the L2 product. The proof of the
existence of an u ∈ L1(SM ; E) solving (6.13) is very similar to the proof of Proposition
4.6 of [G14b], thus we just sketch the argument. It suffices to assume that ω is
supported near Γ− as the case where ω has support not intersecting Γ− is standard.
Since the trapped set is at positive distance from ∂(SM), we can construct ũ− ∈
C∞(SMe; E) so that ũ−|∂−(SM) = ω and supp(Pũ−) ∩ SM◦

e ⊂ SM◦ \ Γ+. Then we
set u = ũ− −R−(0)(Pũ−) which, by Proposition 6.2, is an Lp(SMe; E) section for all
p < ∞, smooth outside Γ+ and solves (6.13) in SM . The solution is clearly unique
since it is determined uniquely by ω at each point (x, v) ∈ SM so that |`−(x, v)| <∞
(that is in SM \ Γ+) which is a set of full measure in SM . By construction and
continuity of R−(0) in Proposition 6.2, the map ω 7→ u is bounded as map L∞ → Lp.
It remains to show that u is in fact smooth if S∇,Φω ∈ C∞(∂+(SM); E). The proof
follows basically the proof of 2) in [G14b, Proposition 4.6]. First, it is clear that
u ∈ C∞(SM \ K; E) since the solution there is obtained from composition of ω in
forward and backward time by parallel transport; this can be viewed also in terms of
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propagation of singularities for principal type operators [DZ13, Prop. 2.5]. Then, to
show that u is in any positive Sobolev space Hs near K, we argue exactly as in the
end of the proof of [G14b, Proposition 4.6]: using that Pũ− is smooth and compactly
supported in SM◦

e and [DG14, Prop. 6.1]1, there is a pseudo differential operator
A− of order zero which is microsupported in a conic neighborhood of E∗− ⊂ T ∗SM
and elliptic in a neighborhood of E∗− so that A−R−(0)(Pũ−) ∈ Hs(SM ; E) for all
s > 0. As a consequence the wavefront set of u is disjoint from a conic neighborhood
of E∗−. By elliptic regularity, we also deduce that WF(u) ⊂ E∗+ ⊕ E∗−. Next, we
use propagation of singularities [DZ13, Prop. 2.5]: by [DG14, Lemma 2.10], the
trajectories of the Hamiltonian vector field of the principal symbol p(ξ) = ξ(X) of
X contained in the energy level p−1(0) = E∗+ ⊕ E∗− are either contained in E∗+, or
converge to E∗− or reach T ∗∂−(SM)SM in backward time, we conclude that WF(u) ⊂ E∗+
since we know that u is regular in a neighborhood of E∗− ∪ T ∗∂−(SM)SM . Finally, if

S∇,Φ(ω) is smooth, we can see as above that u = ũ+ − R+(0)Pũ+ for some ũ+ that
is smooth and supported near ∂+(SM), ũ+|∂+(SM) = S∇,Φω and Pũ+ ∈ C∞c (SM◦

e ; E)
has support not intersecting Γ−. Applying the same reasoning as before with the
backward flow, we deduce that there is a pseudo differential operator A+ of order
zero which is microsupported in a conic neighborhood of E∗+ ⊂ T ∗SM , elliptic near
E∗+ and so that A+R+(0)(Pũ+) ∈ Hs(SM ; E) for all s > 0, which shows that u is
smooth. �

7. Parallel transport and gauge equivalent connections

We will now prove Theorem 1.2. The proof is similar to [PSU12, Theorem 8.1] but
we need to be careful about regularity issues when there are trapped geodesics.

Proof of Theorem 1.2. Let (E ,∇E) be a Hermitian bundle with Hermitian con-
nection. Any other Hermitian connection on E over M can be written as ∇E + A
for some skew-Hermitian connection 1-form A ∈ C∞(M ;T ∗M ⊗ Endsk(E)). Notice
that A can also be viewed as an element in C∞(SM ; Endsk(E)) which has degree 1
in v, by considering (x, v) 7→ A(x)(v) (or equivalently by contracting π∗A with X).
We consider the bundle F := End(E) over M , which is Hermitian with Hermitian
product 〈U,W 〉 := Tr(UW ∗) where the adjoint is taken using the Hermitian product
on E . The bundle F has a natural Hermitian connection ∇F given by (recall that ∇E
is the connection on E)

(∇FV U)f := ∇EV (Uf)− U(∇EV f)

where f ∈ C∞(M ; E) and V any vector field on M . This bundle and connection
pull-back to SM via π : SM → M , and we keep the same notations for the pull-
back. For a section U ∈ C∞(M ;F), we have (∇FU)(x)(v) = (∇FX(x,v)π

∗U). For A ∈

1In the statement of Proposition 6.1 of [DG14], the operator is chosen (for notational convenience)
to be the flow vector field X and the bundle E is the trivial bundle C, but the analysis of the resolvent
R±(λ) = (P − λ)−1 is done for general bundles and contains the case of operators P = −X + Φ
with X as in our paper and Φ any skew-Hermitian potential, therefore all the statements of that
Proposition apply to our case as well.
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C∞(M ;T ∗M ⊗ Endsk(E)) a connection 1-form and Φ a skew-Hermitian Higgs field,
multiplication on the left by A and by Φ on sections of F are skew-Hermitian linear
maps with respect to the Hermitian structure on F . The connection U 7→ ∇FU+AU
is a Hermitian connection on F . Note that π∗A(X)(x, v) = A(x, v) if we identify A
with an element of degree 1 in the fibers. By Proposition 6.4 applied to the bundle
F , there is U in Lp(SM ;F) for all p <∞ and smooth outside Γ+, which solves

(∇FX + A+ Φ)U = 0 in SM, U |∂−(SM) = Id.

in the distribution sense in SM◦. We also notice that U(x, v) is a unitary transfor-
mation of E(x,v) for all (x, v) ∈ SM \ Γ+, since A + Φ is skew-Hermitian on E . The
scattering data corresponding to the pair (A,Φ) in (M, g) is the map

CA,Φ ∈ L2(∂+SM ;U(E)), CA,Φ := U |∂+(SM)

where U(E) is the unitary group of E . Knowing Sg and CA,Φ implies that one knows
how vectors in E are parallel transported along maximal geodesics from ∂M to ∂M in
the presence A and Φ. Indeed, if f ∈ C∞(SM ; E) is equal to e ∈ Ey0 at y0 := (x0, v0) ∈
∂−(SM) and ∇EXf = 0, then one has Uf(y0) = e and (∇EX + A + Φ)(Uf) = 0, thus

the parallel transport of e along the geodesic ∪`+(y0)
t=0 ϕt(y0) in presence of A,Φ is given

by (Uf)(Sg(y0)) = CA,Φf(Sg(y0)): this is determined only by CA,Φ as a function of
(A,Φ) since f is depending only on ∇E and X but not on (A,Φ).

The scattering data has the gauge invariance

CQ−1(∇F+A)Q,Q−1ΦQ = CA,Φ if Q ∈ C∞(M,GL(E)) satisfies Q|∂M = Id.

It follows that from the knowledge of CA,Φ one can only expect to recover ∇ and Φ
up to a gauge transformation via Q which satisfies Q|∂M = Id. If ∇ is a Hermitian
connection and Φ is skew-Hermitian, the map U and the scattering relation CA,Φ take
values in U(E) and the scattering relation remains unchanged under unitary gauge
transformations which are the identity on the boundary.

We want to compare two connections ∇ and ∇̃. Take A to be the skew-Hermitian
connection 1-form so that ∇̃ = ∇ + Ã. Let Φ and Φ̃ be two skew-Hermitian Higgs
fields. We write X := ∇FX as we did on E . As above, by Proposition 6.4 applied to

the bundle F , there are U and Ũ which are in Lp(SM ;F) for all p <∞ and smooth
outside Γ+, which solve

XU + ΦU = 0, U |∂−(SM) = Id,

XŨ + ÃŨ + Φ̃Ũ = 0, Ũ |∂−(SM) = Id,

and U(x, v), Ũ(x, v) are unitary transformations of E(x,v) for all (x, v) ∈ SM\Γ+. Thus

they are invertible on SM \Γ+ and the inverse Ũ−1 ∈ Lp(SM ;F) for any p since the
matrix components of the inverse in a given local orthonormal basis of E are sums
of products of matrix components of Ũ in the basis. Now if χε ∈ C∞c (∂−(SM) \ Γ−)
tends to 1 pointwise and is uniformly bounded by 1, then there is a flow invariant
smooth function χ̂ε (i.e. Xχ̂ε = 0) satisfying χ̂ε|∂−(SM) = χε, tending to 1 pointwise
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in SM and with ||χ̂ε||L∞ ≤ 1. Let U ε := χ̂εU and Ũ−1
ε := χ̂εŨ

−1, these are in
C∞c (SM \ (Γ− ∪ Γ+);F) and satisfy

(7.1)
(X + Φ)Uε = 0, Uε|∂−(SM) = χεId,

XŨ−1
ε − Ũ−1

ε Ã− Ũ−1
ε Φ̃ = 0, Ũ−1

ε |∂−(SM) = χεId.

We have that Uε → U in Lp for all p < ∞ and Ũ−1
ε → Ũ−1 in Lp for all p < ∞

as ε → 0. Consider the section Q := UŨ−1 and Qε := UεŨ
−1
ε . Then Qε is smooth

and in Lp(SM ; E) for all p < ∞, and Qε → Q in Lp for all p < ∞ (by Lebesgue
theorem). Now, using that the scattering data is the same for (∇,Φ) and (∇̃, Φ̃) we
get Q|∂(SM) = Id and we also have by (7.1)

XQε + ΦQε −QεÃ−QεΦ̃ = 0.

The equation holds as smooth functions and by pairing this equation with any Y ∈
C∞c (SM◦;F), we can let ε→ 0 to deduce that

XQ+ ΦQ−QÃ−QΦ̃ = 0, U |∂(SM) = Id

in the distribution sense in SM◦. Introducing a new connection ÂR := −RÃ on F
and a Higgs field Φ̂(R) := ΦR − RΦ̃, we easily check (like in [PSU12, Theorem 8.1])
that they are a Hermitian connection and skew-Hermitian Higgs field on the bundle
F . By Proposition 6.4 applied to this bundle and pair (Â, Φ̂), we deduce that Q is
actually smooth in SM since its boundary value at ∂(SM) is smooth. Then the proof
can be concluded just as in [PSU12, Theorem 8.1]: take W := Q − Id, then using
∇F Id = 0, this solves

∇̂XW + Φ̂(W ) = Ã+ Φ̃− Φ, W |∂(SM) = 0

and thus I∇̂,Φ̂(Ã + Φ̃ − Φ) = 0 in the bundle F , which implies by Theorem 1.1 that
there exists Z ∈ C∞(M ;F) vanishing at ∂M such that

XZ − ZÃ+ ΦZ − ZΦ̃ = Ã+ Φ̃− Φ

and W = Z and Q = Z + Id gives the desired gauge equivalence. �

8. Absence of twisted CKTs on closed surfaces

In this section we prove Theorem 1.5 which gives a condition ensuring the absence
of nontrivial twisted CKTs on closed Riemann surfaces. To explain this we recall
some notation from [PSU12, PSU13] and [PSU14d, Appendix B] that is specific to
two dimensions.

If (M, g) is a closed oriented Riemannian surface, there is a global orthonormal
frame {X,X⊥, V } of SM equipped with the Sasaki metric, where X is the geodesic
vector field, V is the vertical vector field defined for u ∈ C∞(SM) by

V u(x, v) = 〈
v

∇u(x, v), iv〉
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where iv is the rotation of v by 90◦ according to the orientation of the surface, and
X⊥ = [X, V ]. We define the Guillemin-Kazhdan operators [GK80a]

η± =
1

2
(X ± iX⊥).

If x = (x1, x2) are oriented isothermal coordinates near some point of M , we obtain
local coordinates (x, θ) on SM where θ is the angle between v and ∂/∂x1. In these
coordinates V = ∂/∂θ and η+ and η− are ∂ and ∂ type operators, see [PSU14d,
Appendix B].

For any m ∈ Z we define

Λm = {u ∈ C∞(SM) ; V u = imu}.
In the (x, θ) coordinates elements of Λm look locally like h(x)eimθ. Spherical harmon-
ics may be further decomposed as

Ω0 = Λ0,

Ωm = Λm ⊕ Λ−m for m ≥ 1.

Any u ∈ C∞(SM) has a decomposition u =
∑∞

m=−∞ um where um ∈ Λm. The
geodesic vector field decomposes as

X = η+ + η−

where η± : Λm → Λm±1.
Let now E be a Hermitian bundle of rank n over M , and let ∇E be a Hermitian

connection on E . As in Section 3, we denote by E and ∇E the pullback bundle
over SM and the pullback connection, and we have the operator X as before. We
wish to discuss the analogues of X⊥ and V . To do this, define the linear operator
G : C∞(SM ;N ⊗ E)→ C∞(SM ; E) by requiring that

G(Z ⊗ u)(x, v) = 〈Z(x, v), iv〉u(x, v), Z ∈ C∞(SM ;N), u ∈ C∞(SM ; E).

We then define X⊥ and V acting on C∞(SM ; E) by

X⊥u := −G(
h

∇ Eu),

Vu := G(
v

∇ Eu).

We also define the twisted Guillemin-Kazhdan operators

µ± :=
1

2
(X± iX⊥).

If U is a trivializing neighborhood for E and if (e1, . . . , en) is an orthonormal local
frame over U , then any u ∈ C∞(SU ; E) is of the form u =

∑n
k=1 u

kek with uk ∈
C∞(SU) (here we write ej for π∗ej), and ∇E is represented as d+A where A = (Akl )
is a skew-Hermitian matrix of 1-forms. Interpreting 1-forms a as functions on SM by
a(x, v) = ax(v), we have the splitting A = A+ + A− where

(A±)kl =
1

2
(Akl ±

1

i
V Akl ).
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Then A± is a matrix with entries in Λ±1, and since A is skew-Hermitian one has
A∗± = −A∓. One can now check that the above operators have local coordinate
representations

X⊥(
n∑
k=1

ukek) =
n∑
k=1

(
X⊥u

k −
n∑
l=1

(V Akl )u
l
)
ek,

V(
n∑
k=1

ukek) =
n∑
k=1

(V uk)ek,

µ±

n∑
k=1

(ukek) =
n∑
k=1

(
η±u

k +
n∑
l=1

(A±)kl u
l
)
ek.

Setting Λm(SM ; E) = {u ∈ C∞(SM ; E) ; Vu = imu}, any u ∈ C∞(SM ; E) has an
L2-orthogonal decomposition

u =
∞∑

m=−∞

um

where um ∈ Λm(SM ; E). The operators µ± satisfy µ± : Λm(SM ; E)→ Λm±1(SM ; E),
and X = µ+ + µ−. The relation to X± is as follows: X+u0 = µ+u0 + µ−u0 for
u0 ∈ Λ0(SM ; E), and for m ≥ 1 we have

X+(um + u−m) = µ+um + µ−u−m,

X−(um + u−m) = µ−um + µ+u−m

where uj ∈ Λj(SM ; E).
Let ? be the Hodge star operator on (M, g). The curvature fE of ∇E is a 2-form

with values in skew-Hermitian endomorphisms of E . In a trivializing neighborhood
U ⊂M we may represent ∇E as d+A, and then fE is represented as dA+A∧A, an
n × n skew-Hermitian matrix of 2-forms. Since d = 2, i ? fE is a smooth section on
M with values in Hermitian endomorphisms of E and thus having real eigenvalues.
Denote by λ1 ≤ . . . ≤ λn the eigenvalues of i ? fE . Since the ordered eigenvalues of
a Hermitian matrix are Lipschitz continuous functions of its entries (see e.g. [Ta12,
Section 1.3.3]), the maps λj : M → R are Lipschitz continuous.

Finally, we recall the commutator formula on C∞(SU ;Cn) (see [Pa09, Lemma 4.3]),

[η+ + A+, η− + A−] =
i

2
(KV + ?fA)

where fA = dA+ A ∧ A. This implies a corresponding formula on C∞(SM ; E):

(8.1) [µ+, µ−] =
i

2
(KV + ?fE).

After these preliminaries, we state the result ensuring absence of nontrivial twisted
CKTs (Theorem 1.5 is part (c) below). Here χ(M) is the Euler characteristic of M .

Theorem 8.1. Let (M, g) be a closed oriented Riemannian surface, let E be a Her-
mitian bundle of rank n over M , and let ∇E be a unitary connection on E. Denote
by λ1 ≤ . . . ≤ λn the eigenvalues of i ? fE counted with multiplicity.
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(a) If m ∈ Z and if ∫
M

λ1 dV > 2πmχ(M),

then any u ∈ Λm(SM ; E) satisfying µ+u = 0 must be identically zero.
(b) If m ∈ Z and if ∫

M

λn dV < −2πmχ(M),

then any u ∈ Λ−m(SM ; E) satisfying µ−u = 0 must be identically zero.
(c) If m ≥ 1 and if

2πmχ(M) <

∫
M

λ1 dV and

∫
M

λn dV < −2πmχ(M),

then any u ∈ Ωm(SM ; E) satisfying X+u = 0 must be identically zero.

A few remarks are in order:

1. The condition for λ1 is sharp: the work [Pa09] furnishes examples of connec-
tions that admit nontrivial twisted CKTs with m = 1 and satisfy λ1 = K, so
that

∫
M
λ1 dV = 2πχ(M) by the Gauss-Bonnet theorem.

2. The condition for λ1 is conformally invariant: if c is a positive function, then
?cgf

E = c−1 ?g f
E and so λ1,cg dVcg = λ1 dVg.

3. If E = M × C is the trivial line bundle and ∇E is any Hermitian connection,
then ∇E = d+A for some purely imaginary scalar 1-form A, and λ1 = i?fE =
i ? dA and∫

M

λ1 dV = i

∫
M

(?dA) dV = i

∫
M

? ? dA = i

∫
M

dA = 0.

In particular, if M has genus ≥ 2 and if ∇E is any Hermitian connection on
the trivial line bundle, then X+ has trivial kernel on Ωm for all m ≥ 1.

Proof. We only prove (a), since (b) is analogous and (c) follows by combining (a) and
(b). Given the condition on λ1, we will prove a Carleman estimate

‖e−ϕw‖ ≤ C‖e−ϕµ+w‖, w ∈ Λm(SM ; E),

where ‖ · ‖ is the norm on L2(SM ; E) and ϕ is a Carleman weight, that is, a suitable
real valued function in C∞(M) such that the L2 norm of e−ϕw can be controlled by
the L2 norm of e−ϕµ+w. If u satisfies µ+u = 0, taking w = u in this estimate gives
u = 0 as required.

To prove the Carleman estimate, let ϕ ∈ C∞(M) be real valued and consider the
conjugated operator

P = e−ϕ ◦ µ+ ◦ eϕ = µ+ + (η+ϕ).

Here, we write η+ϕ instead of (η+ϕ)Id etc. The L2 adjoint of P is P ∗ = −µ−+(η−ϕ),
and integration by parts (where ( · , · ) is the L2(SM ; E) inner product) yields

(8.2) ‖Pw‖2 = ‖P ∗w‖2 + ([P ∗, P ]w,w).
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The commutator is given by

[P ∗, P ]w = [µ+, µ−]w − (η+η−ϕ+ η−η+ϕ)w.

Using the formula (8.1) and the fact that (η+η−+η−η+)ϕ = 1
2
∆gϕ since ϕ ∈ C∞(M),

where ∆g is the (negative) Laplace-Beltrami operator on (M, g), it follows that

[P ∗, P ]w =
1

2
(−∆gϕ−mK + i ? fE)w, w ∈ Λm.

Suppose that we can find ϕ ∈ C∞(M) such that for some constant c > 0,

(8.3) −∆gϕ−mK + i ? fE ≥ c Id on M

as positive definite endomorphisms. Then the commutator term in (8.2) is positive
and satisfies ([P ∗, P ]w,w) ≥ c

2
‖w‖2, so it follows that

c

2
‖w‖2 ≤ ‖e−ϕµ+(eϕw)‖2, w ∈ Λm.

This gives the desired Carleman estimate upon replacing w by e−ϕw.
It remains to find ϕ with the property (8.3). To do this, we choose a real valued

function f ∈ C∞(M) satisfying the following two conditions:

f + λ1 > 0 on M,∫
M

f dV = −2πmχ(M).

If f satisfies these, then
∫
M

(mK + f) dV = 0 by the Gauss-Bonnet theorem and thus
there exists a solution ϕ of the equation

−∆gϕ = mK + f in M.

This ϕ will satisfy (8.3) because −∆gϕ−mK + i ? fE ≥ f + λ1 ≥ c > 0 on M .
To find f , we use the assumption on λ1 and define ε > 0 by

ε =
1

Vol(M)

[∫
M

λ1 dV − 2πmχ(M)

]
.

Since λ1 ∈ C(M), we can choose h ∈ C∞(M) with

‖h− λ1‖L∞(M) ≤
ε

4
.

We then define f as f = −h+ ε0, where ε0 is the constant determined by∫
M

f dV = −2πmχ(M).
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Thus we have

ε0 =
1

Vol(M)

[∫
M

h dV − 2πmχ(M)

]
=

1

Vol(M)

[∫
M

λ1 dV +

∫
M

(h− λ1) dV − 2πmχ(M)

]
≥ ε− ‖h− λ1‖L∞(M) ≥

3ε

4
.

It follows that f + λ1 = λ1 − h + ε0 ≥ 3ε
4
− ε

4
= ε

2
, so f satisfies the two required

conditions. This concludes the proof. �

9. Transparent pairs

In this final section we consider the problem of when the parallel transport asso-
ciated with a pair (∇E ,Φ) determines the pair up to gauge equivalence in the case
of closed manifolds. This problem is discussed in detail in [Pa09, Pa11, Pa12, Pa13],
but the results are mostly for d = 2.

Since there is no boundary, we need to consider the parallel transport of a pair
along closed geodesics. We shall consider a simplified version of the problem, which
is interesting in its own right. The bundle E will be trivial (hence ∇E = d + A) and
we will attempt to understand those pairs (A,Φ) with the property that the parallel
transport along closed geodesics is the identity. These pairs will be called transparent
as they are invisible from the point of view of the closed geodesics of the Riemannian
metric.

Let (M, g) be a closed Riemannian manifold, A a unitary connection and Φ a
skew-Hermitian Higgs field. The pair (A,Φ) naturally induces a cocycle over the
geodesic flow ϕt of the metric g acting on the unit sphere bundle SM with projection
π : SM → M . The cocycle takes values in the group U(n) and is defined as follows:
let C : SM × R→ U(n) be determined by

d

dt
C(x, v, t) = −(A(ϕt(x, v)) + Φ(π ◦ ϕt(x, v)))C(x, v, t), C(x, v, 0) = Id.

The function C is a cocycle:

C(x, v, t+ s) = C(ϕt(x, v), s)C(x, v, t)

for all (x, v) ∈ SM and s, t ∈ R. The cocycle C is said to be cohomologically trivial
if there exists a smooth function u : SM → U(n) such that

C(x, v, t) = u(ϕt(x, v))u−1(x, v)

for all (x, v) ∈ SM and t ∈ R. We call u a trivializing function and note that two
trivializing functions u1 and u2 (for the same cocycle) are related by u2w = u1 where
w : SM → U(n) is constant along the orbits of the geodesic flow. In particular, if ϕt
is transitive (i.e. there is a dense orbit) there is a unique trivializing function up to
right multiplication by a constant matrix in U(n).
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Definition 9.1. We will say that a pair (A,Φ) is cohomologically trivial if C is
cohomologically trivial. The pair (A,Φ) is said to be transparent if C(x, v, T ) = Id
every time that ϕT (x, v) = (x, v).

Observe that the gauge group given by the set of smooth maps r : M → U(n) acts
on pairs as follows:

(A,Φ) 7→ (r−1dr + r−1Ar, r−1Φr).

This action leaves invariant the set of cohomologically trivial pairs: indeed, if u
trivializes the cocycle C of a pair (A,Φ), then it is easy to check that r−1u trivializes
the cocycle of the pair (r−1dr + r−1Ar, r−1Φr).

Obviously a cohomologically trivial pair is transparent. There is one important
situation in which both notions agree. If ϕt is Anosov, then the Livsic theorem
[Li71, Li72] together with the regularity results in [NT98] imply that a transparent
pair is also cohomologically trivial. We already pointed out that the Anosov property
is satisfied, if for example (M, g) has negative curvature.

Given a cohomologically trivial pair (A,Φ), a trivializing function u satisfies

(9.1) (X + A+ Φ)u = 0.

If we assume now that (M, g) is negatively curved and there are no nontrivial CKTs,
then Theorem 1.3 implies that u = u0. If we split equation (9.1) in degrees zero
and one we obtain Φu0 = 0 and du + Au = 0. Equivalently, Φ = 0 and A is gauge
equivalent to the trivial connection. Hence we have proved

Theorem 9.2. Let (M, g) be a closed negatively curved manifold and (A,Φ) a trans-
parent pair. If there are no nontrivial twisted CKTs, then A is gauge equivalent to
the trivial connection and Φ = 0.

In analogy with Theorem 1.2 we could also consider two pairs (A,Φ) and (B,Ψ)
and a theorem in this direction is also possible along the lines of [Pa13, Section 6].
However in order to shorten the exposition, we will not discuss this case here.
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