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SUMMARY 

The flows that may result from the release of a buoyant fluid from a small source in a confined 

~pace are varied and complex, depending on the source characteristics, the confining geometry and 

container ventilation. Previous work has generally been based on the 'filling-box' model (Baines & 

Turner 1969). This model, however, may only be applied when the source has little or no initial 

momentum, is in a container with a height/width aspect ratio less than unity and does not interact 

with the side boundaries. In this thesis some situations in which the 'filling-box' model may not 

be applied are investigated. 

In chapter 1 the 'filling-box' model and the work based on it are reviewed and its limitations 

discussed. Sources are usually modelled as a turbulent jet, plume or buoyant jet; thus in chapter 2 

the established properties of jets and plumes are summarised using established theoretical argu­

ments and experimental results. In order to improve some of the theoretical predictions, the effects 

of previously neglected second order terms and intermittency factor variation are investigated. 

In most practical situations the source is a buoyant jet. In chapter 3 the flow of an initially 

horizontal buoyant jet is examined, concentrating on obtaining simple analytical results from the 

conservation equations and investigating the effect of the nature of the entrainment assumption. 

The effect of source momentum is examined in chapter 4, in which the flow of a vertical jet 

with high initial momentum flux in a long, ventilated tunnel is studied. The bulk flow variables 

are deduced and compared with experimental measurements. A method for calculating the total 

number of vents required to vent the source fluid is given - this result is particularly important in 

applications to hazardous releases. 

In chapter 5 the effect of the aspect ratio, a, on the 'filling-box' model is investigated. It is found 

that when the aspect ratio is very large (a.:::. 6) the flow is quite different to that observed in the 

'filling-box' case. Theoretical models are derived both when a .:::. 6 and when a.:s 6, and the results 

are compared with experimental measurements. In chapter 6 the study of chapter 5 is extended, 

investigating the effect of placing the tank at an angle to the vertical. The flow in the large aspect 

ratio case is significantly different to that of chapter 5 and is modelled theoretically, comparing the 

predictions with experimental measurements. 

Finally, in chapter 7 the general results are reviewed. The current knowledge of flows resulting 

from buoyant releases in a confined space is then summarised in a simple tabular form, which also 

indicates areas for future research. 
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CHAPTER ONE 

General Introduction 

There are a large and diverse number of flows that may result from the release of a buoyant 

fluid in a confined space, including the flow of the buoyant jet itself, the effects of the confining 

geometry and the interaction between the source and its environment. 

The majority of previous research has been based on the 'filling-box' model. This model 

is described and its limitations are discussed, followed by a brief review of the further work 

based on it. The basic experimental procedures that have been used in this thesis are then 

described. The chapter ends with a plan of the thesis. 

1. Motivation 

The dynamics of a release of buoyant fluid in a confined space have applications in many 

areas, including industry, the environment and geophysical flows. For example, a leakage of 

natural gas or smoke from a fire in a building, dumping of chemical waste or convection in the 

surface layer of the ocean could all be considered as confined buoyant releases . Gas leakages 

are often confined by the boundaries of the building; buoyant releases in the environment or 

convective elements in geophysical flows can be effectively confined by density interfaces, a 

free surface or the presence of other sources. 

The dynamics of a continuous buoyant release in a volume of limited extent are inherently 

different to that of a release in an infinite space. In a confined region the flow of the source 

increasingly contaminates the environment which is therefore being modified as the flow con­

tinues . Conversely, this modification of the environment continuously affects the behaviour 

of the source. 

- 1 -



Chapter One - General Introduction 

It is desirable to be able to predict the flow produced by a buoyant release in a given 

physical situation. For example, in the case of natural gas leaking in a room or building, it 

would be advantageous to be able to predict the maximum gas concentrations reached after 

a given length of time and the motion of the escaping gas. To predict the flow, the factors 

that affect it must be understood. In general, such flows are controlled by: 

i) the source characteristics (Le. the source volume, momentum and buoyancy fluxes); 

ii) the source orientation with respect to the container; 

iii) the geometry of the container; 

iv) interaction between the source and the container boundaries; 

v) ventilation of the container. 

Since each of these factors will play a part in determining the resultant flow, by studying 

their effects a greater understanding of the overall problem will be gained. In the above case 

of the gas leak, such knowledge could be used to prevent hazardous concentrations from being 

reached, for example by including suitable ventilation or design features in the building. 

2. Previous work - the 'filling-box' model 

The majority of previous research on the release of a buoyant fluid in a confined space 

has been based on the 'filling-box' model, the name given by Turner (1973) to the theory 

of Baines & Turner (1969) describing the flow produced by convection from a source in a 

confined region. 

This model will now be described and its limitations discussed. Some of the work that 

has been developed from it will then be reviewed briefly. 

2.1 The 'filling-box' model 

Consider the convection flow from a point source at the base of a container which is chosen, 

for simplicity, to be a rectangular tank (see figure 1). It is assumed that the convecting fluid 

is lighter than that of its environment and forms a plume which flows up towards the top 

of the tank. When the plume fluid first reaches the top of the tank it spreads out in a thin 

horizontal layer with a density discontinuity or front below it. The dynamics of the horizontal 

spreading-out flow are ignored and it is assumed that the stable stratification surpresses any 

mixing with the environment. The plume fluid entering this thin layer now entrains fluid 

that is lighter than the original environmental fluid and so the plume fluid now reaching the 
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FIGURE 1. A schematic diagram of the 'filling-box' model of Baines & Turner (1969). 
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Chapter One - General Introduction 

top of the container is lighter than the preceding layer. Hence when this plume fluid spreads 

horizontally, the first density front formed is pushed down with the lighter layer above it. 

This process continues, leading to increasing stratification of the environmental fluid. 

Baines & Turner (1969) conducted several experiments to illustrate the stability of the 

environmental stratification by injecting dye into the plume. They observed that the dyed 

layers remained horizontal and well defined, as they are pushed down the tank. 

The fully time-dependent problem has proved to be impossible to solve analytically, al­

though Worster & Huppert (1983) have obtained approximate analytical solutions which 

agreed well with their numerical results. Baines & Turner (1969) were able to derive an 

expression for the position of the first front as this effectively depends only on the motion 

of the plume in the uncontaminated environmental fluid ahead of it (see Morton, Taylor & 

Turner 1956). By assuming that the density profiles increase linearly in time with a fixed 

distribution, they were able to derive a solution for the asymptotic state achieved at large 

times in which the plume properties are asymptotically constant in time. The analytical 

results agreed well with their experiments. 

2.2 Limitations of the model 

In the description of the model above it is clear that it relies on several assumptions which 

restrict its application. 

Firstly, the source is required to be one of buoyancy only. Inputs with a non-zero ini­

tial volume flux are usually relatively unimportant as the volume increases they imply for 

closed containers can be accommodated by including vents or a free surface (particularly in 

experiments), depending on the problem being considered. In general the volume flux of the 

source will be much smaller than the volume of the container and so the velocities induced 

(and hence the effects on the flow) by having, say, a vent on a remote boundary would be 

negligible. There may be situations in which this is not the case, for example the removal of 

natural gas from a pipe section by purging it with nitrogen, but in these situations the high 

volume flux of the source is an essential part of the flow and cannot be neglected. 

What may be more important is the effect of a source with a significant non-zero initial 

momentum flux. In this case, when the buoyant jet impinges on the tank boundary, its 

additional momentum means that the effect of the impingement 'splash' will be important, 

causing mixing of the environment. Thus in the 'filling-box' model, if the source had a 
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Chapter One - General Introduction 

significant non-zero initial momentum flux, then the assumption that the plume fluid spreads 

out horizontally, with little mixing of the environment, may not be valid. For sources with 

small initial momentum, this effect may not be important as the buoyancy of the fluid will 

increasingly dominate the momentum forces with increasing distance from the source and 

the behaviour will be plume-like when it reaches the top of the tank . However if the source 

, has high momentum (for example, if the source was a high velocity gas leak), then any 

impingement of the source on a boundary could cause mixing of the environment which may 

totally alter the nature of the flow. 

Even if the source is a pure plume, its momentum flux will increase with increasing distance 

from the source. Thus over-turning ofthe environment could still occur if the momentum flux 

at the top of the container was significantly larger than the stabilising buoyancy force of the 

stratified environment. Baines & Turner (1969) showed that this momentum/buoyancy ratio, 

reflective of the tendency towards over-turning, is proportional to the square of the aspect 

(height/width) ratio, a, of the tank. Baines & Turner (1969) conducted some experiments 

to investigate the effect of varying the aspect ratio, finding indications of over-turning when 

a > 1. Consequently they restricted their analysis to containers in which the height is less 

than or equal to the width. 

There are further idealisations made in the model which might not be realised in physical 

situations. In particular, it was assumed that there was no interaction between the plume and 

the boundaries of the container (except at the top). In practice it is unlikely that the source 

would be in the centre of the container and vertically directed. The effects of source position 

and orientation are unlikely to have major effects for a purely buoyant release. However if 

the source has high momentum, any interaction with the boundary could significantly affect 

the flow. 

2.3 Previous research based on the 'filling-box' model 

Although the theory has some limitations, as described above, it has been readily applied 

and developed to model many other physical situations. 

Germeles (1975) used the theory to model a phenomenon known as tank 'roll-over' which 

can occur when additional liquified natural gas (LNG) is injected into a tank containing LNG 

at a slightly different density (see figure 2). This injection can result in stratification of the 

liquid gas (in the 'filling-box' manner). The compositional and temperature gradients may 
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Chapter One - General Introduction 

cause overturning ('roll-over'), resulting in a large-scale boil-off of methane vapour, which can 

lead to dangerously high pressures within the tank. Germeles modelled the flow using the 

'filling-box' equations, modified to include mass inputs by allowing the free surface to rise. He 

used a numerical method to describe the unsteady development of the density distribution 

before the asymptotic state derived by Baines & Turner (1969) is reached and conducted 

, experiments to check the numerical results. He also relaxed the vertical source condition, 

modifying the conservation equations of MOl'ton, Taylor & Turner (1956) appropriately for 

inclined sources, although his equations break down in the case of an initially horizontal 

release. The good agreement between the numerical solution and the experimental results 

have helped to establish the validity of the 'filling-box' model when applied to tanks with 

buoyant injections from a nozzle. 

The assumption of fixed rigid boundaries makes the 'filling-box' model a little unreal­

istic when applied to geophysical flows. Baines (1975) relaxed the condition of insulating 

boundaries on the upper surface to allow entrainment into the impinging plume. Kumagai 

(1984) considered the flow of a plume entering a two-layered region consisting of a layer of 

fresh water on top of a layer of salt solution (see figure 3). The plume enters at the level 

of the free surface and at first cannot penetrate the interface. The evolution of the fresh 

water layer is governed by the filling-box process, but as in the case considered by Baines 

(1975), there is also entrainment through the end of the plume which impinges on the density 

interface. Kumagai (1984) found that the entrainment rate in the upper layer (as it changes 

in thickness) and the buoyancy flux across the interface can be expressed as functions of 

the Froude number, F7'. Manins (1979) also relaxed the condition of non-conductivity of 

the boundaries with a diffusive boundary at the source level and diffusion of density in the 

environment of the plume. The radiation of buoyancy allows enclosures with intense local 

heating from below, for example the Earth's mantle, to be modelled. The essential aspect of 

the 'filling-box' process is the vertical confinement which causes the plume fluid to descend 

and be re-entrained; this may not be appropriate in some geophysical cases. 

Killworth & Turner (1982) pointed out that buoyancy sources in nature are rarely uniform 

in time. They investigated the dependence of the 'filling-box' asymptotic state on the time­

dependent behaviour of the source buoyancy flux, concentrating mainly on cyclic sources. 

Using laboratory experiments , numerical solutions and analytical theory, they showed that 

the asymptotic state is qualitatively similar to that which would be produced by a source of 

steady buoyancy flux with the same value as the maximum of the variable buoyancy flux. 
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Chapter One - General Introduction 

In the asymptotic solution of Baines & Turner (1969), the buoyancy flux of the plume 

varies linearly with position. Worster & Huppert (1983) made the hypothesis that for earlier 

times the buoyancy flux varies linearly between the top of the tank and the position of the 

first front. With this approximation, they found a time-dependent analytical solution to the 

'filling-box' equations which was correct at t = 0, tended to the asymptotic solution of Baines 

, & Turner (1969) as t -+ 00 and agreed well with their numerical results. 

There may be other circumstances in which the asymptotic solution of Baines & Turner 

(1969) may not be applicable. For example, if the density is a function of two components 

(for example, heat and salinity), double-diffusive phenomena may occur in the environment 

before the first front has advanced very far. This has been studied by McDougall (1983) who 

described the formation of double-diffusive interfaces, which separate the environment into 

discrete well-mixed layers. 

Linden, Marshall & Cleaver (1991) have examined the effect of jet orientation and position 

on a small-scale model of a natural gas release in a closed cubical container, concentrating 

particularly on the flow produced when the source is some distance from the bottom of the 

tank. They found that, in general, for non-vertical sources, gas mixing was confined to the 

region above the lowest point of penetration of the jet, with weak stable stratification above 

it and a sharp interface between the gas and fresh layers. 

Linden, Marshall & Cleaver (1991) have also conducted some experiments to investigate 

the effect of initial source momentum on horizontal, dense sources. A small ventilation point 

was provided in both the top and the bottom of a cubical test chamber to allow for the volume 

inputs. Three regimes were observed (see figure 4) depending on the ratio 8 between the 'jet­

length' L j , the length scale of a buoyant jet (see for example Turner 1973 or chapters 2, 3 

and 4) and the distance between the nozzle and the boundary nearest to it. For values of 

8 ;S 1 the (negatively) buoyant fluid below the source was well-mixed with fresh water above, 

separated by a stable interface. For values of 1 ;S 8 ;S 6 the jet was still nearly horizontal on 

impingement and mixed some of the fluid above the source, above which was layer of fresh 

water. The level of the interface depends on the value of 8. For values of 8 .::: 6 the whole 

tank was mixed. 

Linden, Lane-Serff & Smeed (1990) have discussed the fluid mechanics of 'natural ventila­

tion', this being ventilation driven by buoyancy differences between the interior and exterior 

fluids of a chamber. They studied the effects of internal sources of buoyancy (which might 

result from radiators, people or machinery) finding that these allowed steady states to be 
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Chapter One - General Introduction 

established, which they described using extended filling-box models with the addition of a 

continuous exchange of fluid with the environment . 

Baines, Turner & Campbell (1990) studied the effect of opposing buoyancy and momentum 

fluxes on the 'filling-box' model. They injected dense fluid upwards from the bottom of a 

tank, which was initially filled with uniform fluid. The turbulent 'fountain ' which formed 

rose to a maximum height and then fell back, spreading out along the base of the tank, to 

be re-entrained into the fountain. A stable stratification then built up in the 'filling-box' 

manner. The volume flux of the inputs was significant and was compensated for by having a 

free upper surface which rose in time. They found that the top of the fountain rose linearly 

with time at approximately half the rate of rise of the free surface. Eventually the front rose 

above the top of the fountain, and the density profile of the mixed fluid above the fountain 

then remained unchanged in time. 

In summary, it is clear that the 'filling-box' model has been the subject of considerable 

application and development. The initial work of Baines & Turner (1969) and the results 

of Germeles (1975) showed that the model provides accurate predictions of the density dis­

tributions resulting from a source of buoyancy (and volume in the latter case) in a confined 

region. Analytical solutions exist in the asymptotic analysis for large times (Baines & Turner 

1969) and approximate solutions have been derived by Worster & Huppert (1983) for earlier 

times. The model has been developed for application to geophysical flows by Baines (1975), 

Manins (1979), Killworth & Turner (1982), McDougall (1983) and Kumagai (1984). The 

effect of source momentum has been considered by Linden, Marshall & Cleaver (1991), the 

effect of container ventilation has been considered by Linden, Lane-Serff & Smeed (1990) and 

the effect of reversing buoyancy by Baines, Turner & Campbell (1990) for a more realistic 

application to industrial and domestic situations. 

However, there are several areas which have been relatively neglected. Firstly the effects 

of a source with a high volume flux have not been examined (in the case of Baines, Turner 

& Campbell 1990, the volume flux was significant, but still sufficiently small for its effect 

on the flow to be ignored, except for the rise of the free upper surface) and also, with the 

exception of Linden, Marshall & Cleaver (1991), the effects of high source momentum flux 

have not been studied. In practical circumstances, particularly in applications to gas leakages 

and other industrial flows, the volume and momentum fluxes of the source may be large and 

may substantially affect the resultant flow. Currently there is insufficient knowledge on the 

flows resulting from such sources for reliable predictions to be made and so more research is 
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required. 

Furthermore, all of the above experimental studies have been carried out with approxi­

mately cubical or flatter containers. This is to comply with the restriction that Baines & 

Turner (1969) made on their 'filling-box' model, limiting its application to tanks of aspect 

ratio less than unity. With the exception of Huppert et al. (1986) , who measured density 

difference profiles in a 'filling-box' experiment in which a = 3.5, the effects of using a tank 

with aspect ratio greater than unity have received little attention. 

3. Laboratory models and experimental techniques 

It is always important to compare the results of theoretical or numerical work with appro­

priate physical measurements. In the following chapters this has been done by performing 

laboratory experiments, using many different techniques. The experimental procedure will 

be described in detail within each particular chapter - however there are some experimen­

tal techniques which have been used generally and are described here, together with some 

comments on the use of small-scale models. 

3.1 Laboratory models 

It was stated above that two of the factors controlling the flow of a buoyant release within 

a confined region are the geometry of the space and any interaction between the source and 

the container boundaries. It is not practical to examine every possible type of container 

experimentally. However, by choosing a geometry with one or more specific features, it is 

possible to investigate the effects of these features on the flow produced in order to build up 

an overall understanding of the dependence of the resultant flow on the container geometry. 

In this thesis, particular geometries have been studied using models made from clear 

perspex. The ambient uniform fluid is modelled using fresh water and the buoyant fluid 

source using a dyed salt solution, which is heavier than water. In all of the flows studied the 

density differences are small and, using the Boussinesq approximation, the acceleration of a 

buoyant parcel (the 'reduced gravity ' ) is given by g' = g6.pj p, where p is the environment 

density, 6.p is the density difference between the source and the environment and 9 is the 

acceleration due to gravity. Thus, for applications in which the source is lighter than the 

ambient fluid, the apparatus is simply turned upside-down (still using the relatively dense 

salt solution to model the source, which will flow downwards instead of up) and inverted 
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mentally on viewing (so that it now appears that the source fluid is less dense, flowing 

upwards) whilst ensuring that the absolute value of the reduced gravity in the experiment 

matches that of the real situation (when scaled appropriately). Much of this research may be 

applied to leakages of natural (or perhaps a dense) gas or the movement of smoke within a 

, building or other confined space. It may be asked if it is appropriate to apply the predictions 

of a small-scale fluid model to the full-scale gaseous situation. 

The use of small-scale liquid models for modelling larger-scale gas models has been jus­

tified by Lane-Serff (1989) who explained that problems will only occur if there are large 

temperature changes or very high velocities in the real situation. Then the flow may not 

be regarded as incompressible, which is presumed in the use of a water model. Problems 

may also arise when large density differences occur in the real situation; the use of a salt 

solution/water model assumes that the density differences are small. In the majority of the 

physical applications considered here, the velocities are not sufficient to cause compression 

and there are no large temperature differences: the buoyancy forces are generally a result 

of density differences between the source fluid and the environment due to differences in 

composition rather than temperature. In most cases the effects of viscosity and diffusion 

are also small (compared with the mixing produced by the bulk motion of the flow), so that 

the Reynolds and Peclet numbers are large - the flow is then independent of these numbers. 

Hence to model these flows in the laboratory it is necessary to ensure that the Reynolds 

and Peclet numbers in the experiment are also high - which should be achievable in a model 

using water as the environmental fluid. Linden, Marshall & Cleaver (1991) compared some 

small-scale water/salt solution experiments with their full-scale air/natural gas counterparts, 

and found good agreement in the measured concentrations. 

Of course, it may not be practicable to produce a perfectly scaled model. For example, 

in chapter 4 the flow produced by a high momentum gas leak in a long tunnel is modelled. 

Suppose that the tunnel is 12 m long with square cross-section of side 60 cm, and aI/6th 

scale model of it is required. This would imply a model 2 m long with square cross-section of 

side 10 cm. Typically, the source may be formed by gas escaping from a small crack in a pipe 

caused by corrosion - a hole with diameter, say, 1.2 mm. This means that the experimental 

nozzle should have a diameter of 0.2 mm. However, because of engineering limitations, the 

smallest nozzle that can be made has a diameter of 0.5 mm. Using a nozzle of this size, it is 

not possible to have both the exit velocity and the flow rate at the experimentally required 

levels. 
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Time 

Velocity 

Volume flux 

Momentum flux 

Buoyancy flux 

Chapter One - General Introduction 

Model/Real scale ratio 

1 

(IM9'M/IR9k)2 
1 

(l1vI9'M / 1~9k) 2 

(1~9'M/lh9k) 

(l1vI9'M3 /lhgR3)~ 

TABLE 1. Model/Real scale ratios. 

In a problem of this sort, flow-rates, density differences or some other adjustable experi­

mental value would be altered making sure, however, that the most important flow parameters 

are still accurately scaled so that the model and experiment are still dynamically the same. 

Such adjustments may mean that the experimental results cannot be applied immediately to 

the real situation without first comparing the appropriate scales. 

Denoting the length scale by I and the reduced gravity by g', with subscripts M for the 

model and R for the real situation, then the model/real ratio of the scales for time, velocity, 

volume flux, momentum flux and buoyancy flux are given in table 1 above (see also Lane-

Serff 1989). 

These ratios must be taken into account when applying experimental results to the real 

situation. If, say, the time scale ratios are the same in both the experiment and the model, 

then the model/real time scale ratio given in table 1 will have a value of unity; if this ratio 

has a value less than one then the experiment proceeds at a faster rate than the full-scale 

situation and vice-versa. In all experiments, the major consideration is of the parameters 

that are important to maintain dynamic similarity and the parameters that may be changed. 

3.2 Experimental techniques 

The experimental techniques used depends on the experiment being performed. However, 

the shadowgraph visualisation technique is common to all of the experiments described in this 

thesis and is explained below. This is followed by a description of the methods of measuring 

density that have been used. 
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3.2.1 Shadowgraph visualisation 

The use of perspex models makes illumination and visualisation of experiments relatively 

easy, the simplest method of visualisation being the shadowgraph. 

Light is shone through the apparatus onto a translucent screen fixed to the side of the 

. apparatus opposite the light (see figure 5). The shadowgraph method relies on variations in 

the refractive index in different parts of the fluid caused by density differences or fluctuations. 

In a region of uniform density stratification (i.e. the density gradient is constant) the gradient 

of refractive index is constant, and the image will be similar to that obtained from a region of 

uniform density. However, ifthere are large variations in the density gradient (Le. large values 

of the second derivative of the density) then there will be large variations in the gradient of 

the refractive index of the fluid which are marked by light and dark areas on the image. These 

move with the flow and provide a good method of visualising th~ motion of the fluid. Clearly 

it is the changes in the density gradient through the apparatus perpendicular to the screen 

that are observed, making this method particularly suitable for visualising two-dimensional 

flows. In three dimensional flows, the shadowgraph technique may still be used to visualise 

the flow in a particular plane, illuminating with a single sheet of light. It is also clear that it 

is important to have as near parallel a beam as possible through the apparatus to minimise 

the parallax in the projected image on the screen. This is usually achieved by placing the 

light source far from the apparatus or by using a suitable lens. 

3.2.2 Density l11easurement 

The need for accurate density measurements is important in all of the experiments per­

formed in this thesis. There are several methods of measuring density, for example, the 

refractometer, electronic density meter, conductivity probes and digital video analysis. All 

but the third of these methods have been used, usually in conjunction with one another. 

Refractometer 

The refractometer is the easiest method of measuring the density of salt solution and is 

used when rapid measurements or quick estimates of density are required. Like the shadow­

graph above it uses the property of salt solution that the refractive index varies with density 

(Le. salt concentration). The refractive index is measured as light passes through a drop of 

solution and is then compared with a data table to calculate the density. This method is 

normally used when preparing large tanks of salt solution. Measuring density using a refrac­

tometer requires a sample size ofless than 1 ml and is accurate to within 0.5 X 10-3 g cm -3. 
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FIGURE 5. The shadow-graph visualisation technique. A parallel light source is shone 
through the apparatus onto a translucent screen. The image caused by refraction 
effects is recorded onto video tape or simply observed by eye. 



Chapter One - General Introduction 

Density meter 

The density of liquids can be found electronically using an Anton Paar density meter 

which measures the resonant frequency of a small tube filled with the sample. This method 

is up to 3000 times more accurate than the refractometer but takes a few minutes for each 

. measurement to be made. This method is normally used to measure the density of samples 

taken from an experiment and for use in calibrating the digital measurements below. 

Digital video analysis 

The most recently developed method for measuring densities and concentration variations 

is by digital analysis of a video tape of the experiment. The application of this technique 

varies depending on the experiment and so only a brief general description is given here -

the particular approach for each experiment will be described in more detail in the relevant 

chapter. 

In order to use this method the source fluid is dyed (whereas the environment fluid, usually 

fresh water, is clear), with the observed variations in dye intensity corresponding to variations 

in concentration. The experimental apparatus must be clear, so that when illuminated the 

dyed fluid is clearly visible (for example on a shadowgraph screen). The flow of the buoyant, 

dyed fluid may then be captured easily on video tape whilst the experiment is running. 

The video picture is divided digitally into a grid of pixels and the intensity of each pixel 

is calculated and given an integer value between 0 (black) and 255 (white) . Variations in 

the background illumination can be removed by dividing the intensities of the picture by 

those of the background (from an initial frame) at each point. It will be shown that the 

dye concentration varies linearly with measured intensity for small dye concentrations. So by 

making one density measurement at a specific point in the flow from a fluid sample (using 

the Paar density meter) and comparing it to the intensity value there, it is easy to calculate 

the density/intensity relationship. 

In practice more than one density measurement is made for greater reliability. An in­

tensity / concentration calibration experiment is carried out before each group of experiments 

to calculate the concentration at which non-linearity in the intensity/concentration relation­

ship becomes significant for that particular experimental apparatus. The measured intensity 

will also vary with the thickness of the dyed region. It is important to point out that the 

refractometer and density meter measure the density of a sample of fluid drawn from a spe­

cific point of the flow; the digital technique measures the mean density (i.e. an integrated 

measurement) on a line through the flow between the light source and the camera, although 

- 12-



Chapter One - General Introduction 

point measurements may be made by illuminating the experiment with a single sheet of light 

passing through it. 

4. A plan of this thesis 

It is clear from section 2.3 that the 'filling-box' model has been developed and applied to 

a large variety of cases. However, there are still problems to solve and questions to answer. 

In this thesis some flows resulting from a release of buoyancy in a confined space, in which 

the 'filling-box' model may not be applied, are investigated. 

Throughout this thesis and in all of the previous work, the release of fluid has been 

modelled as a buoyant jet. In chapter 2, the existing basic theoretical and experimental 

knowledge of jets and plumes is reviewed. Dimensional arguments are used to calculate the 

well known axial velocity and density variations. Two methods: due to Tollmien (1926) and 

Goertler (1942), of modelling turbulence to derive the transverse distribution of the axial 

velocity component are given. In order to improve the agreement between these two theories 

and experimental results, the effect of including the previously neglected smaller terms and 

variation of the intermittency factor is then investigated. 

In chapter 3 the effect of assumptions about the behaviour of the entrainment constant on 

a theoretical model of a buoyant jet is examined. In most models of buoyant jet behaviour, 

the entrainment constant has been assumed to be constant (see for example Lane-Serff 1989). 

However, the entrainment constant is known to be different for jets and plumes (see Fischer 

et al. 1979) and will therefore vary along the course of a buoyant jet, which undergoes a 

transition between these states. Assumptions on the nature of the entrainment constant 

in a theoretical model will therefore affect the physical accuracy of its predictions. Two 

contrasting assumptions are made about the behaviour of the entrainment constant in a model 

of the flow of an initially horizontally directed buoyant jet and the theoretical predictions 

are compared with experiments . Accurate knowledge of the trajectory of a buoyant jet is 

important when considering confined buoyant releases, as it will provide information on the 

likelihood of the jet impinging on the container boundaries. 

In chapter 4 the effects of high source momentum and ventilation are investigated by 

examining the flow of a vertical, high momentum buoyant jet in a long horizontal tunnel. 

The high momentum of the source dramatically alters the flow from that assumed in the 

'filling-box' case and so this model cannot be applied. A new model is developed in which 
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the bulk flow variables and concentration time-dependence are deduced and compared with 

experimental measurements. The effects of tunnel ventilation on the flow are studied. 

In section 2.2 it was explained that 'filling-box' theory cannot be accurately applied to 

containers with aspect ratio greater than unity. In chapter 5 the flow resulting from a vertical 

plume flowing into a tall chamber (large aspect ratio) is studied. The nature of the flow is 

found to depend on the actual value of the aspect ratio. The applicability of the 'filling-box' 

equations to containers of moderate aspect ratio is investigated before presenting a model for 

the flow in a container of large aspect ratio. Theoretical and numerical results are compared 

with experiments in each case. 

In chapter 6 the work of chapter 5 is continued, studying the flow from sources of buoyancy 

in tall angled chambers. The resultant flow is quite different to that of the vertical case. A 

simple model of the flow is presented and the theoretical predictions are compared with 

experimental measurements. 

Finally the general results are reviewed in chapter 7, outlining their implications for gas 

leakages and applications to other practical situations. Chapter 7 concludes with a table 

which summarises the current understanding of confined buoyant jet flows. 

Each chapter begins with a brief synopsis of its contents followed by an introduction to the 

subject under discussion. The chapters end with a summary of the notation used, provided 

for reference purposes rather than precise definitions. Sections, equations, tables and figures 

are numbered within each chapter and any reference to part of another chapter will be stated 

explicitly. The references follow chapter 7. 

The emphasis throughout is on the use of simple models in the hope that, where pos­

sible, results may be obtained analytically or failing that by simple numerical analysis. In 

general this means that mean values are calculated; turbulence is included by modelling its 

effect rather than by examining the turbulent fluctuations themselves. The flow produced 

by a buoyant release in a confined space is often extremely complex and more detailed or 

sophisticated models would require the use of computational fluid dynamics (CFD) for their 

solution. However, CFD solutions are usually calculated for a given situation and so do not 

necessarily provide physical explanations for the predicted flows. Simple models, based on 

physical observation and interpretation, can often provide a greater understanding of the dy­

namical processes involved, allowing a more ready application of the results to other similar 

situations. 
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Notation 

Below is a list of the symbols used in this chapter, provided for reference purposes. 

a Height/width aspect ratio of the tank 

Fr Froude number, F1' = U2 /g'l 

g Acceleration due to gravity 

g' Reduced gravity 

I Intensity measured by digital video analysis 

Length scale 

Lj Length scale of a buoyant jet or 'jet-length' 

Pe Peclet number, Pe = Ul/", 

Re Reynolds number, Re = U l / v 

t Time 

U Velocity scale 

o Ratio of L j to the shortest distance between the jet nozzle and the nearest 

boundary 

v 

p 

Thermal conductivity 

Kinematic viscosity 

Density 
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CHAPTER Two 

Jets and Plumes 

Throughout this thesis, the source of a buoyant release will be modelled using the theory 

of turbulent jets, plumes and buoyant jets. These source types are defined followed by a brief 

review of their properties, described using established experimental and theoretical results. 

The equations of incompressible fluid motion are then stated and are applied to the flow 

of a turbulent jet in order to predict some of the flow characteristics observed experimentally. 

Many previous solutions have modelled the turbulent velocity products using either an eddy 

viscosity or a mixing length model and have neglected the smaller terms in the momentum 

equations. It has been established that neither of these models gives good agreement with 

the experimental results over the whole cross-section of the jet flow. In order to improve the 

agreement between the theoretical predictions and experimental measurements, the effect of 

the smaller, second order terms and the effect of variation of the turbulent intermittency 

factor are examined. This results in a significant improvement of the theoretical predictions, 

particularly near to the edge of the jet. 

1. Introduction 

In most applications of practical interest, a release of buoyant fluid is likely to originate 

from a source of small extent and may be modelled theoretically, using the theory of turbulent 

jets and plumes. For example, gas leaking into a building will probably be escaping from a 

small hole or crack in a pipe formed by corrosion; waste discharged into the environment may 

often originate from the open end of a submerged pipe or a series of jets, called a multiport 

diffuser. In the latter case jetting the waste into the environment is often a very effective 
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means of reducing its concentration, as jets and plumes entrain large volumes of ambient 

fluid, rapidly diluting the waste product. In all of the flows resulting from buoyant releases 

in confined spaces considered later in this thesis, the source will be modelled as a buoyant 

jet or plume and so it is important to review the basic properties of jets and plumes. 

A jet is the discharge of fluid from an orifice into a large body of the same fluid, for 

example the flow from the nozzle of a garden hose when held under water. The flow is driven 

by the momentum of the source, and the source and ambient fluid have the same density. 

A plume is the flow resulting from a potential energy source that provides the fluid at the 

source with buoyancy relative to its surroundings, for example hot air rising from a radiator. 

In a plume the fluid at the source has no initial momentum and is driven by buoyancy forces. 

In practice, many sources are neither jets nor plumes having \;loth initial momentum and a 

different density to the environment. These sources are called buoyant jets or forced plumes. 

The initial flow is often driven by the momentum of the fluid at the source and behaves like 

a jet, but the density difference means that the fluid is acted on by buoyancy forces and will 

ultimately behave as a plume (as will be shown later). 

Near to the source, the flow is usually controlled by the starting conditions, namely the 

initial fluxes oCmass, momentum and buoyancy. These are defined below. t 
i) The mass flux, pQo, is the rate of mass flow through a jet cross-section and is given by 

pQo = ~ r pUo dS, 
1[" is (1.1 ) 

where p is the density of the fluid, Uo is the time-averaged (mean) velocity at the source and 

dS denotes integration across a cross-section (S) of the jet. Qo is the specific mass flux or 

volume flux of the jet. 

ii) The momentum flux, pN1o, of the jet is the rate at which streamwise momentum passes 

through a jet cross-section and is given by 

1 j 2 pMo = - pUo dS. 
1[" S 

(1.2) 

Mo is called the specific momentum flux. 

t Some authors do not include the 1/1[" factors, which are included here for later convenience 

when using circular nozzles. 
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Hi) The buoyancy flux, pBo, is the rate of flow of density difference through ajet cross-section 

ami is given by 

pBo = ~ r gb.puo dB, 
7r is (1.3) 

where b.p is the density difference between the surrounding fluid and the jet fluid. Bo is the 

specific buoyancy flux. 

Local fluxes of mass, momentum and buoyancy are defined in the same way without the 

zero subscript which is used to denote evaluation at the source. The above notation is used 

throughout this thesis. 

Jets and plumes may be laminar or turbulent but it is not yet possible to predict (theo­

retically) the Reynolds number, 

2urn b 
Re= --, 

1/ 
(1.4) 

where b is the transverse length scale, Urn is the axial velocity scale and 1/ is the kinematic 

viscosity, at which a laminar jet will become turbulent. In most cases, if the Reynolds number 

exceeds 2000 the jet flow will be turbulent, although Fischer et a!. (1979) state that there is 

evidence that the turbulence may not be fully developed until a Reynolds number of about 

4000 is reached. In all of the flow sources considered in this thesis, the lower limit, Re > 2000, 

will be attained and so the sources will be considered to be turbulent. 

In the following sections the basic properties of turbulent jets, plumes and buoyant jets, 

obtained from both theoretical and experimental results, will be reviewed. The equations of 

fluid motion will then be introduced. When applied to jet flow, it is possible to compare the 

orders of magnitude of each term in the equations of motion . By selecting the largest terms, 

and modelling turbulence using mixing length and eddy viscosity hypotheses, Tollmien (1926) 

and Goertler (1942) were able to find predictions for the mean velocity, although neither 

solution agreed well with the experimental results across the whole of the flow . 

Finally, in order to try to improve the agreement between the theoretical predictions and 

the experimental measurements, the effects of including the (previously neglected) smaller 

terms and variation of the intermittency factor in the analysis will be examined. This will 

give an indication of the relative importance of the neglected terms. No similar studies (of the 

effects of the smaller terms and intermittency factor) are known to the author. The chapter 

ends with a discussion of the results. 
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2. A review of the elementary properties of jets and plumes 

The basic properties of jets, plumes and buoyant jets will now be reviewed, drawing on 

established theoretical and experimental results. 

2.1 The pure jet 

A pure jet has been defined above to be a source of mass and momentum but not buoyancy; 

in practice, a jet is usually the discharge from a nozzle in a body of the same fluid. Turbulent 

jets have been studied extensively both theoretically and experimentally so that there is now 

a good understanding of their behaviour. Some of the experimental studies are listed in 

table 1 (for reviews see Rajaratnam 1976, Fischer et al. 1979 and List 1982). 

2.1.1 Experimental observations 

Figure 1 shows the flow of a turbulent jet schematically, divided into two distinct regions 

or zones. 

In the first region, known as the 'flow development region' or the 'zone of flow estab­

lishment', the shear between the source fluid and the environmental fluid causes turbulence 

which penetrates progressively towards the axis of the jet destroying the potential core of 

undiminished mean velocity. Ambient fluid is entrained into the jet which consequently in­

creases in width. This first region is about six nozzle diameters in length, after which the 

turbulence has penetrated to the jet axis and the potential core has disappeared. This is the 

'fully developed flow region' or 'zone of established flow'. 

In the fully developed region, the jet continues to expand by entraining ambient fluid. 

Experimental measurements have shown that mean velocities and (tracer) concentrations 

in this region are 'self-similar', expressible in terms of velocity and concentration scales, 

respectively, (1lm and Cm, the values of the axial (x) velocity and concentration (or tracer) 

on the axis) and a length scale, or measure of the width. Figure 2 shows measurements of 

the transverse (y) variation of the axial velocity, u, for a planar turbulent free jet (data due 

to Zijnen 1958) in which the solid line is a Gaussian fit. The velocity distributions from 

different cross-sections fa]] on a common curve which is approximately Gaussian in shape 

(as a consequence, the axial velocity distributions of jets and plumes are often assumed to 

be Gaussian for analytical simplicity). However, the scales of velocity and length must be 

known before this property of similarity may be used. 
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FIGURE 1. A schematic diagram showing the different regions of the flow of a pure 
jet. 
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Experimentalist Nozzle Range Re x 104 Mean flow Turbulent 

radius xjbo quantities quantities 

bo (mm) measured measured 

Forthmann (1936) t 15.0 50 7.0 u 

Miller & 6.35 80 2.0 U,p u,2 

eomings (lQ57) 

Van der Hegge 2.5,5.0 80 1.33 U, v u,2 v,2 u'v' , , 

Zijnen (1958) 

Ricou & 0.8 - 15.9 418 0.1-8.0 1£, p, Q, Qx 

Spalding (1961) 

Bradbury (1965) 4.765 140 3.0 u, V,p u'2 v,2 w,2 u'v' I , , , , 
Heskestad (1965) 6.35 320 0.47-3.7 U u,2 v,2 w,2 u'v' , , , 

, , , 
uiujuk 

Sami et al. (1967) 30.0 40 22.0 u, V,]J u,2 u'v' p' , , 

Wygnanski & 13.0 400 10.0 U u,2 v,2 W,2 , , , u'v' 

Fiedler (1969) 
, , , 

uiujuk 

Mih & 0.865 280-600 1.77-3.14 U u,2 V,2 u'v' , , , 
Hoopes (1972) 

Gutmark & 6.5 240 3.0 u, v U,2 v,2 W,2 u'v' , , , 
Wygnanski (1976) U'UlU~ 

t J 

U, v are the mean axial and transverse/radial velocities; Q is the volume flux; u', v', w' are the 

velocity fluctuations; p is the static pressure; p' is the pressure fluctuation; I is the mixing length. 

tDetails of this paper have been taken from Rajaratnam (1976) . 

TABLE 1. Experimental investigations of laminar and turbulent free jets 

2.1.2 The velocity and length scales 

The scales of velocity and length can be calculated by integrating the equations of motion 

over a cross-section of the jet and assuming similarity of the flow. This integral technique, 
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suggested by Morton, Taylor & Turner (1956), has been widely used and developed (see, for 

example, Kotsovinos 1977). However, it is possible to predict the scales of velocity and length 

using simple dimensional analysis. 

If x is the axial distance from the nozzle, then dimensional analysis assumes that, for Re 

sufficiently large so that the effects of molecular viscosity are negligible, the scales of velocity, 

length, concentration, volume flux and momentum flux must be dependent on x, Mo and Qo. 

Thus 

U m = h(Mo,Qo,x), b = h(Mo,Qo,x), Cm .= h(Mo,Qo,x), 

Q = f4(Mo, Qo, x), M = fs(Mo, Qo, x), (2.1) 

where fi' i = 1, ... ,5, are functions to be deduced. 

Considering circular jets first, then following Fischer et al. (1979) a characteristic length 

scale for the axial motion may be obtained from Mo and Qo, namely 

Qo 
Lax = --]' 

M2 
° 

(2.2) 

and Lax = bo, where bo is the nozzle radius, if the nozzle velocity has a uniform profile (see 

equations (1.1) and (1.2)). Fischer et af. (1979) also argue that, ·for sufficiently large values 

of xl Lax, the effect of the initial volume flux on the jet behaviour is negligible compared with 

that of the initial momentum flux. Hence, at large distances downstream, all of the above 

properties must be defined in terms of x and Mo. The only way to obtain the dimensions of 

velocity from these is by using y'Molx. Hence 

(2.3) 

for some constant Cl. Clearly the only way to obtain dimensions of length is using x and so 

b = czx, (2.4) 

for some constant Cz. This method also implies the well-known result that the momentum 

flux is constant in jets (although this was disputed by Kotsovinos 1991). The dependences 

of the other quantities on x and Mo can be deduced similarly and are summarised in table 2, 

together with the analogous results for planar jets. The constants Ci, cL may be estimated 

from experimental measurements, which have also confirmed the dimensional results (see 
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Parameter Circular jets Planar jets 

Characteristic axial length scale Lax Qo/yMO Qfi/Mo 

Velocity scale U m clyMo/x ci JMo/x 

Radial/transverse length scale b C2 X c~x 

Tracer / veloci ty length scale ratio bt! bu 1.19 ± 0.06 1.35 ± 0.05 

Concentration scale Cm C3/yMOx c~/yMox 

Volume flux scale Q c4yMOx c4yMox 

Momentum flux scale Ai Constant, Mo Constant, Mo 

TABLE 2. Summary of the properties of turb,ulent jets. 

Fischer et a!. 1979). One curious observation is that the transverse length scales of velocity 

and tracer concentration (b u and bt ) are measured to be different, Fischer et al. (1979) 

quoting bt/bu = 1.19 for circular jets and bt/bu = 1.35 for planar jets. This has lead to 

unresolved speculation as to why there should be a difference in the length scales, bt and bu . 

2.2 The pure plume 

A pure plume has been defined to be a source of potential energy, giving the fluid at 

the source buoyancy relative to its surroundings. vVhilst a large number of experimental 

investigations of pure turbulent jets have been performed, there are very few studies of pure 

plumes (see table 3 and List 1982). However, the pure plume is easier to analyse theoretically 

than the jet as there is no initial volume or momentum flux. 

2.2.1 Experimental observations 

Morton, Taylor & Turner (1956) quoted the paper by Schmidt (1941) as the first con­

sideration of plumes rising from heated bodies. Rouse, Yih & Humphries (1952) gave the 

results of measurements made in plumes above a single gas burner, although they did not 

consider turbulent fluxes. Rouse et al. found that, like the pure jet, the mean velocity and 

temperature distributions of pure plumes could be fitted quite well to Gaussian profiles. Also, 

Rouse et al. found that using a line source the velocity varied over a slightly larger scale 
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Experimentalist Flow type Quantities measured 

Schmidt (1942) t P w 

Rouse, Yih & Humphries (1952) P w,C 

Lee & Emmons (1961) P C, b, Q, Qx, B 

George et al. (1977) P w C w,2 c,2 w'c' " , , 
Kotsovinos & J,ist (1977) BJ w, C, bw, bT , M, Q, Ri 

Kotsovinos (1977) BJ w,2 c,2 , 
Ramaprian & Chandrasekha.ra (1983) t BJ,P w, C, bw, bT , w,2 c'2 , 
Kotsovinos (1985) P C bT c'2 , , 

Papanicolaou & List (1988) BJ w, v, bw, bt , w,2 v,2 c,2 W' c' Q AI , , , " 

w, v are the mean axial and transverse/radial velocities; C is the concentration; w', v', c' are the 

turbulent fluctuations; Q, M, B are the fluxes of volume, momentum and buoyancy; btu, bT are the 

length scales of velocity and concentration; Ri is the Richardson number. 

P denotes study of plumes and BJ denotes study of buoyant jets. 

tDetails of this paper have been taken from Morton, Taylor & Turner (195G); tdetails taken from 

Papanicolaou & List (1988). 

TABLE 3. Experimental investigations of turbulent free plumes and buoyant jets. 

than the buoyancy, but with a circular source the opposite was true. In both planar and 

circular jets, the tracer concentration also varies over a slightly larger scale than the velocity 

and so there must be some doubt about the validity of the results of Rouse et at.. Lee & 

Emmons (1961) only measured the temperature profiles above a line source and so their re­

sults cannot be used to clarify the situation. Kotsovinos & List (1977) have conducted quite 

a thorough investigation. From the results of their study, they calculated the temperature to 

velocity length scale ra.tio A = bT/btu , finding that A ~ 1.35 for planar jets and plumes and 

A ~ 1.16 for circular jets and plumes. George et al. (1977) have attempted to measure the 

turbulent properties in axisymmetric plumes. They found that the mean velocity varied over 

a larger length scale than the concentration, which contradicts the results of Kotsovinos & 

List (1977). 
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2.2.2 Dimensional analysis 

The pure plume has no initial volume or momentum flux and so the flow variables must 

depend only on the source buoyancy flux, Bo, and the distance from the source z (z is used 

as pure plumes must flow vertically, with velocity w), assuming that the Reynolds number 

is sufficiently large for the flow to be considered fully turbulent (i.e. viscous effects are 

negligible). This has the immediate consequence that there is no characteristic axial length 

scale for the pure plume. 

Considering circular plumes first, the only way to construct dimensions of velocity from 

Bo and z is by using (Bo/ z)t and so 

(2.5) 

where Wm is the velocity scale (the value on the axis), for some 'constant d1 • Clearly there is 

only one way to construct dimensions of length, i.e. using z, and so 

(2.6) 

for some constant d2 • In the case of the pure jet, dimensional analysis implies that the 

momentum flux is constant; in pure plumes the above analysis implies that the buoyancy 

flux is constant. This standard result, proved by Morton, Taylor & Turner (1956), will be 

derived more rigorously using an integral approach in chapter 3. 

The dependencies of the other flow quantities on Bo and z can be derived similarly and are 

summarised in table 4 together with the analogous results for planar plumes. As in the case 

of the pure jet, the constants d i , d~ may be deduced from experimental measurements. The 

dimensional dependencies have been shown to be in good agreement with the available data 

(see, for example, Rouse et at. 1952 and Fischer et al. 1979). However, there are still only 

a few detailed experimental studies and some debate about the values of the constants still 

exists (see List 1982). The concentration/velocity length scale ratios given in table 4 have 

been taken from Fischer et al. (1979) and are the average values of the available experimental 

measurements. 

2.3 Buoyant jets 

A buoyant jet is defined to be a jet in which the source fluid has a different density to the 

environmental fluid. Initially a buoyant jet has jet-like characteristics, depending on its initial 
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Parameter 

Velocity scale Wm 

Radial/transverse length scale b 

Concentration/velocity length scale ratio bT/bw 

Concentration scale Cm 

Volume flux scale Q 

Momentum flux scale At 

Buoyancy flux scale B 

Circular plume 

1. 1 
dtBrf Z-3 

d2z 

1.20 ± 0.07 

-1. 5 d3 Bo 3 Z-3 

1. 5 
d4 Brf Z3 

... 4 
dsBrf Z3 

Constant, Bo 

TABLE 4 . Summary of the properties of turbulent plumes. 

Planar plume 

1 

d' B 3 
t 0 

d~z 

1.35 ± 0.05 
1 

d' B- 3 Z-l 
3 0 

1 

d' B 3 z 4 0 

2 

d' B 3 z S 0 

Constant, Bo 

volume and momentum fluxes, but because of the density difference, it also has plume-like 

characteristics depending on its initial buoyancy flux. 

2.3.1 Experimental observations 

Some of the experimental work on buoyant jets is listed in table 3. Kotsovinos & List (1977) 

conducted a detailed experimental investigation of planar buoyant jets and were the first to 

measure turbulent fluctuations (see also Kotsovinos 1977). Their experiments confirmed that 

the flow variables initially behaved as would be expected for a pure jet (see table 2), and 

that after passing through a transition stage, the flow behaved like a pure plume (see table 

4). They also found that 10% of the transport in jets and as much as 40% of the transport 

in plumes is due to turbulence. Ramaprian & Chandrasekhara (1983 - details of this report 

have been obtained from Papanicolaou & List 1988) have repeated Kotsovinos' experiments 

with more accurate equipment, finding lower turbulent flux contributions. 

The most detailed study has been by Papanicolaou & List (1988) who measured the 

mean velocity, concentration, volume flux and momentum flux distributions, the turbulent 

velocity (both axial and radial) and concentration distributions, and the distributions of 

skewness and flatness factors, in axisymmetric buoyant jets. Papanicolaou & List (1988) 

attempted to produce conclusive results using laser-Doppler anemometry to measure veloc­

ity and a laser-induced-fluoresence concentration measurement technique. They found that 
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buoyancy-produced turbulence was responsible for 15-20% of the tracer transport whereas 

the jet turbulence was responsible for 7-12%. These figures seem reasonable as in plumes 

there is both the production of turbulence by the shear stress, as in jets, but also a direct 

transfer of potential energy to turbulent kinetic energy by the buoyant work done. Papan­

icolaou & List (1988) also resolved the disagreements regarding the difference in the scales 

of the transverse variation of mean concentration and mean velocity. Their measurements, 

taken in the fully developed flow region, showed that the concentration varies over a larger 

scale than the ' velocity in both jets and plumes, with A ~ 1.19 being a good average value 

over the path of a circular turbulent buoyant jet. The converse result of George et al. (1977) 

is probably attributable to the fact that their measurements were taken very close to the 

source. 

2.3.2 Dimensional analysis 

It is possible to construct two independent scales of length from the initial source condi­

tions, namely (for a circular buoyant jet) 

Qo 
Lax = --1 

M2 o 
and (2.7) 

the first of which is simply the axial length scale for a pure jet, introduced in section 2.1. The 

second is called the 'jet-length' (see, for example, Turner 1973) which gives an indication of 

the length scale over which momentum forces will dominate buoyancy. Consider a vertical 

buoyant jet with no initial volume flux. In this case, the flow variables must all be functions 

of z / Lj. Near to the nozzle (small z), z / Lj is small- however small values of this parameter 

(and consequently identical flows) may also be obtained by having small Bo or large Mo, for 

which jet-like flow would be observed. Hence jet-like flow is expected for small values of z. 

Conversely, large values of z / L j may be obtained by having large z, large Bo or small Mo; 

i.e. at large distances from the nozzle the flow is plume-like. Thus the length scale L j is the 

parameter controlling the transition in a buoyant jet from a jet-like to a plume-like state. The 

above argument has shown that when z ~ L j the flow is jet-like and when z ~ L j the flow 

is plume-like. This jet-plume transition and the control of Lj on it will be pursued further 

in chapter 3, and the work of Linden, Marshall & Cleaver (1991 , see chapter 1) has shown 

the importance of L j in controlling the mixing produced by a source in a confined (cubical) 

space. 



Chapter Two - Jets and Plumes 

Similar dimensional arguments can be applied to planar buoyant jets, for which the axial 

and 'jet-length' scales are 

Q6 
Lax = -

Mo 

3. The equations of fluid flow 

and (2.8) 

Having sUJl!marised the basic features of jets, plumes and buoyant jets obtained from 

experimental results and simple dimensional analysis, it is desirable to be able to predict some 

of the experimental results analytically, using the equations of fluid motion . The following 

analysis is restricted to a consideration of pure jets, so that there are no density differences , 

although similar analysis may also be applied to plume flow (Yih 1981). The most interesting 

feature of buoyant jet flow is the jet-plume transition and this will be examined theoretically 

using an integral approach in chapter 3. 

3.1 The momentum equations 

The Navier-Stokes equations for a viscous incompressible fluid may be written in the form, 

using rectangular coordinates Xi, (see, for example, Townsend 1956) 

(3.1) 

where Uj is the ith component of the time-averaged (mean) velocity and ui is the fluctuating 

part; p and p' are the mean and fluctuating pressures, and v is the kinematic viscosity. The 

condition of incompressibility is written 

O(U j + uD = o. 
OX j 

(3.2) 

Taking the time-average of these equations gives the equations of mean motion 

(3.3a,b) 

Subtracting equation (3 .3b) from (3.2) yields oui/OX j = 0 and so equations (3.3a) may be 

written in the usual form of the momentum equation 

(3.4) 
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This is the form of the momentum equation that will be used in the following analysis and 

later in this thesis. 

4. Application of the momentum equations to planar jets 

The momentum equations (3.4) will now be applied to the flow of a planar jet in order to 

predict the flow characteristics. The analogous results for circular jets will be summarised 

briefly in sectLon 5. Planar jets are perhaps less commonly occurring in practical circum­

stances than circular jets, although the jet from a multi port diffuser may be regarded as 

being planar when the ports are sufficiently close together. However, the analysis is slightly 

simpler in the two-dimensional case and so this will be considered first. 

Assuming the flow to be two dimensional (10 = 0) in the x - y plane, denoting the axial 

(x) velocity by u and the transverse (y) velocity by v, then the time-averaged momentum 

equations become 

au au 1 ap (aU'2 au' v,) ( a2 u a2 u) u-+v-=---- --+-- +v -+- , ax ay p ax ax ay ax2 ay2 

av av 1 ap ( au'v' av,2 ) ( a2 v a2 v) u-+v-=---- --+-- +v --+- , ax ay p ay ax ay ax2 ay2 

and the continuity equation is now 

au av 
~+~ =0. 
ux uy 

4.1 Order of magnitude analysis 

( 4.1) 

( 4.2) 

( 4.3) 

Experimental observations (see table 1) have shown that the transverse velocity and axial 

gradients are an order of magnitude smaller than the axial velocity and transverse gradients, 

respectively, and that mean squares of products of turbulent velocity fluctuations are also 

at least an order of magnitude less than the square of the axial velocity scale. Thus if 

O(v) = lOCum), O(a/ax) = £O(a/ay) and O(u',v') = cO(um), where £ is a dimensionless 

quantity with magnitude an order of magnitude less than unity and 0(c2 ) = 0(£), the orders 

of magnitude of ea.ch term in (4.1) and (4.2) above may be compared. 
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Writing the equations of motion, (4.1) and (4.2), again with the order of magnitude of 

each term written below 

OU OU 1 op (OU I2 OUIVI) (02U 02U) u-+v------ --+-- +v -+-
ox oy - P ox ox oy ox2 oy2 ' 

1 1 1 (4.1a) 

OV OV lop 
u-+v-=----

ox oy P oy (
OUIVI OVI2) (02V 02V) --+-- +1/ -+-ox oy OX 2 Oy2 ' 

£ £ 1 £/ Re l/£Re (4.2a) 

it is clear that the terms range in order of magnitude from l/e to £/ Re. 

4.2 First order equations of motion 

Having estimated the order of magnitude of each term of the equations describing planar 

jet flow, analytical solutions to the equations will be obtained by neglecting all but the highest 

order of magnitude terms in each equation. 

If the Reynolds number is high and the jet is fully turbulent, the viscous terms may be 

neglected. Examination of (4.10.) and (4.20.) shows that in (4.1) the first three and fifth 

terms are of order unity whereas the fourth term is of order e, (recall that £ is small and 

0([2) = 0(£)), and in (4.2) the third and fifth terms are of order unity or greater. Thus to 

order of magnitude nnity the equations (4.1) and (4.2) may be approximated by 

OU OU lop OU'V' u-+v-=------, 
ox oy pox oy 

( 4.3) 

lop OV'2 
0= --- - --, 

p oy oy 
( 4.4) 

with the continuity equation remaining unchanged (each term is of order unity) 

OU ov 
-0 +-0 =0. x y 

( 4.5) 

The second of these, equation (4.4), may now be integrated with respect to y giving 

p =]100 - pV'2, ( 4.6) 
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in which poo is the pressure outside the jet where the turbulent fluctuations are zero. Sub­

stituting (4.6) into (4.3) gives 

8u 8u 1 dpoo 8u'v' 8 12 
u- +v- = ----- -- + -v . 

8x 8y p dx 8y 8x 
(4.7) 

Again restricting the analysis to terms of order unity, the last term, which is of order of 

magnitude f, is neglected. Also, in a large number of practical problems, the axial pressure 

gradient outside of the jet is small, and so the dpoo/ dx term is ignored. With these further 

simplifications the equations reduce to 

8u 8v -+- =0, 
8x 8y 

8u 8u 18T 
u-+v- = -- and 

8x 8y p 8y 
(4.8a, b) 

where T = -pu'v' is the turbulent shear stress. These are the approximate equations of 

motion for a two-dimensional jet. 

The integral momentum equa.tion and entrainment hypothesis 

Before showing how equations (4.8) may be solved, two important results may be obtained 

simply by integrating these equations with respect to y, namely the integral momentum 

equation and the conservation of volume equation. 

Integrating (4.8a) with respect to y from y = -00 to Y = 00 gives 

f
oo 8u f oo 8u foo 1 8T 

u- dy + v- dy = - - dy. 
- 00 8x - 00 8y -00 p 8y 

( 4.9) 

Each term may be rewritten as follows 

u-dy=-- u2 dy, 
f

oo 8u 1 cl f oo 
-00 8x 2 dx -00 

f oo 8T 
{) dy = TI~oo = T(OO) - T( -00) = o. 

- 00 y 

Hence (4.9) reduces to 

d f oo -l u
2 dy = O. 

ex - 00 

(4.10) 
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This standard result (see, for example, Rajaratnam 1976) states that the specific momen­

tum flux in the axial direction is a constant, Mo, which agrees with the prediction of the 

dimensional analysis of section 2.1.2. 

A second important result may be obtained by integrating (4.8b) similarly, giving 

d 100 100 100 d udy = uxdy = - Vy = -2v(00). 
x -00 -00 -00 (4.11) 

The velocity contribution, -vc (0), is the velocity of fluid being entrained into the jet from 

the environment. MOl·ton, Taylor & Turner (1956) proposed, on dimensional grounds, that 

v( (0) = -O'jUm where O'j is an 'entrainment coefficient' for a pure jet; i.e. the velocity of the 

fluid being entrained is proportional to the local velocity scale of the jet. Thus 

dQ d 100 
-d' =-d' udy=20'jum . x x_ oo 

( 4.12) 

The value and nature of the entrainment constant 0' j has been the subject of considerable 

experimental investigation. However, its value is still not known precisely - there is a large 

degree of discrepancy in the measured values of O'j (Fischer et al. 1979 record measured 

values of O'j which vary by up to ±22% of the mean value), possibly because O'j may vary 

with the manner in which the experiments are performed (see Bradshaw 1977). What is 

established, though, is that the value of the entrainment constant is different for jets and 

plumes (see Fischer et al. 1979) - the effect of this variation on a model of a horizontally 

released buoyant jet is investigated in chapter 3. 

4.3 Turbulent solutions to the first order equations 

Equations (4.8) were solved by Tollmien (1926) and Goertler (1942) who used the self­

similar nature of the flow with mixing length and eddy viscosity hypotheses, respectively, to 

express the turbulent product u'v' in terms of the mean flow variables. 

4.3.1 Goertler Solution 

Goertler (1942 - the details of this paper have been taken from Rajaratnam 1976) used 

an eddy viscosity, £(x), to model the turbulent shear stress 

OU 
T = p£( X ) oy . 
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The eddy viscosity is assumed to be constant over any jet cross-section in the fully developed 

flow region. On dimensional grounds Goertler assumed that f <X urnb or f = kUrnb for some 

constant k. The assumption that the jet has reached a state of self-similarity implies that all 

variables can be expressed in terms of a similarity variable, ", = y/O'x for some constant a, 

with magnitude of order i, to be determined by comparison between the theoretical results 

and experimental measurements. Thus using the dimensional result that Urn f'.J x-~, it is 

convenient to write 

U(x,y) = urn(x)F'(",), where 
y 

",=-, 
O'x 

and () n , JMO 
Urn X = r;;;: = Cl -, 

yx X 
(4.14) 

in which the constant, n, controlling the magnitude of the velocity, has been set to agree with 

the dimensional results of section 2.1.2 (see table 2), and the primes denote differentiation 

with respect to",. The continuity equation (4.8b) requires that 

nO' , /) v(x,y) = ,;x(",F - F 2 . ( 4.15) 

Su bstituting (4.14) and (4.15) into the equation of motion (4.8a) and integrating with respect 

to ", gives 

~FF' kc~ F" = A 
2 + 0'2 ' 

(4.16) 

where the dimensional result that b = c~x has been used in the expression for f(X) and A is 

a constant of integration. The boundary conditions at y = 0 or ", = 0 are u/urn = F'(O) = 1, 

F"(O) = 0 and F(O) = 0, which set A = O. The free parameter a may be chosen to be 

a = 2~, so that then (4.16) becomes 

2FF' + F" = 0, ( 4.17) 

which may be integrated to 

F2 + F' = A. (4.18) 

The above boundary conditions set the integration constant, A = 1. Equation (4.18) then 

becomes 

F2 + F' = 1, ( 4.19) 

which has solution 

F = tanh TJ and F' = 1 - tanh2 TJ I.e. ( 4.20) 
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The sireamfunction of the flow is 

'l/J(x, y) = llm XO' tanh'fJ = nO'vx tanh 'fJ, ( 4.22) 

and for large x, the streamlines take the form 

y'" vx· ( 4.23) 

A good fit to the experimental results of Zijnen (1958) is found when 0' ::= 0.118. Equation 

(4.21a) is shown using this value of 0', together with the data of figure 2, in figure 3. The 

agreement is good in the central region of the jet but is less so near to the edge of the jet. 

4.3.2 Tollmien Solution 

Tollmien (1926 - details of the results of this paper were obtained from Rajaratnam 1976) 

used the Prandtl mixing length formula 

2 au 
( )

2 

T = -pl ay , ( 4.24) 

where l is the mixing length. On dimensional grounds Tol1mien assumed that l <X b or 1 = j3b 

for some constant j3. The previous dimensional results (see table 2) then imply that 

1 = j3c;x. ( 4.25) 

Using the same form for the velocity components as in the previous solution, equations (4.14) 

and (4.15), and substituting these into the equation of motion (4.8a), using (4.24) and (4.25), 

gives after some simplification 

2F" F'" - F F" - F,2 = 0 or 2F"F'" - ~(FF') = 0, 
d'fJ 

in which 0' has been set by 0'3 = 2(j3c~)2. Equation (4.26) may be integrated giving 

( 4.26) 

where At is a constant of integration. The boundary conditions (the same as before) imply 

that At = 0 and so 

FII2 - FF' = O. ( 4.27) 
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FIGURE 3. The solutions of the first order equations of motion for a planar turbulent 
jet compared with experimental data (Zijnen 1958). 

-- Goertler (1942); - - - - Tollmien (1926). 



Chapter Two - Jets and Plumes 

This equation may be solved numerically - the solution for F' (i.e. u/um ), with a = 0.108, 

obtained using a NAG Fortran routine, is given in figure 3 (the dotted line). This figure 

also shows the Goertler solution (solid line), which in general shows better agreement with 

the data than the Tollmien solution, particularly near to the axis. The Tollmien solution 

achieves slightly lower values near to the edge of the jet and so agrees slightly better with 

the experimental data there than the Goertler solution, although neither solution is ideal. It 

should be poin~ed out that the experimental errors are largest at the edge of the jet as the 

velocities are small there and may be affected by any external effects (for example, the walls of 

the tank) or by the measuring equipment (for example, flows induced by hot-wire measuring 

devices). However, overall the Goertler solution is preferable having a simple analytical form. 

The streamfunction for the Tollmien solution is given by 

'lj;(x, y) = nay'XF(TJ), ( 4.28) 

and for large x, F( TJ) ~ TJ, and the streamlines take the approximate form (as in the previous 

case: see equation 4.23) 

y rv yIX. ( 4.29) 

4.4 The effect of including the second order terms 

It has been shown that neither the Goertler nor the Tollmien solutions of the first order 

equations agreed well with the experimental data over the whole cross-section of the jet flow. 

However several terms were neglected and assumptions made which must inevitably affect the 

accuracy of these predictions. In order to improve the accuracy of the theoretical predictions, 

inclusion of the terms of second order (i.e. of order of magnitude f) in equations (4.1) and 

(4.2) may be considered. It is unlikely that these terms will have a significant effect near 

to the axis of the jet as they are at least an order of magnitude smaller than the first order 

terms, however they may improve the solution near the edge of the jet where the transverse 

velocity component becomes comparable to the axial velocity and the ( V '2 - u 12 ) turbulent 

term may be non-negligible (Townsend 1956) . 

The pressure contributions may be eliminated by cross-differentiating and subtracting, 

ty (4.1) - tx(4.2), giving 

- u- + v- - - u- + v- - - - - u v + -- V 2 - u 2 8 (8u 8u) 8 (8v 8v) ( 8
2 

8
2 

) _, I 8
2 

-, -, 
8y 8x 8y 8x 8x 8y - 8x2 8y2 8x8y ( ), ( 4.30) 
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in which the Reynolds number is assumed to be sufficiently high for the viscous terms to be 

neglected. This is the new, second order, equation of motion for a turbulent planar jet. 

The turbulent products may be modelled with the use of the eddy viscosity model using 

the general expression 

( 4.31) 

where bij is the. Kronecker-delta tensor. Thus 

- (fJu fJV) u'v' = -f(X) - +-
fJy fJx 

and ( 4.32) 

( 4.33) 

Initially the equations will be considered without the inclusion of the latter term (in equation 

(4.30)) as a comparison between the form of ( v'z - u'Z ) predicted by (4.33), using the solution 

given in equation (4.21a), with experimental data (Heskestad 1965) reveals a rather poor 

match (see figure 4). Thus substituting the previous forms of u(x, y) and v(x, y), given in 

equations (4.14) and (4.15) into (4.30), using (4.32) but neglecting the (v'Z - u lZ ) term, gives 

Z Z k Z I Fiv 
- _n_(F Fill + 3F' F") _ an (3TJF'Z + 3TJz F' F" + 3TJF F" + TJz F Fill) = n Cz 

2ax3 2x3 a3 x3 

knzc~ (15 FII 5 Fill ZFiV) --- - + TJ' +TJ' , 
ax3 4 

( 4.34) 

where the first terms on each side correspond to the terms that would be obtained using the 

first order approximations. Note that the second term on the left and the second, fourth and 

fifth terms on the right are of order of magnitude eZ compared with the first terms on each 

side, whereas the third term on the right hand side is of order £4. 

Simplifying and integrating with respect to TJ gives 
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where J( is a constant of integration. Equation (4.35) may be integrated once more giving 

( 4.36) 

where L is a constant of integration. The boundary condition at 1] = 0 implies that L = 0 

and consideration of the largest terms in the limit 1] --t 00 requires that J( = 0 for a solution 

in which u --t 0 as 1] --t 00. Application of the boundary conditions at 1] = 0 in equation 

(4.35) gives 

_ ~ = kc~ F'" (0) _ 3kc~ . 
2 (72 4 

( 4.37) 

Assuming that for small 1] the required solution is to agree with the first order solution, 

(4.20), in which FIII(O) = -2, then (4.37) implies that 

Thus equation (4.36) reduces to 

(72 
4kc~ = -----::---:---

1 + 3(72/8' 
( 4.38) 

F" + 2)"FF' = (72 (21]2 F" + 1]F' -IF - )..(2r? FF' _1]F2) - (72 [1]4 F" + 1]3 F' -l1]2 F]) , 
( 4.39) 

where).. = (1 + 3(72/8). This final equation shows clearly that the modifications to the first 

order approximate equation, (4.17), are of order of magnitude £2. 

The solution to equation (4.39), obtained using a NAG Fortran routine, was used to 

calculate the axial velocity distribution. The solution, with (7 = 0.118, is shown in figure 5 

(dotted line) in which the first order solution (solid line) is also included. It can be seen that 

the higher order terms make very little difference to the solution, even near to the edge of 

the jet. At the point y/x = 0.2, the modified solution is approximately 6% lower than the 

first order solution. Therefore it must be concluded that neglecting the second order terms 

in the first order approximate solution was not the cause of the poor agreement between the 

theoretical solution and the experimental data. 

In the above analysis the ( v,2 - u,2) turbulent term was neglected. For completeness, the 

effect of including this term should be examined. 
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U sing the general expression (4.31), the turbulent quantity ( V '2 - u /2 ) was expressed in 

terms of the axial gradient of the mean axial velocity, 

Inclusion of this term brings in the following extra term to the right hand side of equation 

( 4.34) 

4kc~n2 ( 2 F iv ~ F" 3F") 
ax3 TJ + 2 TJ + , 

which may be integrated twice, bringing extra terms 

4kc~ (r? F" + ~TJFI) , 

to the right hand sides of equations (4 .35) and (4.36) respectively. The TJ 

condition, (4.38), is modified to 

( 4.40) 

(4.41) 

( 4.42) 

o boundary 

( 4.43) 

The numerical solution of the new equation of motion, (4.36) with (4.42), is shown in fig­

ure 5 (dashed line), and it can be seen clearly that the inclusion of this term makes the 

agreement between the theoretical solution and experimental results slightly worse. At the 

point y/x = 0.2, this new theoretical solution is now about 7.5% higher than the first order 

solution. The discrepancy between the theoretical predictions and experimental results must 

therefore be due to some effect other than those of the second order terms. However, some of 

the disagreement may be due to the poor predictions of the eddy viscosity model when used 

to model the ( V '2 - u 12 ) term (see figure 4) - greater a.greement may be obtained using some 

other turbulence model. 

Use of the mixing length hypothesis (see section 4.3.2) in equation (4.30), but neglecting 

the (V'2 - u 12 ) term, also gives no significant improvement on the first order (Tollmien) 

solution. In this case the equation of motion, (4.27) is modified to 

( 4.44) 
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in which it may be clearly seen that the modifications are of order of magnitude .e2 • The 

numerical solution, obtained using a NAG Fortran routine (with a = 0.107), was used to 

calculate the axial velocity and is shown in figure 6 - the dashed line is the modified solution 

and the solid line is the first order approximate solution. At the point y/ x = 0.2, the value of 

the modified solution is approximately 4.4% lower than the first order solution . This result 

also confirms the conclusions made when using the eddy viscosity model, i.e. that neglecting 

the second order terms is not the cause of the poor agreement between the theoretical and 

the experimental velocity values near to the edge of the jet. 

4.5 The effect of including variation of the intermittency factor 

There is, however, one physical effect that has not yet been considered . Wygnanski & 

Fiedler (1969) pointed out that the turbulent intermittency f~ctor, " the probability of 

finding fully developed turbulence at a given point, should be included in the definition of 

the eddy viscosity. Moreover they also found that, was approximately constant in the region 

o ~ y/x ~ 0.1 and decreases when y/x > 0.1. With this modification, equation (4.13) 

becomes 

fJ( uIJ) T = pE(X), . 
fJy 

(4.45) 

The investigation of section 4.4 above shows that it is sa.tisfactory to use the first order 

approximate equation of motion, (4.8). With the use of (4.45) this becomes 

( 4.46) 

In order to include the intermittency factor in the numerical analysis, an approximation 

for the behaviour of ,(x, y) is required. Experimental measurements (Heskestad 1965, Ra­

jaratnam 1976) have shown that, for sufficiently large distances from the nozzle, , reaches a 

self-similar state and can be expressed as a function of TJ. Figure 7 shows these measurements 

fitted to a curve of the form 

1 
,(17) = 2" (1- tanh~) where ~ = "'(TJ - TJt), (4.47a,b) 

in which", and TJt are constants with values", ':::: (1 4.5±0.5)a and TJt = 0.1955/a. Substitution 

of (4.47) into (4.46) using (4.14) and (4.15) gives (after simplification) 

--(F F" + FI2) = __ 2 F'" + F" + ",2 sech2 ~ F' . n2 n2 kc' (",sech2~ ) 
x2 a 2 x 2 (1-ta.nh~) 

( 4.48) 
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FIGURE 6. The solution to the second order equation of motion of a planar turbulent 
jet, using the mixing length hypothesis with a = 0.108, compared with experimental 
data (Zijnen 1958). 
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This equation may be integrated with respect to ry giving 

1 kc' -2FF' = a; (F" + ,.,;(1 + tanh ~)F'), ( 4.49) 

in which the integration constant has been set to zero by the boundary conditions. 

Equation (4.49) was solved numerically using a NAG Fortran routine and the solution for 

the axial velocity is shown in figure 8 (with a = 0.1225 - chosen so that the solution matches 

the first order solution near to the axis). The dotted line is the first order solution obtained 

in section 4.3.1 (with effectively constant intermittency factor and a = 0.118). Clearly 

the agreement with the experimental data is greatly improved by the use of the variable 

intermittency factor (by up to 45%) - the theoretical solution shows excellent agreement for 

y/x < 0.18, whereas the first order solution can only be considered accurate for y/x < 0.12. 

The agreement is also better than that of the Gaussian fit shown in figure 2. Hence it must 

be concluded that neglecting the variation of the intermittency factor was probably the main 

cause of the poor agreement between the theoretical and experimental results near to the 

edge of the jet. 

One of the useful features of the first order solution was that it had a convenient analytical 

form. In this case, the solution for the axial velocity may be approximated by 

U 2 1 2 - = F'(ry) ~ ,(ry)sech ry = -(1- tanh~)sech ry, 
Um 2 

(4.50) 

which is accurate to within 3% in the range 0 ~ y/x ~ 0.18. 

5. Application of the momentum equations to circular jets 

The analysis of the previous section may be applied to circular jets, obtaining analogous 

results. The general methods are very similar and so only brief details of the working are 

given here. 

Assuming that the flow is perfectly axisymmetric with zero swirl, Ucp = 0, axial (x) veloc­

ity, u(x, r) and radial (1') velocity, V(X,1'), then the time-averaged momentum equations in 

cylindrical coordinates are 

u- +v- - --- - -u'v'+ -u,2 + -- + v --+ --1'- U au au 1 ap (a _ a - u'V') ( a2 
1 a a) 

ax ar - p ax ar ax T ax2 l' aT a1' ' (5.1) 
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ov ov lop 
u-+v- = ----

ox or p or ( 
0 - 0 - V'2) (0 0 1 0 ) -v,2+-u'v'+- +v --+---1' v, 
or ox l' ox2 or l' or 

(5.2) 

and the continuity equation is 

o 0 
-1' U + -rv = 0, 
ox or 

(5.3) 

where, as before, the primes denote the turbulent fluctuating velocity components. 

5.1 First order equations and solutions 

As in the case of the planar jet, experimental observations show that the scales of the 

radial velocity and axial gradients are an order of magnitude less than those of the axial 

velocity and ra.dial gradients respectively. Assuming that the Reynolds number is sufficiently 

high for viscous terms to be ignored, then neglecting all but the first order terms yields 

lop _ on 
-- - --v, 
p or 01' 

(5.4) 

ou ou lop (0 -, -, u'v') u-+v-=---- -uv +-- . 
ox or p ox or l' 

(5.5) 

Integrating (5.4) with respect to 1', substituting the result into (5.5) and simplifying (as in 

the two-dimensional case) gives 

ou OU 1 01'7 
u- + v- = -- and 

ox or pr or 
o 0 
-0 1'1l + -0 rv = 0, 

X l' 
(5.6a, b) 

where the axial pressure gradient outside of the jet has been assumed to be negligible, and 7 

is the turbulent shear stress 7 = -pu'v'. These are the first order equations of motion for a 

circular jet. 

Multiplying (5.6a) by 1', integrating fooo foh rdcPdr and simplifying, yields the analogous 

result to equation (4.10), na.mely that the specific momentum flux is constant 

(5.7) 

Equation (5.6b) may be integrated similarly yielding the analogous result to equation (4.12), 

stating that the rate of change of volume flux is equal to the rate of entrainment 

dQ d 100 -l- = - 2ur d1' = 2bO' j7lm' 
(X dx 0 

(5.8) 
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where b is the length scale or 'radius' of the jet (note that Cl'j may have a different value in 

circular jets to that of the planar jet case). 

Two solutions, analogous to the solutions of Goertler (1942) and Tollmien (1926) described 

in section 4.3, may also be found in the axisymmetric case. It is convenient to write 

so that 

F'(O 
u(r,x) = Urn-~- I (:=_r w lere <, 

(7X 
and 

n 
Urn =-, 

X 

Solution using the eddy viscosity model 

Using the eddy viscosity model it is assumed that 

au 
T = pE(X)-a ' 

1> 

n = cIVMo (5.9) 

(5.10) 

(5.11) 

where on dimensional grounds E( x) = knc2, i.e. E is a constant (where the dimensional result 

of equation (2.4) has been used). Substitution of (5.9), (5.10) and (5.11) into (5.6a) and 

integrating with respect to ~ gives an equation for F(O, 

FF' = F' - ~F", (5.12) 

in which (7 has been set by (72 = kC2 and the boundary conditions have set the integration 

constant to zero. The solution satisfying the boundary conditions, F(O) = 0, F'(O) = 0 and 

[F'~l(O) = 1 is 

(5.13) 

and therefore 

and (5.14) 

The streamlines are given by 

( 
8'ljJx2 ) 

4nx - 'ljJ/(72 ' 
(5.15) 
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and for large x the streamlines take the approximate form 

(5.16) 

Hence the particles asymptotically follow the same paths (within a plane through the jet) in 

the three dimensional case as in two dimensions (see equations (4.23) or (4.29)). 

Solution using the mixing length model 

A mixing length formula may also be used to model the turbulent stress, T, 

? (fJu) 2 
T = -pl- - , 

fJ1' 
(5.17) 

where 1 is the mixing length with 1 = f3b = f3c2x on dimensiorial grounds (using equation 

(2.4)). 

Substituting this into the first order equation of motion, (5.6a), and integrating gives 

(5.18) 

in which a has been set by a3 = 132 c~. An analytical solution does not exist, although a series 

solution may be derived (Abramovitch 1963). 

The eddy viscosity solution (with a = 0.046, solid line) and a numerical solution to 

equation (5.18) (obtained using a NAG Fortran routine with a = 0.069, dotted line) were 

used to calculate the axial velocity distribution and are shown in figure 9 together with 

some experimental data (from Wygnanski & Fiedler 1969). As in the two-dimensional case, 

neither solution agrees well over the whole cross-section of the jet flow, although the mixing 

length solution is generally quite good. As was the case for planar jets, the eddy viscosity 

solution shows the best agreement near to the jet axis and the mixing length solution is 

better near to the edge of the jet. Further details of the above two solutions may be found 

in Rajaratnam (1976). 

5.2 Second order equations 

Although figure 9 shows that the mixing length solution shows a good general agreement 

over the jet cross-section , the effects of including the second order terms and the intermittency 
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FIGURE 9. The solutions to the first order equation of motion for a circular turbulent 
jet compared with experimental data (from Wygnanski & Fielder 1969). 

-- Eddy viscosity solution; - - - - mixing-length solution. 
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factor on the solution when using the eddy viscosity model may still be examined. Eliminating 

the pressure from equations (5.1) and (5.2), neglecting the viscous terms, gives 

~ (/Ju + /)u)_~ (u
ov + v ov

) = (~_ ~~~r) u'v'_~u'2+~~~(rv'2). 
or ox or ox ox aT ox2 or r Or oxor Ox r Or 

(5.19) 

The turbulent products may be modelled using an eddy viscosity, with 

- T (ou ov) u'v'=--=-E(X) -+- . 
p Or ox 

(5.20) 

The eddy viscosity model was not found to predict the terms in u,2 and v'2 in the two­

dimensional case very well and so these terms are not included here. 

Substituting (5.20) into (5.19) using equations (5.9) and (5.10)' gives 

-- _(F'2~ + FF"~ - FF' - e F'F") - FF'" - -(3F'F" + FFIII) = n
2 (3 ) an

2 

a~2x4 ~2 x4 

(5.21) 

where the first terms on each side correspond to those that would be obtained using the first 

order equations. Rearranging and integrating gives 

(5.22) 

where K is a constant of integration. This equation may be rewritten as 

_kC2~(C2F") kC2a2~(t4F" t 3 F'_C2 F) ~~(Ke) 
~ d~ ." + ~ d~'" + ." ." . + ~ d~ 2 . (5.23) 
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Equation (5.23) may be rearranged and integrated again giving 

FF' - (12~ (~2 _ ~FFI) = k;~~ (~' _ FII) + 2kc2(e F") 

(5.24) 

where L is a constant of integration. The boundary condition at ~ = 0 insists that L = 0, 

and consideration of the limit ~ ---+ 00 requires that k = 0 for a solution in which u ---+ 0 

as ~ ---+ 00. Application of the boundary condition at ~ = 0 in equation (5.22), assuming 

that for small ~ the solution is required to agree with the first order solution (5.13) in which 

F"(O) = 1, [F/C](O) = 1/2, [Fill /~](O ) = - 3/2 and [F'/e - F" /C](O) = 1/2, insists that 

(5.25) 

Thus (5.24) may be written 

where ~ = (1 + 4(12). 

The numerical solution to equation (5.26), obtained using a NAG Fortran routine with 

(1 = 0.046, was used to calculate the axial velocity variation and is shown in figure 10 (solid 

line) together with the first order solution (dotted line). Clearly the inclusion of the second 

order terms has had little effect, as in the case of the two dimensional jet. At the point 

y/x = 0.21 the second order solution is approximately 4.5% lower than the first order solution. 

Hence it must be concluded that neglecting the second order terms was not the cause of the 

poor agreement between the first order eddy viscosity solution and the experimental data. 

5.3 Including variation of the intermittency factor 

In the earlier case of the planar jet, it was found that the intermittency factor", varied 

over a cross-section of the jet and that inclusion of this variation in the first order analysis 

(using the eddy viscosity model) significantly improved the theoretical predictions. The inter­

mittency factor also varies over a cross-section of a. circular jet (Wygnanski & Fiedler 1969) 
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and inclusion of this variation may also improve the eddy-viscosity model of the circular jet 

above. 

Measurements of the intermittency factor in a circular jet are shown in figure 11 (from 

Wygnanski & Fiedler 1969) fitted to a curve of the form used in the planar jet case (see 

equations (4.46)), 

1 ,(0 = -(1- tanh~) where ~ = K(~ - ~t), 
2 

and in this case the best agreement is found when K ~ (26.0 ± 0.5)0' and ~t 

Substitution of (5.27) into the first order equation of motion, (5.6a), with 

gives after some simplification 

a( uh) 
T = pf( X h ar ' 

(5.27) 

0.162/0'. 

(5.28) 

~(F F' - ~F'2 - ~F F") = kC2 (F' _ F" + F'" + 1i:(1 + tanh ~)F" + K2 sech2 ~F')' (5.29) e 0'2 e ~ 

This may be integrated with respect to ~ giving 

F' - FF' - ~F" = 1i:~(1 + tanh~)F', (5.30) 

(compare this with equation (5.12)) in which the boundary conditions have set the integration 

constant to zero and 0' has been set by 0'2 = kC2 (as in the first order solution). 

Equation (5.30) may be solved numerically and the solution, (obtained using a NAG 

Fortran routine with 0' = 0.0463) used to calculate the axial velocity, is shown in figure 12. 

The value of 0' (previously 0' = 0.0460) was adjusted slightly to maintain a good agreement 

between the solution and the first order solution (the dotted line in figure 12) near to the 

jet axis. Clearly, the agreement between the theoretical prediction and the experimental 

measurements has been greatly improved by the inclusion of a variable intermittency factor 

in the eddy viscosity model. At the point y/x = 0.21, the theoretical prediction has been 

improved by approximately 76% compared with the first order solution. As in the two 

dimensional case, the solution for the axial velocity may be approximated by 

F' ,(0 
u/um = T ~ (1 + e /8)2 

1 (1 - tanh ~) 
2 (1 + e /8)2 , 

which is accurate to within 12% in the range 0 ::;; y/x ::;; 0.21. 
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6. Discussion and conclusions 

The flow of buoyant fluid from a source is often modelled using the established theories 

of turbulent jets and plumes. The chapter started with definitions of these flows followed by 

a brief review of the well-known properties of jets and plumes obtained from experimental 

observations and simple dimensional analysis . Experimental measurements (see tables 1 and 

3, and figure 2) have shown that, after an axial distance of about 6 nozzle diameters, the 

flow of a jet or ply me reaches a fully turbulent, 'self-similar', state in which all of the flow 

variables are expressible in terms of a similarity variable proportional to y/x (for planar 

jets, T / x in axisymmetric jets). This fundamental observation was the basis of all of the 

theoretical analysis. The dimensional analysis, however, relied on the simple assumption 

that, for sufficiently large Reynolds numbers, the flow of a turbulent jet or plume is controlled 

by its initial (source) conditions namely the initial fluxes of mass, momentum and buoyancy. 

With this assumption the axial variations of the flow variables were deduced (see tables 2 

and 4). In practice, however, it is most likely that a source will be one of both momentum 

and buoyancy - a 'buoyant jet'. It was shown that these flows undergo a transition between 

jet-like (initial) and plume-like (final) flow states. Consequently it is not possible to obtain 

expressions for the behaviour of the flow variables using simple dimensional analysis. A length 

scale which describes this jet-plume transition was constructed and is called the 'jet-length', 

It will become apparent in chapters 3 and 4 that this is an extremely important parameter, 

controlling and describing the flow produced by a buoyant source. 

Having summarised the basic features of jets and plumes, the equations of incompressible 

fluid flow were then introduced and applied to jet flow. Similarity solutions were obtained by 

neglecting the smallest terms in the momentum equations, using either an eddy viscosity or 

a mixing length turbulence model. The solutions were used to predict the transverse/radial 

variation of the axial velocity, but for both planar and circular jets, neither solution was 

found to agree well with the experimental results over the whole jet cross-section. The 

possible causes of the disagreement were then investigated. 

In general, the theoretical predictions were weakest nea.r to the edge of the jet. This 

suggested tha.t the poor agreement near the jet edge was possibly a result of neglecting the 
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smaller terms in the momentum equations which may be significant near to the edge of 

the jet. The analysis was then extended to include these terms. The resultant equations, 

(4.39), (4.44) and (5.26) show clearly that the modifications are of order of magnitude (J2, 

i.e. about 1%. Consequently the numerical solutions showed little improvement on the first 

order solutions and so it was concluded that neglecting the second order terms was not the 

cause of the disagreement between the theoretical and numerical results. Note, however, that 

the predictions of the eddy viscosity model were poor when used to calculate the behaviour 

of the ( v'2 - u/2 ) turbulent term, with the experimental measurements being of much greater 

magnitude than the model predicts (see figure 4). It is possible that if this term could be 

modelled more accurately then the resulting solution could show a greater agreement with 

the experimental data. 

The second effect investigated was variation of the intermittency factor over the jet cross-. 
section. The form of the eddy viscosity model used in the first and second order term analysis 

(see equations (4.32) and (5.11)) did not allow for the possibility that the intermittency 

factor might not be constant over the whole jet cross-section. Measurements have shown (see 

figures 7 and 11) that the intermittency factor is approximately unity in the central region 

of the jet but falls to zero near to the edge. Including this variation modified the above 

equations to (4.45) and (5.28). Using these modified shear stresses and using experimental 

data to estimate the behaviour of the intermittency factor in the first order equations gave 

a significant improvement in the theoretical predictions. Near to the edge of the jet, where 

the difference between the theoretical predictions and experimental results was greatest, an 

improvement of about 45% for the planar jet and 76% for the circular jet was found. The 

solutions for the axial velocity were found to be approximately equal to the product of the 

first order solution and the intermittency factor, ,. 
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Notation 

Below is a list of the symbols used in this chapter, provided for reference purposes. 

A,A,Al 

bo 

b 

Constants of integration 

Nozzle radius 

Length scale of the transverse/radial variation 

Length scales of the transverse/radial variation of the axial velocity component 

in jets and plumes respectively 

bt,T Length scales of the transverse/radial variation of the tracer and concentration 

C' 

(') 
c· , 

9 

k 

K,f( 

l 

f 

L,t 

L · J 

M(o) 

n 

(') p 

Q(o) 

r 

Re 

Ri 

in jets and plumes respectively 

Local (initial) specific buoyancy flux 

Concentration (maximum value) 

Concentration fluctuation 

Constants in the dimensional analysis of circular (planar) jets 

Constants in the dimensional analysis of circular (planar) plumes 

Functions used in the dimensional analysis 

Function used in the similarity analysis 

Acceleration due to gravity 

Constant used in the eddy viscosity 

Constants of integration 

Mixing length 

Ratio between the transverse and axial velocity scales 

Constants of integration 

Axial length scale 

'Jet-length' - the length scale of a buoyant jet 

Local (initial) specific momentum flux 

Parameter controlling the magnitude of the mean velocities 

Pressure (fluctuation) 

Local (initial) specific volume flux 

Radial coordinate in circular jets 

Reynolds number 

Richardson number 
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S Integration area 

u Axial velocity component in jets 

u' Turbulent axial velocity in jets 

Urn The value of u on the axis of a jet (or the velocity scale) 

Uo Mean velocity at the source 

v Transverse/radial velocity component 

v' Turbulent transverse/radial velocity component 

w Axial (vertical) velocity component in pure plumes 

w' Turbulent axial velocity in pure plumes 

Wrn The value of won the axis of a plume (or the velocity scale) 

x Axial coordinate in jets 

y Transverse coordinate in planar jets 

z Axial (vertical) coordinate in plumes 

CYj Entrainment constant for a pure jet 

(3 Constant used in the mixing length model 

, Intermittency factor 

~ Variable used in the approximation of, 

E Eddy viscosity 

£ Ratio of scales between the turbulent velocity fluctuations and the mean axial 

velocity 

17 Similarity variable used in the planar jet analysis 

17t Constant used in the approximation of, 

K, Constant used in the approximation of, 

.x, >. Constants used in equations (4.39) and (5.26) 

v Kinematic viscosity 

~ Similarity variable used in the circular jet analysis 

~t Constant used in the approximation of , 

p Density 

a Constant in the similarity variables 

T Turbulent shear stress 

<p Azimuthal coordinate in circular jets 

'ljJ Streamfunction 
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CHAPTER THREE 

A Model of an Initially Horizontal 

Buoyant Jet with a Varying 

Entrainment Constant 

The value of the entrainment constant is still not precisely known. However, it has been 

established that the value of the entrainment constant differs between jets and plumes and 

will consequently vary over the trajectory of a buoyant jet, which undergoes a transition from 

jet-like to plume-like states . A simple analysis of the motion of a buoyant jet in an unstratified 

environment is presented, which allows for this variability in entrainment constant. 

The conservation equations for a buoyant jet are derived by integrating the time averaged, 

inviscid momentum equations, using the Boussinesq approximation. These are then examined 

analytically and numerically when applied to the case of an initially horizontal buoyant jet, 

using either of two contrasting, experimentally based assumptions to provide the variation in 

entrainment constant. 

Particular attention is paid to the consequent behaviour of the centerline velocity com­

ponents and the trajectory followed by the jet. Knowledge of the trajectory is of particular 

importance in confined jet flows as it shows whether or not the buoyant jet will impinge on 

the side boundaries of the container and hence whether or not the 'filling-box' model may 

be applied. It is found that the family of buoyant jet trajectories reduce to a single curve on 

scaling with the 'jet-length', L j • The theoretical trajectories are compared with experimental 

observations. 
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Chapter Three - A Model of an Initially Horizontal Buoyant Jet ... 

1. Introduction 

The theory of jets and plumes is well known and has been studied extensively (see, for 

example, Fischer et al. 1979, or chapter 2). However, in practice, the majority of sources are 

'buoyant jets' (sometimes called 'forced plumes'), these being jets with an initial flux of both 

buoyancy and momentum. Vertical plumes have been studied theoretically by Morton, Taylor 

& Turner (1956) and vertical forced plumes by Morton (1959). Kotsovinos & List (1977) and 

Papanicolaou & List (1988) have made detailed experimental studies of the flow variables 

in vertically released buoyant jets. Germeles (1975) has numerically analysed the behaviour 

of non-vertical buoyant jets, but his equations break down in the horizontal limit. Lane­

Serff, Linden & Hi1lel (1990) have also studied non-vertical buoyant jets. They assumed the 

standard laws of conservation of horizontal momentum flux and conservation of buoyancy flux. 

They also used the 'entrainment assumption' to give the variation in volume flux, assuming 

that the 'entrainment constant' takes some universal value. The 'entrainment assumption', 

first introduced by Taylor (1945, see MOl·ton, Taylor & Turner 1956) states that if the flow 

is fully turbulent (i.e. independent of Reynolds number) then the entrainment velocity is 

proportional to the local velocity scale. The constant of proportionality, 0', is the 'entrainment 

constant'. Experiments to determine the numerical value of this constant have proved 

inconclusive as 0' is thought to vary with source and environmental conditions. However, 

what has been established is that the entrainment rates vary substantially between pure jets 

and pure plumes. Fischer et al. (1979) quote O'jet = 0.0757 and O'plume = 0.1178 as mean 

values for circular jets and plumes from the results of many experiments, the difference being 

reflected by an increased dilution in a plume compared with a jet of equal local momentum 

flux. Priestly & Ba.l1 (1955) found that 0' varied linea.rly with the local Richardson number, 

Ri, of the jet, i.e. 

(
Ri ) 

0' = O'jet + (O'plume - O'jet) Rip with (1.1 ) 

where Q, Jvf, and B are the specific local fluxes of volume, momentum and buoyancy (defined 

in chapter 2 and below) and Rip is the plume Richardson number, i.e. the constant value of 

Ri for a pure plume. This result has been supported by Kotsovinos & List (1977). Kotsovinos 

(1976) also suggested that the even for a pure jet, the entrainment rate may increase with 

a large increase in the downstream distance although Bra.dshaw (1977) attributed this to 

draughts in the laboratory caused principally by the jet itself. It should also be noted that in 
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non-vertical buoyant jets, there may also be detrainment of fluid from the jet. This is a result 

of the instability of the upper surface of the jet which is lighter than the environmental fluid 

above it (in a negatively buoyant jet, the lower surface is unstable, being heavier than the 

environmental fluid below it). Small parcels of buoyant fluid may then convect away from 

the jet. In the following discussion, it will be assumed that the volume flux of fluid detrained 
, 

from a buoyant jet is negligible compared to the volume entrained, so that the effects of 

detrainment can be neglected . 

The behaviour of a buoyant jet is particularly interesting as it undergoes a transition from 

its early (jet-like) state, where the momentum forces dominate the buoyancy forces, to its 

final (plume-like) state where buoyancy dominates momentum . The length scale describing 

this transition is referred to as the 'jet-length' (see for example, Turner 1973 or chapter 2) 

given by 

(1.2) 

where Mo and Bo are the initial specific momentum and buoyancy fluxes (defined in section 

2 below). Since the value of the entrainment constant is different for pure jets and plumes, 

then there is clearly a change in the entrainment constant 0' between the early and final 

stages of buoyant jet flow . It is therefore not sufficient to assume that 0' is constant over the 

whole trajectory of the buoyant jet. 

In the following analysis, this problem will be overcome by making one of two alternative 

experimentally based hypotheses, which will allow the entrainment constant to vary along 

the trajectory of the jet. 

The first hypothesis assumes that the 'radius' or transverse length-scale, b, of the jet 

varies linearly with the arclength, s, or distance moved along the trajectory. This has been 

observed for plane vertical buoyant jets by Kotsovinos & List (1977) and experimentally in 

horizontal buoyant jets (Schatzmann 1976 and the author, see figure 1 - the experimental 

method will be detailed later) . Thus this assumption is experimentally based, together with 

the knowledge that using the traditional entrainment theory (see MOl'ton Taylor & Turner 

1956), the theoretical solution for pure jets and vertical plumes implies a linear variation of 

radius with arclength. 

The second hypothesis assumes the above linear relationship between the entrainment 

constant and the local Richardson number of the jet (equation (1.1)) . 
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FIGURE 1. The variation of jet radius b with arclength s for a number of experiments. 
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In order to calculate the conservation equations, the turbulent equations of motion are 

integrated across a cross-section of the jet, using the assumption that the contributions due 

to the turbulent transport and pressure gradients are small compared with those of the mean 

velocities. Although it is generally assumed that the velocity and density difference have 

approximately Gaussian profiles across a jet (for analytical simplicity - see chapter 2), it 

is satisfactory to use 'top-hat' profiles (see Lane-Serff 1989). This means that the velocity 

and density difference take constant values across the width of the jet. The entrainment 

assumption will then be used, assuming that the jet-induced flow outside of the jet has a 

magnitude proportional to the flow inside of the plume, with proportionality constant a, 

although a will be allowed to vary using one of the two hypotheses above. Terms of order a 2 

will be neglected. Also, Kotsovinos & List (1977) found that the length scale over which the 

density difference spreads is larger than that over which velocity spreads (b). The density 
, 

difference length scale will be denoted it by Ab where Fischer et al. (1979) has calculated that 

A ~ 1.19 for circular jets, from the results of many experiments (see also chapter 2, section 

2.1). The conservation equations obtained will then be applied to the case of an initially 

horizontal buoyant jet. Integral models for the flow of a buoyant jet have been presented 

before (see, for example, MOl'ton 1959, Fan 1967 and Schatzmann 1979) but in this study the 

emphasis will be on derivation of simple analytical results from the conservation equations 

and differences in the effect of the two entrainment assumptions. 

The horizontal and vertical limiting cases will be considered first and then the equations 

describing the intermediate behaviour will be considered analytically and numerically. Par­

ticular attention will be paid to the implied trajectory of the buoyant jet as this can be readily 

compared with experiment. The consequences of the first assumption that b varies linearly 

with s for the behaviour of the entrainment constant will be deduced. 

This type of jet flow occurs in many physical situations, for example in a leak of a buoyant 

gas, or an outflow of sewage into a river. Detailed knowledge of the expected behaviour of 

buoyant jets can be used to predict the effect of such a flow more accurately. For example, 

it would be desirable to know the distance from the source that an outflow of sewage would 

travel before hitting the bottom of the sea, or whether or not an enclosed leak of natural gas 

will hit the wall of the container - which would then affect the subsequent build-up of gas 

concentration. Linden, Marshall & Cleaver (1991) have conducted experiments examining 

the flow resulting from an initially horizontal buoyant jet in a cubical container, with the 

source placed in the centre. They observed that the mixing of the fluid within the tank 
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only persists above the point of lowest penetration of the source fluid on the wall opposite 

the source. Thus in many cases, prior knowledge of the jet trajectory is important when 

attempting to predict the flow from a confined source. 

2. Analysis 

In this section the equations of motion are presented and are integrated across a cross­

section of the buoyant jet in order to obtain the conservation equations. Before integrating 

over a general cross-section, the horizontal and vertical limiting cases will be considered. 

2.1 Equations of motion 

A schematic diagram of a horizontally directed buoyant jet is drawn in figure 2. The 

motion is assumed to be three dimensional, but effectively the jet centreline lies in the x - z 

plane. The time averaged, inviscid momentum equations in the x and z directions are, using 

the Boussinesq approxjmation, 

ou ou 1 op 0 12 0 -, -, 0 -,-, u- + w- = --- - -u - -u v - -u w , 
ox OZ Po ox ox oy oz 

(2.1) 

u- + w- = --- - -u'w' - -v'w' - -w,2 + --- g, 
ow ow 1 op 0 -- 0 - 0 - (Pa - p) 
ox OZ Po OZ ox oy OZ Po 

(2.2) 

where U,W,p,p are the time-averaged horizontal (x) and vertical (z) velocities, the mean 

pressure (including hydrostatic pressure), and the mean density within the buoyant jet, re­

spectively. The density of the environment, Pa, is assumed to be constant and Po is a reference 

density. Use of the Boussinesq approximation assumes that the densities of the jet and envi­

ronment not largely different from Po. The primed variables are the turbulent fluctuations. 

These equations may be rewritten using the continuity equation 

ou ow 
-0 + -0 = 0, x z 

(2.3) 

giving 

0(2 - p) 0 - 0 -
- 1l + ut2 + - + -(u'v') + -(uw + 1l'W') = 0, 
ox Po oy OZ 

(2.4) 

~.(1/.1V + u'w') + ~(v'w') + ~ (w2 + W,2 + ~) = (Pa - p) g. 
ox oy 0 Z po Po 

(2.5) 
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FIGURE 2. Schematic diagram of an initially horizontally directed buoyant jet. 



Chapter Three - A Model of an Initially Horizontal Buoyant Jet ... 

Conservation of mass in unstratified surroundings gives 

8 - 8- 8 -
£)(u(p - Pa) + u'p') + £)v'p' + -;:}(w(p - Pa) + w'p') = o. 
uX uy uz 

(2.6) 

In the following analysis it is assumed that within the jet, the velocity components and 

density 'difference have a 'top-hat' profile, Le. constant value over a jet cross-section, with 

length scales (or 'radius' defining the region of non-zero value) b(x) and >.b(x), respectively. 

Outside of the jet the jet-induced flow has a magnitude proportional to the interior velocity 

scale with proportionality constant 0' . Terms of order 0'2 will be neglected. 

2.2 The horizontal limit 

In order to consider the horizontal limit, the equations are integrated over a cross-section 
, 

of the jet, A(x) (see figure 2), defining the boundary of the area of integration, 8A, to be 

sufficiently far from the axis of the jet so that the turbulent stresses can be neglected. The 

three conservation equations (2.4)-(2.6) then become 

j 8 ( - p) ~ u 2 + u,2 + - dydz = 0, 
A(x) uX Po 

j 0 (- j (Pa - p) ~ uw + u'w') dydz = -- g dydz, 
A( x ) uX A(x) Po 

j 0 -
~[u(p - Pa) + u' p'] dydz = 0, 

A( x ) uX 

(2.7) 

(2.8) 

(2.9) 

where the y and z partial derivatives have been integrated, these terms vanishing since the 

turbulent stresses are zero on the boundary and the contributions due to the mean exterior 

velocities are neglected as they are of order 0'2. If it is assumed that the contributions made 

by the turbulent velocities and pressure gradients are small, then (2.7)-(2.9) become 

(2.10) 

_ uwdydz = _a __ gdydz, o j j (p - p) 
ox A(x) A(x) Po 

(2.11) 

:, j u(p - Pa) dydz = O. 
uX A(x) 

(2.12) 
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The flow variables It, 10, and p have 'top-hat' profiles and so (2.10)-(2.12) imply that 

where 

d 
-(b2 ug') = 0, 
dx 

(2.13) 

(2.14) 

(2.15) 

is the reduced gravity. Equations (2.13) and (2.15) are the familiar equations stating conser­

vation of momentum and buoyancy for a jet in unstratified surl'oundings. Equation (2.14) 

states that the rate of change of the horizontal flux of vertical momentum is equal to the 

vertical buoyancy force. 

Either of the two hypotheses about the form of the entrainment constant may be easily 

applied at this point, giving the same solution. The solution using the first hypothesis, that 

the radius of the jet is proportional to the distance moved along the centreline, proceeds 

writing 

b(x) = ks. (2.16) 

In the horizontal limit s -:::= x and thus solving (2.13)-(2.15) gives the usual equations for a jet 

v'Mo 
u(:r) = -k-' 

'x 

Equation (2.14) gives 

, Bo 
g(x)= VMokx' 

,,\2 Bo 
1o(x) = 2Mo x, 

b(x) = kx. 

where Mo and Bo are the initial specific momentum and buoyancy fluxes 

1rMo = J u6 dS and 1r Bo = J uogb dS, 

(2.17a) 

(2.17b) 

(2.18) 

where the zero subscript denotes evaluation (and integration) at the source. Both are constant 

from (2.13) and (2.15) , respectively, with Mo = b2u2 and Bo = b2ug'. 
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The analysis may be repeated using the second hypothesis, equation (1.1). In this hor­

izontallimit, the Richardson number is approximately zero, Ri ~ 0, and so from (1.1) the 

entrainment constant can be set to 0' j, the entrainment constant for a pure jet. Hence the 

analysis will continue by integrating the continuity equation (2.3) over A(x) obtaining 

:. j u dydz + 27rbw6A = o. 
uX A(x ) 

However it is assumed that the exterior flow, W6A, has magnitude proportional to the velocity 

scale of the interior flow , u, with W6A = -O'ju. Thus the familiar conservation of volume flux 

equation is obtained 

d 2 
-d (b u) = 20'jbu. 

x 
(2.19) 

The conservation equations can now be solved easily, again giving the familiar solution for 

jet flow 

and 

../Mo 
u(x) = -2-' 

O'jX 
I Bo 

g(x)= ...;-JJ;' 20'j Mox 

(2.20) 

Comparing the two solutions (2.17) and (2.20), it is clear that they are equivalent if k = 20'j. 

For a pure jet Bo = 0 and so W = g' = 0, i.e. the jet trajectory is horizontal. 

2.3 The vertical limit 

The vertical limit may be considered similarly by integrating across a cross-section A(z) 

(see figure 2) . Defining the boundary of the region of integration as before, integration gives 

: j uwdxdy = 0, 
u Z A(z) 

(2.21) 

: j w 2duly = j 9 (Pa - p) duly, 
u Z A(z) A(z) Po 

(2.22) 

: j w(Pa - p)dxdy = O. 
Z A( z) 

(2.23) 
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Note here that the turbulent transport w'p' has been neglected, although experiments have 

shown (see chapter 2) this to be a poor supposition in a buoyancy dominated flow, as mea­

surements of the mean tracer flux (Papanicolaou & List 1988) indicate that as much as 20% 

of the transport in plumes is by the turbulent flux. 

Assuming 'top-hat' profiles as in the horizontal limit, the conservation equations 

d 2 
-(b u.w) = 0, 
dz 

(2.24) 

(2.25) 

(2.26) 

are obtahled. Equation (2.26) states that the vertical buoyancy flux is constant, (2.25) states 

that the change in the vertical momentum is equal to the vertical buoyancy force and (2.24) 

states that the vertical flux of horizontal momentum is constant in z. 

Using the first hypothesis (2.16) it is assumed that 

b = ks ~ kz (in the vertical limit). (2.27) 

If the (constant) vertical buoyancy flux is equal to F and the vertical flux of horizontal 

momentum is equal to H, then equations (2.24)-(2.26) may be solved obtaining the solution 

(2.28) 

with (2.24) giving 

(2.29) 

This can be written in the usual form of the solution of Ivlorton, Taylor & Turner (1956), 

(whom effectively use the second assumption with Ri = Rip and so 0: = O:p, where O:p is the 

entrainment constant for a pure plume from equation (1.1)) by choosing 

(2.30) 

This gives 

() 6o: p 
b z = -5-z, 

- 58 -



Chapter Three - A Model of an Initially Horizontal Buoyant Jet ... 

and (2.31) 

For a pure plume H = 0 and so u = 0, i.e. the trajectory is vertical. 

2.4 Intermediate behaviour 
, 

The conservation equations will now be derived when the jet is in neither a jet-like nor a 

plume-like state and then analysed on application to the motion of an initially horizontally 

directed buoyant jet. 

2.4.1 The conservation equations 

The direction of the motion of the buoyant jet is now no longer horizontal or vertical and 

so the area of integration is not parallel to a coordinate axis (see figure 3). 

As in sections 2.2 and 2.3, it is assumed that the profiles of velocity and reduced gravity 

are 'top-hat' over the area of integration with horizontal velocity component u and vertical 

velocity component w. The mean velocity along the axis is denoted by v = ";u2 + w 2 • 

In order to consider the motion at a point P on the trajectory, the equations are integrated 

across the cross-section at P. The coordinates (x, z) are rotated by an angle (), equal to the 

angle between the tangent of the trajectory at P and the horizontal axis, so that the new 

coordinate x' is parallel to and along the tangent, and z' is perpendicular to it. The tangent 

angle () is related to the velocity components with 

dz w 
tan() = - = -, 

dx u 

u 
cos() = - and 

v 

The equations of motion (2.4)-(2.6) then become 

. () w sIn =-. 
v 

( cos () {)~, - sin () {)~, ) (uw) + (sin () {)~, + cos () {)~, ) w2 = g', 

(cos () {)~, - sin () {)~,) (ug') + (sin () {)~, + cos () {)~, ) (wg') = 0, 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

where, for clarity, the turbulent terms have been left out as these will neglected later by 

suitable choice of the integration boundary. Substituting for cos () and sin () using (2.32) gives 

u{) 2 u{) w{) 2 w{) 
--(u ) + --(uw) - --(u ) + --(mu) = 0, 
v {)x' V {) z ' V {)z' V {)x' 

(2.36) 

- 59-



z 

x 

f 
{ 

I 
f 

, 
I 

I 

I 
J , 
I 
I , 
I 
I 

I . 

I 

FIGURE 3. The rotated coordinate system, and plane of integration. 
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uo uo 2 wO WO 2 , 
-:;; ox,(uw) + -:;; oz,(w ) - -;; o z ,(uw) + -;; ox,(w ) = g, 

u 0 ( ') u 0 ( ') w 0 ( ') w 0 ( ') -- ug + -- wg - -- ug + -- wg = O. 
vox' v oz' v o z' vox' 

These equations can be rewri tten in the form 

o~,(wv) + case 0:' (w2
) - sine 0:' (uw) = g', 

!;)O (g'v) + cos e !;)O (wg') - sin e !;)O, (ug') = O. 
ux' u z' u z 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

Equations (2.39)-(2.41) will now be integrated over a cross-section through the jet, A(x'), 

with respect to z' and y, with the boundary of the region of integration defined as before. 

Due to the curvature of the jet, it is possible that some integration regions may overlap. 

The contradictions that this implies for the 'top-hat' profiles will be ignored and the velocity 

contributions of order 0'2 will be neglected. The integration gives 

Note that the arclength element 

d 2 
-[ ,(b uv) = 0, 
ex 

d 
-(b2vg') = O. 
dx' 

ds = Vdx2 + dz2 = Vdx ,2 + dz ,2, 

But dz' jdx' = 0 at P and so 

ds = dx'. 

Thus equations (2.42)-(2.44) can be written 

d 2 
-[ (b 1W) = 0, 
cs 
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d 
-(b2vg') = O. 
ds 

(2.48) 

(2.49) 

This is the final form of the conservation equations; the variables u, v, w, band g' are now 

consider~d as functions of the arclength s(x) . Before making any assumptions about the 

nature of the entrainment into the jet, the immediate implications of the above conservation 

equations will be examined. 

2.4.2 Implications of the conservation equations 

The implications of the above conservation equations (2.47)-(2.49) will now be considered, 

when applied to the case of an initially horizontal buoyant jet. 

Equations (2.47) and (2.49) may be integrated immediately gi;ring 

(2.50) 

(2.51) 

where the constants of integration have been calculated by considering the initial motion 

as follows. Initially, for small s the behaviour is jet-like. The vertical velocity is small 

compared with the horizontal velocity (w is zero at s = 0) and so v ~ u. Hence initially 

b2uv ~ b2u2 = Mo and b2vg' ~ b2ug' = Bo (see equation (2.18)). Consideration of the final 

motion (comparing with section 2.3) reveals that H == Mo and F == Bo. Equations (2.50) 

and (2.51) state that the fluxes of buoyancy and horizontal momentum are constant over 

the whole trajectory of the buoyant jet flow. A further immediate consequence of (2.50) and 

(2.51) is that 

, Bo 
g =-u, 

Mo 
(2.52) 

i.e. the reduced gravity g' is always proportional to the horizontal velocity u (as was the case 

in the solutions to the limiting cases above). 

Eliminating g' from (2.48) gives 

and using (2.50) to substitute for b2v gives 

df 

ds 
where 
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Hence using the fact that v = uJ1 + J2, all the variables in the problem can be expressed 

in terms of the gradient, f and its derivative f' = df/ds 

,A2BO 

v(s) = Mof" 
,A2BO 

u ( s) - -:-:--::-:-r=====::;;: 
- Mof'J1 + J2' 

and 

,A2Bof 
w(s) - ---,:==­

- Mo f' J1 + J2' 

ds ,------,,,,-
-dx = V1 + J2. (2.55) 

Each of the two hypotheses will now be used in turn to derive an equation in f and conse­

quently solve the problem. 

2.4.3 Hypothesis 1: The radius is proportional to the arclength 

In this section the effect of making the first of the two hypotheses, namely that the radius 

of the jet varies linearly with the arclength 

b = ks, (2.56) 

will be examined. As stated above this is based on experiments on horizontal buoyant jets 

presented by Schatzmann (1976) and the author (see figure 1 - experimental details given 

in section 4), and also experiments and theoretical analysis on vertical jets and plumes by 

Morton, Taylor & Turner (1956), Morton (1959) and Kotsovinos & List (1977). In order that 

the initial behaviour matches that of a pure jet (see equations (2.20)), it is assumed that the 

constant of proportionality k = 20!j. 

Equations (2.50) and (2.51) may be rewritten as 

where ToT Mo 
.l~ = k2 ' (2 .57) 

and 

where (2.58) 

Thus, substituting for b(s) in (2.55) above gives 

Id I 

s = J f' (1 + f2):r , (2.59) 

which is the equation for the gradient f. Using ds/ dx = J1 + J2, equation (2.59) may be 

written in the the alterna.tive form 

d
2 

f f ( df ) 2 J f2 ~ -- - +-1+ 4 
dx 2 - 2(1 + J2) dx Id ( ) . (2.60) 
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It is convenient to non-dimensionalise the variables, scaling lengths [1] and time [T] with 

3 

[L] = J(~ [L *] 
J2 

[T] = J( [T*]. 
J 

(2.61) and 

The problem then reduces to 

U*V*s*2 = 1, 1* * *2 1 
gvs =).2' b* = ks* 

with 
df 1 s* 
---- 1· 

ds* v* (1 + j2)"4 
(2.62) 

Note also that Mo = k 2 and Bo = k 2 /).2. Use of (2.57) and (2.58) above reveals that this 

length scaling is proportional to the 'jet-length' defined in section 1 above with 

(2.63) 

The numerical solution to equation (2.62) will be discussed in section 3, but it is possible to 

obtain approximate solutions in the limits of small and large f. 

Small values of tlIe gradient, f 

The scaled version of (2.60) takes the form 

.. fP 2 ;J. 

f = 2( 1 + j2) + (1 + f ) 4 , 
(2.64) 

where the dot denotes differentiation with respect to x*. For small f, j ~ 1 and so f ~ x*2/2. 

This approximation ma.y be made more accurate by searching for a series solution of the form 

(2.65) 

Substituting this into (2.64), expanding the powers of (1 + f2) binomially, requires that all 

but the powers of x*4 have zero coefficient. The solution is 

(2.66) 

- 63-



Chapter Three - A Model of an Initially Horizontal Buoyant Jet ... 

and integrating with respect to x* gives the centreline trajectory 

*( *) X*3 ( 1 *4 49 *8 ) z x = - 1 + -x - x +. .. . 
6 80 1267200 

(2.67) 

This means that the initial trajectory follows a cubic course, which agrees with the result of 

Chan &, Kennedy (1975) in their analysis of the momentum dominated part of the flow. 

A similar procedure may be applied to (2.62) giving 

f( *) s*2 ( 1 *4 19 *8 ) s = - 1 - -s + --s +" . 
2 48 7680 ' 

(2.68) 

and the fifth of equations (2.55) may be used to calculate that 

( 
1 4 1 *8 ) 

s*(x*) = x* 1 + 40 x* - 17280x + .. : . (2.69) 

The velocity components can also be found by using (2.55) 

* 1 ( 1 *4 19 *8 ) 1 ( 7 *4 2891 *8 ) 
U = s* 1 - 16 s + 1536 s +. .. = x* 1 - 80 x + 345600 x +. .. , (2.70) 

(2.71) 

1 ( 1 *4 13 *8 ) 1 ( 3 *4 1069 *8 ) 
v* = s* 1 + 16 s - 1536 s +. .. = x* 1 + 80 x - 345600 x +. .. . (2.72) 

These series solutions may be used to give approximate values, whilst the gradient f < 1. In 

this case the corrective terms are generally small compared with the first terms in the series, 

indicating that the behaviour of the buoyant jet is like that of a pure jet even though the jet 

may have begun to divert from its horizontal course. 

Large values of tile gradient, f 

The behaviour of the equations will now be considered for large values of the gradient f. 

Equation (2.62) now becomes 

df s* 

ds* ~ VJ' (2.73) 

which may be integrated with respect to s*, giving 

( 3)~ 2 2 f ~ 4 (s* + So F , (2.74) 
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where So is a constant of integration. The arclength, s*, may be chosen to be sufficiently 

large so that s*2 ~ So and (2.74) then approximates to 

(3) ~ 4 
f~ 4 S*3. (2.75) 

Now for ' large f, 
ds* 
dx* ~ f, (2.76) 

and so substituting for f from (2.75) and integrating gives 

s* = 48(x~ - x*)-3, (2.77) 

where x;;" is a constant of integration . This is an important result, showing that the jet 

centreline can only reach a maximum horizontal displacement given by x;;". The values of 

s*, z and b are infinite at this point, whereas the velocity components are zero. The value 

of Xm cannot be calculated analytically but it will be calculated from the numerical solution 

later. 

Substituting (2.77) into (2.75) gives 

f(x*) = 144(x~ - X*)-4, (2.78) 

which may be integrated to give 

( .*) - 48( .* .* )-3 + Z X - Xm - X z Oo (2.79) 

The velocity components can be found using (2.55) giving 

u* = (3)-t *_2. 1 (* *)5 - S 3 =-X - x 
4 576 m , 

(2.80) 

w* = (3)t *_1. 1( * *) - S 3 - - X -X 4 - 4 . m . , (2.81) 

* (3)t *_1. 1( * *) 
V = 4 s 3 = 4 Xm - X • (2.82) 

As expected, in the limit of s* -+ 00, V* ~ w* and substituting for (x;;" - x*) using (2.79) 

and comparing with equations (2.31) S110WS that the velocity components have plume-like 

behaviour. 
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2.4.4 Hypothesis 2: The entrainment constant varies linearly with the 

local Richardson number 

The implications of the second hypothesis will now be examined. In this case it is assumed 

that the entrainment constant varies linearly with the local Richardson number, Ri, of the 

jet 

(
Ri) 

0' = O'jet + (O'plume - O'jet) Rip with 
. Q2 B bg' 

R~ = --5 = -2' 
M'i V 

(2.83) 

where Q, B and M are the local fluxes of specific volume, buoyancy and momentum defined 

by 

7rQ = J vdS, 7rB = J vg'dS, 7rM = J v2
dS, (2.84) 

dS denoting integration across the jet. This was first suggested by Priestly & Ball (1955) 
, 

and has been supported by Kotsovinos & List (1977). Assuming that the solution tends to 

that of a pure plume as S --t 00, equations (2.31) may be used to calculate Rip, giving 

a constant, with value Rp = 0.133. 

The analysis proceeds similarly to that of section 2.4.3. It is co'nvenient to write (2.50) 

and (2.51) in the form 

and (2.85) 

where k = 20'j, for ease of comparison with the previous section. The continuity equation 

(2.86) 

must be integrated in order to obtain the equation defining f. In the rotated coordinate 

system of section 2.4.1, the continuity equation becomes 

(cos f) D~' - sin f) D~' ) u + (sin f) D~' + cos f) D~') w = O. (2.87) 

The terms in x' may be rewritten giving 

Dv . Du Dw 
Dx' - Sill f) Dz' + cos f) Dz' = O. (2.88) 
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Integrating, making the same assumptions about the integration region as before, gives 

(2.89) 

However (w cos 0 - u sin 0) is the exterior flow perpendicular to the jet axis, and so has 

magnitude proportional to the interior velocity scale, v. Hence 

and so 

(usinO - wcosO) = av, 

d 
-l (b 2v) = 2abv. 
(.s 

(2.90) 

(2.91) 

This is the conservation of volume equation that will be used to solve the problem when using 

the second hypothesis, recaJling that a is dependent on the local Richardson number of the 

jet. Hence the problem is to solve (2.85), (2.91) and (2.54) with the hypothesis of (2.83). 

The result of (2.55) still holds here, and substituting this into (2.91) with the hypothesis 

of (2.83), gives the equation for the gradient f 

(2.92) 

By non-dimensionalising the variables as in section 2.4.3, (2.92) reduces to 

(2.93) 

This is the equation for f that will be solved numerically later, but series solutions for small 

f, analogous to (2.66)-(2.72), may be found. These are 

f( *) x*2 ( {3 *? [ 1 {32] *4 ) X = - 1 + -x ~ + 2 - + - x + ... 
2 6 40 45 ' 

(2.94) 

*( *) x*3 ( {3 *2 6 [ 1 {32] *4 ) Z X = - 1 + -x + - - + - x + ... 
6 10 7 40 45 ' 

(2.95) 

f( *) s*2 ( {3 *2 2{32 *4 17{33 *6 ) S = - 1 + -s + -s + --s + ... 
2 6 45 1260 ' 

(2.96) 

s*(x*) - x* (1 + ~X*4 + L X*6 + ... ) . - . 40' 168' , (2.97) 
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u* = ~ (1 - ~s*2 _ [(32 +!] S*4 + ... ) = ~ (1 _ ~x*2 _ [~(32 + ~] X*4 + ... ) , 
s* 3 45 8 x* 3 90 20 

(2.98) 

* s* ( (3 *2 [(32 1] *4 ) x* ( (3 *2 [ 1 (32] *4 ) 
W ="2 1 -"6 s - 30 + 8" s +. .. ="2 1 -"6 x - 10 + 45 x +. .. , 

(2.99) 

v* = ~ (1 - ~s*2 _ (32 s*4 + ... ) = ~ (1 _ ~x*2 - [~(32 + ~] x*4 + ... ), (2.100) 
s* 3 45 x* 3 90 20 

where 

with the values suggested above. 

Note that the series are now in x*2 rather than in x*4 as they were in (2.66)-(2.72). 

The behaviour for large f is the same as that of the previous ~ection, although the inte­

gration constants may be different. 

2.5 The rate of entrainment 

There is a fundamental difference between the two hypotheses - the second hypothesis 

defines the local rate of entrainment by defining the local entrainment constant in terms of 

the variables of the problem; whereas in the first hypothesis a simple experimentally based 

assumption is made, allowing this to determine the entrainment. However an effective local 

entrainment constant may be calculated when using the first hypothesis by defining 

( *) 1 cl (b*2 *) 0' S - --- v 
- 2b*v* ds* ' 

(2.101) 

(see equation (2.19)). Thus this is the from of the entrainment function that would have to 

be used to give a linear variation of radius with arclength. The numerical solution will be 

discussed later but the plume-like limit of 0' may be deduced when using the first hypothesis. 

Since it is assumed that b = ks with k = 20'j, by comparison with the pure jet solution 

(2.20), considering the solution for the plume-like limit (2.31) then 

I.e. (2.102) 

So, using the value of O'j suggested by Fischer et at. (1979), O'j = 0.0757, then (2.102) 

implies that O'p = 0.1261, which compares favourably with the value O'p = 0.1178 that they 

also suggest. 
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3. Numerical solutions 

Equations (2.59) and (2.93) may be easily handled numerically, and (2.55) can be used 

to calculate all the other variables in the problem. For an initially horizontal jet, the initial 

conditions are that f, w, s, z, b, and x are zero. An off-horizontal jet could be considered 

by takin~ the initial value of f = tan Bo where Bo is the initial inclination of the jet to the 

horizontal. In both cases pure jet-like behaviour, f ~ s*2 /2 ~ x*2/2, is expected initially. 

The solutions, obtained using a NAG Fortran routine, are given in figures 4-9; variations 

with s* are shown in figure 4, variations with x* are shown in figure 5 and the variation of s* 

with x* is shown in figure 6. The behaviour of the Richardson number is shown in figures 7 

and 8, and the effective entrainment constant in figure 9. The solid lines are the solution with 

the first hypothesis, b = ks, and the dotted lines are the solution with the second hypothesis, 

0' = 0'( Ri). The similarity between the two solutions is somewhat surprising. It is perhaps 

explained by the behaviour of b*( s*) using the second hypothesis, shown in figure 4f. This 

graph shows that the second hypothesis, which makes no statement on the behaviour of the 

radius, b*, gives a solution in which the radius varies almost linearly with s* (which was 

assumed in the first hypothesis), although the effective spreading rate is slightly lower than 

that of the first hypothesis. 

Figure 5b shows that the jet is still approximately horizontal at x* ~ 1, this being reflected 

by s* ~ x* in figure 7, with horizontal motion for s* ~ 1 in figure 4b. The transition to plume­

like behaviour can be considered to take place between x* = 1 and x* = 3.5, with the buoyant 

jet having almost vertical motion after x* = 3.5. Notice the curious result that, to the degree 

of accuracy of the graphical plot, the two solutions are almost identical for z*(s*), although 

they are different in real terms, as shown in figure 5b. Using either hypothesis, for s* ~ 2, z* 

varies approximately linearly with s*, with 

z* ~ s* - 1.25. (3.1) 

Figure 5e shows how the horizontal velocity, u*, behaves initially as it would for a pure jet, 

decaying reciprocally with x*, but as the transition to plume behaviour takes place (x* > 1), 

u* decreases more rapidly, eventually to zero at x~. 

The most interesting graphs are of the vertical velocity, w*, in figures 4d and 5d. Initially 

w* increases linearly during the jet-like phase (see equation (2.17)). As the upward velocity 

of a plume decreases with height, w* must reach a maximum velocity and then decay. This 
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is clear from the figures, with the maximum reached at about x* = 1.6 in the first hypothesis 

solution, and x* = 1.7 in the second hypothesis solution. The vertical velocity then decays, 

tending to the linear decay given by (2.81) . The numerical solution may be used to compute 

the maximum value of x* reached by the jet, and this is found to be 

x~ = 4.6207 using the first hypothesis, b = ks (3.2) 

and 

x~ = 4.5824 using the second hypothesis, 0' = 0'( Ri). (3 .3) 

The graphs of the Richardson numbers, figures 7 and 8, show the greatest difference 

between the two solutions. In figure 7 the actual values of the Richardson number have been 

plotted against x* and s* , with Ri/Rip plotted in figure 8. Note t~at in figure 7, the curves 

tend to different limits for large x* and s* as they have different values of O'p. What can 

be immediately seen, is that for both hypotheses, the Richardson number is higher during 

the transition period than at its plume limit. This means that in the case of the second 

hypothesis (that the entrainment constant varies linearly with the Richardson number), the 

value of the local entrainment constant is higher during the transition period than at the 

plume limit, i.e. that the rate of entrainment into the jet is greatest during the transition 

phase. 

Finally, in figure 9 the effective entrainment constant divided by its initial value, O'(x*)/O'j, 

has been plotted. The two solutions are surprisingly different here also, considering their 

similarity elsewhere. The first hypothesis solution (solid line) maintains its initial value until 

x* -::= 0.6, whereas the entrainment constant from the second solution increases more rapidly. 

Both solutions show maximum entrainment during the transition phase, although this is more 

noticeable in the solution obtained when using the second hypothesis. 

4. Comparison with experiments 

It is important to check theoretical results with those of practical experiments. The 

solutions for the horizontal and vertical limits have already been well documented (see Fis­

cher 1979) with good experimental agreement for pure jets and plumes. For horizontal 

buoyant jets it is easiest to compare the theoretical prediction with the measured radii and 

trajectories. 
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Experiments were performed to do this by placing a jet of dyed salt solution in a large 

tank of fresh water, illuminated from behind. The flow rate of the source was varied, keeping 

the nozzle diameter of the jet and the reduced gravity of the buoyant source fluid constant 

(with g~ = 51.0 ± 0.4 cm s-2). The flow was recorded on video tape. The radius of the jet at 

points along its axis can be measured directly from the video picture and the trajectory was 

found by eye, estimating the points mid-way between the boundaries of the jet along a line 

perpendicular to the axis of the jet. The video picture was also analysed digitally taking a 

time average of a succession of frames in order to obtain a clearer definition of the boundary 

of the jet. 

Figure 1 shows the variation of the radius b with arclength s, where the results of radius 

measurements made here and some taken from Schatzmann (1976, who used the experiments 

of Fan 1967) have been plotted. A good linear agreement is seen in every case although the 

gradient of the line or 'spreading rate' varies between experiments. This linear relationship 

was used as the basis for the first hypothesis. A line through the points might have been 

expected to pass through a point on the negative s axis, rather than the origin. This is 

because the values of s measured in experiment are relative to the jet nozzle and not the 

point of zero radius (which should correspond to s = 0), the virtual origin. However, from 

the equation for b( x) in (2.20), the distance between the virtual origin and the nozzle exit 

is expected to be proportional to the nozzle radius - which is very small ('" 0.25 mm) in 

these experiments. Thus any corrections required to compensate for the virtual origin/nozzle 

disparity are negligible and have been ignored. 

A comparison between the theoretical and experimental trajectories, using both the ex­

periments presented here and some of those listed by Schatzmann (1976), will now be made. 

Schatzmann (1976), however, only lists the Froude number for each experiment. The Froude 

number is proportional to the jet-length with constant of proportionality dependent on the 

nozzle radius, which is not known. Therefore, the theoretical scaling used in (2.61) for these 

experiments cannot be calculated and so the best fit between the experimental and theoretical 

centrelines is shown in figure 10. Figure lOa shows the actual trajectories observed experi­

mentally (x and z have unknown units) and the scaled trajectories are shown in figure 10b­

the curve is the theoretical solution obtained when using the first hypothesis. The agreement 

is excellent - however because the theoretical and best fit scalings cannot be compared, it is 

not possible to endorse the theoretical solution using this data. 

The same procedure is carried out with the experiments described above. Now, however, 
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Flow Rate (cm3s-1 ) 

0.70 

1.03 

1.20 

1.50 

1.57 

Theoretical scale 

0.0583 ± 0.0087 

0.0396 ± 0.0059 

0.0340 ± 0.0051 

0.0272 ± 0.0041 

0.0260 ± 0.0039 

TABLE 1. The theoretical and best fit scalings. 

Best fit scale 

0.0585 

0.0443 

0.0331 

0.0284 

0.0232 

all of the data required to make a proper comparison is available, although the experimental 

errors in Qo and gb, together with the uncertainty in Gj mean that the scaling can only be 

calculated to ±15%. The experimental flow rates and theoretical scaling factors are given 

in table 1 (the scale given in the table is the scaling used to transform the experimental 

lengths into the theoretical starred variables) wi th figure 11 Cl showing the actual observed jet 

trajectories. The theoretical and scaled experimental curves are shown in figure llb. In this 

figure, the scaling which provides the best fit with the theoretical curve has been chosen, but 

in each case the 'best fit scale' is well within the degree of accuracy of the 'theoretical scale'. 

Again, the agreement between the theoretical and experimental jet trajectories is excellent, 

providing good support to the analysis above. 

5. Discussion and Conclusions 

The motion of a horizontally directed buoyant jet has been examined both analytically 

and nnmerically, comparing the theoretical predictions with experimental measurements. The 

conservation equations were derived by integrating over a cross-section of the jet, a technique 

initially illustrated by the consideration of the horizontal and vertical limiting cases, which 

have established solutions. The important feature of the analysis was that the entrainment 

constant was allowed to vary along the flow of the buoyant jet, as it changes from a jet-like 

to a plume-like state. This was achieved by using one of two hypotheses which have been 

detailed above. 

Considering the analytical calculations first, it was found that for both hypotheses the 

reduced gravity was proportional to the horizontal velocity component (2.52) and that all 
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the variables in the problem could be expressed in terms of the gradient of the trajectory 

(2.55). It was also found that the equations governing the gradient (2.59) and (2.93) could 

be simplified by scaling the lengths by a factor proportional to the jet-length (2.63). These 

equations for f could not be integrated analytically and so they were considered for small 

and large values of the gradient in turn. Series expansions for small values of the gradient 

indicated that the behaviour of the velocity components remains pure jet-like, even though 

the jet may have begun to divert from its initially horizontal course. The analysis for large 

values of the gradient showed that the centreline axis of the jet reaches a maximum horizontal 

distance from the origin. At this point the velocity components are zero, and the gradient, 

vertical elevation and radius are infinite. 

In order to examine the transition between the jet-like and plume-like states, equations 

(2.59) and (2.93) were integrated numerically to obtain the theoretical solution, using the two 
, 

different hypotheses. The two solutions are generally similar in behaviour and were discussed 

in section 3. This similarity was explained by observing that the second hypothesis implies an 

almost linear variation of the radius with arclength and so will agree well with the solution of 

the first hypothesis which actually assumes that the radius varies linearly with the arclength. 

It was found that the transition between jet-like and plume-like states occurs between x* = 1 

and x* = 3.5 approximately, the buoyant jet having almost vertical motion after x* = 3.5. 

In terms of the original variables, the transition takes place between 

x- and 

This agrees well with the observations of Linden, Marshall & Cleaver (1991), who observed 

that the jet-plume transition appeared to take place from x ~ 2.6L j . The numerical solution 

was also used to determine the maximum horizontal distance travelled by the jet. This was 

found to be 

x:n ~ 4.6 or 

although at this point the radius is infinite. The greatest difference between the two solutions 

was seen in the behaviour of the Richardson number and the effective entrainment constant. 

With both solutions the values of the Richardson number and the effective entrainment 

constant become greater than their asymptotic plume values during the transition phase. 

This means that the entrainment into the buoyant jet is greatest during the transition phase, 

possibly a result of the high curvature of the jet there. 
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The theoretical predictions for the trajectory followed by the buoyant jet were then com­

pared with experimental measurements, in order to endorse the theoretical results. The 

agreement was excellent, with the scaling providing the best fit to the theoretical curve be­

ing well within the experimental error of the theoretical scaling in each case. This provided 

suitable support of the analysis, although at this stage further measurements are required to 

decide which of the two hypotheses provides the best model for buoyant jet flow. 

The theoretical calculations of the jet trajectory, reduced gravity and maximum distance 

reached (xm) could have practical uses. For example, considering the horizontal discharge of 

a buoyant fluid into a container, it would be desirable to know if the jet will impinge on the 

side of the container or if it will reach a vertical plume-like state before reaching the boundary. 

If the container was closed, then in the latter case the 'filling-box' model (Baines & Turner 

1969) could be used to describe the flow, whereas in the former case, the impingement may 

affect the subsequent concentration build-up inside the container (see Linden, Marshall & 

Cleaver 1991). Alternatively, consider the dumping of sewage or other negatively buoyant 

fluid from a horizontal pipe into the sea. If the flow in the region where the dumping took 

place was small compared with the buoyant jet flow, then the above analysis could be used to 

calculate the theoretical trajectory of the jet. This would give an indication of the distance 

from the pipe that the source material would travel before reaching the sea bed, and an 

estimate of the concentration level there (neglecting the effect of approaching the sea bed). 

The effects of stratification can be neglected near to the source if the density changes in the 

environment are small (over the length scale of the jet) compared with the buoyancy of the 

buoyant jet. A further use of the analysis could be to calculate the criterion for a buoyant 

jet to penetrate the interface between two fluids of different density (stably stratified). The 

buoyant jet will penetrate if, at the interface, it is more buoyant than the fluid into which it 

is trying to flow. 

The analysis is also easily adaptable. Off-horizontal buoyant jets could be considered by 

simply changing the initial conditions of the numerica.l integra.tion as outlined in section 3. 

Stratification of the environment could be included by adding the term -w at; to the right 

hand side of (2.6), assuming that density variations in the x and y directions are negligible. 

This modifies (2.49) to 

where N2 _ _ !L oPa 
- Po OZ ' 

and the analysis would proceed as before using one of the two hypotheses to solve the problem. 
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Notation 

Below is a list of the symbols used in this chapter, provided for reference purposes. 

b Transverse length scale of the buoyant jet 

B(o) (Initial) buoyancy flux 

f Gradient of the jet trajectory 

F Constant proportional to the buoyancy flux, used in the vertical limit 

g' Reduced gravity of the buoyant jet fluid 

H Vertical flux of horizontal momentum, used in the vertical limit 

J Constant proportional to the initial buoyancy flux 

k Constant of proportionality relating the jet radius and arclength in (2.56) 

J( Constant proportional to the initial momentum flux 

L Length scale 

L j Jet-length 

M(o) (Initial) momentum flux 

N2 Buoyancy frequency 

p Pressure 11 

Q Local volume flux 

Ri Local Richardson number of the jet 

Rip Plume Richardson number 

s Arclength 

T Time scale 

u Horizontal velocity component 

v Mean centreline velocity 

w Vertical velocity component 

x Horizontal coordinate 

x' Rotated coordinate 

Xm Maximum horizontal displacement of the jet centreline 

z Vertical coordinate 

z' Rotated coordinate 

z( x) The centreline trajectory 

O'(x) Effective entrainment constant using the first hypothesis 
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Entrainment constant using the second hypothesis 

Entrainment constants for jets and plumes 

Parameter in the series expansion using second hypothesis 

Factor by which length scale for the density difference is larger than that of the 

velocity 

P Density 

Pa Ambient density 

Po Reference density 

e The angle between the jet centreline and the horizontal axis 

* Denotes transformed variables using (2.61) 
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CHAPTER FOUR 

The Flow of a Vertical Buoyant Jet 

with High Momentum in a 

Long, Ventilated Tunnel 

The purpose of this chapter is to investigate and understand the flow resulting from the 

release of buoyant material within a long tunnel of rectangular cross section. The source is 

discharged through a nozzle of small radius with sufficiently high flow rate to ensure that the 

'jet-length' is several times the depth of the tunnel, d. The ends of the tunnel may be either 

open or closed and a nnmber of ventilation points may exist along it. Consideration of a 

source with high momentum is an important development in the study of confined jet flows, 

as most previous studies have assumed that the source has little or no initial momentum. 

It is found that circulation cells are driven near to the source and that the concentration 

within them increases to a steady-state maximum. At a distance of about 2.5d from the source 

the buoyancy forces are then sufficiently strong to drive a two-layered stratified counterflow. 

The steady state conservation equations are analysed in order to calculate the mean flow 

variables. The flow past a ventilation point and the characteristics of the secondary outflow 

are derived, enabling the calculation of total number of vents needed to vent the buoyant fluid. 

The time dependence of the mean concentration in the circulation cell near to the source is 

also deduced. This could be used to calculate time dependent solutions for the other mean 

flow variables. All the theoretical results are compared with experimental measurements. 
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Chapter Four - The Flow of a Vertical Buoyant Jet ... 

1. Introduction 

The dynamics of buoyant releases in confined regions were first examined by Baines & 

Turner (1969) who studied the behaviour of a vertical pure plume in a rectangular box (see 

chapter 1). Their 'filling-box' model makes the assumption that on reaching the upper surface 

of the bo?" the plume material immediately spreads out in a horizontal layer, slightly less 

buoyant than the preceding layer, so that stratification of the interior occurs. To ensure that 

the instantaneous spreading-out assumption is reasonably valid, Baines & Turner made a 

restriction on the aspect ratio of the box: height/width~l. In the present case, this ratio is 

satisfied, but the source has high momentum as well as buoyancy; the consequent overturning 

produced means that the assumption that the source fluid immediately spreads horizontally 

with no re-entrainment is not valid, i.e. the 'filling-box' model may not be applied in this 

situation. 

Jirka & Harleman (1979) have investigated the stability and mixing of a vertical planar 

buoyant jet discharged in a long channel of rectangular cross-section, filled with a shallow 

layer of water with a free surface. They described two extreme steady-state flows which are 

outlined below. 

i) Non-buoyant planar discharge 

Jirka & Harleman (1979) observed that the source of momentum gave rise to circulation 

cells which extended over the full height of the channel (see figure 1). Up to two circulation 

cells on each side of the source were observed experimentally (in the planar case). Their 

experiments showed tha.t the centre of the primary (first) circulation cell is approximately 

l.5d from the source axis, which agreed with their estimated position. [Ji rka & Harleman 

1979 assumed that the jet holds the same geometric behaviour b = 20:8, where b is the 

jet radius, 0: is the entrainment constant (see Morton, Taylor & Turner 1956) and 8 the 

distance from the source, after impingement. Using a value of 0: = 0.1, then b = d/2 when 

8 = 5d/2 or x = 3d/2, and the jet flow breaks down here as the magnitude of the walljet 

velocity is equal to the returning jet exterior entrainment flow velocity.] The flow reversal has 

characteristic radius d/2 and so the horizontal length of the primary cell can be estimated to 

be approximately 2d. Using a circular source, assuming that the width w of the channel is of 

a similar order to the depth d, then circulations will be inhibited in the y - z plane. 

ii) Strongly buoyant planar discharge 

In this case the buoyancy forces are sufficiently strong to inhibit the formation of a cir-
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FIGURE 1. A schematic diagram of the flow produced by a plane, non-buoyant 
discharge into a tunnel. 
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FIGURE 2. The flow produced by a strongly buoyant discharge into a tunnel; (a) a 
schematic diagram, and (b) an image taken from an experiment (in which a dyed, 
buoyant fluid was released from a circular nozzle in a perspex tunnel). The image 
was obtained by digital analysis of a video of the flow - the lines are contours of equal 
mean concentration (averaged through the tank). 



Chapter Four - The Flow of a Vertical Buoyant Jet ... 

culation cell and the jet spreads horizontally after impingement (see figure 2a). Figure 2b 

is an image from an actual experiment (in which a circular vertical source was used). The 

flow is dependent on both upstream and downstream conditions and can exhibit strong depth 

changes or gradual variations in thickness. All the entrainment into the flow takes place into 

the buoyant jet before it has impinged and is thus independent of the outflowing layer. 

m) The present case - buoyant discharge with high momentum from a circular source 

In chapter 2 it was described how a buoyant jet is characterised by its initial specific 

momentum and buoyancy fluxes Mo and Bo (see chapter 2 for definitions). It was also shown 

that a length scale may be formed using these fluxes, called the 'jet-length' scale, L j (see for 

example, Turner 1973 or chapter 2, equation (2.7)), which gives a measure of the length scale 

over which momentum forces will dominate buoyancy forces. In the situation considered 

here, L j is several times the depth d, and so the effects of buoyancy are negligible before 

impingement. 

The resulting flow, drawn schematically in figure 3a, is a combination of the above two 

extreme cases. 

The buoyant jet, discharged vertically and driven mainly by its initial momentum, spreads 

out horizontally on impingement. The jet entrainment velocities are sufficiently high to drive 

a circulation cell near to the source (region 1) which is observed to be well mixed, with the 

concentration increasing to a steady state maximum. This increase in concentration is due 

to the re-entrainment of buoyant fluid into the jet itself (compare this with case (ii) in which 

only ambient fluid is entrained into the jet). The centre of the circulation is approximately 

l.5d from the source axis, but due to the buoyancy of the source the centre is less than 

O.5d from the impingement boundary. The buoyancy of the jet is sufficient to inhibit the 

formation of a seconda.ry circulation cell, which was observed in the non-buoyant (planar) 

case above, but turbulent momentum transfer excites the fluid on the outer boundary of the 

primary cell (region 2), entraining ambient fluid and releasing buoyant fluid to the two-layer 

counterflow (region 3). The releasing region 3 may consist of an entrainment zone and a 

roller region (Wilkinson & Wood 1971). The inflow volume flux and hence the entrainment 

zone is controlled by the downstream conditions; so, for example, a restriction on the inflow 

volume flux will be accompanied by a decrease in the entrainment zone. The released fluid 

(from region 3) then flows horizontally in a stable buoyant layer with negligible entrainment 

across the interface (region 4). The depth of the buoyant layer may decrease slowly due 

to shear stresses. A typica.l 'freeze-frame' of the flow is given in figure 3b, demonstrating 
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all of the features mentioned above. This flow has been observed previously, by Lee (1980) 

and Andreopoulos et al. (1986) in experiments with vertical buoyant jets in shallow water, 

although they merely class the flow as 'unstable' and consider only the 'stable' buoyancy 

dominated flow described above (case (ii)). 

One important aspect of this investigation, is the build-up of concentration within the 

tunnel and the dependence of the flow of buoyant fluid along it on the position, size and 

number of ventilation points. The counterflow with boundaries above and below will be 

considered as well as the flow over and through the ventilation points. A further objective is 

the study of the concentration build-up within the primary cell and the effect of a ventilation 

point within it. 

2. Analysis 

In the following analysis it is initially assumed that the ventilation points are situated 

symmetrically either side of the source, which is assumed to be negatively buoyant for ease 

of comparison with the experiments. Theoretically then, the flow should be symmetric about 

the source and so only one half is considered. An image, taken from an actual experiment, 

showing the symmetry of the flow is given in figure 4 - the shaded region contains source 
"-

material. In practice it is observed that this type of (symmetric) configuration may become 

unstable, and any significant asymmetry in the flow forces acting on either side of the source 

will cause fluctuations in the outflow depth, which may unbalance the flow. Also, if the total 

out-vent area is too small, or the source is too close to a closed end then the outflowing buoyant 

fluid may contaminate the inflowing ambient fluid, thus affecting the flow. A ventilation point 

within the primary circulation cell region allows fluid from the environment to be 'sucked' in, 

due to the pressure drop associated with the circulating fluid - unless of course the edge of 

the vent is less than 2nd from the source axis, in which case the overlapping jet fluid simply 

flows through the vent. A ventilation point overlapping the primary cell and the excited 

region adjacent to it (region 2 in figure 3a) may allow fluid to be sucked into the tunnel from 

the environment as mentioned above, but may also allow the fluid in region 2 to flow out. 

These effects will be considered later - initially it is assumed that all the ventilation points 

are outside of regions 1 and 2, and that there are sufficient vents to make no restriction on 

the inflow or outflow rates . 

Suppose that the horizontal velocity is u(x, y, z). Then, for a tunnel of depth d and width 
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FIGURE 5 (b). An image taken from experiment of the flow over the 'head'. 

FIGURE 5 (c). A typical image taken from experiment showing that the outflowing buoyant layer 
occupies half the depth of the tunnel. 
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w, conservation of volume implies that 

Qo l d l w 

- = u(x, y, z) dydz, 
2 0 0 

(2.1) 

for all x > 0, where Qo is the source volume flux. 

2.1 Region 4: the stratified counterflow 

The two dimensional flow of a buoyant layer has been previously studied by Ellison & 

Turner (1959), Wilkinson & Wood (1971) and Jirka & Harleman (1979), but only when the 

depth of the layer is small compared with the total depth and one layer has a free surface. 

The counterflow will now be re-examined when both layers are bounded by solid boundaries 

and the buoyant layer may have large depth. 

The flow is analysed making the following assumptions: 

i) the flow has reached a steady-state equilibrium; 

ii) the flow is mainly two dimensional with vertical velocities sufficiently small for the flow to 

be considered horizontal with a hydrostatic pressure distribution; 

iii) there is negligible entrainment across the interface; Ellison & Turner (1959) gave a lower 

limit on the Richardson number 

(2.2) 

where Pa is the ambient density, for entrainment across such an interface to be considered 

negligible, Ri ~ 0.8 - this limit is generally satisfied in the experiments (the density difference 

and velocity shear may be calculated from the layer mean values); 

iv) the flow force is constant along region 4 (see Benjamin 1968); 

v) the shear stresses are related to the flow parameters; (see Jirka & Harleman 1979); 

vi) at large distances from the tunnel the environmental fluid is still and of uniform density. 

Let the height of the lower layer be h2 (x, t), with density P2(t) (independent of x from (iii)) 

with mean velocity U2(X, t). The upper layer of in-flowing ambient fluid has mean velocity 

U1 (x, t) and depth hl (x, t) = d - h2 (x, t). 

Assuming a hydrostatic pressure distribution p(x, z ) = PI - pg(z - h2 ), where PI is the 

pressure at the interface, then the equations of horizontal motion for the upper and lower 

layers are 

(2.3) 
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OUl OUl 1 OPI oh2 0 - 0 -,-, 0--- + Ul- = --- - g- - _(u'2) - -(u v) - -(u'w'), (2.5) 
ot ox Pa ox ox ox oy oz 

OU2 + U2 OU2 = _~ OPI _ gOh2 _ ~(u'2) _ ~(u'v') _ ~(u'w')' (2.6) 
ot oX P2 oX ox ox oy oz 

where U'2 etc. are the shear stresses associated with the turbulent fluctuating velocities 

u', v', w' in the x, y and z directions respectively. Equations (2.3) and (2.4) are equations 

of volume conservation, and can be obtained by integrating the continuity equation over z. 

2.1.1 Negligible shear stresses 

In the following analysis, the steady state is considered initially, and as a first approx­

imation it is assumed that the shear stresses are negligible. The equations then reduce to 

(substituting for hI (x)) 

(2.7) 

(2.8) 

d (ui PI ) - - + - + gh2 = 0, 
dx 2 Pa 

(2.9) 

d (u~ PI ) - - + - + gh2 = O. 
dx 2 P2 

(2.10) 

Integration of (2.8) and (2.7) with respect to x gives 

(2.11) 

where Q2 is the constant volume flux of the lower layer, and 

(2.12) 

where Ql is the constant (negative) volume flux of the upper layer (of density Pa). 

Thus in the steady-state, the equations of total volume and mass conservation over any 

vertical cross-section in the counterflow become 

(2.13) 
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(2.14) 

where g~ = (flr:...&..)g is the reduced gravity of the buoyant layer. 
Pa 

The interface pressure can be eliminated from (2.9) and (2.10) giving 

(2.15) 

and expanding this with the use of (2.11) and (2.12) gives 

(2.16) 

This means that h2' and consequently U2 and Ul must have constant values over the outflow 

region. 

[The other alternative is that 

In the Boussinesq limit this reduces to the critical Froude number condition 

F; + Fi = 1, where and 

which corresponds to a jump in h2 • This is not observed experimentally (generally to obtain 

such jumps a controlling geometry, e.g. a ridge, is needed) and so this possibility is ignored.] 

Hence the flow is governed by the three equations 

(2.17) 

(2.18) 

Qo - 2Q2 
1ll = ( )' 2w cl - h2 

(2.19) 

in the five unknowns Ul, U2, h2' g~ and Q2. A further two conditions must be obtained from 

the near-field and far-field conditions. 
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2.1.2 Balance of flow forces over the head 

Definition of tIle flow force 

Benjamin (1968) introduced the idea of a balance in the flow forces in his study of the 

flow over an air pocket. He defined the flow force F as the sum of the momentum flux and 

the pressure forces. Thus 

(2.20) 

which, for the two-layered system above reduces to 

F P2 2 2 PI 1 2 1 2 , - = -U2h2 + u1(d - h2) + -el - -gel + dh2g + -h2g2. 
WPa Pa Pa 2 2 

(2.21) 

Balance of the flow forces over the head 

Benjamin's analysis may be extended to the current situation. Consider the flow over the 

head of the outflowing layer (assuming that it has not met a ventilation hole) in a frame 

moving with the outflowing layer (see figure Sa). Figure 5b is an image of the head taken 

from an actual experiment. 

The incoming ambient fluid has speed U and the speed of the fluid over the head (again, 

no mixing) is U* with u* = Ul - U2. The point 0 is a stagnation point, with pressure Po. 

Conservation of volume gives 

(2.22) 

The Bernoulli theorem may be applied along OA to find the pressure at A, PA 

Pa U2 PA = Po - - . 
2 

(2.23) 

Hence the flow force per unit width of the incoming fluid is 

(2.24) 

Applying the Bernoulli theorem along 01 gives 

(2.25) 

where PI is the interface pressure. Now, again by Bernoulli, the pressure at B, PB is equal to 

that at 0; but also PB = PI + gP2h2 and so 

(2 .26) 
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or 

(2.27) 

Equation (2.25) will now be used to calculate the flow force per unit width of the outgoing 

fluid 

(2.28) 

Equating the flow forces and using (2.22) and (2.27) yields 

(2.29) 

Hence ignoring the uninteresting possibility of g~ = 0, equation (2.29) gives two solutions for 

h2: h2 = 0 and 

(2.30) 

i.e. the buoyant layer occupies half the depth of the tunnel, which is analogous to the solution 

obtained by Benjamin (1968) in his application to the flow over an air pocket. 

Whilst moving in a frame at the propagation velocity of the density current, the hydrostatic 

pressure assumption is exact. Moncrieff and So (1989) presented a theory including the effect 

of vorticity in the density current on its far-field behaviour. The pressure in the density 

current is then not hydrostatic except in the far-field where the flow is horizontal. By allowing 

the density current to have an inflow speed far from the head, they found that there is partial 

cancellation in the corrective terms to (2.27)' and so the above solution is more accurate than 

might otherwise be expected. 

Moncrieff & So (1989) also found that for constant vorticity in the head, hdd E It, ~l. 
This solution comes from an equation representing the conservation of mass, momentum and 

energy, and the solution h2 = 2d/3 is the special case where the fluids have the same density. 

However, in their analysis, there is a large circulating flow at the head which is not observed 

in experiment, and so the a.bove solution, (2.30) is considered to be more appropriate here. 

The above analysis will only apply before the head has met a vent; however it is observed 

experimentally that the outflow continues to maintain this half-tunnel depth even after the 

head has flown through or over a vent (see for example, figure 5c which shows a typical flow). 
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2.1.3 Implications for the flow 

Making the assumption that the previously obtained result (2.30) holds between the start 

of the counterflow region and the first ventilation point, then the flow variables, Q2, U2 and 

g~ may be calculated. 

Eliminating U2 and Q2 from (2.17), (2.18) and (2.19), and substituting for h2 and Ul using 

(2.27), (2.30) and u. = Ul - U2, gives an equation for g~ 

dg' = (QO)2 (2gb _ 1)2 
2 dw g~ 

(2.31) 

Writing g~/gb = 12 then (2.31) may be rewritten 

(2.32) 

where 

(2.33) 

Equation (2.32) could be solved numerically, but a good approximation to the solution, 

for small B, is given by 

B2 
12 = B --. 

3 
(2.34) 

The corresponding approximate solutions for U2, Ul, Q2 and g2, including the term of order 

B2 in (2.34), are 

(2.35) 

(2.36) 

1 Qo B 
Q2 = 2--:8(1 + 3)' (2.37) 

, '( B) g2 = goB 1- 3 . (2.38) 

Generally B is small and so the terms of order B2 could be neglected. In this case, note 

also that the total volume flux of the outflowing buoyant layers, 2Q2, is considerably larger 

than that of the source. The reduced gravity of the buoyant outflow will be lower than 

that of the source by an equal factor (see equation (2.18)). As an illustrative example, with 
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typical experimental values d = w = 10 cm, Qo = 6.5 cm3s-1 and gb = 63 cm S-2, then the 

above solution gives B = 0.03, Q2 = 109.6 cm3s-1, g~ = 1.9 cm s-2, U2 = 2.2 cm s-1 and 

U1 = -2.1 cm s-1 all of which are consistent with experimental measurements. 

It should be pointed out that (2.35) and (2.36) are the dependencies that would be obtained 
1 

in a simple dimensional analysis, but note that (2.37) and (2.38) imply that Q2 f'V QJ and 
2 

g~ f'V g~3' - the former in particular indicating that the variation in outflow characteristics 

is smaller than an appropriate variation in the source. Note also that the solution implies 

that the Richardson number (see equation (2.2)) has a value of approximately unity and 

is approximately independent of the source conditions. This would explain why negligible 

entrainment between the layers is observed in the experiments. 

In the above solution, (2.35)-(2.38), it was assumed that the value of the parameter B is 

small. This is generally the case (in the experiments described in section 3, B ~ 1), however 

the behaviour of the solution to (2.32) for large B may also be considered. 

The value of B may be increased (equivalent to increasing the flow rate or decreasing the 

reduced gravity of the source) and the value of the solution (2.32), /2, increases correspond­

ingly. However when B3 = 4 then the solution to (2 .32) is /2 = 1, i.e. the reduced gravity 

of the buoyant outflow is equal to that of the source. In this case Q2 = Qo/2, U2 = Qo/wd 

and U1 = O. Thus when B3 = 4 the solution implies that there is zero entrainment into the 

primary cell. This is clearly a physically unrealistic situation, as B3 = 4 is equivalent to 

having an enormous value for the jet-length (B3 = 4 implies that L j = 8000d with the above 

typical experimental values, also assuming that the nozzle radius, bo = 0.025 cm), and under 

such circumstances there would be considerable entrainment. 

Increasing B further yields /2 > 1, a physically impossible result. It must therefore be 

concluded that the model may be applied to situations in which B ~ 1. Physically this 

states that the volume flux of the buoyant layer is sufficiently small to be easily transported 

as a gravity current (i.e. the model is appropriate). For large values of B, tests (Marshall & 

Cleaver 1991) with a source of natural gas in air have shown that the source fluid forms a 

'plug', driving the air from the tunnel. 

2.1.4 Flow with energy loss at the head 

Benjamin (1968) extended his analysis to include the possibility of energy loss or supply. 

Equation (2.27) may be modified by including the head loss, C, giving 

(2.39) 

- 87-



Chapter Four - The Flow of a Vertical Buoyant Jet ... 

The balance of flow forces is unaffected by the energy loss, so equating (2.24) and (2.28) gives 

(2.40) 

and so 

(2.41) 

Hence a flow with h2 > td is possible with an energy loss (( > 0) and a flow with h2 < td 
implies an energy supply to the counterflow (( < 0). The previous solutions for U2, U1, Q2 

and g~ are modified accordingly. Equation (2.32) is modified to 

(2.42) 

Neglecting all but the largest terms, the modified approximate solutions are 

(2.43) 

Note that B' ~ B for all ( and if the flow is not energy conserving, the flow rate Q2 will be 

less than its value in (2.37) whereas the reduced gravity g~ will be greater than in (2.38). 

2.1.5 The effect of shear stresses 

It was shown in section 2.1.1 by equation (2.16) that neglecting the shear stresses meant 

that the values of h2' 1[2 a.nd 1[1 remained constant over the length of the counterflow. By 

integrating the equations of motion (2.5) and (2.6) over each layer the effects of including 

the stresses (see Jirka & Harleman 1979 for the case with a free upper surface) may be 

determined. 

Integrating (2.5) over the upper layer J; dy JI~2 dz , and using (2.12) to substitute for U1 

gives 

(2.44) 
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where Ti, Tt and TWl are the stresses at the channel interface, top and upper wall given by 

Similarly integrating (2.6) across the lower layer Iow dy Ioh2 dz, and using (2.11) to substitute 

for 112 gives 

(2.45) 

where Tb and TW2 are the stresses at the channel bottom and lower wall given by 

Eliminating the interface pressure and using the Boussinesq approximation gives 

(2.46) 

Thus (2.46) shows explicitly that the downstream change in h2 is controlled by the shear 

stresses. Following Jirka & Harleman (1979), the shear stresses can be related to the mean 

flow quantities through the relationships 

(2.47) 

in which ft, f i ' fb, fwl and fw2 are the Darcy-Weisbach friction coefficients which are inde­

pendent of x. 

The friction coefficients can be related to the Reynolds number, Re, with f rv Re-t, and 

so using the results of section 2.1.3, it may be estimated that I dhddx I = 0(10-4 ). This 

is supported by experiment, with the observation that in an unventilated tunnel the depth 

h2 remains almost constant (see figure 5e) along the length of the duct (except at the ends). 

Thus for all of the subsequent analysis it will be assumed that the effect of shear stresses 

(and consequent variations in h2 ) can be ignored. 
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2.2 CounterHow with ventilation points 

A typical ventilation system is shown schematically in figure 6a. The N ventilation points 

have area Ai (i = 1...N). Without the presence of a 'head' the analysis of 2.1.2 and 2.1.3 

cannot be used and so it is assumed here that the flow has pre-set initial values for the flow 

variable~ h2 etc. . In practice though, it is observed that the outflow maintains its initial 

depth of d/2 + ( long after the fluid has flowed through a vent (or vents). Figures 6b and 6c 

are images from actual experiments showing the flow over a vent and the flow through a vent. 

2.2.1 The volume flux through the vent 

It has been shown (Linden, Lane-Serif & Smeed 1990) that the exchange flow Q of a 

buoyant fluid through a hole in a closed box containing buoyant fluid takes the form 

(2.48) 

where A is the area of the hole, g' is the reduced gravity, h is the depth of the buoyant fluid 

and k is a constant dependent on the shape and orientation of the hole. For a vertical square 

hole the value of k is approximately k = 0.25 with equal flow in and out of the hole. It is 

assumed that a similar relation holds in the present situation with the flow out of the first 

ventilation hole q(l) given by 

(2.49) 

where kl is a constant and h2(o) denotes the initial value of h2 • As there is only outflow 

through the ventilation point it might be expected that the volume flux through it is double 

that for the separated flow, i.e. kl ~ 0.5. 

2.2.2 The flow over the vent 

The flow over a ventilation hole is drawn schematically in figure 7 (compare with figure 6b). 

It is assumed that the fluid flowing past the hole has height h2(1) and reduced gravity g~, 

i.e. that no mixing has taken place, and that the velocities of the lower and upper layers are 

U2(1) and Ul(l) respectively. 

Continuity of volume in the upper and lower layers then gives 

(2.50) 

(2.51) 
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FIGURE 6 (a). A schematic diagram of a typical flow with ventilation points. 

FIGURE 6 (b). An image taken from experiment showing the flow over a vent . 



FIGURE 6 (c). An image taken from experiment showing the flow through a vent. 
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Equation (2.15) may also be applied, giving 

(2.52) 

Hence U,1(1) and U,2(1) may be eliminated giving an equation for h 2(1), 

(2.53) 

As an example, using the values obtained from the previous solution (2.43) with ( = 0 (Le. 

no energy loss) , kl = 1/2 and Al = 64 cm2 , equation (2.53) implies that h 2(1) = 0.5 cm, 

U2(1) = 4.3 cm S-I, Q2(1) = 2.2 cm3s-1 and Ul(l) = -1.1 cm s-l. These values may be used to 

compute the maximum flow through the second vent (of the same area), q(2) = k2A2 Jg~h2(1)' 

which gives (if k2 = kt) q(2) = 28.0 cm3s-1 . Since q(2) > Q2(1), then with these values, only 

the first two ventilation points are needed to vent the buoyant fluid . So repeated application 

of (2.53) represents a method with which the number of ventilation points required for total 

ventilation of the buoyant layer can be calculated. 

Equation (2.53) ItJ.ay be rewritten making use of the solution obtained in section 2.1.4 

(2.43) for small ( and the Boussinesq approximation giving 

[
(1 - 4(/2) - 2V2klAi(1 + 2(/)~]2 _ 16[1 _ 2h' ] 

hi 2(1) , 
2(1) 

(2.54) 

where 

A' - Al hi h 2(1) (' = f 
1 - wd' 2(1) = -d-' d' (2.55) 

This final equation shows that for a given inflow depth h2(o) (set by ('), the secondary outflow 

height h2(1) is dependent (to first order in E') only on the area of the opening. (Note that 

the secondary height is considered here rather than the secondary volume flux as it is easier 

to measure h2(1) in experiment.) 

2.2.3 A ventilation point in the primary cell 

It was mentioned earlier that a ventilation point in the primary cell region allows environ­

mental fluid to be 'sucked' into the tunnel due to the drop in pressure associated with the 
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circulation. This flow is drawn schematically in figure 8a. Figure 8b is taken from experiment, 

the contour lines clearly showing the flow through the vent close to the source. If the volume 

flux of the inflowing environmental fluid into the primary cell is Qp, then the equations of 

conservation of volume and mass flux become 

(2.56) 

(2.57) 

It is expected that the velocity of the inflowing fluid is proportional to the exit velocity of 

the source. Thus an expression for Qp may take the form 

Q = k A MOf(xP g~) 
P PPQ d'" o go 

(2.58) 

where Ap is the area of the opening, kp is a constant, and f( 2d ,4-) is the functional de-
90 

pendence on the distance of the centre of the vent xp from the source axis and on the mean 

reduced gravity within the primary circulation cell, g~. 

Because of the increased volume flux entering the primary cell, the volume flux of the 

outflow is expected to increase similarly. 

Adopting the solution given by (2.39)-(2.41) and using the new conservation equations 

above it is possible to derive an equation analogous to (2.32) 

where P = (1 + 2~:)(1 + 2('). (2.59) 

The value of P ~ 1 can be large which makes it hard to find a general approximate solution 

to (2.59) but a satisfactory approximation (a quadratic fit) is given by 

, [ 5 , 2 2,2 ] /2 = B 1 - - P B + - P B + ... 
16 41 

for o ~ PB' ~ 2 with 
, , 

g2 = /2go' 

(2.60) 

Of more significance to the problem of venting the buoyant fluid is the new value of the 

outflow rate. This is given by 

Q2 = - ~ - 1 + -PB + ... , Qo Qo [ 5 , ] 
2/2 2B' 16 

(2.61) 

and the velocities are given by 

1 rI:J ,1 ( ') [ 5 , ] 112 = - y dgoB 2 1 - 2( 1 + - P B +... , 
2 16 

(2.62) 
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(2.63) 

From these expressions it can be seen that the inflow Qp is not merely reflected in an equal 

increase in the outflow Q2, but that Q2 increases by approximately 5Qp/16 only (for large Qp), 

with the inflowing velocity Ul decreasing significantly to compensate. Thus the system is able 

to adjust to cope with relatively large volumes of environmental fluid being sucked into the 

primary cell, with quantitatively smaller changes to Q2, g~ and U2. Following the example 

values of section 2.1.3, with an inflow Qp = 100 cm3s- l and taking (' = 0, the solution 

above gives Q2 = 145.4 cm3s- l - an increase of about 33%. The reduced gravity decreases to 

g~ = 1.4cms-2 , and the layer velocities are now U2 = 2.9cms-1 and Ul = -0.9cms-I. The 

increase in Q2, and the decrease in g~, may mean that a larger number of vents are needed 

to vent the buoyant layer. This is observed in experiment. 

2.2.4 A ventilation point in region 2 

This is probably the most complex problem resulting from ventilation because a vent in 

the mixing region 2 will allow fluid to flow both in and out of the tunnel. 

Initially there is little buoyancy of the fluid inside the tunnel and so environmental fluid 

may be sucked in by the circulating fluid in the primary cell. However with increasing time 

the buoyancy of the fluid inside the tunnel increases causing an increasing resistance to the 

outflow. Eventually the buoyancy forces may become larger than the suction forces and 

buoyant fluid will flow out of the ventilation point . 

2.3 The concentration build-up in the primary cell 

It has already been stated that the concentration within the primary cell increases to a 

steady state maximum, this being due to the re-entrainment of buoyant fluid into the jet 

and the eventual balance between the buoyancy forces of the mixed region and the opposing 

inertial and frictional forces of the counterflow system. 

Recall that in the central region there may be both outflowing buoyant fluid and inflowing 

ambient fluid as well as the source. The high 'jet length' of the source means that the source 

fluid and any inflowing environmental fluid are very rapidly mixed throughout the primary 

cell, and so it is not inappropriate to consider the mean reduced gravity g~ of the fluid within 

the primary cell, which is assumed to have length l. 

Suppose the buoyant fluid layer has volume flux Q2 (g~) . The equation for conservation of 
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volume flux (2.13) will still apply, but the equation for conservation of mass (2.18) is modified 

to 

d9~ 1 (1 , ( ') ,) 
dt = lwd "2Q090 - Q2 ge ge , (2.64) 

and hence (2.18) is satisfied when d9~/ dt = O. This is the equation governing the concen­

tration build-up within the primary cell, clearly dependent on the nature of the function 

Q2(9~)· 

A first order form for Q2(9~) may be found by observing that (2.43) and (2.17) imply that 

(2.65) 

Writing 

( ') 1 Q ' f3 ,! Q2 ge ="2 090 ge , (2.66) 

for convenience, equation (2.64) then becomes 

d9~ = Q09b(1_fJ '~). 
dt 2lwd ge 

(2.67) 

Also, assuming that in the limit t ---+ 00 then 9~ ---+ 9~, then the parameter f3 may be found 

using (2.60)-(2.63) 

f3 = wd~(1- 4('2) [1 15 PB' ... ] 
29bQo + 32 + , (2.68) 

recalling that P = 1 if there is no vent in the primary cell, and that E' is small (as long as 

(' is small). With the typical experimental values given in section 2.1.3, f3 = 0.39. Equation 

(2.67) has solution 

11 ( (1 - 1])2) 2 (21] + 1) 211" Q09bf3 t 
1 ,1 -- n - - arctan -- + -- = t , where 1] = fJ3 ge2

, (2.69) 
3 1 + 1] + 1]2 V3 V3 6V3 21wd 

which will be compared with experiment . 

In practice, however, it is observed that in the steady state 9~ > 9~ due to the dilution of 

the mixed fluid in region 2 by the incoming ambient fluid. Thus the above analysis must be 

modified appropriately, writing 

9~(t) = ~9~(t) and (2.70) 

d9~ 1 ( 1 , ( , ( )) , ( )) 
dt = lwd "2Q090 - Q2 92 t 92 t , (2.71) 
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where the notation gHt) is used to denote the mean reduced gravity of the outflow before 

the steady state value given in equation (2.60) has been reached. The constant K, ~ 1 is 

representative of the increased dilution of the buoyant outflow compared with the mean 

concentration of the central region. Equation (2.66) must also be modified, with Q2 now 

dependent on g~ rather than g~ and so 

(2.72) 

Hence the time dependence of g~ is now given by 

dg~ _ Qogb (1 a _~ It) 
- - -- - fJK,- 9 . 
dt 2lwd c 

(2.73) 

I 

The exact solution is the same as before, (2.69), except that now TJ = (K,t (3)t g~2. This will 

be compared with experiment measuring the mean primary cell concentration and the mean 

outflow concentration to compute K,. Equation (2.73) can be written in the form 

where 

- I (a 2
) I gc= fJ3K,gc and 

(2.74) 

i = (3~ Qogb t . 
2lwd 

(2.75) 

Equations (2.74) and (2.75) are the form of (2.73) that will be used in the comparison with 

experimental data as it is easier to obtain g~ than g~ using digital video analysis. Note that 

the maximum value of g~(t) is given by 

(2.76) 

The time dependent solution for g~, (2.69), and the corresponding solution for g~, (2.70), 

could be used to calculate time dependencies for all of the other flow variables (by using 

(2.72),(2.17) and (2 .19)). However, it will be shown that the steady state is reached rapidly 

in practice and thus the steady state solution, (2.35)-(2.38), is likely to be of greater use. 

3. Experiments 

The experiments were carried out in a Perspex tunnel of width and depth 10 cm and 

length 210 cm (see figure 9a). The base of the tunnel consisted of seven slats of length 30 cm 

in which there were either one or two ventilation holes of area 64 cm2 in which stoppers could 
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be placed. Vertical aluminium dividers could be used to vary the length of the tunnel, or to 

open or close the ends. Except when examining the effect of ventilation points, all the vents 

were closed and the ends of the tunnel were open. The Perspex tunnel was placed in a tank 

of length 9.4 m, depth 47 cm and width 26 cm. The tank was then filled with water until the 

surface was at the same height as the top of the tunnel. The water was allowed to settle for 

at least an hour before each experiment. 

The outflow of buoyant fluid was represented by a solution of salt water. A small amount 

of dye (food colouring) was added to the salt solution and the flow visualised using the 

shadowgraph technique (see chapter 1). The dyed salt solution was introduced into the 

tunnel using a fine circular nozzle of radius 0.25 mm supplied by a brass cylinder which 

was constantly connected to a high pressure air supply, ensuring steady flow rates of up to 

7.5 cm3s- l . Source reduced gravities of up to 65 cm2s- l were used. 

The primary objectives of the experiments were: 

i) to observe the flow and check the solution (2.43), testing the dependence of Q2 and g~ on 

the source flow rate, Qo; 

ii) to measure the increase of the concentration in the primary cell with time; 

iii) to measure the variation in the secondary outflow height h2(l) with vent area Al in order 

to check equation (2.54); 

iv) to measure the increase in Q2 and the decrease in g~ and g~ with a vent in the primary 

cell. 

3.1 Video Analysis 

By recording the experiments on video tape, digital video analysis can be used to calculate 

mean source concentrations along lines perpendicular to the walls of the tunnel. This is a 

satisfactory way of measuring concentrations in this problem as the flow is two dimensional 

in the counterflow, and in the primary cell only mean values are needed for comparison with 

the theory. 

It was explained in chapter 1 that the video picture is divided up into a grid of pixels 

each with an intensity (from 0, black to 255, white) dependent on the dye concentration. An 

image of the initial state of the apparatus is removed by division to allow for variations in the 

background illumination. An experiment was performed to investigate the variation of pixel 

intensity value with dye concentration in which a small quantity of dye was progressively 
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added to a perspex box of initially fresh water. The box was placed in the same surrounding 

tank that held the model of the tunnel and was illuminated in the same way. The average 

digital intensity over the whole box was measured using video analysis after each addition 

of dye and the measurements are plotted in figure 9b. This experiment confirms that the 

dye/intensity relationship is linear for sufficiently low dye concentrations. So by making 

one density measurement at a specific point in the flow from a fluid sample (using the Paar 

density meter) and comparing it to the intensity value there, it is easy to calculate the 

density /intensity relationship. 

The intensity corresponding to zero dye is 255 and so if the intensity at the test point is 

It, and the test density is Pt then the density at a given point with intensity I is given by 

255 - I 
P = 255 - I/ t • 

(3.1) 

In practice several measurements were made by hand, periodically taking samples from the 

flow, and were compared with the digitally calculated values to check the reliability of the 

video analysis measurements. Good consistency was found in all cases. 

4. Results 

Four sets of experiments were carried out, with the objectives described in section 3. The 

experiments are described first, and then the theoretical predictions are compared with the 

observations. 

4.1 The flow and its dependence on the source flow rate 

The flow was initially observed using the shadowgraph technique. Figures 10a-10f show 

the time development of a typical, unventilated run. Notice particularly the development of 

the gravity current, with the outflow occupying approximately half the depth of the tunnel. 

In general, the flow was symmetric for symmetric configurations of vents (see figure 4) and 

in such 'perfect' conditions , the outflow occupied half the depth of the tunnel, in agreement 

with (2.30) (to ±0.05d). As was pointed out in section 2, this type of situation appears to be 

unstable and occasionally the flow became permanently asymmetric, with the outflow on one 

side of the source occupying a much larger depth and the outflow on the other side occupying 

a lesser depth. These cases were in the minority however, and are thought to be the result of 

initial imbalances in the temperature between the ends of the tunnel, producing a slight bias 

- 97 -



250 

200 

Intensity 

+ 
+ 

150 + 
+ 

+ 

+ 
+ 

+ 

+ 

100 + 

+ 

+ 

o 2 3 4 5 b 

Concentration (ml of dye added) 

FIGURE 9(b). The variation of the average intensity with the dye concentration in a 
calibration experiment. Mean pixel intensities were measured by digital analysis of 
a video tape of an experiment in which dye was slowly added to a perspex box filled 
with initially fresh wa.ter. 



( a) 

(b) 
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on the flow within it. After large time periods this initial small asymmetry may be amplified 

producing a larger asymmetry in the flow. Under good conditions, then, the predictions for 

the bulk flow can be checked. 

Experiments were carried out to test the dependence of U2 and g~ on the source flow rate 

Qo. The source flow was altered by changing the pressure in the brass chamber, the valve 

on which ensures constant pressure and hence constant flow rate. For each setting of the 

pressure, the flow was allowed to develop to a steady state before measurements were taken. 

The value of gb was kept constant. 

It was found that a minimum source flow rate was required to maintain the flow system of 

section 2, i.e. the input of momentum below this threshold was insufficient to mix the fluid 

to the extent assumed in the analysis. At the threshold it was found that the ratio of jet 

length to tunnel depth, b, was 
L· 

b = ---.l. = 2.9, 
cl 

i.e, although b > 1 in all of the experiments, for the system to contain a well mixed recircu­

lating central region, b ~ 2.9 is required. 

The outflow velocities were measured by injecting a small volume of green dye into the 

outflow and measuring the time taken for the dye patch to travel a distance of 30 cm along 

the tunnel. There was little mixing within the buoyant outflow and so the dispersion of the 

dye patch was minimal, particularly for the lower source rates. The measurements were taken 

some distance away from the point of injection so that then the patch was moving at the 

same speed as the outflow. Samples were also taken from the outflow, each time from the 

same place in the flow. 

For each experiment the velocity was measured several times for each source flow rate. 

The average velocity values for each experiment and source flow are plotted in figure lla and 
I 

the average of the averages in figure llb. Equation (2.62) predicts that U2 rv QJ and so u~ is 

plotted against Qo here. A good linear relationship is seen in figure 11 b. It should be pointed 

out that the theory of section 2 is concerned with an average velocity over the whole depth of 

the outflow. However, in practice it was observed that the velocity of the fluid decreases near 

to the interface. Thus, as the fastest moving fluid was generally measured in the experiments, 

it is expected that the experimental values will be higher than the theoretical ones. This is 

indeed the case, the experimental values being approximately 16% higher. 

The values of g~ were ca1culated from the samples using a Paar density meter (see chap-
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ter 1). The theory predicts that g~ '" Qg and so in figure 12, g~~ has been plotted against Qo. 

Again a good linear relationship is observed although there is some variation in values be­

tween experiments. This may be due to slight variations in the depth of the outflow, or the 

position at which measurements were taken within it. 

4.2 The concentration of the primary cell 

Figure 10d is a typical freeze-frame of the flow, showing concentration contours. The 

contour gradients are small close to the source, indicating that this region is well mixed 

with the gradient steepening with distance through the turbulent mixing region in the range 

1.5d - 2.5d from the source, the fluid becoming more diluted by the incoming environmental 

fluid. Compare this with figure 8b which is the flow observed when there is a vent within the 

primary cell. The environmental fluid being sucked in is clearly visible in figure 8b, as shown 

by the accompanying distortion in the contours . 

To analyse the flow, frames were taken from the video every 10 s, the background removed, 

and the dye intensities calculated by digital analysis. The mean primary cell concentration 

was calculated by averaging the intensities over a section of the tunnel of length I = 2.5d, 

with one edge on the axis of the source, the same section being used for each experiment. 

The data was put into the appropriate form and compared with equation (2.74) . 

The data and the solution to (2.74) with K, = 0.9 are plotted in figure 13. The agreement 

with the theoretical curve is excellent although there is some scatter about the equilibrium 

state, possibly due to fluctuations in the entrainment flow of the ambient layer into the 

primary cell. This choice of K, is reasonable, agreeing with initial test measurements of g~ and 

g~ from which K, may be calculated using (2.70). The transition to equilibrium takes place 

over a relatively short time, usually within two minutes in these experiments. 

4.3 The flow over a vent 

The third objective of the experimental study was to measure the dependence of the 

secondary outflow height following flow over a vent, on the area of the vent. In this section, 

the experimental investigation is limited to vents at a sufficiently large distance away from 

the source so that they are in the counterflow region. 

The source was switched on and the flow allowed to reach equilibrium. A large vent far 

from the source was then made by sliding one of the base slats along to make a vent of 
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sufficiently large area for all the outflow to be easily vented by this single hole. 

The vent was then closed by slowly pushing the slat back to its original position in small 

steps, recording the secondary outflow height at each stage. Of particular importance is the 

minimum size of hole required to vent all the fluid - this will enable the calculation of the 

constant kin (2.54). In practice the measurement of h2(1) proved difficult due to the presence 

of a layer of mixed fluid between the outflowing layer and the inflowing environmental fluid. 

This layer was formed as a result of random fluctuations in the outflow overshooting and 

undershooting the vent when calculating k. Hence the secondary outflow height measured 

was that of moving fluid only. 

The data is plotted in dimensionless form in figure 14, together with the theoretical curve 

of (2.54). The agreement is good although there is some degree of scatter with the large error 

bars reflecting the difficulty of measurement, particularly for vents of larger areas. 

The mean value of k measured using the above method was found to be k = 0.51 ± 0.03, 

in good agreement with the prediction of section 2.2.1. 

4.4 The effect of a vent in the primary cell 

The final set of experiments were carried out with a single vent placed symmetrically 

either side of the source, and close to it, together with a vent some distance from the source 

so that the effect of the large inflow of environmental fluid sucked in through the near vents 

could be calculated. 

It was predicted in section 2.2.3 that the outflow rate Q2 would rise by a value of approx­

imately 21Qp/62, where Qp is the volume flux sucked in through each vent: the changes in 

U2, Ul and g~ are given in equations (2.62), (2.63) and (2.60). From (2.48) it can be seen that 

the minimum value of area Am required to vent all the outflow is given by 

( 4.1) 

Applying the results of section 2.1.3 shows that in an unventilated tunnel Am is approximately 

constant with value 
dw(l - 4('2) 

Am = -Vr=8(~1 =+=2===(/)~k ( 4.2) 

With the experimental values used here, this has a value of Am = 69.1 cm2 which explains 

why two vents (of area 64cm2 ) were needed to vent all the buoyant outflow even with the 
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lowest source flow rates. However, with a vent in the primary cell this is modified to 

A = dw( 1 - 4(/2) [1 + 15 P BI + ... ] , 
m J8(1 + 2(/)k 32 

( 4.3) 

from (2.60) and (2.61). Equations (2.59) and (2.42) may be used to calculate Am, finding 

that now Am is greater than before. The increase in Am as a result of opening the vent in 

the primary cell is approximately given by (assuming that Qp ~ Qo) 

( 4.4) 

Hence by measuring the increase in Am, the value of the primary cell inflow Qp may be 

calculated. This is assuming that the analysis of 2.2.3 is correct, of course. 

It can be checked, however, by testing its implications. As supposed in equation (2.58) it 

is expected that Qp is proportional to the velocity of the impinging jet fluid flowing over the 

vent, and this in turn is expected to be proportional to the exit velocity of the source. Thus 
2 

it is expected that Qp '" Qo and the increase in Am will vary as Aincrease '" QJ. 

Experiments were performed to test this result using a single vent either side of the source. 

The source flow rate was increased in intervals whilst keeping the area of the vents near to 

the source constant. A further vent at a large distance from the source was then opened to 

a large extent by sliding the base slats apart. The slats were then slowly closed until a point 

was reached at which further closure would mean that not all the buoyant layer was vented 

by that single vent. The area of the vent is then Am. 

The experimental data points for several experiments are plotted in figure 15, and exhibit 
2 

the linear relationship between Aincrease and QJ described above. This provides satisfactory 

evidence that the theory and assumptions of section 2.2.3 are valid, although further research 

is required to test the dependence on the source velocity in equation (2.58), and to determine 

the nature of the function f(xl»g~) (although the dependence on xp could be estimated by 

analysis of an impinging jet flow). 

4.5 Further experimental observations 

In addition to the experiments performed to make the measurements described above, 

some further experiments were also carried out in a general investigation of other factors 

(which have not been discussed previously) that might a.ffect the flow. 
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4.5.1 The effect of closing the ends of the tunnel 

All of the above experiments were performed with the ends of the tunnel open. Some 

investigativ~ experiments were conducted in order to examine the effect of closing the ends 

on the flow. 

Closing the ends of the tunnel was observed to have negligible effect except when: 

i) there were only a small number of vents or 

ii) the source was near to an end of the tunnel. 

In the former case, there may not be sufficient vent area to vent the buoyant layer and also 

allow unrestricted flow into the tunnel from the environment. The buoyant layer may not 

then be fully vented before it reaches the ends of the tunnel. However, the ends of the tunnel 

are closed and so fluid entering the tunnel from the environment flows through the vents 

furthest from the source (rather than through the ends as before). Thus there is competition 

for these far vents between the remaining buoyant layer fluid (which wants to flow out) and 

the environmental fluid (which wants to flow in). The buoyant layer is continuously supplied 

by the central mixed region which is also continuously entraining uncontaminated fluid from 

the environment. In practice some of the buoyant layer escapes through the furthest vent but 

the remainder mixes with the incoming environmental fluid, contaminating the inflow layer 

(see figure 16a). 

In the latter case there may be little or no ventilation between the source and the nearest 

closed end. The concentrations within this region and the primary cell will now reach higher 

values than before as now all of the buoyant fluid flows out in a single buoyant layer (see 

figure 16b). In the equilibrium state this flow should be analytically equivalent to that of 

section 2 with a source of volume flux 2Qo. 

4.5.2 Asymmetric vent configurations 

In the analysis of section 2 and the experiments above the vents were assumed to be 

symmetrically placed about the source. Some experiments were conducted with the vents 

asymmetrically placed. 

Vent asymmetry was observed to be of little importance when all of the vents are outside 

of the central mixed region: the positions of the vents in the counterflow has no effect on 

the central region and so the volume flux of the buoyant layer is the same on either side of 

the source (see figure 17a). However, if there is a vent in the primary cell on one side of the 

source but not on the other, then there is an increased volume flux into the former side (due 
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Chapter Four - The Flow of a Vertical Buoyant Jet ... 

to the environmental fluid sucked in). In practice, this has been observed to unbalance the 

flow (see figure 1 7 b). 

4.5.3 Angled tunnels 

Some experiments were also conducted to examine the effect of placing the tunnel at a 

small angle to the horizontal (up to 15°). The equilibrium flow is drawn schematically in 

figure 18. 

Ini tially the recirculation develops as before with a buoyant layer flowing out on either side 

of the source. However, the buoyancy of the fluid decelerates the buoyant fluid flowing uphill 

which then flows back into the mixing region. The high momentum of the source maintains 

the recirculating flow on both sides of the source but there is li ttle further flow of buoyant 

fluid uphill, although fluid is still entrained into the primary cell on this side of the source. 

On the downhill side of the source there is a component of gravity acting to pull the buoyant 

fluid in the mixing region down the tunnel. This results in a breakdown in the counterflow 

system with fluid from the primary cell moving slowly down the tunnel occupying nearly the 

entire depth. There appears to be little entrainment on the downhill side of the source - all 

the entrainment takes place on the uphill side. This flow appeared to develop for all but 

very small angles, although further experiments are required to determine the relationship 

between the minimum angle required to breakdown the counterflow system and the source 

characteristics. 

5. Discussion and conclusions 

The dynamics of a vertical, buoyant jet of high momentum in a long, possibly ventilated 

tunnel have been investigated using a mathematical model and laboratory experiments. The 

analysis was developed assuming that the vents were symmetrica.lly placed about the source 

and that the ends of the tunnel were open. The jet-length L j was several times the depth of 

the tunnel cl, i.e. 8 = Lj/cl ~ l. 

The flow is driven by the effects of both momentum and buoyancy, although in different 

regions. Close to the source the high momentum of the jet is important: a recirculating cell 

centered at a distance of l.5d from the source axis is maintained and the fluid further down 

the tunnel is excited by turbulent momentum transfer. The buoyancy of the source fluid 

then drives the stratified counterflow and ventilation system (see figure 3). The excellent 
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agreement between the predictions of the theory and the experimental results indicates that 

the model gives a good description of the flow. For the main features of the model to be 

valid, it was found that 0 ~ 2.9 was required and so all the experiments were carried out 

under this condition. For all source values used within this range, the central mixed region 

near to the source had the same mean length of approximately 2.5d. It must therefore be 

concluded that the effect of high source momentum in tanks of length .:s 5d, will be to mix 

the whole tank (provided that the source is vertical and centrally placed, 0 ~ 2.9 and that 

the length of the tank is not too small - see chapter 5). 

Following Benjamin's (1968) analysis of the flow over the 'head' of an air pocket, it was 

deduced that the buoyant outflow occupies half the depth of the tunnel 

d 
h2 = 2". 

This result was supported by almost all of the experiments, as are the consequent depen-
1 

dencies of the outflow velocity and reduced gravity on the source flow rate: U2 '" QJ and 
2 

g~ '" QJ. Occasionally the flow was asymmetric with a larger flow on one side of the source 

than on the other, but these cases were assumed to be the result of initial imbalances in the 

temperature between the ends of the tunnel. It should also be noted that the total volume 

flux of the outflowing buoyant fluid, 2Q2, is very much greater than that of the source; with 

the values suggested in section 2.1.3, 2Q2 > 33Qo - hence a relatively small volume input will 

produce a much larger volume motion within the tunnel. The reduced gravity of the outflow 

is lower than that of the source by an equal factor. This solution (2.35)-(2.38) was used as 

the basis for the subsequent analysis of the flows over vents and the concentration build-up 

within the primary cell. 

The model was tested further when calculating the time dependence of the central mixing 

region concentration. In the analysis it was assumed that the volume flux of the buoyant 

outflow is dependent only on the mean concentration of the central region. The excellent 

agreement between the theory and experiment (figure 13) indicated the validity of this as­

sumption. As suggested, it was found that the mean concentration of the central region, g~ 

is slightly higher than that of the outflow, g~ with g~/g~ = K ~ 0.9. This is because a large 

fraction of the buoyant outflow originates in the inflowing environmental fluid, which becomes 

contaminated and more buoyant as it enters and mixes in regions 2 and 3 (figure 3a). Tests 

with dye patches indicate that most of this fluid will then flow out again in the buoyant layer, 

and that the more dense fluid from the source may remain in the circulating cell for longer 
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periods of time. The time dependent solution for the mean primary cell concentration could 

be used to calculate time dependent solution for the other mean flow variables. Once the 

steady-state is reached, which was within two minutes in all of the experiments, g~ appears 

to fluctuate by up to approximately 8% about its mean, maximum value. 

The other aspect considered was the effect of ventilation points along the tunnel. There are 

four possible ventilation modes (which may occur in combination) depending on the position 

of the vent relative to the source. 

Firstly, if all or part of the vent is within ~ 2ad of the source axis, then the overlapping 

jet fluid will flow straight out of the vent. The jet fluid impinging between the vent and the 

source axis may still recirculate, but the flow system of figure 3 may not now apply. This 

situation has not been studied. 

Secondly, if the vent is within the primary cell region, but is not sufficiently close to the 

source to allow the jet to flow straight out of the vent, then the pressure drop associated with 

the recirculating fluid causes environmental fluid to be 'sucked' into the recirculating cell. 

This results in an increase in the volume flux entering the primary cell and hence the volume 

flux of the buoyant outflow increases. The analysis showed that this increase in volume flux 

is about a third of the volume flux of the environmental fluid being sucked into the primary 

cell. The analysis was modified in section 2.2.3 to allow for the presence of a vent in the 

primary cell, and the predictions for the increase in area required to vent the outflow agreed 

well with experimental measurements (figure 15). The environmental fluid sucked in also acts 

to dilute the buoyant fluid, and so the concentration values are lowered. 

Thirdly, if the vent is between the primary cell and the counterflow regions, then initially 

the recirculating fluid will suck in environmental fluid through it as in the case above. How­

ever as the concentration of the central region increases to the steady state, the increasing 

buoyancy of the fluid above the vent increasingly opposes the weak inflow until the inflow is 

stopped and the buoyant fluid flows out. 

Finally there may be vents in the counterflow region. Here, the flow is governed by 

buoyancy forces and some or all of the buoyant outflow will flow through a vent in its path. 

The volume flux through such a vent has been considered by Linden, Lane-Serff & Smeed 

(1990), and in section 2.2.2 a simple analysis of the flow over a vent was developed. The 

importance of this analysis is that the volume flux and depth of any 'secondary' buoyant 

layer may be calculated. The analysis may then be applied repeatedly for successive outflow 

layers until all of the initial buoyant fluid layer has been vented. Thus this provides a method 
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for calculating the total number of vents required to remove the buoyant outflow from the 

tunnel. The validity of the analysis was tested experimentally by measuring the variation 

of the secondary outflow depth with vent area. The value of k in (2.48) was found to be 

k c:= 0.51 although this may vary for vents which are not rectangular, or do not span the 

whole width of the duct. 

As mentioned above, all the experiments were carried out with the vents symmetrically 

placed and the ends of the duct open. The openness of the ends is effectively a control on the 

inflow of environmental fluid. If the volume flux of the buoyant outflow is so great that the 

volume flux of the inflow Q1 required to satisfy (2 .13) or (2.56) cannot be accommodated by 

the available openings, then the depth of the buoyant outflowing layer increases to compensate 

(by reducing the 'entrainment zone' - region 3 in figure 3). This was observed in preliminary 

experiments using a shorter tunnel with closed ends. If the buoyant layer can still not be 

vented, then buoyant fluid may become mixed with inflowing environmental fluid (as the 

buoyant fluid tries to flow out of the tunnel) and the counterflow system may break down 

as the buoyancy forces that drive it are reduced. This was also observed when the source 

was placed near to one end of the tunnel. The effect of asymmetry of the vents was found 

to be significant only if the vents are not symmetric near to the source. This is because the 

volume fluxes of the fluid entering and leaving the primary cells on either side of the source 

may no longer be equal (as there may be fluid sucked in on one side but not on the other). 

Consequently the buoyant layer may need more vents to vent it on one side than on the other. 

This work has obvious practical applications to leakages of buoyant gases (for example, 

natural gas) from pipes in ducts or tunnels. Such gas is often under high pressure and unless 

the leak is significantly non-vertical the flow described here may be set up. It would be 

advantageous to know under what circumstances the concentration levels of gas pass required 

safety limits, and what configurations of vents would be most effective in venting the gas. 

Assuming that the density of the gas in the pipe was known, then, using the results presented 

here, it would be possible to calculate the minimum area required to vent the buoyant outflow 

created by a leak (see section 4.4) using a single vent - assuming also that the leak was not 

so near to a vent so that environmental fluid was sucked in. The spacing between the vents 

should be high so that the probability of the source being near to a vent is small, although if 

this were the case the maximum concentrations reached would be lower. Ideally, the ends of 

the tunnel should be open and if the ends are closed, the tunnel should extend some distance 

beyond the length of the gas pipe. 
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Notation 

Below is a list of the symbols used in this chapter, provided for reference purposes. 

Ai Area of a vent 

Am Minimum vent area needed to vent all of the fluid in the buoyant layer 

Ap Area of a vent in the primary cell 

b Radius of the jet 

bo Nozzle radius 

B(') Parameter given in equations (2.33) and (2.42) 

Bo Initial source buoyancy flux 

d Depth of the tunnel 

f Darcy-Weisbach friction coefficients 

F Flow Force 

Fl ,2 Froude numbers 

gb,2,c Reduced gravities of source, buoyant layer and central region 

hl ,2 Depth of the layers in the counterflow system 

k Constant controlling the flow through a vent in equation (2.48) and (2.58) 

Half-length of the central mixing region 

p 

p 

q(i) 

QO,l,2,p 

s 

t 

u 

w 

x 

z 

Jet-length 

Initial source momentum flux 

Number of vents in a system 

Pressure 

Parameter in equation (2.59) 

The volume flux through the ith vent 

Flow rate of the source, outflow layers or through a vent in the primary cell 

Axial distance from the source in the impinging jet flow 

Time 

Horizontal veloci ty 

Vertical velocity 

Horizontal coordi nate 

Vertical coordinate 

Entrainment constant 
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Parameter in equation (2.68) 

Ratio of the outflow to source reduced gravities 

Ratio of the jet-length to depth of tunnel 

Density difference 

Energy loss at the 'head' 

Parameter in equation (2.69) 

Ratio of the mean primary cell concentration to outflow concentration 

Densities of the source, buoyant layer and environment 

Shear stresses 

Tunnel width 
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CHAPTER FIVE 

Buoyant Convection from a Source 

in a Tall Chamber 

The flow of a vertical plume in a confined space of low height to width ratio has been well 

studied, primarily by using or developing the 'filling-box' model. This model is, however, 

restricted to cases where the height, H , is less than or equal to the container width, R. 

Consequently flows in tall or thin chambers have been relatively neglected. 

In this chapter flows with aspect ratio a = H / R ~ 1 are considered, placing particular 

emphasis on the concentration field that develops within the chamber. 

It is shown that there exists a singularity in the gradient of the vertical momentum flux 

at a distance z ~ 5.8R from the nozzle, and that the plume behaviour breaks down there. As 

a result, two types of flow are produced depending on whether H is smaller or greater than 

the threshold depth z ~ 5.8R. 

When H < 5.8R this threshold point is not reached and the behaviour of the mean 

flow variables may be modelled adequately using modified versions of the standard confined 

plume equations. In taller chambers the breakdown in plume behaviour gives rise to a region 

of unstable stratification at z .2: 5.8R. This unstable density gradient drives mixing of the 

fluid further from the source. In this region, the behaviour of the mean density is modelled 

using a turbulent diffusion equation; a simple hypothesis is then used to connect the plume 

and convective regions of the flow. 

Experiments have been carried out to compare the theoretical and numerical results using 

aspect ratios up to H / R = 27. 
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1. Introduction 

Most work in the field of convection from a confined source has been developed from the 

'filling-box' model of Baines & Turner (1969). This model has already been described in 

chapter 1, but before proceeding it is important to recall some of the assumptions on which 

it is based. 

Firstly, it was assumed that plume fluid reaching the baset of the enclosure immediately 

spreads out forming a horizontal layer with a discontinuity (or front) above it; secondly, it was 

assumed that in any horizontal cross-section of the container, the area occupied by the plume 

is a small fraction of the total area at any level; and thirdly, in their asymptotic analysis Baines 

& Turner (1969) assumed that the concentration of the fluid in the environment (exterior) of 

the plume increased linearly in time, a result supported by experimental measurements. 

Baines & Turner (1969) also investigated the possibility that a large scale vertical circula­

tion may be set up, mixing the environment. Carrying out experiments in tanks with aspect 

ratio, a up to a = H / R = 2.5, where H is the height of the tank and R is the radius of 

a circle with equal area to a cross-section of the tank (the 'effective' radius), they observed 

increasing levels of over-turning motion when a > 1. Consequently Baines & Turner (1969) 

restricted their model to cases when a ~ 1. 

In the following, the behaviour of the flow will be discussed when a > 1, a case relatively 

neglected because of the restriction on the filling- box model above. Flows of this type could 

arise in real physical situations, for example a leak of natural gas at the bottom of a lift, mine 

shaft, or tower, or in a building with an enclosed tall atrium. In these cases the behaviour of 

the concentrations of the plume and environmental fluid is of particular interest. The main 

effect of the over-turning observed by Baines & Turner (1969) is to produce non-uniformities 

in the density and velocity distributions on horizontal levels in the environment of the plume. 

In the analysis these effects will be neglected, considering mean values (over horizontal levels ) 

only. Comparison with experimental measurements will show whether this simplification has 

a significant effect on the accuracy of the predictions of the analytical model. However, the 

area of the plume may approach that of the container and so must be included in the analysis. 

The flow becomes more complicated when the aspect ratio is very large (H / R ;::: 6). The 

t The description here, and the following analysis will be presented under the assumption 

that the fluid is negatively buoyant and the direction of the plume is downwards for ease of 

comparison with the experiments. 
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radius and the volume flux of the plume increase with distance from the source, and so 

the upward velocity of the environment increases correspondingly. Eventually, the upward 

environmental flow is sufficient to break down the downward plume flow, giving rise to a 

mixed region at the base of the plume. There is then a region of unstable stratification 

there, as the mixed fluid is more dense than the fluid below it. Some of this buoyant fluid 

flows upwards into the environment of the plume to be re-entrained but the remainder mixes 

with the fluid in the lower part of the chamber by turbulent convection. There are now 

two different dynamical regions which are coupled together: the initial confined plume flow, 

and the turbulent convection region with an unstable density gradient and concentration 

increasing in time. The latter region has similarities with convection flows produced by 

cooling a tall cylinder from above (or heating from below). Again the majority of work on 

this problem has been concerned with low aspect ratios, investigating the effect of Rayleigh 

number (defined below) on the formation and number of convection cells . Some, mainly two­

dimensional, numerical work has been carried out (see, for example, Liang et a!. 1969; Olsen 

& Rosenberger 1979; Neumann 1990), with small to moderate aspect ratios, attempting to 

model the eddy behaviour. In the large aspect ratio cases considered here, the flow is non­

axisymmetric making numerical simulation complex; however, what is of relevant interest 

here is the interaction between the two regions of the flow, i.e. the driving of the convective 

region by the plume. With this in mind, the details of the eddy behaviour are of lesser 

importance and so it will suffice to consider the mean density over horizontal levels only. 

2. Experimental Observations 

Before analysing the problem theoretically, some experimental observations and measure­

ments are now examined. These show how the flow develops and how the concentration 

behaviour varies in the different regions of the overall flow. 

2.1 Experimental technique and apparatus 

In all of the experiments the plume flow was modelled by pumping dyed salt solution 

from a reservoir into a tall , vertical tank, initially containing still fresh water. The dyed 

salt solution was injected vertically downwards from the top of the tank through a nozzle 

at a sufficiently slow, steady rate to ensure that the 'jet-length' (see chapter 2) was small 

compared with the width of the tank. The effects of the initial momentum flux of the source 
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are then negligible. The buoyancy flux of the source could be varied by changing the salt 

concentration of the reservoir fluid or the source flow rate. 

In the experiments with the lower aspect ratios (H / R ;S 5) a perspex container of height 

40 cm and square cross-section, with side 12.6 cm (equivalent in area to a cylinder of radius 

R = 7.1 cm), was used. For practical reasons, in order to study the effects of higher aspect 

ratios, a cylindrical perspex tube of radius 4.5 cm and height 131 cm was used. Both contain­

ers were closed at one end. Containers with other effective radii were also used in preliminary 

experiments, in which it was observed that the flows produced were independent of radius as 

long as the aspect ratio remained the same. 

The experiments were recorded on video tape, which was analysed digitally to obtain 

the concentration profiles. The digital video analysis technique calculates the mean dye 

colour intensities along lines through the apparatus in the direction of the video camera. 

Experiments (see chapter 4) have shown that for small dye concentrations, the dye intensity 

measured varies linearly with the concentration. In all of the experiments carried out, this 

relationship was checked in the range of dye intensities obtained in the experiments; i.e. the 

intensity readings were carefully calibrated against known concentrations. Any nonlinearities 

due to high dye concentrations could then be taken into account. It is also important to note 

that the dye intensity varies linearly (for low dye concentrations) with the thickness of the 

dyed fluid (i.e., if the fluid has reduced gravity g' and depth d, then the intensity measured 

varies linearly with g'd). Thus if the intensities were measured through the vertical cylindrical 

tube filled with uniformly concentrated fluid, a variation in the intensity reading would be 

observed across any horizontal level of the tube, as the thickness of the dyed fluid varies 

(because the chordal distance through the tube varies). This will be unimportant when the 

concentration can be considered to be uniformly distributed across a horizontal cross-section 

of the flow, as the mean intensi ty measured over a horizontal plane will still be proportional to 

the mean intensity that would be measured using a container of uniform thickness. However, 

if the fluid cannot be considered to be uniformly mixed over a given horizontal plane, then 

this technique cannot be used to compare concentrations in parts of the flow in which the 

fluid has different thicknesses. To make sure that the results are not distorted by the above 

effect when using the cylindrical tube, the use of digital analysis will be restricted to thin 

vertical slices down the centre of the tube so that the thickness variation is negligible. 

The relevant features of the flow observed experimentally will now be described. 
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2.2 Lower aspect ratios 

In this section the flow observed using the shorter of the two tanks is described. This tank 

allows aspect ratios in the range 0 .:::s H / R .:::s 5 to be investigated. 

Figure 1 shows the time variation of mean, equally spaced concentration contours in the 

case when a = 4.8, measured by digital analysis of the video tape, at time intervals of one 

minute (where t = 0 is defined to be when the plume reaches the base of the container). It 

should be stressed again that these are mean concentrations along a line through the tank 

perpendicular to its front face. The concentrations shown here are then not only varying 

with the axial distance from the source and the approximately Gaussian radial dependence, 

but also with the variation of the thickness of the plume. Hence the concentrations shown 

here are effectively averages of an integration along a chord of the plume, together with the 

environmental fluid exterior to the plume. For comparison, the contours for the confined 

'starting-plume' at t = 0, are shown in figure 2a. In this case the environment is unstratified 

and the form of these contours may be predicted analytically, neglecting the effect of the box 

boundaries. 

In an infinite unstratified environment it can be shown that the reduced gravity g' of a 

plume is of the form 
5 (2 2)/ 2 2 g'(x, y, z) '" Z-3 e- x +Y (J Z , (2.1) 

(Morton, Taylor & Turner 1956), where x, y and z are cartesian coordinates scaled on the 

effective radius of the chamber, with the z-axis vertical, through the centre of the plume and 

a is a constant controlling the radial variation. The radial variation of the reduced gravity has 

been assumed to be approximately Gaussian. For comparison with the experimental contours 

this must be integrated through the plume assuming that the plume material extends over a 

distance equal to its length scale 

b _ 6ap z 
- 5 ' (2.2) 

where a p is the entrainment constant for a plume (see chapter 3). Integrating (2.1) along a 

chord through the plume, gives an intensity function 

(2.3) 

Equally spaced contours, (not chosen to match the experimental contours) of the form 

I(x, z) = constant are shown in figure 2b, for a = 0.125, a value typical of experimental 
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FIGURE 1. The mean concentration contours obtained in an experiment using a square container, 
with a = 4.8. (a) t = 60s; (b) t = 120s; (c) t = 180s; (d) t~ 240s; (e) t = 300s; (1) t = 360s; 
(9) t = 420s; (h) t = 480s. 
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FIGURE 1. The mean concentration contours obtained in an experiment using a square container, 
with a = 4.8. (a) t = 60s; (b) t = 120s; (c) t = 180s; (d) t~ 240s; (e) t = 300s; (f) t = 360s; 
(g) t = 420s; (h) t = 480s. 
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FIGURE 1 ct'd. For caption see previous page. 
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FIGURE 2. (a) The initial mean concentration contours for the experiment shown in 
figure 1; (b) the theoretical contours that should be observed through a plume in an 
infinite, unstratified fluid. 
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results (see Fischer et al. 1979). The contours essentially take the same form as is observed 

experimentally - this comparison serves as a useful check on the video analysis technique, 

but it also indicates that the plume material mixes over a much larger region than that given 

by its length scale or 'radius' b above. This is probably due to the horizontal confinement of 

the plume - the above calculation assumes an environment of infinite extent and plumes re­

leased near to boundaries have a tendency to 'stick' to them. The experimental contours are 

inaccurate near to the source as the plume radius is comparable to the digital pixel resolution. 

Returning to figure 1, the movement of the first front, i.e. the fluid in the environment 

that originated from the first plume material to reach the tank base, can be clearly seen by 

following the topmost contour (which in each case corresponds to a concentration of 0.4%) 

as it moves up the box. Notice also that the contours near to the source are approximately 

horizontal, indicating uniform concentration over horizontal planes. This is effectively the 

type of flow considered by Baines & Turner (1969): there is little interaction between the 

plume and the environment other than horizontal entrainment. Recall that the contours 

shown here are of the mean concentration through the tank; thus near to the source the radius 

of the plume is small and so the mean value measured is dominated by the environment fluid. 

This explains why the horizontal contours of the environment are dominant, the characteristic 

upturned 'V' shaped contours associated with the plume (see figure 2) being hardly apparent. 

Further from the source the plume contours become more obvious although distorted by the 

exterior flow. Outside of the plume (the mean position of the plume may be estimated using 

traditional plume theory, see chapter 3, and is indicated by the dashed lines on figures 1d,h), 

there is a horizontal concentration gradient as well as the vertical stable stratification. This 

is a result of the increased interaction between the plume and the environment as the radius 

of the plume increases with distance from the source. (This is also reminiscent of the 'over­

turning' observed by Baines & Turner 1969.) As the plume radius increases, the downward 

plume motion and its induced entrainment velocity have an increasing effect on the motion 

of the fluid exterior to the plume. When the radius of the plume is small, the bulk of the 

exterior fluid is free to flow vertically, resulting in approximately uniform profiles of velocity 

and density on horizontal levels. However, when the plume radius is large, a much higher 

proportion of the exterior fluid must have a significant radial component of velocity which 

results in non-uniformities in the profiles of velocity and density on horizontal levels. 

Digital video analysis may also be used to measure the time dependence of the mean 

concentration at a given point, outside of the plume. Figure 3 shows measurements, taken 

- 114-



z = 4.78 

5 
z = 4.16 
z = 3.54 
z = 2.92 

....-... z = 2.30 v 4 u z = 1.68 ;.., 
;j 
0 z = 1.06 CfJ 

4-t 
0 

*- 3 
'--' 
q 
0 ..... ...., 
ell z = 0.44 ;.., ...., 
q 2 
V u 
q 
0 

0 

o 50 100 150 200 250 300 

t (secs) 

FIGURE 3. The time variation of the mean concentration at various depths in the 
fluid exterior to the plume, at a distance 0.2R from the left hand boundary (taken 
from the experiment shown in figure 1). 

t = 300s 
5 

t = 240s 

....-... 
v 4 u 
;.., 

t = 180s ;j 
0 
CfJ 

4-t 
0 

*- 3 
'--' 
q t = 120s 
0 ..... ...., 
ell 
;.., ...., 
q 
v 2 
u t = 60s q 
0 

0 

2 
z/R 

3 4 

FIGURE 4. The mean concentration along a vertical slice through the centre of 
the chamber, (from the experiment shO\\'n in figure 1), plotted after successive time 
intervals of one minute. 



.... 
z = 4.78 

5 
z = 4.16 
z = 3.54 
z = 2.92 

..-.... z = 2.30 v 4 u z = 1.68 I-< 
;:l 
0 Z = 1.06 m 

4-< 
0 

~ 3 
'-" 
q 

.S 
..,;> 

ro z = 0.44 I-< 
..,;> 
q 2 
V 
u 
q 
0 

0 

o 50 100 150 200 250 300 

t (secs) 

FIGURE 3. The time variation of the mean concentration at various depths in the 
fluid exterior to the plume, at a distance 0.2R from the left hand boundary (taken 
from the experiment shown in figure 1). 

t = 300s 
5 

t = 240s 

..-.... 
v 4 u 
I-< t = 180s ;:l 
0 
m 

4-< 
0 

~ 3 
'-" 
q t = 120s 

.S 
..,;> 

ro 
I-< 

..,;> 
q 
V 

2 
u t = 60s q 
0 

0 

o 2 
z/R 

3 4 

FIGURE 4. The mean concentration along a vertical slice through the centre of 
the chamber, (from the experiment shown in figure 1), plotted after successive time 
intervals of one minute. 



Chapter Five - Buoyant Convection from a Source ... 

during the experiment shown in figure 1, of the concentrations at various vertical heights at 

points a horizontal distance of O.2R from the left hand boundary. It can be seen from this 

figure that after a sufficiently large time (which varies according to vertical distance from 

the source), the concentration increases approximately linearly in time. This is in agreement 

with the time dependence assumed by Baines & Turner (1969) in their asymptotic theory. 

For future comparison with the taller cylinder, the mean concentrations along a thin slice 

through the centre of the box have also been measured. These measurements are shown in 

figure 4 in which the 'centre-slice' concentration is plotted against depth, after successive 

time intervals of one minute. The roughly equal spacing between the lines again illustrates 

the linear time dependence. 

2.3 Higher aspect ratios 

A schematic diagram of the flow observed using a tank of higher aspect ratio is given in 

figure 5. The flow comprises three regions, which are referred to as the plume, mixing and 

convective regions. 

The first region, of height hI and nearest to the source, contains the downward plume flow 

and the upwardly flowing exterior fluid, and is similar to the low aspect ratio case. The radius 

and volume flux increase with axial distance from the source, z . Therefore, conservation of 

volume on any horizontal plane in this region implies that the mean vertical speed of the 

environmental fluid must also increase with z . The increasing shear increases the mixing 

between plume and exterior fluid to a point at which the downward plume flow is no longer 

defined. This is the second region of the flow, of height h2' where the plume fluid is mixed 

with the ambient. At the division between these first two regions the downward volume flux 

of the plume must be balanced by that of the up-flowing environment (by conservation of 

volume on this horizontal plane), but the buoyancy flux of the environment is less than that 

of the plume. This difference in the buoyancy fluxes implies an increase in the concentration 

of the mixing region. However, the fluid in region 2 is now more dense than that of the fluid 

below it. This unstable stratification drives mixing between the second and third regions . 

In the third region the dense fluid supplied by region 2 is eventually mixed over its whole 

length by convection. The mixing is three dimensional with no observable ordered structure, 

although occasionally eddies can be observed with dimensions on the same scale as the tank 

effective diameter. The density gradients are small and so this mixing process takes place on 
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a large time scale. Estimation of the Rayleigh number (see Turner 1973), 

Ra = 9 !:lph~ , 
PoK,V 

(2.4) 

where h3 is the length of region 3, separating a density difference !:lp, K, is the thermal diffusiv­

ity, and v is the kinematic viscosity, shows that the convective threshold (Ra rv 0(103 )) will 

be reached easily (generally Ra ;::: 107 here) and that the mixing is expected to be turbulent 

and described by a turbulent diffusion equation. 

Mean concentrations through a 'centre slice' of the tube are shown in figure 6, taken from 

an experiment in which H/R = 27, with plots at successive time intervals of one minute. 

The concentrations are obtained from an average of three video frames and represent a time 

average over a period of two seconds. For values of z/ R ;S 5 the plume flow is well defined 

and these contours can be compared with those of figure 4. Notice that the spacing between 

the curves tends to decrease with time, whereas for the shorter chambers the lines were 

approximately equally spaced. Between z/ R ~ 5 and z/ R ~ 6 the plume flow deteriorates 

(so this may be regarded as being the mixing region 2 above), with a fairly rapid decrease in 

mean concentration over this region. For larger values of z/ R, the concentration gradients are 

smaller: the convective mixing here results from the unstable stratification rather than the 

momentum of the plume. This is the turbulent convective region 3. The mean concentrations 

decrease slowly from top to bottom (the very bottom of the tank is not shown here), but the 

mean concentration at a given depth increases monotonically with time. 

3. Chambers with moderate aspect ratios 

It was stated above that the flow of the plume breaks down as the upward velocity of the 

environment becomes comparable to that of the downward plume. It will now be shown that 

there is a singularity in the momentum flux of the plume at that point. The flow in chambers 

with aspect ratio sufficiently small such that this point is not reached will then be considered. 

3.1 The breakdown of the plume flow 

Figure 7 shows a schematic diagram of the enclosed plume part of the flow. All velocity 

and density profiles are assumed to be 'top-hat', i.e. constant in horizontal planes over the 

area in which they apply. At an axial distance z from the source the plume has mean axial 
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velocity w(z, t), length-scale or 'radius' b(z, t) and mean reduced gravity (relative to the 

environment) g~ (z, t) = (pp - Pa)g / Po, where pp(z, t) is the mean density of the plume fluid, 

Pa(z, t) is the mean density of the fluid exterior to the plume and Po is a reference density 

equal to that of ambient fluid. The mean velocity of the exterior fluid is U(z, t) . The initial 

flow of the plume, when the environment is uncontaminated by the source fluid, is considered 

first. 

The conservation equations for a plume confined to a chamber of small aspect ratio have 

been presented by Baines & Turner (1969) (see also chapter 3, equations (2.91), (2.25) and 

(2.26)). Here, however, the aspect ratio is large and the plume radius must be included in 

the conservation of momentum equation and the equation in which the volume flux of the 

plume flow is equated with the volume flux of the upward environmental fluid. The variables 

may be non-dimensionalised using the 'effective radius', R, (the radius of a circle with the 

same area as a cross-section of the chamber) and the buoyancy flux of the source, Ba. Thus 

if the star denotes a dimensionless scale then 

where [L] and [T] are the scales of length and time respectively. Thus the conservation equa­

tions for a plume in an unstratified environment in non-dimensionalised variables, dropping 

the stars, are 

d 2 
-(b w) = 20'pbw, 
dz 

d (2 I) dz b wg1 = 0, 

and continuity on horizontal planes gives 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Writing Q = b2 w and AI = b2w2 , the local fluxes of specific volume and momentum of the 

plume respectively, and substituting for U, gives 

dQ 1 - = 20' lvI2, dz p 
(3.5) 
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d ( M2 ) 
M dz .M _ Q2 = QB, (3.6) 

where B = b2wgi is the specific buoyancy flux of the plume (constant if the environment is 

unstratified and so it maintains its initial value, Bo, which is unity in dimensionless variables). 

Equation (3.6) can then be rewritten in the form 

dM 
dz 

Q[(M - Q2)2 - 4ap Mt] 
M2(M - 2Q2) 

(3.7) 

Clearly dM/dz has a singularity when M - 2Q2 = 0 or 2b2 = 1 , i.e. when b ~ 0.71. From 

(3.4) above it can be seen that at this point w = -U, i.e. the speed of the plume fluid is 

equal to that of the exterior flow. Also, at this point the momentum fluxes of the plume and 

environment are equal (as b2 = 1/2), which gives a physical interpretation to the singularity: 

the net vertical momentum force is zero and so the plume flow is expected to collapse. 

The above equations have proved impossible to solve analytically, but are easy to solve 

numerically. The numerical solution is shown in figure 8, obtained using a NAG Fortran 

routine. The erratic behaviour beyond the point at which the singularity is reached is included 

here to graphically illustrate the breakdown of the confined plume equations. 

Figure 8a shows the behaviour ofthe plume radius b. In an infinite environment the plume 

radi us increases linearly wi th z (the dotted line) and from this figure it may be seen that this is 

still the case whilst z :5 4, but for larger values of z the plume radius increases more rapidly 

to the threshold value at z ~ 5.78 ± 0.01. Figure 8b shows the plume and environmental 

velocities wand -U clearly indicating that the plume breakdown occurs when the mean 

velocities of the plume and environment are equal. 

The position of this threshold point will depend on the value of the entrainment constant 

used in the analysis (a p = 0.1178 here - see chapter 2) but the position z ~ 5.8 is consistent 

with experimental observations and will used throughout the rest of this chapter. 

In practice, for aspect ratios a < 5.8 the above singularity will not be reached, and the 

continuing flow of the plume will stratify the environment. However if the aspect ratio a .::: 5.8 

then the plume behaviour will break down at z ~ 5.8, as shown above. Some of the dense 

fluid at this level will flow up into the environment of the plume, but the remainder will mix 

with fluid further down the chamber. 

In either case the environment of the plume will become contaminated by the source fluid 

(which may alter the position of the singularity) and the fully time dependent equations for 

a plume in a stratified environment must be studied. 
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3.2 Time dependent analysis and numerical solution 

The time-dependent conservation equations for a confined plume will now be considered 

assuming that the aspect ratio of the container is sufficiently small so that the above singu­

larity is not reached. The height of the tank is hI, and it is assumed that hI < 5.78. 

The conservation of volume and momentum equations, (3.1) and (3.2) remain unchanged, 

as does the continuity equation (3.4). However stratification of the environment must be 

included in equation (3.3) which then becomes 

(3.8) 

Finally the stratification of the environment is given by the equation 

(3.9) 

(see Baines & Turner 1969). 

These equations can be solved numerically, integrating equation (3.9) over each time-step 

to obtain the behaviour of Pa and using the solution for a pure plume (see MOl·ton, Taylor & 

Turner 1956) at the source. This integration method assumes that the time-variation of the 

variables is small compared with the spatial variation. It is also assumed that on reaching 

the base of the tank, the plume fluid immediately flows out into a horizontal layer , Le. that 

at the base of the tank (z = hI), 

(3.10) 

Also, it is necessary that the volume of exterior fluid flowing upwards in the time-step at 

must be less than that enclosed by the vertical step 8z , Le. that 

(3.11) 

The numerical solution for a tank with a = 4.78 is shown in figures 9a-c, the curves showing 

the solution after equally spaced steps in t (the arrows indicating increasing t). Figure 9a 

shows the behaviour of the mean plume and environmental velocities wand - U with distance 

from the source z . The velocities appear to approach the limiting profiles quickly. At the 

tank base the values of wand -U appear to meet although in fact the numerical value of 

- 119 -

I 
') 



( a) 

(b) 

1.2 

1.0 

0.8 

w, -u 
0.6 

0.4 

0.2 

b 

o 

o 

i 

2 3 4 
z 

i 

2 3 4 
z 

FIGURE 9. A numerical solution of the time-dependent filling-box problem for con­
tainers of moderate aspect ratio (a = 4.8 here)j (a) the mean plume and plume 
environment velocities wand U; (b) the plume radius b; (c) the reduced gravities of 
the plume and environment fluids (g~ and g~ respectively). 



25 

20 

(c) 

15 

g' 

10 

5 

i 
o -+---r"""T" 

o 2 z 3 4 

FIGURE 9. ct'd. (c). The reduced gravities of the plume and environment fluids (g~ 
and g~ respectively). 

z = 4.78 
14 z = 3.54 z = 4.16 

z = 2.92 

12 z = 2.30 

z = 1.68 
10 

g' 
8 

Z = 1.06 

b 

o 10 20 t 30 40 

FIGURE 10. The numerical behaviour of the reduced gravity of the fluid in the exterior 
of the plume at various depths (see figure 3). 



Chapter Five - Buoyant Convection from a Source ... 

-u is still less than that of w. Eventually, however, it might be expected that the threshold 

condition described in section (3.1) above will be reached, with consequent breakdown in the 

plume behaviour. In practice though, there is a flow of fluid from the plume forming a thin 

layer at the base of the tank. This means that the numerical solution shown here is not really 

applicable for z .::: 4.78 - bhl. where bh1 is the layer thickness. The velocities at this point 

(z ~ 4.78 - bh1 ) are then still significantly unequal, so that the plume breakdown threshold is 

not expected to be reached, except possibly for very large t. Thus the effect of the increasing 

stratification of the environmental fluid is to decrease the distance between the singularity 

and the source. 

The behaviour of the plume radius, b, is shown in figure gb, in which it can be seen that 

the variation of b with z becomes progressively more nonlinear as t increases, with b(H, t) 

approaching its threshold value b ~ 0.71. 

Finally, the plume and environment reduced gravities are shown in figure gc, g~(z, t) and 

g~ (z, t) respectively (defined relative to the reference den si ty po). It can be easily seen that 

at a given height, after a sufficiently large time, both reduced gravities increase linearly with 

t, and that the reduced gravity of the environment approaches that of the plume. 

3.3 Comparison with experiment 

The validity of the above simplified model may be tested by comparing the predictions of 

the numerical solution with concentration measurements from experiments in which a tank 

of the same aspect ratio is used. 

Firstly, the prediction for the concentration behaviour of the fluid exterior to the plume 

is compared with experimental data. In section 2.2 the concentrations at various heights 

at a distance of 0.2R from the tank wall were discussed (see figure 3). The equivalent 

numerical solution is given in figure 10. The numerical solution exhibits the same linear time 

dependence for sufficiently large t, although in the experiments the concentrations seem to 

increase more rapidly near to the source. This is due to the horizontal non-uniformities of the 

vertical velocity and density profiles which exist in practice (whereas the analysis assumes 

uniform profiles) - in particular, the vertical environment velocity is greater near to the walls 

of the tank than near to the plume. Thus fluid from the plume will reach a given height 

in the environment (at x = 0.2R) more rapidly in practice than the model will predict. 

Nevertheless , the actual values predicted by the theoretical model agree very well with the 

- 120 -



Chapter Five - Buoyant Convection from a Source ... 

experimental measurements, particularly at points near to the base of the tank. 

As a second comparison, it is possible to compare the numerical prediction of the mean 

reduced gravity averaged along a line through the axis of the plume, perpendicular to the tank 

walls (a 'centre-slice'), with the experimental values measured using digital video analysis 

described above. The numerical values are shown in figure 11a plotting the 'centre-slice' 

mean reduced gravity at t intervals /:).t = 1.46. (the solid lines are intervals of /:).t = 8.75). 

The experimental points discussed in section 2.2 are plotted in figure 11 b (the experimental 

time intervals are of one minute), together with the corresponding theoretical prediction from 

figure 11a. The agreement is good, particularly near to the tank base, although again the 

reduced gravity increases faster near to the source than the numerical solution predicts for 

the reason given above. 

In conclusion, the comparison between this simple numerical model and the experimental 

results shows that in spite of neglecting the effects of the additional mixing and the horizon­

tal non-uniformity of the velocities and density profiles, the confined plume equations still 

describe and predict the mean reduced gravities observed in practice to a good degree of 

accuracy. 

When considering taller chambers in the next section, it will become apparent that when 

connecting the plume and convective regions, the greatest accuracy is required at the base of 

the plume. It is clear from figure 11b that this has been achieved. 

4. Chambers with high aspect ratios 

Having shown that the modified filling-box equations may still be used to model the 

behaviour of the mean variables in chambers of moderate aspect ratio a < 5.8, chambers of 

high aspect ratio a ~ 5.8 will now be considered. It has already been described how the 

plume behaviour breaks down near z ~ 5.78 giving rise to a mixed region at the plume base 

and that the resultant unstable stratification drives mixing of the fluid further away from the 

source by turbulent convection (see figure 5). 

The mixing in this latter region will be studied first, comparing theoretical with experi­

mental mean concentration contours. A simple hypothesis will then be used to connect the 

plume and convective regions, re-stating the overall equations of motion and comparing their 

numerical solution with experimental measurements. 
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4.1 The convective region 

In this section the behaviour of the mean reduced gravity in the convective region is 

considered. The density distribution is assumed to have been averaged over horizontal planes 

in the convective region, which has length h3 • In this section, the vertical coordinate z' will 

refer to the distance along the axis of the container relative to the start of the convective 

region. The container is closed at the bottom (z' = h3) and so the mean vertical velocity 

across any horizontal plane is zero. The horizontally averaged density is Pc, with reduced 

gravity gHz', t) = (Pc - po)g/ po. Initially the tank is filled with ambient fluid (gj = 0), and 

the reduced gravity at z, = 0 is 'Y(t) == gHO, t) which in practice will be given by the plume 

behaviour, although in the following analysis it will be assumed to be a given function. 

The one-dimensional equation describing the convection of the buoyant fluid is (see Fis­

cher et al. 1979) 

( 4.1) 

where K,s is the eddy diffusivity. The boundary conditions are 

g~(z',O)=O, 

g~(O, t) = 'Y(t), ( 4.2) 

8gj = 0 'h at z = 3, 
8z' 

this last condition stating that the buoyancy flux through the base of the container is zero. 

The eddy diffusivity K,s may vary with 8pc/8z' but an analytical solution to the above 

problem exists when K,s is constant 

g~(O, t) = 'Y(t) , (4.3a) 

i t 00 [ ]' 
, ,K,s1f K,s • 1 1fZ 

g3(z >0,t)=-h2 'Y(r)2:)2n+1)exp -h2(2n+1)2 1f2(r-t) sm(n+-)-h dr.(4.3b) 
3 0 n=O 4 3 2 3 

Experimental results may be used to estimate 'Y(t) and an estimate for K,s may be obtained 

by comparing the solution given by (4.3) (using this estimate of 'Y) with experimental mea-

surements. 

Figure 12a shows the profiles of mean (on horizontal levels) reduced gravity obta.ined in 

an experiment in which a = 27, with measurements taken at real-time intervals of 30 seconds. 
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The convective region only is shown over the range 9 < z < 27. The reduced gravity at z = 9 

(or Zl = 0), i.e. the top of the convective region that is considered here, is plotted against t in 

figure 12b and a least-squares fit (the solid line) was used to estimate that ,(t) ex: to.726 . Using 

this expression in the analytical solution above, a value of the eddy diffusivity providing the 

best fit may be found. The analytical solution with liS = 1.50 is shown in figure 12c and a 

comparison between the experimental data and theoretical solution is shown in figure 12d. 

The theoretical solution provides a good prediction of the mean values, although there is 

some fluctuation of the experimental data about the theoretical profiles (as expected, given 

the underlying eddy nature of the mixing process). Repeating this process with three further 

experiments gave a mean value of the eddy diffusivity, liS = 1.52 ± 0.03, which will be used 

in the overall model later. 

In the above analytical solution it was assumed that the value of liS is constant although 

in practice liS could vary with 0Pe/ OZ'. Since the local density gradients are small (in the 

previous solution ogj/OZ' has a maximum absolute value in the time period shown of about 

0.1), for variable liS an expansion of the form 

( ) [ ( ) 2 1 lOPe lOPe lOPe 
liS - - ~ EO 1 + El - - + E2 - - + .. . 

Po OZ' Po OZ' Po OZ' 
( 4.4) 

where Ei are constant expansion coefficients, could be assumed. The effect of including first 

and second order terms is shown in figure 13 to be negligible for all but very large values 

of El and E2. In figure 13a the effect of a non-zero El on the solution is shown, plotting the 

numerical solution of (4.1) (solved using a NAG Fortran library routine), using the above 

form for ,(t). The positive values of El decrease the concentration values and vice-versa. 

Figure 13b shows the lesser effect of a non-zero E2, where in this case positive values increase 

the concentration values and vice-versa. 

The theoretical solution (4.3) will be used in the formulation of the whole problem, with 

the above discussion showing that it is sufficient to assume that K,s is constant. 

4.2 The mixing region 

The first and last regions of the flow observed in containers of large aspect ratio, namely 

the plume and convective regions, have now been formulated. In practice these regions are 

not distinct, and both effect the behaviour of each other. The rate at which the mixing takes 

place in the convective region depends on the density gradients achieved at the base of the 
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plume, but conversely the rate at which dense fluid is mixed into the convective region affects 

the concentration of the fluid that is re-entrained into the plume - and so on. 

This interaction is modelled by supposing the existence of a mixed region of constant 

length hz at the base of the plume. It is assumed that dense fluid from the plume at z = hI 

is instantaneously mixed with that of the mixed region, which has density Pm(t) and reduced 

gravity gHt) = (Pm - Po)g / Po. In practice this mixing is driven by the opposing velocities 

of the plume and environmental fluids. The mixed region forms a negatively buoyant layer 

above (for a negatively buoyant source) the less buoyant convective region and so some of the 

buoyant fluid from the mixed region mixes with that of the convective region. This results 

in a flux of buoyancy from the mixing region into the convective region, by an amount which 

will be determined by the density gradient at the top of the convective region. At the same 

time fluid from the mixed region flows into the environment of the plume. Thus an equation 

for conservation of buoyancy in the mixed region can be derived as follows. 

Firstly the total buoyancy input from the plume in time Ot is given by 

(4.5) 

(recall that Q(z, t) = bZw is the plume volume flux) which will be mixed over the length h2 of 

the mixing region. Secondly, the total buoyancy of the convective region, g, can be obtained 

by integrating (4.3) above 

t 3 

9 = lo 7rg~(z', t) dz', where z' = z - hI - h2 • 

Thus the buoyancy flux into the convective region, ..\(t), is given by 

dg 
..\(t) = Tt. 

(4.6) 

(4.7) 

Thirdly there is the buoyancy flux of the fluid flowing from the mixed region into the plume 

environment. This flow must have the same volume flux as that of the fluid flowing into the 

mixed region from the plume (by continuity). 

Finally the dependence of ,(t) and Pa(hl' t) on the reduced gravity of the mixed region, 

g~, must be determined. The most simple assumption that can be made is that 

,(t) == g~(O, t) = g~(t) and (
Pa(hl,t)-PO) _ '(t) g - g2 , 

Po 
( 4.8) 
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Le. that the reduced gravities of the fluid at the top of the convective region and the fluid 

flowing from the mixed region into the environment of the plume are the same as that of 

the mixed region. Thus conservation of buoyancy within the mixing region is given by the 

equation 

or in the limit at -+ 0, 

(4.10) 

4.3 The combined model 

The formulation of the whole flow in high aspect ratio chambers will now be restated briefly 

before considering and comparing the numerical solution and experimental measurements. 

The flow is divided into three regions, namely the plume, mixing and convective regions, 

of heights hI, h2 and h3 = H - hI - h2' respectively. The first region contains the source 

of the motion, a plume whose motion satisfies the equations given in section 3. The third 

region is a convective region with horizontally averaged reduced gravity gHz, t), described in 

section 4.1. The second region is a mixing region which connects the plume and convective 

regions and has been described in section 4.2 above. The length and time scales have been 

non-dimensionalised using the effective radius R and the source initial buoyancy flux, Bo. 

Thus the equations of motion for the whole flow may be summarised in non-dimensionalised 

form as follows 

d 2 
dz (b w) = 2cx p bw, 

d~(b2w2 + (1- b2)U2) = b2g~, 

~(b2wg~) = _ gb
2
w apa, 

dz Po az 

(b 2 
- 1)U = b2w, 

aPa _ UaPa 
Tt - - az ' 

(Pa(hl~:) - pO)g = g~(t), 

with b(O, t) = U(O, t) = 0 and [b2wg~1(0, t) = 1, 
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g~(z' =0, t) = g~(t), 

agj = 0 
az' 

at z =H 

with initial values 

or z' = h3, 

(g~(z, 0) == Pa( Z'~~ - po) 9 = gHo) = g~(z', 0) = o. 

( 4.12) 

(4.13) 

(4.14) 

The choices of H, hI, h2 and K,s define the numerical solution, although clearly H is set by 

the comparative experiment (as are the non-dimensionalising quantities Rand Bo), and hI 

and K,s have been estimated in sections 3.1 and 4.1 above. Note that, whereas in section 4.1 

an artificial function ,(t) was used to specify the reduced gravity at the top of the convective 

region, now this boundary condition is determined by the reduced gravity of the mixed region, 

which in turn is determined by the plume flow. 

4.4 The nurnerical solution and comparison with experiments 

The system of equations above was integrated numerically to obtain the solution. At each 

time step the solutions to (4.11) and (4.13) were calculated (using NAG Fortran routines). 

The plume exterior density Pa and mixing region density Pm were then updated before the 

next iteration. 

A numerical solution with H = 27, hI = 5.5, h2 = 2 and K,s = 1.52 is shown in figure 14a, 

with profiles plotted after equally spaced t intervals. This is then compared with measure­

ments from an experiment, with the same value of H / R, in figure 14b (see also figure 6). 

The mean reduced gravity at points along a 'centre-slice' are shown in the figures as this 

was measured in the experiments for reasons explained in section 2.1 above. The part of the 

profile joining the plume region to the mixing region is drawn with a dashed line. 

The numerical solution is well behaved and exhibits the main features of the experimental 

results. Firstly in the plume region, 0 ~ z .:s 5.5, the profiles take the same form that 
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has been illustrated earlier (see figures 4 and 11), although now the spacing between the 

curves decreases with time (as pointed out in section 2.3 following figure 6), whereas for 

lower aspect ratio containers the concentration increased linearly in time. This is a direct 

result of the loss of buoyancy from the plume to the mixing and convective regions. The 

nonlinear time-dependence in the plume region shown by the numerical solution agrees quite 

well with its comparative experiment, indicating that the mixing region hypothesis used above 

approximates the buoyancy transfer from the plume to convective regions reasonably. 

The steps observed in the numerical solution at z = hI are a consequence of the assumption 

that the density is constant over the whole length of the mixing region . The mixing region 

concentration should not exceed that of the fluid at the base of the plume and this is clearly 

the case in the numerical solution, resulting in a jump in the 'centre-slice' reduced gravity 

between the fluid at the plume base and that at the top of the convective region . This drop 

in concentration value is also observed in some of the experimental contours (see figures 6 

and 14b). The theoretical mixing region concentration is found to vary approximately as 

g~ "" to.68 which is in good agreement with the experimentally obtained approximation used 

in section 4.1 (!(t) there). 

Finally the prediction for the behaviour of the convective region may be compared with 

the experimental results. There is a large degree of scatter in the experimental results, due to 

the eddy nature of the mixing process, and so no numerical solution will ever agree perfectly 

with them. However, the numerical solution models the general behaviour reasonably well, 

particularly for larger times, although overall the numerical concentration values tend to be 

slightly higher than the experimental. This may be due to inaccuracies in the measurement of 

the buoyancy flux in the experiment, which mean that the theoretical values are accurate to 

about ±4%. The dependence of the solution on h2 is weak, and in order to obtain significantly 

better agreement with the experimental values, the value of h2 must be increased beyond what 

can be considered to be a physically realistic value. 

The above comparison has been made between a single experiment and the numerical 

solution. This is because the degree of scatter in the experimental data is such that using 

more than one set of experimental results would have made the figure much more confusing. 

However, it is possible to compare more than one experiment with the numerical solution 

by taking measurements at a specific value of t. Figure 15 shows measurements from three 

experiments (all with a = 27) at t = 71.8 . The agreement is good although again there is 

considerable scatter between each set of experimental measurements . 
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5. Discussion and conclusions 

In this chapter, the flow and concentration field produced by a buoyant convection from 

a source in a vertical tank of initially still, uniform fluid with aspect ratio, a > 1, has been 

investigated experimentally and theoretically. When a :::; 1, the flow can be described well 

by the 'filling-box ' theory of Baines & Turner (1969). 

It was shown that the behaviour of a plume confined to a container of large depth will 

eventually break down at z ~ 5.78, with the plume flow becoming undefined. Flows in 

containers of general aspect ratio can thus be divided into two types: those in which the 

plume breakdown does not occur, (a < 5.8) and those for which it does (a ~ 5.8). 

For containers of moderate aspect ratio (1 :::; a < 5.8) it was found that the behaviour 

of the mean flow variables can still be modelled well by the confined plume equations (3.1), 

(3.2), (3.4), (3.8) and (3.9) - the numerical solution agreed well with experimental data. 

The numerical solution predicted that the concentrations will increase linearly in time af­

ter sufficiently large times, which was observed experimentally. This is also in agreement 

with the assumption that Baines & Turner (1969) used in their asymptotic theory for low 

aspect ratio containers. The numerical solution also predicted that the point at which plume 

breakdown occurs will move closer to the source as the fluid exterior to the plume becomes 

progressively more stratified. However, the flow of the plume near to the tank base must be 

allowed for: the fluid flowing away from the plume on the tank base effectively restricts the 

application of the numerical solution to all points except those sufficiently close to the base 

to be influenced by it. Finally, the numerical solution also predicted that as the radius of 

the plume becomes comparable to the container effective radius, and as the environment of 

the plume becomes more stratified, the rate of increase of the plume radius with increasing 

axial distance from the source increases faster than the linear relationship found in an infinite 

un stratified environment. 

For containers of larger aspect ratio, the plume breakdown threshold above will be at­

tained. This gives rise to a mixing region at the base of the plume, in which the downward 

plume fluid is mixed with the upward flowing environmental fluid. The unstable density 

gradient thus created drives mixing of the buoyant fluid at the base of the plume with the 

fluid further from the source. The convective region was found to be modelled well by a sim­

ple one-dimensional diffusion equation with an eddy diffusivity, although the experimental 

measurements exhibited quite large fluctuations about the predicted mean values due to the 
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underlying eddy nature of the mixing process. The main boundary condition of this flow is 

the concentration at the end nearest to the source. The reduced gravity at this point was 

estimated by using experimental measurements. Good agreement was found between the 

analytical solution and the experimental data when K,s = 1.52 ± 0.03, the value which was 

used in the numerical analysis of the whole system. 

The plume and convective regions were then connected theoretically using a simple mixing­

region hypothesis. Briefly, this hypothesis asserted that the buoyant fluid from the plume 

entering the mixing region would be immediately mixed over its length h2 • The subsequent 

value for the mixing region reduced gravity was then the boundary condition for the reduced 

gravity at the top of the convective region and also the reduced gravity of the fluid entering the 

plume environment to be re-entrained into the plume. These boundary conditions are then 

effectively set by the value of h2 • Good general agreement between the numerical solution 

and experimental measurements was found in all three regions when h2 ~ 2, i.e. the length of 

the mixing region is of the order of a tank diameter. The concentration values predicted by 

the numerical solution are in general slightly higher than those of the experiments, although 

this may be due to inaccuracies in the measurement of the experimental buoyancy flux. The 

numerical model demonstrated the experimental observation that the concentration increase 

in the plume region is no longer linear in time, the rate of increase decreasing. Hence it was 

concluded that the simple mixing region hypothesis used to link the plume and convective 

regions models the transfer of buoyancy between them reasonably well. 

The practical implications of this work suggest that, if, say, there was a slow leak of natural 

gas at the bottom of a tall tower or lift shaft, the gas would not quickly rise to the top of 

the chamber as might be expected. In fact high gas concentrations (which are increasing in 

time) would be attained in the environment of the plume near to the source, with comparable 

concentrations achieved at the top of the tower only after a relatively long period of time. 

If the leak was at the bottom of a mine shaft, then the effects of ventilation are likely to be 

significant. Mine shafts are normally used for venting the mines, with fresh air flowing down 

one shaft and up another. If the gas leak was at the bottom of the shaft with up-flowing ah', 

then the ventilation would act to disperse the gas. However if the leak was in the shaft with 

the down-flowing air, then, if the speed of the air was significantly less than that of the leak, 

then the ventilation system could act to suck high gas concentrations into the mine system. 
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Notation 

Below is a list of the symbols used in this chapter, provided for reference purposes. 

a 

I 
92,3,a,p 

9 

H 

J(x, z) 

M 

Q 

R 

Ra 

t 

u 
w 

z 

Z l 

,et) 

v 

Pa,c,m,p 

Po 

Aspect ratio 

(Initial) specific buoyancy flux of the plume 

Plume radius 

Reduced gravity of the plume fluid, relative to the environment fluid 

Reduced gravity of the mixing region/convective region/environment/plume 

fluid, relative to the reference density 

Total buoyancy in the convective region 

Height of the tank 

Height of the plume/mixing region/convective regions 

Intensity function 

Local specific momentum flux of the plume 

Local specific volume flux of the plume 

Effective radius of the tank 

Rayleigh number 

Time 

Mean (vertical) velocity of the fluid in the environment of the plume 

Mean (vertical) velocity of the plume fluid 

Vertical coordinate 

Vertical coordinate in the convective region 

Entrainment constant for a plume 

Reduced gravity at the top of the convective region 

Coefficient in expansion of "'s 

Thermal conductivity 

eddy diffusivity 

Buoyancy flux from the mixing to convective regions 

Kinematic viscosity 

Density of the fluid in the environment/convective region/mixing region/plume 

Reference density 
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CHAPTER SIX 

Buoyant Convection from a Source 

in a Tall, Angled Chamber 

In this chapter the work of chapter 5 on buoyant sources in tall, vertical chambers is 

extended: the chamber is now placed at an angle to the vertical. Only chambers with aspect 

ratio greater than six are considered so that the plume breakdown threshold described in the 

previous chapter is reached. 

In tall, angled chambers, the convective region observed in vertical chambers is replaced 

by a two-layer counterflow, with mixing between the layers. Dense fluid is mixed more quickly 

with the fluid far from the source than was observed in the vertical case. 

A simple model of the motion of the counterflow is presented and the numerical solution is 

compared with experimental measurements. The counterflow is then mathematically linked 

with the plume region, in a manner analogous to that used in the previous chapter, to obtain 

an overall model of the flow. The theoretical predictions for the whole flow are compared 

with experimental data. 

1. Introduction 

In the previous chapter the flow resulting from a point source of buoyancy in a tall, vertical 

chamber was examined. It was found that at a distance of about six 'effective' chamber radii 

from the source the plume flow breaks down giving rise to a mixed region. Some of the fluid 

from this region then mixes with the fluid further from the source by a turbulent convection 

process. This convective region had no observable ordered structure. 
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In many practical cases the chamber will not be vertical and will be placed at an angle, 

() > 0°, to the vertical (for example, consider the flow of smoke or natural gas in an escalator 

shaft). Thus it is important to investigate the effect of placing the chamber at an angle on the 

flow observed in vertical chambers. In preliminary experiments it was observed that, even for 

small angles, the convective region was replaced by a two layer counterflow with dense fluid 

flowing down the lower side of the tank and ambient fluid flowing up the opposite side (see 

figure 1) with mixing between the two layers. Thus the flow is very different to the vertical 

case, the difference being due to the presence of a component of gravity perpendicular to the 

sides of the tank. However, in the plume and mixing regions, the flow appeared to be similar 

to that observed in the vertical case. 

The flow of a buoyant layer or gravity current down a slope has received some attention. 

Gravity currents on slopes may occur naturally in, for example, thunderstorm outflows, and 

in industrial or domestic situations, such as the gas escape mentioned above. Britter & 

Linden (1980) list a number of authors who have reported experimental data for these flows. 

Britter & Linden (1980) cover the whole range of slopes 0° ~ () ~ 90° confirming the finding 

of Ellison & Turner (1959) that, for all but very small slopes, the velocity of the front 

is independent of position down the slope. They also found that the mixing at the front 

increased dramatically with the slope but that the front velocity was virtually independent 

of the slope for 0° < () ~ 85°. 

The form of this chapter will be similar to that of chapter 5. The experiments and general 

experimental observations will be described in section 2. In section 3 the model of the coun­

terflow will be derived comparing the theoretical predictions with experimental measurements 

in this region. In section 4 the plume region will be coupled with the counterflow (analogous 

to section 4.2 of chapter 5) thus obtaining the overall model. The numerical solution to the 

whole model will be compared with experimental concentration and velocity measurements. 

2. Experiments 

As in chapter 5 some experimental observations and measurements will now be presented 

before analysing the problem theoretically. These measurements will show how the concen­

tration behaviour varies in different regions of the flow and how it contrasts with that of the 

flow described in chapter 5. 
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2.1 Experimental technique and apparatus 

The experiments were conducted using a perspex tank of length 1.2 m, with a square 

cross-section of side 8 cm. The lower end of the tank was closed. Dyed salt solution was 

pumped in slowly from the upper end of the tank with the nozzle pointing along the axis. 

The flow rate was chosen to be sufficiently slow so that the 'jet-length' (see chapter 2) was 

small compared with the width of the tank - the effects of initial source momentum may 

then be neglected. The buoyancy flux of the source could be varied by altering the salt 

concentration of the reservoir fluid or the flow rate of the source. The tank was clamped to 

background illumination, which consisted of two fluorescent lights placed behind a diffusing 

screen. The whole apparatus could be positioned at an angle to the vertical. Slopes in the 

range 1 0 ~ () ~ 60 0 were used in the experiments. 

The experiments were recorded on video tape for subsequent image processing. The pro­

cedure was calibrated by recording pictures of the tank filled with fluid of known uniform 

concentration. The linear variation of pixel intensity with dye concentration, that has been 

reported previously (see chapter 4, figure 9b), was observed for all but the highest concentra­

tions. The non-linearity for high dye concentrations was taken into account when calculating 

the reduced gravities from the intensities. 

The investigation described here will be restricted to a consideration of very tall chambers 

(aspect ratio greater than six) so that the plume breakdown threshold, described in chapter 5, 

is reached. All of the experimental results presented here were made using an aspect ratio 

a = H / R = 24, where a is defined in terms of the length of the tank, H, and the 'effective 

radius', R - the radius of a circle with equal cross-sectional area to that of the tank. This 

was the largest aspect ratio obtainable practically, used because it should produce the largest 

possible variation in concentration. 

2.2 Experimental observations 

The observed flow is drawn schematically in figure 1. It has already been stated that 

the convective region of chapter 5 is now replaced by a two layered counterflow system. 

This is because there is now a component of gravity acting in the direction perpendicular 

to the walls of the tank, resulting in a pressure difference at points diametrically opposite 

in the mixed region. This results in a buoyant outflow from the mixed region, analogous to 

the gravity current flow produced by the release of buoyant fluid from a lock exchange (see 
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Simpson 1987). The buoyant layer occupies about half the depth of the tank and flows down 

the lower boundary. t The tank is closed at the lower end and consequently the fluid above 

the lower layer flows in the opposite direction, so that there is no net axial flow. The shear 

between the two layers causes mixing between them, although this is inhibited to some extent 

by the stable stratification. 

In initial investigative experiments, the counterflow system appeared to develop for angles 

even as small as 2°. However, it is expected that there is a transition between the disorganised 

vertical case and the organised angled case, as () varies between 0° and", 2°. For angles within 

this range it was observed that the counterflow still developed, but broke down at some point 

along the tank. The position of this point moves further from the source with increasing angle 

until the case of () ~ 2°, when the counterflow extends to the base of the tank. Thus the 

following description of the flow and theoretical model is restricted to the case when () ~ 2°. 

Concentration measurements from a single experiment (in which () = 15°), taken after 

equally spaced time intervals of one minute, are given in figure 2. In this figure measurements 

were made of the mean concentrations (averaged through the tank and over the whole width of 

the layer) on either side of the tank axis to see if there is a significant, measurable difference 

between them, due to placing the tank at an angle (compare this figure with figure 6 of 

chapter 5). The concentrations measured on the lower side of the tank are connected by a 

dashed line and those made on the upper side of the tank are connected by a solid line. It may 

been seen that there is a change between the concentration behaviour in the plume region 

o ~ zj R .:s 5.5 and the counterflow region 7 .:s zj R ~ a analogous to that observed in the 

vertical case (see chapter 5, figure 6), where z is the axial coordinate. In the counterflow region 

is it also clear that the mean concentrations measured in the lower half of the counterflow are 

greater than those of the upper half, as is expected. However there is no such pattern in the 

plume region, indicating that the slope of the tank has had comparatively little effect there. 

These observations are consistent with conclusions reached on viewing of the experiments -

the flow in the plume and mixing regions is very similar to that observed in vertical tanks, 

but the region beyond the mixing region is completely different. 

One problem with performing digital analysis over the whole tank is that a picture of the 

whole tank must be recorded on tape, which consequently has a rather small image. This 

t As in chapter 5, the description here will be given assuming that the source fluid is 

negatively buoyant, which is the case in the experiments. 
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means that the number of pixels spanning the width of the tank is small thus increasing the 

errors in the measurements. In order to take more accurate measurements of the counterflow 

region, the video camera was zoomed in on a specific part of the flow. The image of the tank 

is consequently wider which enables more accurate measurements to be made. Measurements 

from such a run are shown in figure 3, in which attention has been focussed on the top half 

of the counterflow in the region 6 ~ z/ R ~ 16. This figure shows the difference in mean 

concentration between the upper (solid line) and lower (dotted line) layers very clearly. 

It will become apparent in the following discussion that another flow variable of interest 

is the velocity of the layers in the counterflow. The velocity was measured by injecting green 

dye into the lower layer. The flow was recorded on video tape and the velocity could be 

calculated by measuring the time taken for the dye patch to travel between lines on the tank 

spaced at intervals of 2R. The video image may be controlled very accurately, with the time 

measurements given to an accuracy of ±0.04 s, i.e. to the accuracy of the time space between 

video frames. Thus, in theory, quite accurate measurements may be made. In practice, of 

course, the velocity distribution of each layer is not uniform and a range of velocity values 

may be measured. Also , the dye patch remains most well defined in the region of the flow 

that is near to the upper and lower walls - where the mixing is least. This is also where the 

velocity of the flow is greatest. Thus the mean values are expected to be, on average, less than 

the measured values. Measurements from a series of three experiments, all with the same 

source buoyancy flux, are given in figure 4 (the symbols simply denote measurements from the 

different experiments). The time value plotted is the mid-point of the time interval used to 

calculate the velocity. The velocities were measured at points within the range 6 ~ z/ R ~ 20 

and there was no noticeable trend in the velocities measured as the dye patch travelled from 

the top to the bottom of this region. This supports the observations of Ellison & Turner 

(1959) and Britter & Linden (1980), that there is little variation in the velocity of the current 

with position along the slope. Also, except in the initial stages of the flow, there seems to be 

little variation in the velocity range measured in time. 

3. A model of the counterflow region 

It is now clear that to model the whole flow it will be necessary to substitute a model 

of the counterftow region for the convective region part of the combined model of chapter 5. 

In this section, the equations for the counterflow will be derived and the assumptions made 
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will be discussed. The predictions of the model will then be compared with experimental 

measurements. 

3.1 The basic features of the counterflow 

The essential features of the counterflow system will now be recalled, as these form the 

assumptions on which the model is based. 

3.1.1 The flow variables 

A diagram of the counterflow is shown in figure 5. The lower layer has mean (averaged over 

a plane perpendicular to the axis through the layer) reduced gravity gf( z', t) and the upper 

layer has mean reduced gravity g~(z', t), where t is time - z' is used as the axial coordinate 

in the counterflow region, with z' = 0 at the top of the counterflow region. The mean axial 

velocity of the lower layer is W(z', t). The counterflow region has length h3 and the width 

of the tank is 2d (where d may be different from R). It is also assumed that the flow is 

approximately two-dimensional and that the component of velocity and density gradients in 

the y direction (through the page) are negligible . 

It has already been stated that preliminary experiments supported the findings of Ellison 

& Turner (1959) and Britter & Linden (1980) that the velocity of a gravity current does not 

appear to change as it flows down a slope. The same property has been observed here and 

will be assumed in the analysis, i.e. it is assumed that 1V is a function of t only. 

A second observation mentioned earlier was that both layers in the counterflow occupy 

approximately half the depth of the tank, i.e. they have thickness d. This is an analogous 

resu 1t to that of the counterflow in chapter 4. However in this case there is considerable mixing 

between the layers and thus there is no interface on which to apply the Bernoulli theorem to 

derive this result analytically. However, an immediate consequence of this assumption may 

be obtained by applying conservation of volume on planes perpendicular to the axis. Since 

there is no net flow (because the end of the tank is closed) this implies that the mean axial 

veloci ty of the upper layer must be - vV( t). The connection between the flow of chapter 4 

and the present flow will be discussed further in the concluding section. 

It was mentioned in section 1 that Britter & Linden (1980) also found that there was little 

variation of the front velocity with the slope, for a given source buoyancy flux. They wrote 
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this result in the form 

(3.1) 

where Uf was their front velocity, and gb and Q were the reduced gravity and the volume 

flux of their line source respectively. In the present case the value of an equivalent gb may be 

given by the difference in density between the two layers at the top of the counterflow region, 

i.e. gb == g;(O, t) - g~(O, t) and the volume flux (of an equivalent line source) is given by W d. 

This would imply that (in the present notation with front velocity Wf ) 

W! = (1.5 ± 0.2)([g;(0, t) - g~(O, t)]dW)t. (3.2) 

Britter & Linden (1980) also found that for slopes with () .:s 60° the front velocity was 

approximately 60% of the velocity of the following flow. Thus writing H'! c::: 0.6W, equation 

(3.2) becomes 

W(t) c::: (4.0 ± 0.8) [g:(O, t) - g'.,(O, t)]d. (3.3) 

Of course, the flow discussed by Britter & Linden (1980) is different to the present flow in 

that there was no ambient flow present. In the present flow the 'ambient' fluid has equal and 

opposite velocity to that of the layer flow and may not be neglected. Thus it may be assumed 

that in equation (3.3), the velocity given is the difference between the layers. Taking this 

effect into account modifies equation (3.3) to 

W(t) c::: (2.0 ± O.4))[g;(O, t) - g~(O, t)]d. (3.4) 

This is the form of the dependence of H1(t) on the density difference at z' = 0 that will be 

used in the model. Initially, however, it will be assumed that li!(t) = kl J g;(O, t) - g~(O, t) 

and the constant I.~ l will be determined by making a comparison between the theoretical 

predictions and experimenta.l measurements, although from the above discussion it might be 

expected that kl '" 0(2). Note again that there is no dependence on the angle of elevation 

but the use of (3.4) must be restricted to the case when 0° < () ~ 85° since (3 .1) only applies 

in this range. 

3.1.2 The mixing between the layers 

It is now established that the counterflow is to be approximated by two layers of different 

density, each occupying ha.lf the depth of the tank, moving in equal and opposite directions 
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with the same mean axial speed. There is, however, a slight contradiction here: if W is 

constant in z', then this implies that there is a non-zero volume flux in the lower layer at 

the tank base. Of course, in practice, the layer velocity decreases to zero in the vicinity 

of the tank base (this deceleration appears to occur within about 4R from the base). This 

deceleration, though, is an aspect of the flow that is relatively unimportant here: it suffices 

to say that in the present model there is no net volume or buoyancy flux at the tank base. 

The deceleration of the layers near to the base is thus ignored. 

The shear between the two layers causes instabilities in the interface and turbulence, 

resulting in mixing between the two layers. Mixing at a shear layer interface has been the 

subject of considerable discussion. Generally, experiments have consisted in examining the 

flow of a buoyant layer on a horizontal level or slope, measuring the rate of increase of the 

thickness of the layer in order to calculate the rate of entrainment (for a review see Turner 

1986). In the current case the objective is to obtain a relation representing the dependence 

of the mixing effects on the velocity shear and density stratification. 

In an infinite fluid the entrainment into a moving layer is generally calculated by the use 

of the entrainment assumption (see chapter 3) 

Ue = E6.1O. (3.5) 

This relates the entrainment velocity across the interface, Ue , to the axial velocity shear 6.10 

by the use an entrainment function E, which will depend on the shear and the stratification. 

Kato & Phillips (1969) measured values of the entrainment coefficient, E, in an experi­

ment in which a constant stress was applied to the the top of a tank of initially still fluid, 

with a uniform density gradient. E was calculated by measuring the development of the 

turbulent layer. They found that the entrainment coefficient varied with the reciprocal of a 

flow Richardson number , i.e. 

2 

E = (2.5 ± 0.75)Ri:;1 = (2.5 ± 0.75) ;:;;;, (3.6) 

in their notation, where U* was the friction velocity and D was the layer depth. Ellison & 

Turner (1959) measured the entrainment into a buoyant layer flowing down a slope. They 

found that the entrainment could be related to the mean flow Richardson number. Their 

results may be approximated by (see Turner 1986) 

E = 0.08 - O.lRi 
1 + 5Ri 

where 
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The physical situation for which (3 .7) was found seems more similar to the current case than 

that of Kato & Phillips. Also, it is difficult to relate the value of the Richardson number 

measured by Kato & Phillips to the mean flow variables in the current problem, and their 

measurements do not extend to Ri* = o. Thus the form found by Ellison & Turner will be 

used in the present model. 

Of course, their situation is still rather different to the current flow. They studied the 

entrainment into a single, thin, buoyant layer, whereas here the flow consists of two opposing 

layers of equal thickness. In a fluid of large depth with a single dense layer, entrainment 

results in an increase in the layer thickness. This is clearly not possible in the present case as 

each layer must maintain a thickness of half the width of the tank. Thus it will be assumed 

that the entrainment velocity 1te is simply the speed of fluid flowing from the lower to the 

upper layer and vice-versa, at each point on the 'interface' of the counterflow. In fluid of 

large depth this would result in the layer increasing in thickness as mentioned above, but here 

it simply represents the degree of mixing between the layers. However, it is not clear that 

the form of (3.7) should apply immediately to the present case. It is likely that the mixing 

between the layers will be somewhat higher than that observed with a single layer (due to 

the presence of the upper boundary). Therefore, in the model it will be assumed that there 

exists a mixing velocity 1le at the interface, related to ItV by equation (3.5), with 

E = k 0.08 - O.lRi 
2 1 + 5Ri ' 

(3.8) 

for some constant k2 .2: 1, which may depend on the cross-sectional shape of the tank. The 

Richardson number will be evaluated at each point with the reduced gravity in equation (3.7) 

being given by the mean density difference between the layers at that point. Thus, using the 

fact that in the current case ~w = 21tV, the Richardson number is given by 

R.(' )_ [g!( z',t)-g'tt( z',t)]dsinO 
t z ,t - 4H1(t)2 . (3.9) 

The effect of the slope is therefore solely incorporated in the Richardson number and hence 

in the rate of mixing. 

3.2 The equations of motion 

The assumptions on which the model is based have now been described. The equations for 

the mean motion of the coullterflow layers will now be presented. In the derivation here and 
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subsequently it will be assumed that the length and time scales have been non-dimensionalised 

by the source buoyancy flux, Bo, and effective tank radius, R. Thus, if the star denotes a 

dimensionless scale, then 

where [L] and [T] are the scales of length and time respectively. The stars will be assumed 

to have been dropped from the variables. 

For an incompressible fluid the rate of change of density following the flow is zero, i.e. 

{Jp 
(Jt + u.V'p = 0, (3.10) 

where p(x) is the density and u(x) is the mean velocity flow field. This equation may be 

integrated through each layer over a plane perpendicular to the axis. 

Integrating the lower layer gives 

J.. dx + u-.£. + vJ.. + W-f o {J fO ({J {J (Jp ) 
-d {Jt -d {Jx {Jy {Jz ' 

dx = 0, (3.11) 

where x is the coordinate in the plane of the motion, perpendicular to the axial (z') coordinate 

(see figure 5); the mean velocity flow field in the lower layer has components (u,v, W) in 

the (x, y, z') directions. Recall that W(t) is a function of t only and that mean density 

distrihutions are considered, i.e. they are independent of x and y. 

The flow is approximately two-dimensional (v ~ 0) and so dependencies on y and gradients 

in this direction may be neglected. Thus the third term is approximately zero. Integrating 

the first, second and last terms gives 

{JPl ° fO {Ju {JPl 
d~ + (up)l_d - P~ dx + dW(t)-;:}f = O. 

ut -d uX uZ 
(3.12) 

Clearly there can be no flow through or out of the lower boundary and so u( -d, z' , t) = O. 

Also, from the equation of incompressibility 

(3.13) 

and so equation (3.12) may be written 

(3.14) 

- 140 -

\' 



Chapter Six - Buoyant Convection from a Source ... 

However W is a function of t only and so the third term is zero. 

The second term represents the mixing between the layers at the interface. In section 3.1.2 

it was decided that the mixing would be given by an entrainment velocity at the interface 

U e = E~W = 2EW. Note, however, that there must be an equal volume flux of fluid flowing 

from the lower layer into the upper layer as there is from the upper layer into the lower. The 

second term is therefore Ue(PI - Pu). Thus equation (3.14) is then 

8pI 2 . 8pI Tt + dE(Rz)W(t)(pl - Pu) + Wet) 8z' = 0, (3.15) 

where E and Ri have been defined in equations (3.8) and (3.9), respectively. By simple 

substitution this equation may be rewritten in terms of the layer reduced gravities 

, _ (P/,u - po) 
gl,u - g, 

Po 
(3.16) 

where Po is a reference density, equal to that of the initial ambient fluid density. Thus 

equation (3.15) becomes finally 

8' 2 8 ' ~I + dE(Ri)W(t)(g~ - g.~) + Wet) 8~: = o. (3.17) 

The upper layer may be integrated similarly giving 

8:t~ + ~E(Ri)W(t)(g~ - gD - Wet) ~~~ = o. (3.18) 

Equations (3.17) and (3.18) form the equations of motion of the counterflow, recalling that 

E(Ri) = k 0.08 - O.lRi 
2 1 + 5Ri 

where R .( ') (g~ - g~)d sin () 
1. z , t = 4W2 and (3.19) 

(3.20) 

The end of the tank is closed and thus the following boundary condition applies at z' = h3 

(3.21) 

which states that fluid reaching the base of the container in the lower layer immediately 

begi ns to flow back up the tank in the upper layer. (Recall that the deceleration of the layers 

near to the base is ignored.) 

The value of gf(O, t) is the final boundary condition required to close the system. In practice 

this will be set by the behaviour of the plume and mixing regions (as was the reduced gravity 
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at the top of the convective region in the vertical chamber flow). In the following comparisons 

between the predictions of the above model and experimental data, the behaviour of gf(O, t) 

will be estimated from the experimental results. 

In summary, the model consists of equations (3.17)-(3.21) together with a further bound­

ary condition setting gf(O, t). The constants kl and k2 must be set by comparison with 

experimental data. 

3.3 The numerical solution 

The equations for the model were integrated numerically using a finite-difference method. 

The results were compared with the data shown in figure 3 and data from six other exper­

iments in the case when () = 15° and a = 24. The behaviour of gf(O, t) was approximated 

by 

(3.22) 

obtained by making a power law fit to the experimental data (the same as that used in the 

comparison) at z' = 0 (or z ~ 6). 

3.3.1 Dependence of the solution on kl and k2 

The behaviour of the solution on the constants kl and k2 is not at all obvious. For example, 

increasing the constant kt will increase the velocity of the layers, but this in turn increases 

the mixing. An increase in the mixing implies that the concentrations in the upper layer will 

rise, which means that the velocity will subsequently decrease (from (3.20)). It is clear that 

the balance between the effects of kl and k2 needs investigation. Some initial solutions were 

calculated to study the effect of these constants on g~,I(z', t) and lV(t). 

The behaviour of g~(O, t4) with kt (where t = t4 was chosen to be the final time-point 

shown in figure 3), is shown in figure 6a for a variety of values of k2 • It is clear from this 

figure that the dependence of g~(O, t4) on k2 is very weak for k2 < 1.5 compared with the 

dependence on kl (recall that it is expected that kt rv 0(2)). For a given value of k2 an 

increase in k t acts to increase g~(O, t4) as explained above. Similarly figure 6b shows that 

increasing the value of kt increases the value of the reduced gravity in the lower layer at 

z' = h3/2 whilst figure 6c shows that the difference between the layer reduced gravities at 

this point is reduced. The results of figures 6 a, c are indicative of an overall increase in the 

mixing with an increase in kt . Figures 6 a, b, c also show that increasing the entrainment (by 
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increasing k2 ) results in an increase in the reduced gravity near to Zl = 0 but a decrease (and 

a decrease in the difference between the layers) further along the tank. Overall it is clear 

that the solution is considerably more sensitive to the value of kl than to k2 • 

The values obtained in this study were compared with measured concentrations, of which 

figure 3 shows a set from a typical experiment. By matching the values of g~(O, t4), gf(h3, t4), 

gf(h3/2, t4) and gf(h3/2, t4)-g~(h3/2, t4) it was found that good agreement could be achieved 

when 

kl = 2.43 ± 0.08 

k2 = 1.68 ± 0.17. 
(3.23) 

The values kl = 2.43 and k2 = 1.68 were used in the final numerical solution. Note that these 

values have been chosen by comparison with experimental measurements at one particular 

value of t. It remains to be seen whether or not these values give a good agreement with 

experimental data for different values of t. 

The values of kl and k2 seem to be reasonable. The earlier estimate for kl from the 

measurements of Britter & Linden (1980) gave kl ~ 2, which is comparable to the above 

value kl = 2.43. It was also anticipated that k2 might be greater than one, i.e. there is a 

greater level of mixing taking place than was observed by El1ison & Turner (1959) due to 

the presence of the upper boundary. The value k2 = 1.68 implies a maximum value for E of 

0.1344, which is consistent with the measurements of Kato & Phillips (1969). 

3.3.2 Comparison between the counterflow solution and experimental data 

The solution obtained using the above values for kl and k2' with () = 15° is shown in 

figure 7, in which it has been assumed that h3 = 18 (for comparison with experiments in 

which H = 24). The dotted line is the solution for the lower layer and the solid line is the 

solution for the upper layer. The numerical solution exhibits the expected features of the 

counterflow, namely that the reduced gravity of the lower layer is always higher than that of 

the upper layer, except at the end of the tank where they are required to be equal. 

A comparison between this solution and the experimental measurements of figure 3 is 

given in figure 8. Figure 8a shows the solution for the lower layer (solid line) compared 

with experimental measnrements (the points have been joined by a dotted line) and figure 8b 

shows the solution for the upper layer. The numerical solution follows the general pattern of 

the experimental data well although it should be emphasised that these are data points from 

a single experiment only. Consequently there is a considerable degree of fluctuation of the 
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experimental profile about the numerical solution, associated with the fluctuating nature of 

the large-eddy mixing processes. 

The boundary condition specifying gl(O, t) was, III this solution, given by an artificial 

function estimated from the experimental measurements. In practice, this will be set by the 

behaviour of the mixing region concentration. In the next section the model for the whole 

flow will be presented, comparing the numerical results with measurements from several 

experiments. 

4. The model for the whole flow 

The model for the counterflow region has been presented and shows good agreement with 

experimental data. It remains to derive the behaviour of the mixing region and to link 

the plume, mixing and counterflow regions to form a combined model (analogous to that of 

chapter 5). 

4.1 The mixing region 

In chapter 5 it was explained that in tanks with aspect ratio greater than about six, the 

plume flow breaks down giving rise to a mixed region at the base of the plume. In the 

vertical chamber case, dense fluid from this region mixed with fluid further down the tank by 

turbulent convection. Here, there is a pressure difference between the top and bottom points 

of the mixed region, due to the angle of the tank, which results in the counterflow described 

above. 

It will be assumed that dense fluid flows from the mixed region into the lower layer of 

the counterflow and that fluid flows into the mixed region from the upper layer. There 

is also a supply of buoyancy from the plume and an equal flow into the environment of 

the plume. At each point in time, the fluid entering the mixed region is assumed to be 

instantaneously mixed, i.e. the mixed region is of uniform density (although this assumption 

may be increasingly less good for increasing values of (J). In the following derivation of an 

equation describing the concentration behaviour of the mixed region, it will be assumed that 

the mixed region is of constant length h2 , uniform density Pm(t) and reduced gravity gHt), 

defined analogously to the layer reduced gravities (see equation (3.16)). The plume region has 

length hI = H - h2 - h3 and the notation used will be the same as that used in chapter 5 (i.e. 

mean axial velocity w(z, t), radius b(z, t), environment density Pa(z, t), plume density pp(z, t), 
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reduced gravity gi(z, t) = (pp - Pa)/ Po and environment velocity U(z, t), with z' = z- hI - h2 

- see chapter 5, figure 7). 

In a small time interval 6t, the flow of buoyancy from the mixed region to the lower layer 

of the counterflow is given by rrgHt)W(t)6t/2 and the flow of buoyancy from the upper layer 

into the mixed region is given by rrg~(O, t)W(t)6t/2. 

The supply of buoyancy from the plume is given by rrb2( hI, t)w( hI, t)(pp - Po)/ Pog6t and 

the flow of buoyancy into the environment of the plume is given by rrb2(hl' t)w(ht, t)gHt)M, 

in which it has been assumed that the density of the fluid flowing into the environment of 

the plume is equal to that of the mixed region (i.e. Pa(hl' t) = Pm(t)). 

Thus the change in the total buoyancy of the mixed region is given by the equation 

Hence in the limit M -+ 0 this gives 

This is the conservation equation for the mixing region that will now be used in the combined 

model of the whole flow. 

4.2 The combined model 

The models for the behaviour of the counterflow (section 3.3), mixing region (section 4.1) 

and plume region (chapter 5, sections 3.1 and 3.2) will now be combined to form an overall 

model of the flow resulting from a plume in a tall angled chamber. 

In summary, the flow is divided into three regions, namely the plume, mixing and coun­

terflow regions, of heights hI, h2 and h3 = H - hI - h2' respectively. The first region contains 

the source of the motion, a plume whose motion satisfies the equations given in chapter 5, 

section 3, although it should be noted that these equations were derived in the vertical case 

and may not be appropriate for large values of (). The second region is a mixing region which 

connects the plume and counterflow regions and has been described in section 4.1 above. 

The third region is a two-layered stratified counterflow which exists for () ;::: 2°, described in 

section 3 above . The length and time scales have been non-dimensionalised using the effective 

radius, R and the source ini tial buoyancy flux, Bo. The equations of motion for the whole 
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flow may be summarised in non-dimensionalised form as follows 

d 2 
dz (b w) = 2O:p bw, 

.!!.-(b2w2 + (1- b2)U2) = b2g~, 
dz 

'!!'-(b2wg') = _ gb
2
w aPa , 

dz 1 Po az 
(b2 

- l)U = b2w, 

aPa _ UaPa 
Tt - - az' 

(Pa(hI~:) - po) 9 = g~(t), 

with b(O, t) = U(O, t) = 0 and b2wg~ (0, t) = 1 

agf 2 . " agf Ft + dE(R/')l¥(t)(gl - gtJ + W(t) az' = 0, 

ag~ 2 ( .) ()(' ') ( ) ag~ Tt + dE R'I. W t gu - gl - W t az' = 0, 

W(t) = kl )[g:(O, t) - g~(O, t)]d, 

E(R') = k 0.08 - 0.1Ri 
'/. 2 1 + 5Ri 

where 
. (gl - g~)dsin(} 

Rz = 4M72 ' 

g:(O, t) = g~(t), 

The initial conditions are 

Pa(z,O) = Po, g~(O) = g: u(O) = O. , 

( 4.3) 

( 4.5) 

( 4.6) 

For a given tank aspect ratio the solution will be set by the values of H, hI, h2' kI and k2 

(although the latter two have been determined already). Note that now, the gf(O, t) boundary 

condition is set by the mixing region reduced gravity, whereas in section 3 this was estimated 

from experimental measurements. 
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4.3 The numerical solution and comparison with experiments 

The system of equations (4.3)-(4.6) was solved using a finite-difference iterative method. 

The constants kl and k2 were set according to the values previously estimated and thus the 

solution depends only on the heights H, hI and h2 • Following the results of chapter 5, hI was 

chosen to be hI = 5.5, and H is set by the comparative experiment - in this case H = 24. The 

dependence of the numerical solution on h2 was found to be weak, with the value of gHt4 ) 

varying by about 4% over the range 0.5 < h2 < 2. The most accurate fit to the experimental 

data shown in figure 3 was obtained when h2 = 1.23. Thus, given the degree of experimental 

error, it was concluded that a value of h2 = 1.23 ± 0.15 is appropriate. This value is also 

in agreement with initial experimental observations, in which it was clear that the mixing 

region in angled tanks is shorter than that in vertical tanks (in which a value of h2 ~ 2 was 

used). Physically, this also seems reasonable, as the two-layer flow may develop more quickly 

(in space) than the convective flow observed in the vertical case. 

The overall solution with the above values and () = 15°, after equally spaced t intervals, 

/}.t, is shown in figure 9. In this figure the solid line in the range 0 < z < hI is the average 

reduced gravity along a line through and perpendicular to the axis of the tank, in the y 

direction. The dotted line in the plume region is the environment reduced gravity, which 

joins continuously to the reduced gravity of the mixed region (see the sixth of equations 

(4.3)). In the counterflow region, the dotted line is the lower layer reduced gravity (equal to 

that of the mixed region at z' = 0) and the solid line is the upper layer reduced gravity. The 

numerical solution is compared with experimental data from four experiments, with () = 15°, 

in figures lOa - d. These figures are divided, separating the data for the upper and lower 

layers and showing comparisons after alternate t intervals (i.e. figure lOa shows the lower 

layer solution for t = !:It, 3!:lt, figure lOb for t = 2!:lt, 4!:lt etc.). In the experiments the 

source reduced gravity was kept constant - the buoyancy flux was varied by altering the 

volume flux of the source. Experimental errors in the measurement of the source buoyancy 

flux mean that the theoretical profiles are accurate to ±4%. 

The agreement is, in general, good although the spread of the experimental data about 

the numerical solutions is quite large. Perhaps the weakest agreement is seen in the plume 

region, z.:s 5.5, where the numerical solution slightly underestimates the experimental mea­

surements. This effect was also noticed in the vertical tank case and was attributed to the 

non-uniformity of the environment velocity profile, resulting in a more rapid flow of dense 
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fluid into the plume environment than the model will predict (since it assumes uniform pro­

files). The agreement in the mixing region and counterflow is good for each profile. This 

means that the values chosen for the constants k1 and k2 work well in the whole model, even 

though they were chosen by comparison with the counterflow only and for one particular 

value of t (equal to t4 = 4~t in the present comparison). The mixing region concentration 

approximately increases with to.61 which is in excellent agreement with the experimental 

estimation used in section 3.3. 

Experiments were also carried out in order to measure the behaviour of the layer velocity, 

W(t). The data (see figure 4) are plotted in figure 11, together with the theoretical behaviour 

of the layer velocity. Again there is considerable scatter of the experimental measurements, 

but the theoretical curve appears to agree well with the general behaviour. The theoretical 

solution demonstrates the general experimental observation that there is little variation in 

the layer velocity with time, except in the initial stages. 

4.4 Application of the model 

One of the motivations of this investigation was the knowledge that in many practical 

cases the orientation of a tall chamber will not be vertical but inclined. For practical reasons, 

most of the experiments were carried out with the tank placed at a small angle to the vertical 

although in many real situations the angle would be greater (around 60° for an escalator 

shaft, for example). For completeness, the model should be tested at larger values of () than 

have been presented here so far. Four experiments were carried out to do this . Figures 12 and 

13 show a comparison between experimental measurements and the theoretical predictions, 

in the cases () = 38° and () = 60°, respectively. In the experiments, the region 4 :::;; z :::;; 20 

was recorded on video tape and so the measurements are restricted to this interval. It may 

be seen from the figures that the model still accurately predicts the experimentally measured 

values in the () = 38° case, but the agreement is less good for () = 60° (although the agreement 

is still reasonable). This may be because at large values of () the confined plume equations 

may become inappropriate, as there may be significant interaction between the plume and 

the tank lower boundary. The value () = 60° must therefore be regarded as the largest angle 

for which the model can be reliably applied. 

In the experiments the end of the tube is closed. However, in many physical situations 

this may not be the case and the tunnel may have a space of large volume at the end (for 
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example, a hall above an underground escalator). The model could be easily adapted to such 

situations. One approach could be to assume that the large space is effectively another mixed 

region at the end of the tank. Buoyant fluid then flows in from the lower layer and is rapidly 

mixed throughout the large volume, whilst fluid from this region flows into the upper layer, 

back up the tunnel. Alternatively it could be assumed that the fluid entering the large space 

from the end of the tunnel forms a plume, which fills the large volume in the 'filling-box' 

manner. 

Also, in many cases there may be a ventilation flow within the tunnel. In the case of 

the Underground , for example, ventilation is largely achieved by the piston effect of trains 

entering the station . This ventilation flow may be large and could significantly affect the 

flow. However, there may be circumstances in which the ventilation flow is negligible, or at 

least much smaller than the velocity of the buoyant layer. In this case the flow described here 

could be set up and the model applied. Ventilation of a large volume at the end of the tunnel 

could be achieved by incorporating an exchange flow through a vent in it, with a volume 

flux which could be estimated from the work of Linden, Lane-Serff & Smeed (1990, see also 

chapter 4). 

5. Discussion and Conclusions 

In this chapter the work of the previous chapter has been extended to cover the flow 

resulting from a source of buoyant fluid in a tall chamber placed at an angle () > 0° to the 

vertical. Whilst () is not too large, the plume and mixing region flows are similar to that 

observed in vertical chambers, but when () ;::: 2° the convective region is now replaced by a 

two-layered stratified counterflow. 

A model for the counterflow was developed, making the following assumptions: i) the 

speed of the la.yers depends only on the density difference at the top of the counterflow 

system (which varies in time); ii) each layer occupies half the total width of the tank; and 

iii) the mixing between the layers is dependent on the local bulk Richardson number of 

the flow according to the form found by Ellison & Turner (1959). These assumptions were 

based on experimental observations and the results of previous researchers. The first of these 

assumptions is based on the results of Britter & Linden (1980), namely that there is little 

dependence of the layer velocity on the angle for 0° < () ~ 85°. 

The theoretical predictions of the model were compared with experimental data in order to 
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determine appropriate values of the two constants kl and k2 • Consideration of the results of 

Britter & Linden (1980) suggested that kl was expected to be approximately kl ~ 2. Perfect 

agreement with the results of Ellison & Turner (1959) would require k2 = 1; however, it was 

suggested that greater mixing may take place in the present case than they measured due to 

the presence of the upper boundary, i.e. it was expected that kl ;::: 1. The best agreement 

was found when kl = 2.43 ± 0.08 and k2 = 1.68 ± 0.17, both of which are consistent with 

the estimated values above. This value of k2 implies a larger value of entrainment than was 

measured by Ellison & Turner (1959), as expected, but is nevertheless consistent with values 

measured by other experimenters. The numerical solution for the counterflow obtained using 

these values was found to agree well with experimental data. 

The model of the counterflow was then incorporated into an overall model of the whole 

flow. The plume flow was modelled using the confined plume equations discussed in chapter 5, 

section 3. A mixing region of uniform density was used to couple the plume and counterflow 

regions, analogous to that used in chapter 5. The reduced gravity of the mixing region was 

used to define the reduced gravity of the fluid flowing into the environment of the plume 

and the reduced gravity of the fluid flowing into the lower layer of the counterflow. Good 

agreement with experimental data was found when the length of the mixing region was 

h2 = 1.23 ± 0.15, although there is considerable scatter in the data points. The theoretical 

behaviour of the layer velocity also agreed well with the experimental measurements. It was 

expected that the model would become increasingly less accurate as () increases, because the 

equations for the plume and mixing regions were developed for the vertical case. However, 

reasonable agreement between the theoretical prediction and experimental measurements 

was still observed for (J = 60°. Thus the application of the model is restricted to the range 

2° .:s () ~ 60°. 

It was also described how the model could be easily applied to cases in which the end of 

the tunnel is not closed, instead leading to a large volume. 

In summary, the effect of placing the tank at an angle to the vertical is to replace the 

convective region observed in vertical tanks with the counterflow, that has been the focus 

of attention in this chapter. The dependence on the actual value of the angle is solely 

incorporated in the Richardson number and thus on the mixing between the layers. In the 

experiments, the velocity of the buoyant layer was quite large - thus source fluid is more 

rapidly mixed with environmental fluid far from the source than in the vertical tank case. 

This is similar to the result observed in chapter 4 - the volume flow induced within the tank 
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is much greater than that of the source causing it. There is clearly a transition between 

the flows observed in chapter 5 to that of chapter 6 to that of chapter 4, as () varies from 

0° to 90°. With a vertical tank the plume breakdown gives rise to the dense mixed region 

which flows further down the tank in a completely disorganised manner (Ri = 0); when 

the tank is inclined, the flow becomes increasingly more organised as the angle increases 

(Ri ex sin ()). In chapter 4, although the source had a large momentum flux, a region of dense 

fluid was still present, flowing further from the source in a counterflow. In this case there 

was negligible mixing between the layers and may be regarded as the extreme of the above 

transition (Ri ~ 1). 
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Notation 

Below is a list of the symbols used in this chapter, provided for reference purposes. 

a Aspect ratio 

B(o) (Initial) specific buoyancy flux of the plume 

b Plume radius 

d Thickness of each layer in the counterflow 

g Acceleration due to gravity 

g' Reduced gravity of the source/plume/ambient/mixing/counterflow region fluid, O,p,a,2 ,u,1 

H 

R 

Ri 

t 

u 

v 

w 

w 
x 

relative to the reference density 

Reduced gravity of the plume fluid relative to the ambient density 

Height of the tank 

Height of the plume/mixing region/counterflow regions 

Constants in the counterflow model 

Effective radius of the tank 

Richardson number 

Time (non-dimensionalised using Bo) 

Mean velocity in the x direction in the counterflow region 

Mean (axial) velocity of the fluid in the environment of the plume 

Entrainment velocity 

Mean velocity in the y direction 

Mean (axial) velocity of the plume fluid 

Mean (axial) velocity of the lower layer 

Cartesian coordinate perpendicular to axis and the interface between the buoyant 

layers 

y Cartesian coordinate 

z Axial coordinate 

z' Axial coordinate in the counterflow region 

Q p Entrainment constant for a plume 

P a, lI ,l ,m ,p,O Density of the fluid in the plume environment, the upper and lower layers of the 

counterflow, the mixing region, the plume region and a reference density 

() Angle of inclination of the tank to the vertical 
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CHAPTER SEVEN 

General Conclusions 

The general results of the work described in this thesis are summarised briefly, outlining 

industrial and other applications. The overall position of the understanding of flows resulting 

from the flow of a buoyant jet in a confined space is then presented in a simple tabular form, 

which also indicates areas for further research. 

1. A brief summary of the general results 

In this thesis, some of the flows that may result from the release of a buoyant fluid in a 

volume of limited extent have been examined. Many such flows may be described by using 

the 'filling-box' model (Baines & Turner 1969). In chapter 1 the 'filling-box' model was 

described, together with a discussion of its limitations and a review of some of the further 

work that has been based on it. From the latter it was apparent that the 'filling-box' model 

has been successfully applied to a large variety of flows. However, it was also clear that in a 

large number of practical flows (particularly industrial flows) some of the assumptions made 

in the model may not be appropriate, thus limiting its application. It was explained that 

there are three main limitations of the model, namely: i) that the source should be a pure 

plume; ii) that the source should be sufficiently far from the side boundaries so that there is 

no interaction between the side boundaries and the plume; iii) the aspect ratio (height/width) 

of the container is less than unity. 

In general, there has been little work done on flows which do not satisfy the above restric­

tions. In this thesis, some flows which do not satisfy all of the above restrictions (Le. the 

'filling-box' model may not be applied) have been examined. 
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Throughout this thesis, the source of the buoyant fluid has been modelled as a turbulent 

jet, plume or buoyant jet. In chapter 2, the established knowledge of turbulent jets and 

plumes was summarised briefly. The main experimental investigations were listed and simple 

dimensional arguments were used to theoretically predict the axial variation of the mean flow 

variables. 

Two established methods of predicting the transverse distribution of the axial velocity of a 

pure jet were then summarised. Neither of these solutions agrees well with the experimental 

measurements over the whole cross-section of the jet. An investigation of the possible causes of 

the disagreement between the theoretical predictions and the experimental measurements was 

then carried out, concentrating on the simplifications made in the two established solutions. 

It was found that including the neglected smaller terms in the analysis made little difference to 

the overall solution. However, on including the variation of the turbulent intermittency in the 

analysis, the theoretical prediction for the axial velocity distribution showed an improvement 

of up to 76% at the edge of the jet. During the analysis it was noted that the eddy viscosity 

turbulence model did not predict the turbulent product term ( V '2 - u 12 ) well. Further work 

is required to investigate whether a more sophisticated turbulence model might predict this 

term more accurately and possibly improve the theoretical predictions further still. 

An important aspect of the flow of a confined buoyant release is the path followed by 

the source fluid. Knowledge of the trajectory will show whether the jet will impinge on the 

side boundaries of the container. If it does not, then the 'filling-box' model may be applied 

(depending on the nature of the source). However, if the jet impinges on a side wall, in most 

cases, the 'filling-box' model will be inappropriate. Knowledge of the mean concentration 

within the buoyant jet at points along its path may also be useful in applications to industrial 

waste removal. In chapter 3 a simple model of the flow of a buoyant jet was presented, derived 

by integrating the inviscid equations of motion over a cross-section through the jet flow. 

The resulting equations were investigated when applied to the flow of an initially horizontal 

release. Such integral models have been presented before but in this study the effect of the 

assumption determining the entrainment into the jet was investigated. The analysis may 

be readily applied to flows resulting from initially off-horizontal releases, and to releases in 

stratified environments. 

In an initial investigation of the conservation equations it was found that, at all points 

along the trajectory, the reduced gravity is proportional to the horizontal mean velocity 

component. It was also shown that the buoyant jet follows an initially cubic trajectory 
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and that the centerline may only reach a maximum horizontal distance. The numerical 

solution showed that this maximum distance is approximately equal to ten jet-lengths from 

the source and that the jet-plume transition took place between about 2.2 and 7.6 jet-lengths 

from the source (horizontal displacement). The theoretically predicted trajectory agreed well 

with experimental measurements. Two assumptions about the nature of the entrainment 

were considered with surprisingly similar numerical solutions. Using both hypotheses, the 

numerical solution showed that the entrainment into the buoyant jet is greatest during the 

jet-plume transition part of the flow, possibly due to the high curvature of the jet trajectory 

there. It was not possible to choose between the two hypotheses using the experimental 

measurements and it would require further experiments of extreme accuracy to do so. This 

implies that both hypotheses are equally valid and that the actual form of the entrainment 

assumption seems to make little difference, as long as it is physically realistic. The results do, 

however, support the original assertion that it is not sufficient to assume that the entrainment 

constant is single-valued over the whole flow of a buoyant jet. 

In chapter 4 the flow resulting from a vertical source of high momentum confined to a 

long, ventilated, tunnel was investigated. In this case the 'filling-box' requirement that the 

aspect ratio must be less than one was satisfied, however the source had high momentum as 

well as buoyancy. In fact it was observed that the impingement of the high velocity jet on the 

horizontal boundary gave rise to a well mixed region containing a circulation cell on either 

side of the source. Thus the 'filling-box' model could not be applied . It was concluded that 

the general effect of high source momentum on the resultant flow within the confining volume 

is to mix the source fluid rapidly with that of the environment to an extent dependent on 

the container geometry. In this case the mixed region was observed to extend to about 2.5 

times the height of the tunnel on either side of the source. Thus for tanks with aspect ratio 

(height/width) greater than 1/5, it is expected that (assuming that the source is reasonably 

central and vertically directed) the tank will be well mixed (although this result may not 

apply for very tall tanks and for sources in which the jet-length is less than about three times 

the shortest distance between the nozzle and the opposite boundary). In the case considered 

in chapter 4, however, the aspect ratio was approximately 1/20 and the buoyancy forces 

become increasingly dominant (over momentum forces) with increasing distance from the 

source. At a distance of about 2.5 times the depth of the tank either side of the source, the 

miyjng flow driven by the source momentum gives way to a two-layer stratified counterflow 

system. 

- 155 -



Chapter Seven - General Conclusions 

The values of the mean flow variables in the steady state were deduced by analysing the 

flow over the 'head' of the buoyant layer. It was found that the depth of the buoyant layer is 

approximately half the depth of the tunnel, which agreed with experimental observations. By 

considering conservation of buoyancy and volume, it was found that the volume flux of the 

buoyant layers within the tunnel is several times larger than that of the source (about thirty 

times larger in the experiments) and that the reduced gravity of the buoyant layer is smaller 

than that of the source by an equal factor. The time dependent increase in the mean reduced 

gravity of the primary cell was also calculated. The theoretical prediction agreed well with 

the experimental measurements under the assumption that the fluid flowing into the buoyant 

layer from the mixed region has a concentration slightly lower than the mean concentration 

of the mixed region. This time dependent solution for the mixed region concentration could 

be used to derive a time dependent solution for the other flow variables. However, in most 

practical cases the steady state will be reached quickly and so the steady state solution will 

be of greater importance. The effect of ventilation within the tunnel was then studied. A 

method for calculating the flow out of and over a vent far from the source was deduced, which 

may be used to calculate the minimum number of vents required to vent all of the buoyant 

layer. When a vent is located near to the source, the flow becomes more complicated as 

environmental fluid may be 'sucked' in through this vent. The above solutions for the bulk 

flow variables and the primary cell reduced gravity may all be modified to include this effect, 

although further research is required to determine the precise relationship between the volume 

flux of the fluid sucked in through this vent on the position of the vent, the strength of the 

source and the tunnel geometry. 

This work has obvious applications to the flow of a release of buoyant gas within a venti­

lated tunnel or duct, using the theoretical model to calculate the values of the flow variables. 

In this case the effect of the ventilation may be of great importance, for if the gas is hazardous, 

then it is desirable that it should be removed from the tunnel as effectively as possible. In 

practice, of course, it is not possible to predict the position of a release originating from a 

small crack or hole in a pipe caused by corrosion. In such cases the tunnel should ideally 

have vents of sufficiently large area, so that all of the buoyant gas layer resulting from a leak 

may be vented with one vent only. The vents should be placed sufficiently far apart so that 

the chance of a leak occurring near to a vent is small, although if this was the case, any air 

'sucked' in through this vent would act to reduce the overall concentrations reached. 

Another of the restrictions on the 'filling-box' model, namely that the aspect ratio must be 
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less than one, was investigated in chapter 5. In this chapter the flow resulting from a release 

of buoyancy from a point source at one end of a tall chamber (aspect ratio greater than 

one) was studied. Experimental observations revealed that the main difference between the 

resultant flow in moderate aspect ratio containers and the 'filling-box' flow was to produce 

non-uniformities, on horizontal levels, of the velocity and density distributions of the fluid 

in the environment of the plume. This is because in containers with aspect ratio less than 

one, the area occupied by the plume (on a horizontal plane) is negligible compared with that 

of the environmental fluid and thus the effect of the plume flow on the environmental fluid 

flow is small. Consequently the profiles of velocity and density are approximately uniform 

on horizontal levels in the environment of the plume. However, in taller containers, the 

plume area may become comparable to that of the environmental fluid and thus there is 

a proportionately greater effect of the plume flow on the environmental fluid, resulting in 

non-uniformities in the velocity and density profiles. 

The 'filling-box' model equations were modified to include the momentum flux of the 

environmental fluid (which may now be large far from the source), although mean values on 

horizontal planes were still considered in the analysis. It was found that the predictions of 

these equations agreed well with the observed concentrations, particularly at the tank base 

(for a negatively buoyant source), in spite of neglecting any additional effects due to the 

non-uniformity of the environment velocity and density. 

However, in tanks of very large aspect ratio a .:::: 5.8, the environment momentum flux may 

become equal to that of the plume. In practice this was observed to result in a breakdown 

in the plume flow, giving rise to a region of dense fluid (for a negatively buoyant source) at 

the base of the plume. This region is unstably stratified and the dense fluid mixes with the 

fluid further from the source by turbulent convection. The numerical solution to the modified 

confined plume equations in an unstratified environment revealed that this plume breakdown 

is expected to occur at approximately 5.8 effective radii downstream of the source. Thus two 

flow regimes exist depending on the aspect ratio of the tank. If the aspect ratio is sufficiently 

small such. that this plume breakdown does not occur (a < 5.8), then the flow is like the 

h 'filling-box? flow with horizontal non-uniformities (described above); but if the aspect ratio 
/ ' t.~; r· ~ is larger, ~hen this plume breakdown threshold is reached giving rise to the convective region 

" i. mentioned above. 

~~ ~,It In the model of the latter case, the mean flow III the convective region was modelled 
li 4.t, 
" ~, . using a~onedimensional diffusion equation with a constant eddy diffusivity and the flows 

- 157 -



Chapter Seven - General Conclusions 

of the plume and convective regions were coupled by the use of a mixing region of uniform 

density. The numerical solution agreed well with the experimental results when the length of 

the mixing region was approximately equal to the effective diameter of the container, which 

is consistent with experimental observations. One of the main features of the overall flow 

is that the buoyant fluid is mixed throughout the convective region more slowly than the 

concentration increases in the plume region. Thus in the case of a natural gas leak at the 

bottom of a tall tower, for example, the gas concentration will increase rapidly near to the 

source (in the plume region), but will increase more slowly near to the top of the tower (see 

chapter 5). 

The study of flows in containers with large aspect ratios was continued in chapter 6. In this 

chapter the chamber was placed at an angle to the vertical with a buoyant source at one end. 

The plume and mixing regions appeared to exist as in the vertical chamber case above but 

now fluid flows from the mixed region as a gravity current occupying approximately half the 

depth of the tank. This is because there is now a component of gravity acting perpendicular 

to the axis of the tank. The end of the tank is closed and so an equal and opposite flow exists 

in the other half of the tank, with mixing between the layers (see chapter 6, figure 1). 

A simple model of the two layered region was presented which assumed that the acceler­

ation of the buoyant layers along the slope was negligible and that each layer occupied half 

the depth. The mixing between the two layers was assumed to be dependent on the local 

Richardson number of the flow. The two-layer flow was coupled to the plume flow by using a 

mixed region of uniform density (as in the model for flows in vertical chambers). The numer­

ical solution for the reduced gravities and layer velocity agreed well with the experimental 

measurements. Comparison between this case and the vertical case of chapter 5 revealed that 

the two-layer flow mixes the buoyant fluid from the plume with that further from the source 

more rapidly than was observed with the convective flow obtained with a vertical chamber. 

Thus gas from a slow leak at the base of an angled (unventilated) tunnel would be expected 

to reach points further along the tunnel more quickly than would be found in a vertical tower. 

Of course, in many practical cases, the end of the tunnel would not be closed (consider, 

for example, a slow gas leak at the bottom of an escalator shaft in an Underground station) 

and would lead to a large space (for example, the entrance hall). It was explained that in 

such cases the model could be adapted by using another mixed region, representing the large 

space, at the base of the tunnel (for dense sources). A flow of buoyancy out of the large 

mixed region could be incorporated to simulate ventilation of the large region. 
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2. A summary of confined jet flows: areas for further research 

It was stated in chapter 1 that the flow resulting from a release of buoyant fluid in a 

confined space will depend on several factors, including: the source characteristics and orien­

tation, the geometry of the container, interaction between the source fluid and the container 

boundaries, and ventilation of the container. The flows resulting from buoyant sources with 

small volume fluxes are summarised in table 1. The source momentum is defined as 'high' if 

the jet-length (see chapter 2) is greater than the distance between the source and the nearest 

boundary (0 > 1) and 'low' if the opposite is true. Vertical and horizontal source orientations 

are included - with vertical sources the momentum may be either in the direction that the 

buoyancy force acts (l) or against the buoyancy CL). The flows also depend on the aspect 

ratio (height/width), a, of the container and its angle to the vertical. 

The table reveals several areas requiring further research. The effect of high source mo­

mentum has been investigated in low to moderate aspect ratio containers but the effect of 

high source momentum on the flows described in chapters 5 and 6 is unclear. If the source is 

directed along the axis of the tank, then it is probable that the jet flow will still breakdown 

at some point downstream from the source. However, the increased momentum of the source 

may cause a greater mixing of the fluid there, resulting in an increase in the length of the 

mixing region. The effect of placing the source at some other orientation (high or low source 

momentum flux) has not been investigated. If the source has little or no initial momentum 

flux (as was assumed in chapters 5 and 6) then the jet length will be small and so the flow 

will quickly become plume-like. In this case the orientation of the source is unlikely to have 

a significant effect. However, if the source has high momentum (i.e. 0 > 1) then the jet 

may impinge on the walls of the container. This could result in a greater level of mixing 

in the source region and circulation cells may be driven. The effect of placing the source 

along the axis of the tunnel in chapter 4 has also not been studied (for both high and low 

source momentum fluxes). In this case the flow will be very different to that studied, as the 

circulation cells will not be present. 

Table 1 is restricted to sources with small volume fluxes - that is, cases in which the time 

that would be taken for the source fluid to fill the tank is large. There is currently little 

knowledge of the flows that may result from a source with a large volume flux (although in 

chapter 4 it was noted that for sufficiently large volume fluxes, the flow altered to a situation 

in which the source fluid formed a 'plug', which simply pushed all of the environmental fluid 
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Container Source Source Flow Expected 

Geometry Momentum Orientation 

Moderate Low Vi 'Filling-box' flow; Baines & Turner (1969) 

Aspect Ratio 0<1 Vl 'Fountain' flow; Baines, Turner & Campbell (1990) 

H Possibly 'filling-box' depending on Lj; see chapter 3 

a'" 0(1) High Vi Mixing of interior depending 

0> 1 Vl on orientation, 0 and a. 

H (see Linden, Marshall & Cleaver 1991) 

High Low Vi See chapter 5 

Aspect Ratio 0<1 Vl Probably 'fountain' flow 

H Possibly as chapter 5, depending on L j 

a~l High Vi Not yet studied 

0> 1 Vl. Not yet studied 

H Not yet studied 

Low Low Vi 'Filling-box' flow; Baines & Turner (1969) 

Aspect Ratio 0<1 Vl. 'Fountain' flow; Baines, Turner & Campbell (1990) 

H Not yet studied 

a~l High Vi See chapter 4 

0> 1 Vl. See chapter 4 

H Not yet studied 

Tall, Angled Low 1.. Possibly as chapter 6, depending on L j 

Containers 0<1 11 See chapter 6 

High 1.. See chapter 4 

o > 1 11 Not yet studied 

a is the aspect ratio (height/width) of the container; 0 = L j / P is the ratio between the jet­

length (Lj) and the dista.nce between the source and the nearest boundary (P); 'V' denotes a 

vertical release, i: buoyancy forces acting in the same direction as the momentum flux, l.: buoyancy 

forces oppose momentum; 'H' denotes a horizontal release; in angled containers '1..' and '11' denote 

releases perpendicular and parallel to the axis respectively. 

TABLE 1. The flows resulting from confined buoyant sources with small volume fluxes. 
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from the tunnel). It is likely that in such cases the large volume flux of the source will 

dominate the flow, with the container being rapidly filled with source fluid. Also, such flows 

can be relatively difficult to achieve in the laboratory. Obtaining volume fluxes sufficiently 

large, so that the time taken for the source fluid to fill the tank would be small, may require 

that a very small scale model is used, which consequently makes experimental measurements 

awkward and less reliable. 

The effect of an overall ventilation flow also needs further attention. Clearly the effect 

of ventilation will depend on the relative orders of magnitude between the ventilation flow 

and the buoyant fluid flow. In many practical situations the velocities induced by ventilation 

systems may be quite small and thus may have little effect on the flow resulting from the 

buoyant release. 

One final area of interest requiring investigation is the flow of a buoyant release in two 

or more connected regions. In many industrial and domestic cases, confining volumes will 

not be completely sealed and will be connected to other spaces by a doorway, corridor or 

ventilation system. It would therefore be useful to investigate the spread of a release in one 

space into another. For a purely buoyant source, the flow in each region would probably be 

similar to the 'filling-box' flow. However, if the source had a large jet-length, then fluid from 

the adjacent tank could be 'sucked' into the region containing the source, in a manner similar 

to that observed in the flow of chapter 4 (section 2.2.3). 

From the 'filling-box' model, the previous work based on it and the work contained in this 

thesis, it is clear that the range of possible confining containers and source types give rise 

to a large variety of possible flows that may result from the release of a buoyant fluid in a 

confined space. vVhilst there are a few general areas of interest which still require further 

investigation, there is now a good understanding of the dependence of the flow on the source 

type, container geometry and ventilation. This understanding allows a reliable prediction of 

the flow in a given situation to be made. In the case of a hazardous release, such predictions 

may be used to incorporate design features which will reduce the concentrations reached, 

thus improving pu blic safety. 
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Notation 

Below is a list of the symbols used in this chapter, provided for reference purposes. 

a The aspect ratio (height/width) of the container 

Lj Length scale of a buoyant jet or 'jet-length' 

P The shortest distance between the nozzle and a boundary of the container 

8 Ratio of Lj to P 

u' Turbulent velocity component (see chapter 2) 

v' Turbulent velocity component (see chapter 2) 
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