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SUMMARY

The flows that may result from the release of a buoyant fluid from a small source in a confined
space are varied and complex, depending on the source characteristics, the confining geometry and
container ventilation. Previous work has generally been based on the ‘filling-box’ model (Baines &
Turner 1969). This model, however, may only be applied when the source has little or no initial
momentum, is in a container with a height/width aspect ratio less than unity and does not interact
with the side boundaries. In this thesis some situations in which the ‘filling-box’ model may not
be applied are investigated.

In chapter 1 the “filling-box’ model and the work based on it are reviewed and its limitations
discussed. Sources are usually modelled as a turbulent jet, plume or buoyant jet; thus in chapter 2
the established properties of jets and plumes are summarised using established theoretical argu-
ments and experimental results. In order to improve some of the theoretical predictions, the effects
of previously neglected second order terms and intermittency factor variation are investigated.

In most practical situations the source is a buoyant jet. In chapter 3 the flow of an initially
horizontal buoyant jet is examined, concentrating on obtaining simple analytical results from the
conservation equations and investigating the effect of the nature of the entrainment assumption.

The effect of source momentum is examined in chapter 4, in which the flow of a vertical jet
with high initial momentum flux in a long, ventilated tunnel is studied. The bulk flow variables
are deduced and compared with experimental measurements. A method for calculating the total
number of vents required to vent the source fluid is given - this result is particularly important in
applications to hazardous releases.

In chapter 5 the effect of the aspect ratio, a, on the ‘filling-box’ model is investigated. It is found
that when the aspect ratio is very large (¢ = 6) the flow is quite different to that observed in the
“filling-box’ case. Theoretical models are derived both when a Z 6 and when @ < 6, and the results
are compared with experimental measurements. In chapter 6 the study of chapter 5 is extended,
investigating the effect of placing the tank at an angle to the vertical. The flow in the large aspect
ratio case is significantly different to that of chapter 5 and is modelled theoretically, comparing the
predictions with experimental measurements.

Finally, in chapter 7 the general results are reviewed. The current knowledge of flows resulting
from buoyant releases in a confined space is then summarised in a simple tabular form, which also

indicates areas for future research.
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CHAPTER ONE

General Introduction

There are a large and diverse number of flows that may result from the release of a buoyant
fluid in a confined space, including the flow of the buoyant jet itself, the effects of the confining
geometry and the interaction between the source and its environment.

The majority of previous research has been based on the ‘filling-box’ model. This model
is described and its limitations are discussed, followed by a brief review of the further work
based on it. The basic experimental procedures that have been used in this thesis are then

described. The chapter ends with a plan of the thesis.

1. Motivation

The dynamics of a release of buoyant fluid in a confined space have applications in many
areas, including industry, the environment and geophysical flows. For example, a leakage of
natural gas or smoke from a fire in a building, dumping of chemical waste or convection in the
surface layer of the ocean could all be considered as confined buoyant releases. Gas leakages
are often confined by the boundaries of the building; buoyant releases in the environment or
convective elements in geophysical flows can be effectively confined by density interfaces, a
free surface or the presence of other sources.

The dynamics of a continuous buoyant release in a volume of limited extent are inherently
different to that of a release in an infinite space. In a confined region the flow of the source
increasingly contaminates the environment which is therefore being modified as the flow con-

tinues. Conversely, this modification of the environment continuously affects the behaviour

of the source.




Chapter One - General Introduction

It is desirable to be able to predict the flow produced by a buoyant release in a given
physical situation. For example, in the case of natural gas leaking in a room or building, it
would be advantageous to be able to predict the maximum gas concentrations reached after
a given length of time and the motion of the escaping gas. To predict the flow, the factors
that affect it must be understood. In general, such flows are controlled by:

i) the source characteristics (i.e. the source volume, momentum and buoyancy fluxes);
ii) the source orientation with respect to the container;

iii) the geometry of the container;

iv) interaction between the source and the container boundaries;

v) ventilation of the container.

Since each of these factors will play a part in determining the resultant flow, by studying
their effects a greater understanding of the overall problem will be gained. In the above case
of the gas leak, such knowledge could be used to prevent hazardous concentrations from being

reached, for example by including suitable ventilation or design features in the building.

2. Previous work - the ‘filling-box’ model

The majority of previous research on the release of a buoyant fluid in a confined space
has been based on the ‘filling-box’ model, the name given by Turner (1973) to the theory
of Baines & Turner (1969) describing the flow produced by convection from a source in a
confined region.

This model will now be described and its limitations discussed. Some of the work that

has been developed from it will then be reviewed briefly.

2.1 The ‘“filling-box’ model

Consider the convection flow from a point source at the base of a container which is chosen,
for simplicity, to be a rectangular tank (see figure 1). It is assumed that the convecting fluid
is lighter than that of its environment and forms a plume which flows up towards the top
of the tank. When the plume fluid first reaches the top of the tank it spreads out in a thin
horizontal layer with a density discontinuity or front below it. The dynamics of the horizontal
spreading-out flow are ignored and it is assumed that the stable stratification surpresses any
mixing with the environment. The plume fluid entering this thin layer now entrains fluid

that is lighter than the original environmental fluid and so the plume fluid now reaching the
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FIGURE 1. A schematic diagram of the ‘filling-box’ model of Baines & Turner (1969).
The diagram shows the motions of the plume, the environment and the entrainment l
flow, with the position of the first front marked at two times.
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top of the container is lighter than the preceding layer. Hence when this plume fluid spreads
horizontally, the first density front formed is pushed down with the lighter layer above it.
This process continues, leading to increasing stratification of the environmental fluid.

Baines & Turner (1969) conducted several experiments to illustrate the stability of the
environmental stratification by injecting dye into the plume. They observed that the dyed
‘la,yers remained horizontal and well defined, as they are pushed down the tank.

The fully time-dependent problem has proved to be impossible to solve analytically, al-
though Worster & Huppert (1983) have obtained approximate analytical solutions which
agreed well with their numerical results. Baines & Turner (1969) were able to derive an
expression for the position of the first front as this effectively depends only on the motion
of the plume in the uncontaminated environmental fluid ahead of it (see Morton, Taylor &
Turner 1956). By assuming that the density profiles increase linearly in time with a fixed
distribution, they were able to derive a solution for the asymptotic state achieved at large
times in which the plume properties are asymptotically constant in time. The analytical

results agreed well with their experiments.

2.2 Limitations of the model

In the description of the model above it is clear that it relies on several assumptions which
restrict its application.

Firstly, the source is required to be one of buoyancy only. Inputs with a non-zero ini-
tial volume flux are usually relatively unimportant as the volume increases they imply for
closed containers can be accommodated by including vents or a free surface (particularly in
experiments), depending on the problem being considered. In general the volume flux of the
source will be much smaller than the volume of the container and so the velocities induced
(and hence the effects on the flow) by having, say, a vent on a remote boundary would be
negligible. There may be situations in which this is not the case, for example the removal of
natural gas from a pipe section by purging it with nitrogen, but in these situations the high
volume flux of the source is an essential part of the flow and cannot be neglected.

What may be more important is the effect of a source with a significant non-zero initial
momentum flux. In this case, when the buoyant jet impinges on the tank boundary, its
additional momentum means that the effect of the impingement ‘splash’ will be important,

causing mixing of the environment. Thus in the ‘filling-box’ model, if the source had a
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significant non-zero initial momentum flux, then the assumption that the plume fluid spreads
out horizontally, with little mixing of the environment, may not be valid. For sources with
small initial momentum, this effect may not be important as the buoyancy of the fluid will
increasingly dominate the momentum forces with increasing distance from the source and
the behaviour will be plume-like when it reaches the top of the tank. However if the source

" has high momentum (for example, if the source was a high velocity gas leak), then any
impingement of the source on a boundary could cause mixing of the environment which may
totally alter the nature of the flow.

Even if the source is a pure plume, its momentum flux will increase with increasing distance
from the source. Thus over-turning of the environment could still occur if the momentum flux
at the top of the container was significantly larger than the stabilising buoyancy force of the
stratified environment. Baines & Turner (1969) showed that this momentum /buoyancy ratio,
reflective of the tendency towards over-turning, is proportional to the square of the aspect
(height /width) ratio, a, of the tank. Baines & Turner (1969) conducted some experiments
to investigate the effect of varying the aspect ratio, finding indications of over-turning when
a > 1. Consequently they restricted their analysis to containers in which the height is less
than or equal to the width.

There are further idealisations made in the model which might not be realised in physical
situations. In particular, it was assumed that there was no interaction between the plume and
the boundaries of the container (except at the top). In practice it is unlikely that the source
would be in the centre of the container and vertically directed. The effects of source position
and orientation are unlikely to have major effects for a purely buoyant release. However if
the source has high momentum, any interaction with the boundary could significantly affect

the flow.

2.3 Previous research based on the ‘filling-box’ model

Although the theory has some limitations, as described above, it has been readily applied
and developed to model many other physical situations.

Germeles (1975) used the theory to model a phenomenon known as tank ‘roll-over’ which
can occur when additional liquified natural gas (LNG) is injected into a tank containing LNG
at a slightly different density (see figure 2). This injection can result in stratification of the

liquid gas (in the ‘filling-box’ manner). The compositional and temperature gradients may
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FIGURE 2. The LNG tank injection problem considered by Germeles (1975).
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FIGURE 3. The two-layer problem considered by Kumagai (1984) showing the en-
trainment into the plume as it impinges on the interface and the position of the first
front.
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cause overturning (‘roll-over’), resulting in a large-scale boil-off of methane vapour, which can
lead to dangerously high pressures within the tank. Germeles modelled the flow using the
“illing-box’ equations, modified to include mass inputs by allowing the free surface to rise. He
used a numerical method to describe the unsteady development of the density distribution
before the asymptotic state derived by Baines & Turner (1969) is reached and conducted
.experiments to check the numerical results. He also relaxed the vertical source condition,
modifying the conservation equations of Morton, Taylor & Turner (1956) appropriately for
inclined sources, although his equations break down in the case of an initially horizontal
release. The good agreement between the numerical solution and the experimental results
have helped to establish the validity of the ‘filling-box’ model when applied to tanks with
buoyant injections from a nozzle.

The assumption of fixed rigid boundaries makes the ‘filling-box’ model a little unreal-
istic when applied to geophysical flows. Baines (1975) relaxed the condition of insulating
boundaries on the upper surface to allow entrainment into the impinging plume. Kumagai
(1984) considered the flow of a plume entering a two-layered region consisting of a layer of
fresh water on top of a layer of salt solution (see figure 3). The plume enters at the level
of the free surface and at first cannot penetrate the interface. The evolution of the fresh
water layer is governed by the filling-box process, but as in the case considered by Baines
(1975), there is also entrainment through the end of the plume which impinges on the density
interface. Kumagai (1984) found that the entrainment rate in the upper layer (as it changes
in thickness) and the buoyancy flux across the interface can be expressed as functions of
the Froude number, Fr. Manins (1979) also relaxed the condition of non-conductivity of
the boundaries with a diffusive boundary at the source level and diffusion of density in the
environment of the plume. The radiation of buoyancy allows enclosures with intense local
heating from below, for example the Earth’s mantle, to be modelled. The essential aspect of
the “filling-box’ process is the vertical confinement which causes the plume fluid to descend
and be re-entrained; this may not be appropriate in some geophysical cases.

Killworth & Turner (1982) pointed out that buoyancy sources in nature are rarely uniform
in time. They investigated the dependence of the ‘filling-box’ asymptotic state on the time-
dependent behaviour of the source buoyancy flux, concentrating mainly on cyclic sources.
Using laboratory experiments, numerical solutions and analytical theory, they showed that
the asymptotic state is qualitatively similar to that which would be produced by a source of

steady buoyancy flux with the same value as the maximum of the variable buoyancy flux.
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In the asymptotic solution of Baines & Turner (1969), the buoyancy flux of the plume
varies linearly with position. Worster & Huppert (1983) made the hypothesis that for earlier
times the buoyancy flux varies linearly between the top of the tank and the position of the

first front. With this approximation, they found a time-dependent analytical solution to the

“illing-box’ equations which was correct at ¢ = 0, tended to the asymptotic solution of Baines
. & Turner (1969) as t — oo and agreed well with their numerical results.

There may be other circumstances in which the asymptotic solution of Baines & Turner
(1969) may not be applicable. For example, if the density is a function of two components |
(for example, heat and salinity), double-diffusive phenomena may occur in the environment
before the first front has advanced very far. This has been studied by McDougall (1983) who
described the formation of double-diffusive interfaces, which separate the environment into
discrete well-mixed layers.

Linden, Marshall & Cleaver (1991) have examined the effect of jet orientation and position
on a small-scale model of a natural gas release in a closed cubical container, concentrating
particularly on the flow produced when the source is some distance from the bottom of the
tank. They found that, in general, for non-vertical sources, gas mixing was confined to the
region above the lowest point of penetration of the jet, with weak stable stratification above
it and a sharp interface between the gas and fresh layers.

Linden, Marshall & Cleaver (1991) have also conducted some experiments to investigate
the effect of initial source momentum on horizontal, dense sources. A small ventilation point
was provided in both the top and the bottom of a cubical test chamber to allow for the volume
inputs. Three regimes were observed (see figure 4) depending on the ratio § between the ‘jet-
length’ L;, the length scale of a buoyant jet (see for example Turner 1973 or chapters 2, 3
and 4) and the distance between the nozzle and the boundary nearest to it. For values of
0 < 1 the (negatively) buoyant fluid below the source was well-mixed with fresh water above,
separated by a stable interface. For values of 1 <6 < 6 the jet was still nearly horizontal on
impingement and mixed some of the fluid above the source, above which was layer of fresh
water. The level of the interface depends on the value of é§. For values of § = 6 the whole

tank was mixed.

Linden, Lane-Serff & Smeed (1990) have discussed the fluid mechanics of ‘natural ventila-
tion’, this being ventilation driven by buoyancy differences between the interior and exterior
fluids of a chamber. They studied the effects of internal sources of buoyancy (which might

result from radiators, people or machinery) finding that these allowed steady states to be
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FIGURE 4. The experimental flows observed by Linden, Marshall & Cleaver (1991), showing
the flow from a centrally placed horizontal nozzle with various source conditions. (a) § < 1;
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established, which they described using extended filling-box models with the addition of a
continuous exchange of fluid with the environment.

Baines, Turner & Campbell (1990) studied the effect of opposing buoyancy and momentum
fluxes on the ‘“filling-box’ model. They injected dense fluid upwards from the bottom of a
tank, which was initially filled with uniform fluid. The turbulent ‘fountain’ which formed
Vrose to a maximum height and then fell back, spreading out along the base of the tank, to
be re-entrained into the fountain. A stable stratification then built up in the ‘filling-box’
manner. The volume flux of the inputs was significant and was compensated for by having a
free upper surface which rose in time. They found that the top of the fountain rose linearly
with time at approximately half the rate of rise of the free surface. Eventually the front rose
above the top of the fountain, and the density profile of the mixed fluid above the fountain
then remained unchanged in time.

In summary, it is clear that the ‘filling-box’ model has been the subject of considerable
application and development. The initial work of Baines & Turner (1969) and the results
of Germeles (1975) showed that the model provides accurate predictions of the density dis-
tributions resulting from a source of buoyancy (and volume in the latter case) in a confined
region. Analytical solutions exist in the asymptotic analysis for large times (Baines & Turner
1969) and approximate solutions have been derived by Worster & Huppert (1983) for earlier
times. The model has been developed for application to geophysical flows by Baines (1975),
Manins (1979), Killworth & Turner (1982), McDougall (1983) and Kumagai (1984). The
effect of source momentum has been considered by Linden, Marshall & Cleaver (1991), the
effect of container ventilation has been considered by Linden, Lane-Serff & Smeed (1990) and
the effect of reversing buoyancy by Baines, Turner & Campbell (1990) for a more realistic
application to industrial and domestic situations.

However, there are several areas which have been relatively neglected. Firstly the effects
of a source with a high volume flux have not been examined (in the case of Baines, Turner
& Campbell 1990, the volume flux was significant, but still sufficiently small for its effect
on the flow to be ignored, except for the rise of the free upper surface) and also, with the
exception of Linden, Marshall & Cleaver (1991), the effects of high source momentum flux
have not been studied. In practical circumstances, particularly in applications to gas leakages
and other industrial flows, the volume and momentum fluxes of the source may be large and
may substantially affect the resultant flow. Currently there is insufficient knowledge on the

flows resulting from such sources for reliable predictions to be made and so more research is
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required.

~ Furthermore, all of the above experimental studies have been carried out with approxi-
‘ mately cubical or flatter containers. This is to comply with the restriction that Baines &
Turner (1969) made on their ‘filling-box’ model, limiting its application to tanks of aspect
ratio less than unity. With the exception of Huppert et al. (1986), who measured density
difference profiles in a ‘filling-box’ experiment in which e = 3.5, the effects of using a tank

with aspect ratio greater than unity have received little attention. }

3. Laboratory models and experimental techniques |

It is always important to compare the results of theoretical or numerical work with appro-
priate physical measurements. In the following chapters this has been done by performing
laboratory experiments, using many different techniques. The experimental procedure will
be described in detail within each particular chapter - however there are some experimen-
tal techniques which have been used generally and are described here, together with some

comments on the use of small-scale models.

3.1 Laboratory models

It was stated above that two of the factors controlling the flow of a buoyant release within
a confined region are the geometry of the space and any interaction between the source and
the container boundaries. It is not practical to examine every possible type of container
experimentally. However, by choosing a geometry with one or more specific features, it is
possible to investigate the effects of these features on the flow produced in order to build up
an overall understanding of the dependence of the resultant flow on the container geometry.

In this thesis, particular geometries have been studied using models made from clear
perspex. The ambient uniform fluid is modelled using fresh water and the buoyant fluid
source using a dyed salt solution, which is heavier than water. In all of the flows studied the
density differences are small and, using the Boussinesq approximation, the acceleration of a
buoyant parcel (the ‘reduced gravity’) is given by g’ = gAp/p, where p is the environment
density, Ap is the density difference between the source and the environment and g is the
acceleration due to gravity. Thus, for applications in which the source is lighter than the
ambient fluid, the apparatus is simply turned upside-down (still using the relatively dense

salt solution to model the source, which will flow downwards instead of up) and inverted

— 8=
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mentally on viewing (so that it now appears that the source fluid is less dense, flowing
upwards) whilst ensuring that the absolute value of the reduced gravity in the experiment
matches that of the real situation (when scaled appropriately). Much of this research may be
applied to leakages of natural (or perhaps a dense) gas or the movement of smoke within a
. building or other confined space. It may be asked if it is appropriate to apply the predictions
of a small-scale fluid model to the full-scale gaseous situation.

The use of small-scale liquid models for modelling larger-scale gas models has been jus-
tified by Lane-Serff (1989) who explained that problems will only occur if there are large
temperature changes or very high velocities in the real situation. Then the flow may not
be regarded as incompressible, which is presumed in the use of a water model. Problems
may also arise when large density differences occur in the real situation; the use of a salt
solution/water model assumes that the density differences are small. In the majority of the
physical applications considered here, the velocities are not sufficient to cause compression
and there are no large temperature differences: the buoyancy forces are generally a result
of density differences between the source fluid and the environment due to differences in
composition rather than temperature. In most cases the effects of viscosity and diffusion
are also small (compared with the mixing produced by the bulk motion of the flow), so that
the Reynolds and Péclet numbers are large - the flow is then independent of these numbers.
Hence to model these flows in the laboratory it is necessary to ensure that the Reynolds
and Péclet numbers in the experiment are also high - which should be achievable in a model
using water as the environmental fluid. Linden, Marshall & Cleaver (1991) compared some
small-scale water/salt solution experiments with their full-scale air/natural gas counterparts,
and found good agreement in the measured concentrations.

Of course, it may not be practicable to produce a perfectly scaled model. For example,
in chapter 4 the flow produced by a high momentum gas leak in a long tunnel is modelled.
Suppose that the tunnel is 12 m long with square cross-section of side 60 cm, and a 1/6th
scale model of it is required. This would imply a model 2 m long with square cross-section of
side 10 cm. Typically, the source may be formed by gas escaping from a small crack in a pipe
caused by corrosion - a hole with diameter, say, 1.2 mm. This means that the experimental
nozzle should have a diameter of 0.2 mm. However, because of engineering limitations, the
smallest nozzle that can be made has a diameter of 0.5 mm. Using a nozzle of this size, it is
not possible to have both the exit velocity and the flow rate at the experimentally required

levels.
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Scale Model/Real scale ratio
Time (IMQ;R/IR!]}\/I)%
Velocity (lMgf\/f/le}z)%

| Volume flux (l}"ngw/l%g}_-{) 2
Momentum flux (l?u!]}v!/ l%g}z)
Buoyancy flux (l?wgswa/l%g}za)%

TABLE 1. Model/Real scale ratios.

In a problem of this sort, flow-rates, density differences or some other adjustable experi-
mental value would be altered making sure, however, that the most important flow parameters
, are still accurately scaled so that the model and experiment are still dynamically the same.
Such adjustments may mean that the experimental results cannot be applied immediately to
the real situation without first comparing the appropriate scales.

Denoting the length scale by ! and the reduced gravity by g¢’, with subscripts M for the
model and R for the real situation, then the model/real ratio of the scales for time, velocity,

volume flux, momentum flux and buoyancy flux are given in table 1 above (see also Lane-

Serff 1989).

These ratios must be taken into account when applying experimental results to the real
situation. If, say, the time scale ratios are the same in both the experiment and the model,
then the model/real time scale ratio given in table 1 will have a value of unity; if this ratio
has a value less than one then the experiment proceeds at a faster rate than the full-scale
situation and vice-versa. In all experiments, the major consideration is of the parameters

I\ that are important to maintain dynamic similarity and the parameters that may be changed.

{ 3.2 Experimental techniques

The experimental techniques used depends on the experiment being performed. However,
\' the shadowgraph visualisation technique is common to all of the experiments described in this

thesis and is explained below. This is followed by a description of the methods of measuring

density that have been used.

~10 -
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Chapter One - General Introduction

3.2.1 Shadowgraph visualisation

The use of perspex models makes illumination and visualisation of experiments relatively
easy, the simplest method of visualisation being the shadowgraph.

Light is shone through the apparatus onto a translucent screen fixed to the side of the
_apparatus opposite the light (see figure 5). The shadowgraph method relies on variations in
the refractive index in different parts of the fluid caused by density differences or fluctuations.
In a region of uniform density stratification (i.e. the density gradient is constant) the gradient
of refractive index is constant, and the image will be similar to that obtained from a region of
uniform density. However, if there are large variations in the density gradient (i.e. large values
of the second derivative of the density) then there will be large variations in the gradient of
the refractive index of the fluid which are marked by light and dark areas on the image. These
move with the flow and provide a good method of visualising the motion of the fluid. Clearly
it is the changes in the density gradient through the apparatus perpendicular to the screen
that are observed, making this method particularly suitable for visualising two-dimensional
flows. In three dimensional flows, the shadowgraph technique may still be used to visualise
the flow in a particular plane, illuminating with a single sheet of light. It is also clear that it
is important to have as near parallel a beam as possible through the apparatus to minimise
the parallax in the projected image on the screen. This is usually achieved by placing the

light source far from the apparatus or by using a suitable lens.

3.2.2 Density measurement

The need for accurate density measurements is important in all of the experiments per-
formed in this thesis. There are several methods of measuring density, for example, the
refractometer, electronic density meter, conductivity probes and digital video analysis. All
but the third of these methods have been used, usually in conjunction with one another.

Refractometer

The refractometer is the easiest method of measuring the density of salt solution and is
used when rapid measurements or quick estimates of density are required. Like the shadow-
graph above it uses the property of salt solution that the refractive index varies with density
(i.e. salt concentration). The refractive index is measured as light passes through a drop of
solution and is then compared with a data table to calculate the density. This method is
normally used when preparing large tanks of salt solution. Measuring density using a refrac-

tometer requires a sample size of less than 1 ml and is accurate to within 0.5 x 1072 gcm~3.
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FIGURE 5. The shadow-graph visualisation technique. A parallel light source is shone
through the apparatus onto a translucent screen. The image caused by refraction
effects is recorded onto video tape or simply observed by eye.
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Density meter
The density of liquids can be found electronically using an Anton Paar density meter
which measures the resonant frequency of a small tube filled with the sample. This method
is up to 3000 times more accurate than the refractometer but takes a few minutes for each
_measurement to be made. This method is normally used to measure the density of samples
taken from an experiment and for use in calibrating the digital measurements below.
Digital video analysis |
The most recently developed method for measuring densities and concentration variations |
is by digital analysis of a video tape of the experiment. The application of this technique
varies depending on the experiment and so only a brief general description is given here -
the particular approach for each experiment will be described in more detail in the relevant
chapter.
In order to use this method the source fluid is dyed (whereas the environment fluid, usually

fresh water, is clear), with the observed variations in dye intensity corresponding to variations

in concentration. The experimental apparatus must be clear, so that when illuminated the

dyed fluid is clearly visible (for example on a shadowgraph screen). The flow of the buoyant, i
dyed fluid may then be captured easily on video tape whilst the experiment is running. :

The video picture is divided digitally into a grid of pixels and the intensity of each pixel j
is calculated and given an integer value between 0 (black) and 255 (white). Variations in |
the background illumination can be removed by dividing the intensities of the picture by |
those of the background (from an initial frame) at each point. It will be shown that the |
dye concentration varies linearly with measured intensity for small dye concentrations. So by
making one density measurement at a specific point in the flow from a fluid sample (using
the Paar density meter) and comparing it to the intensity value there, it is easy to calculate
the density/intensity relationship.

In practice more than one density measurement is made for greater reliability. An in-
tensity /concentration calibration experiment is carried out before each group of experiments
to calculate the concentration at which non-linearity in the intensity/concentration relation-
ship becomes significant for that particular experimental apparatus. The measured intensity

will also vary with the thickness of the dyed region. It is important to point out that the

refractometer and density meter measure the density of a sample of fluid drawn from a spe-
cific point of the flow; the digital technique measures the mean density (i.e. an integrated |

measurement) on a line through the flow between the light source and the camera, although

- 12 —
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point measurements may be made by illuminating the experiment with a single sheet of light

passing through it.

4. A plan of this thesis

It is clear from section 2.3 that the ‘filling-box’ model has been developed and applied to
a large variety of cases. However, there are still problems to solve and questions to answer.
In this thesis some flows resulting from a release of buoyancy in a confined space, in which
the “filling-box’ model may not be applied, are investigated.

Throughout this thesis and in all of the previous work, the release of fluid has been
modelled as a buoyant jet. In chapter 2, the existing basic theoretical and experimental
knowledge of jets and plumes is reviewed. Dimensional arguments are used to calculate the
well known axial velocity and density variations. Two methods, due to Tollmien (1926) and
Goertler (1942), of modelling turbulence to derive the transverse distribution of the axial
velocity component are given. In order to improve the agreement between these two theories
and experimental results, the effect of including the previously neglected smaller terms and
variation of the intermittency factor is then investigated.

In chapter 3 the effect of assumptions about the behaviour of the entrainment constant on
a theoretical model of a buoyant jet is examined. In most models of buoyant jet behaviour,
the entrainment constant has been assumed to be constant (see for example Lane-Serff 1989).
However, the entrainment constant is known to be different for jets and plumes (see Fischer
et al. 1979) and will therefore vary along the course of a buoyant jet, which undergoes a
transition between these states. Assumptions on the nature of the entrainment constant
in a theoretical model will therefore affect the physical accuracy of its predictions. Two
contrasting assumptions are made about the behaviour of the entrainment constant in a model
of the flow of an initially horizontally directed buoyant jet and the theoretical predictions
are compared with experiments. Accurate knowledge of the trajectory of a buoyant jet is
important when considering confined buoyant releases, as it will provide information on the
likelihood of the jet impinging on the container boundaries.

In chapter 4 the effects of high source momentum and ventilation are investigated by
examining the flow of a vertical, high momentum buoyant jet in a long horizontal tunnel.
The high momentum of the source dramatically alters the flow from that assumed in the

“filling-box’ case and so this model cannot be applied. A new model is developed in which
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the bulk flow variables and concentration time-dependence are deduced and compared with
experimental measurements. The effects of tunnel ventilation on the flow are studied.

In section 2.2 it was explained that ‘filling-box’ theory cannot be accurately applied to
containers with aspect ratio greater than unity. In chapter 5 the flow resulting from a vertical

plume flowing into a tall chamber (large aspect ratio) is studied. The nature of the flow is

found to depend on the actual value of the aspect ratio. The applicability of the ‘filling-box’

equations to containers of moderate aspect ratio is investigated before presenting a model for
the flow in a container of large aspect ratio. Theoretical and numerical results are compared
with experiments in each case.

In chapter 6 the work of chapter 5 is continued, studying the flow from sources of buoyancy
in tall angled chambers. The resultant flow is quite different to that of the vertical case. A
simple model of the flow is presented and the theoretical predictions are compared with
experimental measurements.

Finally the general results are reviewed in chapter 7, outlining their implications for gas
leakages and applications to other practical situations. Chapter 7 concludes with a table
which summarises the current understanding of confined buoyant jet flows.

Each chapter begins with a brief synopsis of its contents followed by an introduction to the
subject under discussion. The chapters end with a summary of the notation used, provided
for reference purposes rather than precise definitions. Sections, equations, tables and figures
are numbered within each chapter and any reference to part of another chapter will be stated
explicitly. The references follow chapter 7.

The emphasis throughout is on the use of simple models in the hope that, where pos-
sible, results may be obtained analytically or failing that by simple numerical analysis. In
general this means that mean values are calculated; turbulence is included by modelling its
effect rather than by examining the turbulent fluctuations themselves. The flow produced
by a buoyant release in a confined space is often extremely complex and more detailed or
sophisticated models would require the use of computational fluid dynamics (CFD) for their
solution. However, CFD solutions are usually calculated for a given situation and so do not
necessarily provide physical explanations for the predicted flows. Simple models, based on
physical observation and interpretation, can often provide a greater understanding of the dy-

namical processes involved, allowing a more ready application of the results to other similar

situations.
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Notation

Below is a list of the symbols used in this chapter, provided for reference purposes.

Height /width aspect ratio of the tank
Froude number, F'r = U?/g'l

Acceleration due to gravity

Reduced gravity

Intensity measured by digital video analysis
Length scale

Length scale of a buoyant jet or ‘jet-length’
Péclet number, Pé = Ul/k

Reynolds number, Re = Ul /v

Time

Velocity scale

Ratio of L; to the shortest distance between the jet nozzle and the nearest

boundary
Thermal conductivity

Kinematic viscosity

Density
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CHAPTER TWwoO

Jets and Plumes

Throughout this thesis, the source of a buoyant release will be modelled using the theory
of turbulent jets, plumes and buoyant jets. These source types are defined followed by a brief
review of their properties, described using established experimental and theoretical results.

The equations of incompressible fluid motion are then stated and are applied to the flow
of a turbulent jet in order to predict some of the flow characteristics observed experimentally.
Many previous solutions have modelled the turbulent velocity products using either an eddy
viscosity or a mixing length model and have neglected the smaller terms in the momentum
equations. It has been established that neither of these models gives good agreement with
the experimental results over the whole cross-section of the jet flow. In order to improve the
agreement between the theoretical predictions and experimental measurements, the effect of
the smaller, second order terms and the effect of variation of the turbulent intermittency
factor are examined. This results in a significant improvement of the theoretical predictions,

particularly near to the edge of the jet.

1. Introduction

In most applications of practical interest, a release of buoyant fluid is likely to originate
from a source of small extent and may be modelled theoretically, using the theory of turbulent
jets and plumes. For example, gas leaking into a building will probably be escaping from a
small hole or crack in a pipe formed by corrosion; waste discharged into the environment may
often originate from the open end of a submerged pipe or a series of jets, called a multiport

diffuser. In the latter case jetting the waste into the environment is often a very effective
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Chapter Two - Jets and Plumes

means of reducing its concentration, as jets and plumes entrain large volumes of ambient
fluid, rapidly diluting the waste product. In all of the flows resulting from buoyant releases
in confined spaces considered later in this thesis, the source will be modelled as a buoyant
jet or plume and so it is important to review the basic properties of jets and plumes.

A jet is the discharge of fluid from an orifice into a large body of the same fluid, for
example the flow from the nozzle of a garden hose when held under water. The flow is driven
by the momentum of the source, and the source and ambient fluid have the same density.

A plume is the flow resulting from a potential energy source that provides the fluid at the
source with buoyancy relative to its surroundings, for example hot air rising from a radiator.
In a plume the fluid at the source has no initial momentum and is driven by buoyancy forces.

In practice, many sources are neither jets nor plumes having both initial momentum and a
different density to the environment. These sources are called buoyant jets or forced plumes.
The initial flow is often driven by the momentum of the fluid at the source and behaves like
a jet, but the density difference means that the fluid is acted on by buoyancy forces and will
ultimately behave as a plume (as will be shown later).

Near to the source, the flow is usually controlled by the starting conditions, namely the
initial fluxes of mass, momentum and buoyancy. These are defined below.}

i) The mass fluz, pQo, is the rate of mass flow through a jet cross-section and is given by

pQo = —1—//)11,0 ds, (1.1)
TJs

where p is the density of the fluid, ug is the time-averaged (mean) velocity at the source and
dS denotes integration across a cross-section (.5) of the jet. Qo is the specific mass flux or
volume fluz of the jet.

ii) The momentum fluz, pMy, of the jet is the rate at which streamwise momentum passes

through a jet cross-section and is given by

1
pMy = —/pug ds. (1.2)
TJs

(

My is called the specific momentum flux.

t Some authors do not include the 1/ factors, which are included here for later convenience

when using circular nozzles.
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iii) The buoyancy fluz, p By, is the rate of flow of density difference through a jet cross-section

and is given by

pBy = l/gApuo ds, (1.3)
T 45

where Ap is the density difference between the surrounding fluid and the jet fluid. By is the
specific buoyancy flux.

Local fluxes of mass, momentum and buoyancy are defined in the same way without the
zero subscript which is used to denote evaluation at the source. The above notation is used
throughout this thesis.

Jets and plumes may be laminar or turbulent but it is not yet possible to predict (theo-
retically) the Reynolds number,

2 b
= 1.4
Re L, (1.4)

where b is the transverse length scale, u,, is the axial velocity scale and v is the kinematic
viscosity, at which a laminar jet will become turbulent. In most cases, if the Reynolds number
exceeds 2000 the jet flow will be turbulent, although Fischer et al. (1979) state that there is
evidence that the turbulence may not be fully developed until a Reynolds number of about
4000 is reached. In all of the flow sources considered in this thesis, the lower limit, Re > 2000,
will be attained and so the sources will be considered to be turbulent.

In the following sections the basic properties of turbulent jets, plumes and buoyant jets,
obtained from both theoretical and experimental results, will be reviewed. The equations of
fluid motion will then be introduced. When applied to jet flow, it is possible to compare the
orders of magnitude of each term in the equations of motion. By selecting the largest terms,
and modelling turbulence using mixing length and eddy viscosity hypotheses, Tollmien (1926)
and Goertler (1942) were able to find predictions for the mean velocity, although neither
solution agreed well with the experimental results across the whole of the flow.

Finally, in order to try to improve the agreement between the theoretical predictions and
the experimental measurements, the effects of including the (previously neglected) smaller
terms and variation of the intermittency factor in the analysis will be examined. This will
give an indication of the relative importance of the neglected terms. No similar studies (of the
effects of the smaller terms and intermittency factor) are known to the author. The chapter

ends with a discussion of the results.
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Chapter Two - Jets and Plumes
2. A review of the elementary properties of jets and plumes

The basic properties of jets, plumes and buoyant jets will now be reviewed, drawing on

established theoretical and experimental results.

2.1 The pure jet

A pure jet has been defined above to be a source of mass and momentum but not buoyancy;
in practice, a jet is usually the discharge from a nozzle in a body of the same fluid. Turbulent
jets have been studied extensively both theoretically and experimentally so that there is now
a good understanding of their behaviour. Some of the experimental studies are listed in

table 1 (for reviews see Rajaratnam 1976, Fischer et al. 1979 and List 1982).

2.1.1 Experimental observations

Figure 1 shows the flow of a turbulent jet schematically, divided into two distinct regions
or zZones.

In the first region, known as the ‘low development region’ or the ‘zone of flow estab-
lishment’, the shear between the source fluid and the environmental fluid causes turbulence
which penetrates progressively towards the axis of the jet destroying the potential core of
undiminished mean velocity. Ambient fluid is entrained into the jet which consequently in-
creases in width. This first region is about six nozzle diameters in length, after which the
turbulence has penetrated to the jet axis and the potential core has disappeared. This is the
‘fully developed flow region’ or ‘zone of established flow’.

In the fully developed region, the jet continues to expand by entraining ambient fluid.
Experimental measurements have shown that mean velocities and (tracer) concentrations
in this region are ‘self-similar’, expressible in terms of velocity and concentration scales,
respectively, (u, and C,,, the values of the axial (2) velocity and concentration (or tracer)
on the axis) and a length scale, or measure of the width. Figure 2 shows measurements of
the transverse (y) variation of the axial velocity, u, for a planar turbulent free jet (data due
to Zijnen 1958) in which the solid line is a Gaussian fit. The velocity distributions from

different cross-sections fall on a common curve which is approximately Gaussian in shape

(as a consequence, the axial velocity distributions of jets and plumes are often assumed to
be Gaussian for analytical simplicity). However, the scales of velocity and length must be

known before this property of similarity may be used.
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FIGURE 1. A schematic diagram showing the different regions of the flow of a pure
jet.
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FIGURE 2. The axial velocity profile of a plane turbulent jet showing self-similarity
(data from Zijnen 1958).
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Experimentalist Nozzle Range Re x 10* Mean flow Turbulent
radius z /bg quantities quantities
bo (mm) measured measured
Forthmann (1936) f  15.0 50 7.0 u
Miller & 6.35 80 2.0 U, p u’?
Comings (1957)
Van der Hegge 2.5,5.0 80 1.33 u, v uw?, v, '
Zijnen (1958)
Ricou & 0.8—15.9 418 0.1-8.0  w,p, Q,Qu
Spalding (1961)
Bradbury (1965) 4.765 140 3.0 Uy, v, P u?, 02, w?, u, |
Heskestad (1965) 6.35 320 047-3.7 w uw'?, v, w2, u
{UAGATA
Sami et al. (1967) 30.0 40 22.0 Uy Uy P u, ul’, pl
Wygnanski & 13.0 400 10.0 u u?, v, w'?, uly’
Fiedler (1969) ujuuy
Mih & 0.865 280-600 1.77-3.14 W, 02, w1 |
Hoopes (1972)
Gutmark & 6.5 240 3.0 w, v uw?, 0?2 w?, u'
Wygnanski (1976) W

%, v are the mean axial and transverse/radial velocities; ) is the volume flux; u', v', w’ are the

velocity fluctuations; p is the static pressure; p’ is the pressure fluctuation; [ is the mixing length.

fDetails of this paper have been taken from Rajaratnam (1976).

TABLE 1. Experimental investigations of laminar and turbulent free jets

2.1.2 The velocity and length scales

The scales of velocity and length can be calculated by integrating the equations of motion \

over a cross-section of the jet and assuming similarity of the flow. This integral technique,
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Chapter Two - Jets and Plumes

suggested by Morton, Taylor & Turner (1956), has been widely used and developed (see, for
example, Kotsovinos 1977). However, it is possible to predict the scales of velocity and length
using simple dimensional analysis.

If 2 is the axial distance from the nozzle, then dimensional analysis assumes that, for Re
sufficiently large so that the effects of molecular viscosity are negligible, the scales of velocity,
length, concentration, volume flux and momentum flux must be dependent on z, My and Q.
Thus ]

Um = f1(Mo, Qo,z), b= fo(My,Qo,2), Cm = fs(Mo,Qo,2),

Q = fa(My,Qo,z), M = fs(Mo,Qo,z), (2.1)

where f;, i = 1,...,5, are functions to be deduced.
Considering circular jets first, then following Fischer et al. (1979) a characteristic length

scale for the axial motion may be obtained from My and Qq, namely

La.:v = =y (22)

and Lq; = by, where by is the nozzle radius, if the nozzle velocity has a uniform profile (see
equations (1.1) and (1.2)). Fischer et al. (1979) also argue that, for sufficiently large values
of /L., the effect of the initial volume flux on the jet behaviour is negligible compared with
that of the initial momentum flux. Hence, at large distances downstream, all of the above
properties must be defined in terms of 2 and M. The only way to obtain the dimensions of
velocity from these is by using \/My/z. Hence

VMg

Um = €17 —, (2.3)

for some constant ¢;. Clearly the only way to obtain dimensions of length is using z and so
b= csa; (2.4)

for some constant cy. This method also implies the well-known result that the momentum
flux is constant in jets (although this was disputed by Kotsovinos 1991). The dependences
of the other quantities on  and My can be deduced similarly and are summarised in table 2,
together with the analogous results for planar jets. The constants ¢;, ¢}, may be estimated

from experimental measurements, which have also confirmed the dimensional results (see

- 921 -

]




Chapter Two - Jets and Plumes

Parameter Circular jets Planar jets
Characteristic axial length scale L, Qo/vVMy Q3/ My
Velocity scale u,, civ/My/z i/ MoJz
Radial /transverse length scale b Co chz
Tracer/velocity length scale ratio b;/b, 1.19 £ 0.06 1.35+ 0.05
Concentration scale Cy, c3/V/ Moz ch /v Moz
Volume flux scale @ ca/ Moy chiv/Myz
Momentum flux scale M Constant, My Constant, My

TABLE 2. Summary of the properties of turbulent jets.

Fischer et al. 1979). One curious observation is that the transverse length scales of velocity
and tracer concentration (b, and b;) are measured to be different, Fischer et al. (1979)

quoting b;/b, = 1.19 for circular jets and b;/b, = 1.35 for planar jets. This has lead to

unresolved speculation as to why there should be a difference in the length scales, b; and b,.

2.2 The pure plume

A pure plume has been defined to be a source of potential energy, giving the fluid at
the source buoyancy relative to its surroundings. Whilst a large number of experimental
investigations of pure turbulent jets have been performed, there are very few studies of pure
plumes (see table 3 and List 1982). However, the pure plume is easier to analyse theoretically

than the jet as there is no initial volume or momentum flux.

2.2.1 Experimental observations

Morton, Taylor & Turner (1956) quoted the paper by Schmidt (1941) as the first con-

sideration of plumes rising from heated bodies. Rouse, Yih & Humphries (1952) gave the
results of measurements made in plumes above a single gas burner, although they did not
consider turbulent fluxes. Rouse et al. found that, like the pure jet, the mean velocity and |
temperature distributions of pure plumes could be fitted quite well to Gaussian profiles. Also,

Rouse et al. found that using a line source the velocity varied over a slightly larger scale
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Experimentalist Flow type Quantities measured

Schmidt (1942) { P w

Rouse, Yih & Humphries (1952) P w, C

Lee & Emmons (1961) P C,b,Q,Q., B

George et al. (1977) P w, C, w?, 2, w'c

Kotsovinos & List (1977) BJ w, C, by, b7, M, Q, Ri

Kotsovinos (1977) BJ w', ¢

Ramaprian & Chandrasekhara (1983) {1 BJ,P w, C, by, by, w2, c?

Kotsovinos (1985) P C, br, ¢

Papanicolaou & List (1988) BJ w, v, by, by, w2, 012, ¢ W, Q, M

w, v are the mean axial and transverse/radial velocities; C' is the concentration; w’, v’, ¢’ are the
turbulent fluctuations; (), M, B are the fluxes of volume, momentum and buoyancy; b,,, by are the
length scales of velocity and concentration; Rt is the Richardson number.

P denotes study of plumes and BJ denotes study of buoyant jets.

fDetails of this paper have been taken from Morton, Taylor & Turner (1956); details taken from
Papanicolaou & List (1988).

TABLE 3. Experimental investigations of turbulent free plumes and buoyant jets.

than the buoyancy, but with a circular source the opposite was true. In both planar and
circular jets, the tracer concentration also varies over a slightly larger scale than the velocity
and so there must be some doubt about the validity of the results of Rouse et al.. Lee &
Emmons (1961) only measured the temperature profiles above a line source and so their re-
sults cannot be used to clarify the situation. Kotsovinos & List (1977) have conducted quite
a thorough investigation. From the results of their study, they calculated the temperature to
velocity length scale ratio A = br/b,, finding that A ~ 1.35 for planar jets and plumes and
A = 1.16 for circular jets and plumes. George et al. (1977) have attempted to measure the
turbulent properties in axisymmetric plumes. They found that the mean velocity varied over
a larger length scale than the concentration, which contradicts the results of Kotsovinos &

List (1977).
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2.2.2 Dimensional analysis

The pure plume has no initial volume or momentum flux and so the flow variables must
depend only on the source buoyancy flux, By, and the distance from the source z (z is used
as pure plumes must flow vertically, with velocity w), assuming that the Reynolds number
is sufficiently large for the flow to be considered fully turbulent (i.e. viscous effects are
negligible). This has the immediate consequence that there is no characteristic axial length
scale for the pure plume.

Considering circular plumes first, the only way to construct dimensions of velocity from

By and z is by using (By/z)3 and so

iy iy (@) , (2.5)

4

~

where w,, is the velocity scale (the value on the axis), for some constant d;. Clearly there is

only one way to construct dimensions of length, i.e. using 2z, and so
b= dyz, (2.6)

for some constant dy. In the case of the pure jet, dimensional analysis implies that the
momentum flux is constant; in pure plumes the above analysis implies that the buoyancy
flux is constant. This standard result, proved by Morton, Taylor & Turner (1956), will be
derived more rigorously using an integral approach in chapter 3.

The dependencies of the other flow quantities on By and z can be derived similarly and are
summarised in table 4 together with the analogous results for planar plumes. As in the case
of the pure jet, the constants d;, d; may be deduced from experimental measurements. The
dimensional dependencies have been shown to be in good agreement with the available data
(see, for example, Rouse et al. 1952 and Fischer et al. 1979). However, there are still only
a few detailed experimental studies and some debate about the values of the constants still
exists (see List 1982). The concentration/velocity length scale ratios given in table 4 have
been taken from Fischer et al. (1979) and are the average values of the available experimental

measurements.

2.3 Buoyant jets

A buoyant jet is defined to be a jet in which the source fluid has a different density to the

environmental fluid. Initially a buoyant jet has jet-like characteristics, depending on its initial
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Parameter Circular plume Planar plume
Velocity scale wy, d; BO% z73 dj BO%
Radial /transverse length scale b dyz bz
Concentration/velocity length scale ratio bz /by, 1.20 £ 0.07 1.35+ 0.05
Concentration scale C,, ng(;-%z‘% ngO_%z_l
Volume ﬂu;( scale @ da Bo%z% d,’;BO%z
Momentum flux scale M ds Bo%z% ngO%z
Buoyancy flux scale B Constant, By Constant, By

TABLE 4. Summary of the properties of turbulent plumes.

volume and momentum fluxes, but because of the density difference, it also has plume-like

characteristics depending on its initial buoyancy flux.

2.3.1 Experimental observations

Some of the experimental work on buoyant jets is listed in table 3. Kotsovinos & List (1977)
conducted a detailed experimental investigation of planar buoyant jets and were the first to
measure turbulent fluctuations (see also Kotsovinos 1977). Their experiments confirmed that
the flow variables initially behaved as would be expected for a pure jet (see table 2), and
that after passing through a transition stage, the flow behaved like a pure plume (see table
4). They also found that 10% of the transport in jets and as much as 40% of the transport
in plumes is due to turbulence. Ramaprian & Chandrasekhara (1983 - details of this report
have been obtained from Papanicolaou & List 1988) have repeated Kotsovinos’ experiments
with more accurate equipment, finding lower turbulent flux contributions.

The most detailed study has been by Papanicolaou & List (1988) who measured the
mean velocity, concentration, volume flux and momentum flux distributions, the turbulent
velocity (both axial and radial) and concentration distributions, and the distributions of
skewness and flatness factors, in axisymmetric buoyant jets. Papanicolaou & List (1988)
attempted to produce conclusive results using laser-Doppler anemometry to measure veloc-

ity and a laser-induced-fluoresence concentration measurement technique. They found that
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buoyancy-produced turbulence was responsible for 15-20% of the tracer transport whereas
the jet turbulence was responsible for 7-12%. These figures seem reasonable as in plumes
there is both the production of turbulence by the shear stress, as in jets, but also a direct
transfer of potential energy to turbulent kinetic energy by the buoyant work done. Papan-
icolaou & List (1988) also resolved the disagreements regarding the difference in the scales
of the transverse variation of mean concentration and mean velocity. Their measurements,
taken in the fully developed flow region, showed that the concentration varies over a larger
scale than the velocity in both jets and plumes, with A ~ 1.19 being a good average value
over the path of a circular turbulent buoyant jet. The converse result of George et al. (1977)
is probably attributable to the fact that their measurements were taken very close to the

source.

2.3.2 Dimensional analysis
It is possible to construct two independent scales of length from the initial source condi-

tions, namely (for a circular buoyant jet)

; (2.7)

the first of which is simply the axial length scale for a pure jet, introduced in section 2.1. The
second is called the ‘jet-length’ (see, for example, Turner 1973) which gives an indication of
the length scale over which momentum forces will dominate buoyancy. Consider a vertical
buoyant jet with no initial volume flux. In this case, the flow variables must all be functions
of z/L;. Near to the nozzle (small z), z/L; is small - however small values of this parameter
(and consequently identical flows) may also be obtained by having small By or large Mp, for
which jet-like flow would be observed. Hence jet-like flow is expected for small values of z.
Conversely, large values of z/L; may be obtained by having large z, large By or small Mpy;
i.e. at large distances from the nozzle the flow is plume-like. Thus the length scale L; is the
parameter controlling the transition in a buoyant jet from a jet-like to a plume-like state. The
above argument has shown that when z < L; the flow is jet-like and when z > L; the flow
is plume-like. This jet-plume transition and the control of L; on it will be pursued further
in chapter 3, and the work of Linden, Marshall & Cleaver (1991, see chapter 1) has shown
the importance of L; in controlling the mixing produced by a source in a confined (cubical)

space.
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Similar dimensional arguments can be applied to planar buoyant jets, for which the axial

and ‘jet-length’ scales are

: M,
Loz = Q0 and Lj=—=. (2.8)
]WO Boa

3. The equations of fluid flow

Having summarised the basic features of jets, plumes and buoyant jets obtained from
experimental results and simple dimensional analysis, it is desirable to be able to predict some
of the experimental results analytically, using the equations of fluid motion. The following
analysis is restricted to a consideration of pure jets, so that there are no density differences,
although similar analysis may also be applied to plume flow (Yih 1981). The most interesting
feature of buoyant jet flow is the jet-plume transition and this will be examined theoretically

using an integral approach in chapter 3.

3.1 The momentum equations

The Navier-Stokes equations for a viscous incompressible fluid may be written in the form,

using rectangular coordinates z;, (see, for example, Townsend 1956)

O(u; + ul) O(ui +ul)  O(p+p) 0% (u; + ul)
o + (uj + u3) 7y S +v 813 , (3.1)

where u; is the ith component of the time-averaged (mean) velocity and !} is the fluctuating
part; p and p' are the mean and fluctuating pressures, and v is the kinematic viscosity. The
condition of incompressibility is written

O(u; + ul)

S = 0. (3.2)

Taking the time-average of these equations gives the equations of mean motion

Ju; , 0 dp d*u; Ou;
] e 3 d =), i
U dz; U; dz; B v 81? an 92; 0 (3.3a,b)

Subtracting equation (3.3b) from (3.2) yields du’/dx; = 0 and so equations (3.3a) may be

written in the usual form of the momentum equation

Ou; N duju; Op . 0%u;
Uj— + —L = — V—s.
J 811 811 811 813

J

(3.4)
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This is the form of the momentum equation that will be used in the following analysis and

later in this thesis.

4. Application of the momentum equations to planar jets

The momentum equations (3.4) will now be applied to the flow of a planar jet in order to
predict the flow characteristics. The analogous results for circular jets will be summarised
briefly in section 5. Planar jets are perhaps less commonly occurring in practical circum-
stances than circular jets, although the jet from a multiport diffuser may be regarded as
being planar when the ports are sufficiently close together. However, the analysis is slightly
simpler in the two-dimensional case and so this will be considered first.

Assuming the flow to be two dimensional (w = 0) in the © — y plane, denoting the axial
(z) velocity by u and the transverse (y) velocity by v, then the time-averaged momentum

equations become

9z " "9y~ poz ar ' oy "\022 T 9y? )’ '
oz vc’)y - pOy 0z 0y ox? ~ oy?)’ '
and the continuity equation is now
du v
% + T 0. (4.3)

4.1 Order of magnitude analysis

Experimental observations (see table 1) have shown that the transverse velocity and axial
gradients are an order of magnitude smaller than the axial velocity and transverse gradients,
respectively, and that mean squares of products of turbulent velocity fluctuations are also
at least an order of magnitude less than the square of the axial velocity scale. Thus if
O(v) = L0(upm), 0(8/0z) = LO(0/dy) and O(u',v") = €O(uy,), where £ is a dimensionless
quantity with magnitude an order of magnitude less than unity and O(e?) = O({), the orders

of magnitude of each term in (4.1) and (4.2) above may be compared.
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Writing the equations of motion, (4.1) and (4.2), again with the order of magnitude of

each term written below

e 10 (I I (00 o)
"oz ”ay‘ p Ox Oz dy oz~ 0y?)’

1 1 1 e &t 1/Re 1/€’Re (4.1a)

DR R T S T T W
“ Yoy T IR dy ox?  0y?)’

¢ l 1 g e/t €/Re 1/(Re (4.2a)

it is clear that the terms range in order of magnitude from 1/¢ to £/ Re.

4.2 First order equations of motion

Having estimated the order of magnitude of each term of the equations describing planar
jet flow, analytical solutions to the equations will be obtained by neglecting all but the highest
order of magnitude terms in each equation.

If the Reynolds number is high and the jet is fully turbulent, the viscous terms may be
neglected. Examination of (4.1a¢) and (4.2a) shows that in (4.1) the first three and fifth
terms are of order unity whereas the fourth term is of order ¢, (recall that ¢ is small and
O(e?) = O(()), and in (4.2) the third and fifth terms are of order unity or greater. Thus to

order of magnitude unity the equations (4.1) and (4.2) may be approximated by

ou  Ou 1dp  Qul’

up - v;,)—y = ~o0s ay (4.3)
o:-%g—’;—ag, (4.4)
with the continuity equation remaining unchanged (each term is of order unity)
% 4 g—;) =0. (4.5)
The second of these, equation (4.4), may now be integrated with respect to y giving
P = Poo — V2, (4.6)
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in which po, is the pressure outside the jet where the turbulent fluctuations are zero. Sub-
stituting (4.6) into (4.3) gives
Ju Ju  ldpe Ou'v' i{,ﬁ

Yoz s dz Oy ' Ds

oz " oy~ p dz dy W7}

Again restricting the analysis to terms of order unity, the last term, which is of order of
magnitude ¢, is neglected. Also, in a large number of practical problems, the axial pressure
gradient outside of the jet is small, and so the dp.,/dz term is ignored. With these further

simplifications the equations reduce to

ou ou 101 ou v

— —=—-—— and —+—=0 4.8a,b

u(?m+v8y >3y an 8m+8y s (4.8a,b)
where 7 = —pu/v’ is the turbulent shear stress. These are the approximate equations of

motion for a two-dimensional jet.

The integral momentum equation and entrainment hypothesis

Before showing how equations (4.8) may be solved, two important results may be obtained
simply by integrating these equations with respect to y, namely the integral momentum
equation and the conservation of volume equation.

Integrating (4.8a) with respect to y from y = —oo to y = 0o gives

* du * Ju * 10T
o P = o & ’
/_m“awd“/_m”ay y /_mpay‘y e

Each term may be rewritten as follows

/ u@ dy = . u? dy,

oo O Y 2dz J_o

*® Ju *® Jv © Ju 1d [*
—dy = Q- = = —dy ) = =—— 2d
/_oovay(y (uv|_co /_oo uay(ly) (/_oozta$ (y) 5 /_oou y and

< or & _
/_00 a—ydy = 7|2, = 7(00) — 7(—00) = 0.

Hence (4.9) reduces to

oo

L] u?dy = 0. (4.10)

de f oo
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This standard result (see, for example, Rajaratnam 1976) states that the specific momen-
tum flux in the axial direction is a constant, My, which agrees with the prediction of the
dimensional analysis of section 2.1.2.

A second important result may be obtained by integrating (4.8b) similarly, giving

d [ee] [o.e] [oe]
%/_ooudy: /_oouxdy: —/_oovy: —2v(00). (4.11)

The velocity contribution, —v(00), is the velocity of fluid being entrained into the jet from
the environment. Morton, Taylor & Turner (1956) proposed, on dimensional grounds, that
v(00) = —a;u, where a; is an ‘entrainment coefficient’ for a pure jet; i.e. the velocity of the
fluid being entrained is proportional to the local velocity scale of the jet. Thus

(fl—f = % /_0:0 wdy = 20U, (4.12)
The value and nature of the entrainment constant a; has been the subject of considerable
experimental investigation. However, its value is still not known precisely - there is a large
degree of discrepancy in the measured values of a; (Fischer et al. 1979 record measured
values of a; which vary by up to £22% of the mean value), possibly because a; may vary
with the manner in which the experiments are performed (see Bradshaw 1977). What is
established, though, is that the value of the entrainment constant is different for jets and
plumes (see Fischer et al. 1979) - the effect of this variation on a model of a horizontally

released buoyant jet is investigated in chapter 3.

4.3 Turbulent solutions to the first order equations

Equations (4.8) were solved by Tollmien (1926) and Goertler (1942) who used the self-
similar nature of the flow with mixing length and eddy viscosity hypotheses, respectively, to

express the turbulent product /v’ in terms of the mean flow variables.

4.3.1 Goertler Solution
Goertler (1942 - the details of this paper have been taken from Rajaratnam 1976) used

an eddy viscosity, €(z), to model the turbulent shear stress

Fo= pe(m)g—z (4.13)
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The eddy viscosity is assumed to be constant over any jet cross-section in the fully developed
flow region. On dimensional grounds Goertler assumed that € & u,,b or € = ku,,b for some
constant k. The assumption that the jet has reached a state of self-similarity implies that all
variables can be expressed in terms of a similarity variable, n = y/o2 for some constant o,
with magnitude of order ¢, to be determined by comparison between the theoretical results
and experimental measurements. Thus using the dimensional result that wu,, ~ z~2, it is

convenient to write
u(z,y) = um(a)F'(n), where n= ;y—r, and un(r) = — =\ —, (4.14)

in which the constant, n, controlling the magnitude of the velocity, has been set to agree with
the dimensional results of section 2.1.2 (see table 2), and the primes denote differentiation

with respect to 7. The continuity equation (4.8b) requires that
(2, y) = %(nF’ — F/2). (4.15)

Substituting (4.14) and (4.15) into the equation of motion (4.8a) and integrating with respect
to 7 gives

1 key

where the dimensional result that b = ¢4z has been used in the expression for ¢(z) and A is
a constant of integration. The boundary conditions at y = 0 or = 0 are u/u,, = F'(0) = 1,
F"(0) = 0 and F(0) = 0, which set A = 0. The free parameter ¢ may be chosen to be
o = 2,/kch, so that then (4.16) becomes

2FF' + F" =0, (4.17)

which may be integrated to

F24+F = A (4.18)

The above boundary conditions set the integration constant, A = 1. Equation (4.18) then

becomes
PP =1, (4.19)
which has solution
F =tanhy and F' =1-tanh’y ie. (4.20)
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2 2 1
w(,y) = up (1 —tanh’yp) and ov(2,y) = umo | n— ntanh’n— Eta,nh n|. (4.21a,b)
The streamfunction of the flow is
¥(2,y) = uparo tanhn = noy/z tanhn, (4.22)
and for large «, the streamlines take the form
y ~ Va. (4.23)

A good fit to the experimental results of Zijnen (1958) is found when o ~ 0.118. Equation
(4.21a) is shown using this value of o, together with the data of figure 2, in figure 3. The

agreement is good in the central region of the jet but is less so near to the edge of the jet.

4.3.2 Tollmien Solution
Tollmien (1926 - details of the results of this paper were obtained from Rajaratnam 1976)

used the Prandtl mixing length formula

5 [ Ou g
T = —p[ a—y ) (424)

where [ is the mixing length. On dimensional grounds Tollmien assumed that [ &< b or [ = 3b

for some constant 3. The previous dimensional results (see table 2) then imply that
I = Bega. (4.25)

Using the same form for the velocity components as in the previous solution, equations (4.14)
and (4.15), and substituting these into the equation of motion (4.8a), using (4.24) and (4.25),

gives after some simplification
d
2F'"F" —FF" - F? =0 or 2F"F" - Z—(FF’) = {, (4.26)
an

in which ¢ has been set by o3 = 2(8¢c})?. Equation (4.26) may be integrated giving
FIIZ _ FFI — Al,

where A; is a constant of integration. The boundary conditions (the same as before) imply
that A; = 0 and so
F" —FF =0. (4.27)
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FIGURE 3. The solutions of the first order equations of motion for a planar turbulent
jet compared with experimental data (Zijnen 1958).

—— Goertler (1942); - - - - Tollmien (1926).
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This equation may be solved numerically - the solution for F' (i.e. u/un,), with o = 0.108,
obtained using a NAG Fortran routine, is given in figure 3 (the dotted line). This figure
also shows the Goertler solution (solid line), which in general shows better agreement with
the data than the Tollmien solution, particularly near to the axis. The Tollmien solution
achieves slightly lower values near to the edge of the jet and so agrees slightly better with
the experimental data there than the Goertler solution, although neither solution is ideal. It
should be pointed out that the experimental errors are largest at the edge of the jet as the
velocities are small there and may be affected by any external effects (for example, the walls of
the tank) or by the measuring equipment (for example, flows induced by hot-wire measuring
devices). However, overall the Goertler solution is preferable having a simple analytical form.

The streamfunction for the Tollmien solution is given by

b(2,y) = noJTF(n), (4.28)

and for large z, F(n) ~ n, and the streamlines take the approximate form (as in the previous

case: see equation 4.23)

y~ Ve (4.29)

4.4 The effect of including the second order terms

It has been shown that neither the Goertler nor the Tollmien solutions of the first order
equations agreed well with the experimental data over the whole cross-section of the jet flow.
However several terms were neglected and assumptions made which must inevitably affect the
accuracy of these predictions. In order to improve the accuracy of the theoretical predictions,
inclusion of the terms of second order (i.e. of order of magnitude £) in equations (4.1) and
(4.2) may be considered. It is unlikely that these terms will have a significant effect near
to the axis of the jet as they are at least an order of magnitude smaller than the first order
terms, however they may improve the solution near the edge of the jet where the transverse
velocity component becomes comparable to the axial velocity and the (1)72— u_’2) turbulent
term may be non-negligible (Townsend 1956).

The pressure contributions may be eliminated by cross-differentiating and subtracting,

585 4.1) - £(4.2), giving

0 ou ou 0 ov ov\ 0? 0? e 0? —
a—y ('ll.% + v%‘) o % (u% -+ ’Ua—y> = (W e 8y?) u'v' 4+ amay(’v —-u ), (430)
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in which the Reynolds number is assumed to be sufficiently high for the viscous terms to be
neglected. This is the new, second order, equation of motion for a turbulent planar jet.
The turbulent products may be modelled with the use of the eddy viscosity model using

the general expression

ou ou; 1
/. I’: 1 J S I .
5 = () (8%; + 0.@;) 3" ukdis) (4.31)

where §;; is the Kronecker-delta tensor. Thus

— du  Ov
u'v' = —e(2) (3—31 + 0_1) and (4.32)
02 — u? = 2¢(z) (g—;‘- —~ g—;) de(a )%. (4.33)

Initially the equations will be considered without the inclusion of the latter term (in equation
(4.30)) as a comparison between the form of ( v/2 — u/2) predicted by (4.33), using the solution
given in equation (4.21a), with experimental data (Heskestad 1965) reveals a rather poor
match (see figure 4). Thus substituting the previous forms of u(z,y) and v(z,y), given in

equations (4.14) and (4.15) into (4.30), using (4.32) but neglecting the (v2 — u'2) term, gives

3FIFII 3 FI2 3 ZFIFII 3 FF" 2FFIII o kn2c,2FiU
¥ )_ ( nee 4 3n + 37 +7n ) = T ohgs |
[
]» . en2ch . |
n C2(2FII+4T,FIII+772FZ‘U)_ kn g-a (%F—57]F,— _’_74_1772FII_97]3FIII_774F11)>
T
kn2c'2 15 m 2 iv
- 5 F + 50 F" + 9 F (4.34)
gl

where the first terms on each side correspond to the terms that would be obtained using the
first order approximations. Note that the second term on the left and the second, fourth and
fifth terms on the right are of order of magnitude (> compared with the first terms on each

side, whereas the third term on the right hand side is of order 4.

Simplifying and integrating with respect to 7 gives

1 " 2 o’ 2 " 2 12 ’ F? kc,2 m 1y2 o "
—§(FF + F )—-7 n*FF" +n*F +7]FF—7 :FF — key(n* F™" 4+ 2nF")

11 1 3
+kcho? (174F'" + 597 F" 4 ?nzF' - 577F) — ke, (772F”’ + 3nF" + ZFI> + K, (4.35)
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where K is a constant of integration. Equation (4.35) may be integrated once more giving

F? ke
(772FF' _ 77_2_) _ %F" _ kc;(nzF”)

o2

1 !
_2FF—2

1 1
+kcho? (n“F" + 9 F = ZnQF) — ke, (172F" +nF' - ZF> +Kn+ L, (4.36)

where L is a constant of integration. The boundary condition at 7 = 0 implies that L = 0
and consideration of the largest terms in the limit 7 — oo requires that K = 0 for a solution
in which v — 0 as § — oo. Application of the boundary conditions at n = 0 in equation
(4.35) gives

W %
_ key _ 3kcy

1
g = = (4.37)

o2
Assuming that for small 7 the required solution is to agree with the first order solution,

(4.20), in which F"'(0) = —2, then (4.37) implies that

o2

o =
dkcy = 143078

(4.38)
Thus equation (4.36) reduces to

1
F" £ 20FF' = ¢? (2772F” + nF' — %F - A2’ FF' —F?) = o* [9'F" + *F' - anF]) ,

(4.39)
where A = (1 + 30?/8). This final equation shows clearly that the modifications to the first
order approximate equation, (4.17), are of order of magnitude ¢2.

The solution to equation (4.39), obtained using a NAG Fortran routine, was used to
calculate the axial velocity distribution. The solution, with ¢ = 0.118, is shown in figure 5
(dotted line) in which the first order solution (solid line) is also included. It can be seen that
the higher order terms make very little difference to the solution, even near to the edge of
the jet. At the point y/a@ = 0.2, the modified solution is approximately 6% lower than the
first order solution. Therefore it must be concluded that neglecting the second order terms
in the first order approximate solution was not the cause of the poor agreement between the
theoretical solution and the experimental data.

In the above analysis the (vT2 - W) turbulent term was neglected. For completeness, the

effect of including this term should be examined.
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FIGURE 5. The solution to the second order equation of motion of a planar turbulent

jet, using the eddy viscosity model with o = 0.118, compared with experimental data
(Zijnen 1958).

—— First order solution; - - - - second order, not including the (vTZ — u_’z) term;
— — — second order, including the (v'2 — u'2) term.
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Using the general expression (4.31), the turbulent quantity (v — u'?) was expressed in

terms of the axial gradient of the mean axial velocity,

(9_u
oz’

(02 — u?) = de(

Inclusion of this term brings in the following extra term to the right hand side of equation
(4.34)
4kchn?

v 9
W (772F -+ 57]F” + 3F”) 3 (440)

which may be integrated twice, bringing extra terms

1
dkch (7]2F’" + gnF" + EF’) and (4.41)

1
4kcl, (772F" + 577F'> , (4.42)

to the right hand sides of equations (4.35) and (4.36) respectively. The = 0 boundary
condition, (4.38), is modified to

o?

dket = —7 .
2= 1 502/8

(4.43)

The numerical solution of the new equation of motion, (4.36) with (4.42), is shown in fig-
ure 5 (dashed line), and it can be seen clearly that the inclusion of this term makes the
agreement between the theoretical solution and experimental results slightly worse. At the
point y/z = 0.2, this new theoretical solution is now about 7.5% higher than the first order
solution. The discrepancy between the theoretical predictions and experimental results must
therefore be due to some effect other than those of the second order terms. However, some of
the disagreement may be due to the poor predictions of the eddy viscosity model when used
to model the (v — u2) term (see figure 4) - greater agreement may be obtained using some
other turbulence model.

Use of the mixing length hypothesis (see section 4.3.2) in equation (4.30), but neglecting
the (0”2 — w?) term, also gives no significant improvement on the first order (Tollmien)

solution. In this case the equation of motion, (4.27) is modified to

FII?. _ FFI - 02 (772F112 A 7]2FF, _ gF'Z) , (4.44)
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in which it may be clearly seen that the modifications are of order of magnitude £2. The
numerical solution, obtained using a NAG Fortran routine (with ¢ = 0.107), was used to
calculate the axial velocity and is shown in figure 6 - the dashed line is the modified solution
and the solid line is the first order approximate solution. At the point y/z = 0.2, the value of
the modified solution is approximately 4.4% lower than the first order solution. This result
also confirms the conclusions made when using the eddy viscosity model, i.e. that neglecting
the second order terms is not the cause of the poor agreement between the theoretical and

the experimental velocity values near to the edge of the jet.

4.5 The effect of including variation of the intermittency factor

There is, however, one physical effect that has not yet been considered. Wygnanski &
Fiedler (1969) pointed out that the turbulent intermittency factor, 7, the probability of
finding fully developed turbulence at a given point, should be included in the definition of
the eddy viscosity. Moreover they also found that 4 was approximately constant in the region
0 £ y/x < 0.1 and decreases when y/2z > 0.1. With this modification, equation (4.13)

becomes

T = pe(z)y 0(;;7) (4.45)

The investigation of section 4.4 above shows that it is satisfactory to use the first order
approximate equation of motion, (4.8). With the use of (4.45) this becomes

(4.46)

¢ "oy T oy T yoyay T 7 \ay voy? |

In order to include the intermittency factor in the numerical analysis, an approximation
for the behaviour of y(x,y) is required. Experimental measurements (Heskestad 1965, Ra-
jaratnam 1976) have shown that, for sufficiently large distances from the nozzle, v reaches a
self-similar state and can be expressed as a function of . Figure 7 shows these measurements

fitted to a curve of the form
v(n) = %(1 — tanh A) where A = k(n— ), (4.47a,b)

in which k and 7, are constants with values k ~ (14.54+0.5)0 and 7; = 0.1955/0. Substitution

of (4.47) into (4.46) using (4.14) and (4.15) gives (after simplification)

n? n?kc! ksech’A
——(FF"+ F"?) = 2PV — Pl . Fy., .
wz( + F"?) 53 ( &L (1= tanh &) k“sech’A F (4.48)
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FIGURE 6. The solution to the second order equation of motion of a planar turbulent
jet, using the mixing length hypothesis with o = 0.108, compared with experimental
data (Zijnen 1958).

—— First order solution; - - - - second order solution.
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FIGURE 7. The behaviour of the intermittency factor, v, (data due to Heskestad
1965, see Rajaratnam 1976) and the fitted curve, equation (4.46a).
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FIGURE 8. The solution to the first order equation of motion for a planar turbulent

jet including variation of the intermittency factor, compared with experimental data
(Zijnen 1958).

Solution with intermittency variation; - - - - first order solution with constant
intermittency.
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This equation may be integrated with respect to n giving

1 kc!
——Ff =2
2 o?

(F" + k(1 + tanh A)F"), (4.49)
in which the integration constant has been set to zero by the boundary conditions.

Equation (4.49) was solved numerically using a NAG Fortran routine and the solution for
the axial velocity is shown in figure 8 (with o = 0.1225 - chosen so that the solution matches
the first order solution near to the axis). The dotted line is the first order solution obtained
in section 4.3.1 (with effectively constant intermittency factor and o = 0.118). Clearly
the agreement with the experimental data is greatly improved by the use of the variable
intermittency factor (by up to 45%) - the theoretical solution shows excellent agreement for
y/z < 0.18, whereas the first order solution can only be considered accurate for y/z < 0.12.
The agreement is also better than that of the Gaussian fit shown in figure 2. Hence it must
be concluded that neglecting the variation of the intermittency factor was probably the main
cause of the poor agreement between the theoretical and experimental results near to the
edge of the jet.

One of the useful features of the first order solution was that it had a convenient analytical

form. In this case, the solution for the axial velocity may be approximated by

]
2= F'(n) ~ y(n) sech’n = 5(1 — tanh A)sech®7, (4.50)

U

which is accurate to within 3% in the range 0 < y/a < 0.18.

5. Application of the momentum equations to circular jets

The analysis of the previous section may be applied to circular jets, obtaining analogous
results. The general methods are very similar and so only brief details of the working are
given here.

Assuming that the flow is perfectly axisymmetric with zero swirl, ug = 0, axial () veloc-
ity, u(z,r) and radial (r) velocity, v(z, ), then the time-averaged momentum equations in

cylindrical coordinates are

Ju  du _ 19p d——, 00—  u 0> 10 0
u8$+vf)r__;;').—fc_(_uv +%u + . +v| —+ u, (5.1)
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v v 1op (9= 9o W\, (0 L 010
u8m+var__p87‘_<a7‘v +(').7:uv+ 7 L 6m2+8rr(?rr % (5:2)

and the continuity equation is

0 d
20 + e 0, (5.3)

where, as before, the primes denote the turbulent fluctuating velocity components.

5.1 First order equations and solutions

As in the case of the planar jet, experimental observations show that the scales of the
radial velocity and axial gradients are an order of magnitude less than those of the axial
velocity and radial gradients respectively. Assuming that the Reynolds number is sufficiently

high for viscous terms to be ignored, then neglecting all but the first order terms yields

10p _0

== 4
p Or o’ (54)

ou Ju  10p 0 —— u'v’
u8.7;+v5_~p8:v_ (87‘1“) + — - (5.5)

Integrating (5.4) with respect to r, substituting the result into (5.5) and simplifying (as in

the two-dimensional case) gives

Ju ou 1 orr J 7]
 — —=—— and —ru+—rv=0, 5.6a,b
Ua + L g and  o—ru + pr (5.6a,b)
where the axial pressure gradient outside of the jet has been assumed to be negligible, and 7
is the turbulent shear stress 7 = —pu/v’. These are the first order equations of motion for a
circular jet.
Multiplying (5.6a) by r, integrating f0°° f02" rd¢dr and simplifying, yields the analogous
result to equation (4.10), namely that the specific momentum flux is constant
l o0
= 2ru’dr = 0. (5.7)
dz J, '

Equation (5.60) may be integrated similarly yielding the analogous result to equation (4.12),

stating that the rate of change of volume flux is equal to the rate of entrainment

(o¢]
% = }%/0 2ur dr = 2bajup, -
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where b is the length scale or ‘radius’ of the jet (note that a; may have a different value in
circular jets to that of the planar jet case).
Two solutions, analogous to the solutions of Goertler (1942) and Tollmien (1926) described

in section 4.3, may also be found in the axisymmetric case. It is convenient to write

F'(€)
£

UWP2) = where ¢ = ZfT_’v and u,, = g, n = c1y/ My (5.9)

so that

Y(r,x) = nxo’F(§) and v(r,z)= %7 (F'({) - %) ; (5.10)

Solution using the eddy viscosity model

Using the eddy viscosity model it is assumed that
Ju
= pe()=, - |
r = pe(e) (5.11)

where on dimensional grounds e(z) = kncy, i.e. € is a constant (where the dimensional result
of equation (2.4) has been used). Substitution of (5.9), (5.10) and (5.11) into (5.6a) and

integrating with respect to £ gives an equation for F(¢),
FF' = F' - ¢F", (5.12)

in which o has been set by 0? = ke, and the boundary conditions have set the integration

constant to zero. The solution satisfying the boundary conditions, F(0) = 0, F'(0) = 0 and

[F'€](0) = 1 is

_ 48
F(¢) = 51 e (5.13)
and therefore
izl : and v(r,2) = upo €1 €/8) (5.14)

“mte/sy 2(1+ €2/8)"

The streamlines are given by

9 8ypa?
T = (m) ) (5.15)
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and for large @ the streamlines take the approximate form

T~z (5.16)

Hence the particles asymptotically follow the same paths (within a plane through the jet) in

the three dimensional case as in two dimensions (see equations (4.23) or (4.29)).

Solution using the mixing length model

A mixing length formula may also be used to model the turbulent stress, 7,

2
T = —-/)l2 (%) 3 (517)

where [ is the mixing length with [ = b = fcez on dimensional grounds (using equation

(2.4)).

Substituting this into the first order equation of motion, (5.6a), and integrating gives
F\?
(F" — —E—) = FF', (5.18)

in which o has been set by 03 = #2¢%. An analytical solution does not exist, although a series
solution may be derived (Abramovitch 1963).

The eddy viscosity solution (with ¢ = 0.046, solid line) and a numerical solution to
equation (5.18) (obtained using a NAG Fortran routine with o = 0.069, dotted line) were
used to calculate the axial velocity distribution and are shown in figure 9 together with
some experimental data (from Wygnanski & Fiedler 1969). As in the two-dimensional case,
neither solution agrees well over the whole cross-section of the jet flow, although the mixing
length solution is generally quite good. As was the case for planar jets, the eddy viscosity
solution shows the best agreement near to the jet axis and the mixing length solution is
better near to the edge of the jet. Further details of the above two solutions may be found

in Rajaratnam (1976).

5.2 Second order equations

Although figure 9 shows that the mixing length solution shows a good general agreement

over the jet cross-section, the effects of including the second order terms and the intermittency
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FIGURE 9. The solutions to the first order equation of motion for a circular turbulent
jet compared with experimental data (from Wygnanski & Fielder 1969).

—— Eddy viscosity solution; - - - - mixing-length solution.
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u/Um 1

FIGURE 10. The solution to the second order equation of motion for a circular turbu-
lent jet compared with experimental data (from Wygnanski & Fielder 1969).

—— Second order solution; - - - - first order solution.
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factor on the solution when using the eddy viscosity model may still be examined. Eliminating

the pressure from equations (5.1) and (5.2), neglecting the viscous terms, gives

2 2 _ -
6<8u+ au) i(u@H@):(a ala)w_a_u,“rili(m,z).

or \ oz or) 0 dz or dx? Orr dr Ozor Oz r Or
(5.19)
The turbulent products may be modelled using an eddy viscosity, with
— Ju Ov
[P
u'v —e(z) ( ()1) (5.20)

The eddy viscosity model was not found to predict the terms in »2 and 2 in the two-
dimensional case very well and so these terms are not included here.

Substituting (5.20) into (5.19) using equations (5.9) and (5.10) gives

n2

3 2 1" on® 1 it mnmy _
=y 4(52(1—1 E+ FF'¢ — FF' — EF'F”)—FF —?(3FF + FF") =

k 2 . k
0.37::46624 (F”}ES _ 2FI”£2 3 3FII£ _ 3FI) _ n 62 (El—nv + 3FIII)
_lm o ({Fw +3F") + (IQEF" 8P 4 £3Ft‘u), (5.21)

where the first terms on each side correspond to those that would be obtained using the first

order equations. Rearranging and integrating gives

1 k
_5_3(£FF" +EFI2 _ FF') _ 0’2(FF" i Flz) — 026623 (sz'" _ EF" A F’) _ kCQ(fF'" +2F”)
—key(EF" 4 2F") 4 keyo? (€3 F" + 56 F" + 26 F' — 2F) + K, (5.22)

where K is a constant of integration. This equation may be rewritten as

1d (FF _2(_1 F_z_ _ _kep d (F key d 5.4
§d€<£)+£l€( ¢F )‘ 026(’6(6 F) Tt )

LCQ (_l kCQU
(6 ")+ ¢

i 4 3 1t 1d ;,52
lﬁ(EF $§E = EF)+£[£< ) (5.23)
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Equation (5.23) may be rearranged and integrated again giving

2 A all
FF' — g% (% - §FF’) = % <% - F”) + 2key (2 F™)

K&

—kC20'2£(£4F”+£3FI—€2F)— 5

+ Lg, (5.24)

where L is a constant of integration. The boundary condition at £ = 0 insists that L = 0,
and consideration of the limit £ — oo requires that K = 0 for a solution in which u — 0
as £ — oo. Application of the boundary condition at £ = 0 in equation (5.22), assuming
that for small £ the solution is required to agree with the first order solution (5.13) in which

F"(0) = 1, [F/€2)(0) = 1/2, [F" /€)(0) = —3/2 and [F"/€3 — F"/¢2](0) = 1/2, insists that

o2
I\/CQ = (m) . (525)

Thus (5.24) may be written
EF" — F' + A\FF' = o%¢ (252F" + X BFZ - gFF'] — o (e F" 4 E8F - §2F)) ,  (5.26)

where X = (1 + 40?).

The numerical solution to equation (5.26), obtained using a NAG Fortran routine with
o = 0.046, was used to calculate the axial velocity variation and is shown in figure 10 (solid
line) together with the first order solution (dotted line). Clearly the inclusion of the second
order terms has had little effect, as in the case of the two dimensional jet. At the point
y/x = 0.21 the second order solution is approximately 4.5% lower than the first order solution.
Hence it must be concluded that neglecting the second order terms was not the cause of the

poor agreement between the first order eddy viscosity solution and the experimental data.

5.3 Including variation of the intermittency factor

In the earlier case of the planar jet, it was found that the intermittency factor, v, varied
over a cross-section of the jet and that inclusion of this variation in the first order analysis
(using the eddy viscosity model) significantly improved the theoretical predictions. The inter-

mittency factor also varies over a cross-section of a circular jet (Wygnanski & Fiedler 1969)
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and inclusion of this variation may also improve the eddy-viscosity model of the circular jet
above.

Measurements of the intermittency factor in a circular jet are shown in figure 11 (from
Wygnanski & Fiedler 1969) fitted to a curve of the form used in the planar jet case (see
equations (4.46)),

v(€) = %(1 — tanh A) where A = k(€ - &), (5.27)

and in this case the best agreement is found when k ~ (26.0 £ 0.5)0 and & = 0.162/0.

Substitution of (5.27) into the first order equation of motion, (5.6a), with

r = pe(a)yy 2, (5.28)

gives after some simplification

l» / "
é(FF' —¢F"? —¢FF") = kai; (?—2 3 + F" 4+ k(14 tanh A)F" + K2 secthF'>. (5.29)

This may be integrated with respect to £ giving
F' — FF' — ¢F" = k¢(1 4+ tanh A)F', (5.30)

(compare this with equation (5.12)) in which the boundary conditions have set the integration
constant to zero and o has been set by o? = ke, (as in the first order solution).

Equation (5.30) may be solved numerically and the solution, (obtained using a NAG
Fortran routine with o = 0.0463) used to calculate the axial velocity, is shown in figure 12.
The value of ¢ (previously ¢ = 0.0460) was adjusted slightly to maintain a good agreement
between the solution and the first order solution (the dotted line in figure 12) near to the
jet axis. Clearly, the agreement between the theoretical prediction and the experimental
measurements has been greatly improved by the inclusion of a variable intermittency factor
in the eddy viscosity model. At the point y/a2 = 0.21, the theoretical prediction has been
improved by approximately 76% compared with the first order solution. As in the two

dimensional case, the solution for the axial velocity may be approximated by

(1 — tanh A)
(1+¢2/8)*°

7(§)
(14&2/8)°

1

F!
UfUpyy = /— =
/ 4

which is accurate to within 12% in the range 0 < y/@ < 0.21.
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FIGURE 11. The behaviour of the intermittency factor, v, in a circular jet (data from
Wygnanski & Fielder 1969) and the fitted curve, equation (5.27).
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| FIGURE 12. The solution to the first order equation of motion for a circular turbulent
[ jet including variation of the intermittency factor, compared with experimental data
( (from Wygnanski & Fielder 1969).
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6. Discussion and conclusions

The flow of buoyant fluid from a source is often modelled using the established theories
of turbulent jets and plumes. The chapter started with definitions of these flows followed by
a brief review of the well-known properties of jets and plumes obtained from experimental
observations and simple dimensional analysis. Experimental measurements (see tables 1 and
3, and figure 2) have shown that, after an axial distance of about 6 nozzle diameters, the
flow of a jet or p]_‘ume reaches a fully turbulent, ‘self-similar’, state in which all of the flow
variables are expressible in terms of a similarity variable proportional to y/z (for planar
jets, r/x in axisymmetric jets). This fundamental observation was the basis of all of the
theoretical analysis. The dimensional analysis, however, relied on the simple assumption
that, for sufficiently large Reynolds numbers, the flow of a turbulent jet or plume is controlled
by its initial (source) conditions namely the initial fluxes of mass, momentum and buoyancy.
With this assumption the axial variations of the flow variables were deduced (see tables 2
and 4). In practice, however, it is most likely that a source will be one of both momentum
and buoyancy - a ‘buoyant jet’. It was shown that these flows undergo a transition between
jet-like (initial) and plume-like (final) flow states. Consequently it is not possible to obtain
expressions for the behaviour of the flow variables using simple dimensional analysis. A length

scale which describes this jet-plume transition was constructed and is called the ‘jet-length’,

3
Mg
Lj=—"%.

It will become apparent in chapters 3 and 4 that this is an extremely important parameter,
controlling and describing the flow produced by a buoyant source.

Having summarised the basic features of jets and plumes, the equations of incompressible
fluid flow were then introduced and applied to jet flow. Similarity solutions were obtained by
neglecting the smallest terms in the momentum equations, using either an eddy viscosity or
a mixing length turbulence model. The solutions were used to predict the transverse/radial
variation of the axial velocity, but for both planar and circular jets, neither solution was
found to agree well with the experimental results over the whole jet cross-section. The
possible causes of the disagreement were then investigated.

In general, the theoretical predictions were weakest near to the edge of the jet. This

suggested that the poor agreement near the jet edge was possibly a result of neglecting the
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smaller terms in the momentum equations which may be significant near to the edge of
the jet. The analysis was then extended to include these terms. The resultant equations,
(4.39), (4.44) and (5.26) show clearly that the modifications are of order of magnitude o?,
i.e. about 1%. Consequently the numerical solutions showed little improvement on the first
order solutions and so it was concluded that neglecting the second order terms was not the
cause of the disagreement between the theoretical and numerical results. Note, however, that
the predictions of the eddy viscosity model were poor when used to calculate the behaviour
of the (2 — ') turbulent term, with the experimental measurements being of much greater
magnitude than the model predicts (see figure 4). It is possible that if this term could be
modelled more accurately then the resulting solution could show a greater agreement with
the experimental data.

The second effect investigated was variation of the intermittency factor over the jet cross-
section. The form of the eddy viscosity model used in the first and second order term analysis
(see equations (4.32) and (5.11)) did not allow for the possibility that the intermittency
factor might not be constant over the whole jet cross-section. Measurements have shown (see
figures 7 and 11) that the intermittency factor is approximately unity in the central region
of the jet but falls to zero near to the edge. Including this variation modified the above
equations to (4.45) and (5.28). Using these modified shear stresses and using experimental
data to estimate the behaviour of the intermittency factor in the first order equations gave
a significant improvement in the theoretical predictions. Near to the edge of the jet, where
the difference between the theoretical predictions and experimental results was greatest, an
improvement of about 45% for the planar jet and 76% for the circular jet was found. The
solutions for the axial velocity were found to be approximately equal to the product of the

first order solution and the intermittency factor, ~.
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Chapter Two - Jets and Plumes

Notation

Below is a list of the symbols used in this chapter, provided for reference purposes.

b,

Constants of integration

Nozzle radius

Length scale of the transverse/radial variation

Length scales of the transverse/radial variation of the axial velocity component
in jets and plumes respectively

Length scales of the transverse/radial variation of the tracer and concentration
in jets and plumes respectively

Local (initial) specific buoyancy flux

Concentration (maximum value)

Concentration fluctuation

Constants in the dimensional analysis of circular (planar) jets

Constants in the dimensional analysis of circular (planar) plumes
Functions used in the dimensional analysis

Function used in the similarity analysis

Acceleration due to gravity

Constant used in the eddy viscosity

Constants of integration

Mixing length

Ratio between the transverse and axial velocity scales
Constants of integration

Axial length scale

‘Jet-length’ - the length scale of a buoyant jet

Local (initial) specific momentum flux

Parameter controlling the magnitude of the mean velocities
Pressure (fluctuation)

Local (initial) specific volume flux

Radial coordinate in circular jets

Reynolds number

Richardson number
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S Integration area

U Axial velocity component in jets

u! Turbulent axial velocity in jets

U, The value of u on the axis of a jet (or the velocity scale)
U Mean velocity at the source

v Transverse/radial velocity component

v’ ~ Turbulent transverse/radial velocity component

Axial (vertical) velocity component in pure plumes

Turbulent axial velocity in pure plumes

Wy The value of w on the axis of a plume (or the velocity scale)

x Axial coordinate in jets

Y Transverse coordinate in planar jets

z Axial (vertical) coordinate in plumes

o Entrainment constant for a pure jet

B Constant used in the mixing length model

v Intermittency factor

A Variable used in the approximation of v

€ Eddy viscosity

€ Ratio of scales between the turbulent velocity fluctuations and the mean axial |
velocity

n Similarity variable used in the planar jet analysis

Mt Constant used in the approximation of «y

K Constant used in the approximation of

A A Constants used in equations (4.39) and (5.26)

v Kinematic viscosity

¢ Similarity variable used in the circular jet analysis

& Constant used in the approximation of v |
Density :

o Constant in the similarity variables

T Turbulent shear stress

¢ Azimuthal coordinate in circular jets

) Streamfunction
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CHAPTER THREE

A Model of an Initially Horizontal
Buoyant Jet with a Varying

Entrainment Constant

The value of the entrainment constant is still not precisely known. However, it has been
established that the value of the entrainment constant differs between jets and plumes and
will consequently vary over the trajectory of a buoyant jet, which undergoes a transition from
jet-like to plume-like states. A simple analysis of the motion of a buoyant jet in an unstratified
environment is presented, which allows for this variability in entrainment constant.

The conservation equations for a buoyant jet are derived by integrating the time averaged,
inviscid momentum equations, using the Boussinesq approximation. These are then examined
analytically and numerically when applied to the case of an initially horizontal buoyant jet,
using either of two contrasting, experimentally based assumptions to provide the variation in
entrainment constant.

Particular attention is paid to the consequent behaviour of the centerline velocity com-
ponents and the trajectory followed by the jet. Knowledge of the trajectory is of particular
importance in confined jet flows as it shows whether or not the buoyant jet will impinge on
the side boundaries of the container and hence whether or not the ‘filling-box’ model may
be applied. It is found that the family of buoyant jet trajectories reduce to a single curve on
scaling with the ‘jet-length’, L;. The theoretical trajectories are compared with experimental

observations.
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Chapter Three - A Model of an Initially Horizontal Buoyant Jet ...
1. Introduction

The theory of jets and plumes is well known and has been studied extensively (see, for
example, Fischer et al. 1979, or chapter 2). However, in practice, the majority of sources are
‘buoyant jets’ (sometimes called ‘forced plumes’), these being jets with an initial flux of both
buoyancy and momentum. Vertical plumes have been studied theoretically by Morton, Taylor
& Turner (1956) and vertical forced plumes by Morton (1959). Kotsovinos & List (1977) and
Papanicolaou & List (1988) have made detailed experimental studies of the flow variables
in vertically released buoyant jets. Germeles (1975) has numerically analysed the behaviour
of non-vertical buoyant jets, but his equations break down in the horizontal limit. Lane-
Serff, Linden & Hillel (1990) have also studied non-vertical buoyant jets. They assumed the
standard laws of conservation of horizontal momentum flux and conservation of buoyancy flux.
They also used the ‘entrainment assumption’ to give the variation in volume flux, assuming
that the ‘entrainment constant’ takes some universal value. The ‘entrainment assumption’,
first introduced by Taylor (1945, see Morton, Taylor & Turner 1956) states that if the flow
is fully turbulent (i.e. independent of Reynolds number) then the entrainment velocity is
proportional to the local velocity scale. The constant of proportionality, a, is the ‘entrainment
constant’.  Experiments to determine the numerical value of this constant have proved
inconclusive as a is thought to vary with source and environmental conditions. However,
what has been established is that the entrainment rates vary substantially between pure jets
and pure plumes. Fischer et al. (1979) quote aje; = 0.0757 and apjyme = 0.1178 as mean
values for circular jets and plumes from the results of many experiments, the difference being
reflected by an increased dilution in a plume compared with a jet of equal local momentum
flux. Priestly & Ball (1955) found that « varied linearly with the local Richardson number,

Ri, of the jet, i.e.

Ri . . ‘B
a = 0jet + (Qplyme — Qjet) (R_z) with Ri = 612\/1—%’ (1.1)
p

where (), M, and B are the specific local fluxes of volume, momentum and buoyancy (defined
in chapter 2 and below) and R, is the plume Richardson number, i.e. the constant value of
Ri for a pure plume. This result has been supported by Kotsovinos & List (1977). Kotsovinos
(1976) also suggested that the even for a pure jet, the entrainment rate may increase with
a large increase in the downstream distance although Bradshaw (1977) attributed this to

draughts in the laboratory caused principally by the jet itself. It should also be noted that in
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non-vertical buoyant jets, there may also be detrainment of fluid from the jet. This is a result
of the instability of the upper surface of the jet which is lighter than the environmental fluid
above it (in a negatively buoyant jet, the lower surface is unstable, being heavier than the
environmental fluid below it). Small parcels of buoyant fluid may then convect away from
the jet. In the following discussion, it will be assumed that the volume flux of fluid detrained
from a Buoyant jet is negligible compared to the volume entrained, so that the effects of
detrainment can be neglected.

The behaviour of a buoyant jet is particularly interesting as it undergoes a transition from
its early (jet-like) state, where the momentum forces dominate the buoyancy forces, to its
final (plume-like) state where buoyancy dominates momentum. The length scale describing
this transition is referred to as the ‘jet-length’ (see for example, Turner 1973 or chapter 2)

given by

; (1.2)

where My and By are the initial specific momentum and buoyancy fluxes (defined in section
2 below). Since the value of the entrainment constant is different for pure jets and plumes,
then there is clearly a change in the entrainment constant a between the early and final
stages of buoyant jet flow. It is therefore not sufficient to assume that « is constant over the
whole trajectory of the buoyant jet.

In the following analysis, this problem will be overcome by making one of two alternative
experimentally based hypotheses, which will allow the entrainment constant to vary along
the trajectory of the jet.

The first hypothesis assumes that the ‘radius’ or transverse length-scale, b, of the jet
varies linearly with the arclength, s, or distance moved along the trajectory. This has been
observed for plane vertical buoyant jets by Kotsovinos & List (1977) and experimentally in
horizontal buoyant jets (Schatzmann 1976 and the author, see figure 1 - the experimental
method will be detailed later). Thus this assumption is experimentally based, together with
the knowledge that using the traditional entrainment theory (see Morton Taylor & Turner
1956), the theoretical solution for pure jets and vertical plumes implies a linear variation of
radius with arclength.

The second hypothesis assumes the above linear relationship between the entrainment

constant and the local Richardson number of the jet (equation (1.1)).
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FIGURE 1. The variation of jet radius b with arclength s for a number of experiments.

+, o, ¢, [0: Schatzmann/Fan (1976); A, l A, ¢: the author.

!
i




|
'l
|
|
|
|
|
|
[
|
|
|
l
|
|
|
l
l

l
|
I
|
|
|
|
|
[
|
|
|
|
:
|
1
l

Chapter Three - A Model of an Initially Horizontal Buoyant Jet ...

In order to calculate the conservation equations, the turbulent equations of motion are
integrated across a cross-section of the jet, using the assumption that the contributions due
to the turbulent transport and pressure gradients are small compared with those of the mean
velocities. Although it is generally assumed that the velocity and density difference have
approximately Gaussian profiles across a jet (for analytical simplicity - see chapter 2), it
is satisfactory to use ‘top-hat’ profiles (see Lane-Serff 1989). This means that the velocity
and density difference take constant values across the width of the jet. The entrainment
assumption will then be used, assuming that the jet-induced flow outside of the jet has a
magnitude proportional to the flow inside of the plume, with proportionality constant a,
although a will be allowed to vary using one of the two hypotheses above. Terms of order a?
will be neglected. Also, Kotsovinos & List (1977) found that the length scale over which the
density difference spreads is larger than that over which velocity spreads (b). The density
difference length scale will be denoted it by Ab where Fischer et al. (1979) has calculated that
A ~ 1.19 for circular jets, from the results of many experiments (see also chapter 2, section
2.1). The conservation equations obtained will then be applied to the case of an initially
horizontal buoyant jet. Integral models for the flow of a buoyant jet have been presented
before (see, for example, Morton 1959, Fan 1967 and Schatzmann 1979) but in this study the
emphasis will be on derivation of simple analytical results from the conservation equations
and differences in the effect of the two entrainment assumptions.

The horizontal and vertical limiting cases will be considered first and then the equations
describing the intermediate behaviour will be considered analytically and numerically. Par-
ticular attention will be paid to the implied trajectory of the buoyant jet as this can be readily
compared with experiment. The consequences of the first assumption that b varies linearly
with s for the behaviour of the entrainment constant will be deduced.

This type of jet flow occurs in many physical situations, for example in a leak of a buoyant
gas, or an outflow of sewage into a river. Detailed knowledge of the expected behaviour of
buoyant jets can be used to predict the effect of such a flow more accurately. For example,
it would be desirable to know the distance from the source that an outflow of sewage would
travel before hitting the bottom of the sea, or whether or not an enclosed leak of natural gas
will hit the wall of the container - which would then affect the subsequent build-up of gas
concentration. Linden, Marshall & Cleaver (1991) have conducted experiments examining
the flow resulting from an initially horizontal buoyant jet in a cubical container, with the

source placed in the centre. They observed that the mixing of the fluid within the tank
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only persists above the point of lowest penetration of the source fluid on the wall opposite
the source. Thus in many cases, prior knowledge of the jet trajectory is important when

attempting to predict the flow from a confined source.

2. Analysis

In this section the equations of motion are presented and are integrated across a cross-
section of the buoyant jet in order to obtain the conservation equations. Before integrating

over a general cross-section, the horizontal and vertical limiting cases will be considered.

2.1 Equations of motion

A schematic diagram of a horizontally directed buoyant jet is drawn in figure 2. The
motion is assumed to be three dimensional, but effectively the jet centreline lies in the z — 2
plane. The time averaged, inviscid momentum equations in the  and z directions are, using

the Boussinesq approximation,

= kR AL oy - o G oy Fopey )
e TR s Ba: B B " 1)
Jw ow  10p 0—— 05— 00— Pa—P
i +“’az T podz gz T ay” 92" * Po ¥ (22)

where u,w,p,p are the time-averaged horizontal (z) and vertical (z) velocities, the mean
pressure (including hydrostatic pressure), and the mean density within the buoyant jet, re-
spectively. The density of the environment, p,, is assumed to be constant and py is a reference
density. Use of the Boussinesq approximation assumes that the densities of the jet and envi-
ronment not largely different from pg. The primed variables are the turbulent fluctuations.

These equations may be rewritten using the continuity equation

du  OJw
giving
9 (2ragms P D B e QO
9% (u +u +% +ay(uv)+az(uw+uw)—0, (2.4)
0 ., 0 = 0 — P Pa— P
o= Tor! — (! - 2 29 2 )= 28 &
am(uw-i—u w') + ay(v w') + P (w + w' + /70) ( p” g. (2.5)
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FIGURE 2. Schematic diagram of an initially horizontally directed buoyant jet.
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Conservation of mass in unstratified surroundings gives
3—x(u(p—pa)+up)+a—yvp + 5, (w(p = pa) +w'p') = 0. (2.6)

In the following analysis it is assumed that within the jet, the velocity components and
density difference have a ‘top-hat’ profile, i.e. constant value over a jet cross-section, with
length scales (or ‘radius’ defining the region of non-zero value) b(z) and Ab(z), respectively.
Outside of the jet the jet-induced flow has a magnitude proportional to the interior velocity

scale with proportionality constant a. Terms of order a? will be neglected.

2.2 The horizontal limit

In order to consider the horizontal limit, the equations are integrated over a cross-section
of the jet, A(2) (see figure 2), defining the boundary of the area of integration, § A, to be
sufficiently far from the axis of the jet so that the turbulent stresses can be neglected. The

three conservation equations (2.4)-(2.6) then become

/ i (u2 +u? 4+ ﬂ) dydz = 0, (2.7)
A

9 e Pa =P
/ —(uw + v'w'") dydz = / <——) gdydz, (2.8)
A(z) ox A(z) o
0 ailal
. 8—1[u(p —pa) +u'p')dydz = 0, (2.9)
Az C

where the y and z partial derivatives have been integrated, these terms vanishing since the
turbulent stresses are zero on the boundary and the contributions due to the mean exterior
velocities are neglected as they are of order a?. If it is assumed that the contributions made

by the turbulent velocities and pressure gradients are small, then (2.7)-(2.9) become

0 / 9
— u’dydz = 0, 2.10
_(?_/ ww dydz = / (Pa_—/)) gdydz, (2.11)
ox A(z) A(z) Po
i/ w(p — pa)dydz =0 (2.12)
oz A(z) e ' '
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The flow variables u,w, and p have ‘top-hat’ profiles and so (2.10)-(2.12) imply that

Ed—(lﬂu?) =4, (2.13)
T
%(zﬁuw) = A2bl¢g/, (2.14)
di(b2ug') = {), (2.15)
Z

where
o = (p —p) ’
Po

is the reduced gravity. Equations (2.13) and (2.15) are the familiar equations stating conser-
vation of momentum and buoyancy for a jet in unstratified surroundings. Equation (2.14)
states that the rate of change of the horizontal flux of vertical momentum is equal to the
vertical buoyancy force.

Either of the two hypotheses about the form of the entrainment constant may be easily
applied at this point, giving the same solution. The solution using the first hypothesis, that
the radius of the jet is proportional to the distance moved along the centreline, proceeds
writing

b(z) = ks. (2.16)

In the horizontal limit s ~ 2 and thus solving (2.13)-(2.15) gives the usual equations for a jet

vV 11’[0 BO

3 = oY — ) =
u(g) = 2 g(z)= Tioks’ dz) = k=, (2.17a)
Equation (2.14) gives
A2 By
w(z) = o, > (2.17b)

where My and By are the initial specific momentum and buoyancy fluxes
My = /u% ds and 7By = /uog(') ds, (2.18)

where the zero subscript denotes evaluation (and integration) at the source. Both are constant

from (2.13) and (2.15), respectively, with My = b*u? and By = b%ug'.
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The analysis may be repeated using the second hypothesis, equation (1.1). In this hor-
izontal limit, the Richardson number is approximately zero, Ri ~ 0, and so from (1.1) the
entrainment constant can be set to «;, the entrainment constant for a pure jet. Hence the

analysis will continue by integrating the continuity equation (2.3) over A(z) obtaining
0
— wdydz + 2mbwss = 0.
0z J a(2)

However it is assumed that the exterior flow, ws4, has magnitude proportional to the velocity
scale of the interior flow, u, with ws4 = —aju. Thus the familiar conservation of volume flux

equation is obtained
d

%(blu) = 2a;bu. (2.19)

The conservation equations can now be solved easily, again giving the familiar solution for

jet flow
My By
b(z) = 20j0 B s S0 ) = ——
() @§®s ) 202’ g () 2ajy/ Moz’
and
A2 B,
w(z) = oM, @ (2.20)

Comparing the two solutions (2.17) and (2.20), it is clear that they are equivalent if k = 2a;.

For a pure jet By = 0 and so w = g’ = 0, i.e. the jet trajectory is horizontal.

2.3 The vertical limit

The vertical limit may be considered similarly by integrating across a cross-section A(2)

(see figure 2). Defining the boundary of the region of integration as before, integration gives

4 ww dady = 0, (2.21)
0z A(z)
ﬂ/ widady = / g (u) daxdy, (2.22)
0z J o(z) A(2) Po
=)
— w(pe — p)dady = 0. 2.23
57 Jae ( ) (2.23)

_57_




Chapter Three - A Model of an Initially Horizontal Buoyant Jet ...

Note here that the turbulent transport w’p’ has been neglected, although experiments have
shown (see chapter 2) this to be a poor supposition in a buoyancy dominated flow, as mea-
surements of the mean tracer flux (Papanicolaou & List 1988) indicate that as much as 20%
of the transport in plumes is by the turbulent flux.

Assuming ‘top-hat’ profiles as in the horizontal limit, the conservation equations ‘

di(bQuw) =0, (2.24)

2

i(b%u?) = AZplg’ (2.25)

dz B : '
ilz—(bzwg') =10, (2.26)

are obtained. Equation (2.26) states that the vertical buoyancy flux is constant, (2.25) states
that the change in the vertical momentum is equal to the vertical buoyancy force and (2.24)
states that the vertical flux of horizontal momentum is constant in 2.

Using the first hypothesis (2.16) it is assumed that

b=ks~kz (in the vertical limit). (2.27)

If the (constant) vertical buoyancy flux is equal to F' and the vertical flux of horizontal f

momentum is equal to H, then equations (2.24)-(2.26) may be solved obtaining the solution

NP\ 5 4F? \}
U)(Z)I (W) Z é’ gl(z): (m) z ) (2‘28)

Wl

with (2.24) giving

wler

1
4H3 L

This can be written in the usual form of the solution of Morton, Taylor & Turner (1956),
(whom effectively use the second assumption with Ri = Ri, and so @ = a,, where a, is the

entrainment constant for a pure plume from equation (1.1)) by choosing
k= —a, (2.30)

This gives

1

6o 5 /9 5 5F [ 9 -3
b e P T L1 P -1 ] - 2 =
& 5 o 6oy (10/\ apF) <% 9 6oy, (10/\ apF) ‘

Wl
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o

and w(z)= 65011:, (%)\2apF) Z7 8, (2.31)

For a pure plume H = 0 and so u = 0, i.e. the trajectory is vertical.

2.4 Intermediate behaviour

The conservation equations will now be derived when the jet is in neither a jet-like nor a
plume-like state and then analysed on application to the motion of an initially horizontally

directed buoyant jet.

2.4.1 The conservation equations

The direction of the motion of the buoyant jet is now no longer horizontal or vertical and
so the area of integration is not parallel to a coordinate axis (see figure 3).

As in sections 2.2 and 2.3, it is assumed that the profiles of velocity and reduced gravity
are ‘top-hat’ over the area of integration with horizontal velocity component u and vertical
velocity component w. The mean velocity along the axis is denoted by v = v/u? + w?.

In order to consider the motion at a point P on the trajectory, the equations are integrated
across the cross-section at P. The coordinates (z, z) are rotated by an angle 6, equal to the
angle between the tangent of the trajectory at P and the horizontal axis, so that the new
coordinate ' is parallel to and along the tangent, and 2’ is perpendicular to it. The tangent

angle 6 is related to the velocity components with

(
tanf = == = B, cosf = — and sinf=—. (2.32)
de ~ u v v

The equations of motion (2.4)-(2.6) then become

d d d d
(cos 007 sin 08_,2) u” + (smOa— + cos 0—) (vw) =0, (2.33)
0 0 ., 0 d 5 4
(cos 0% sin 05) (uw) + (sm 05‘%—, + cos 05) w" = g, (2.34)
d ., 0 N d 0 _ =
(cos 0% — sin 0%) (ug') + (sm 08_1 + cos 0—) (wg') = 0, (2.35)

where, for clarity, the turbulent terms have been left out as these will neglected later by

suitable choice of the integration boundary. Substituting for cos @ and sin @ using (2.32) gives

u 0 U 8 w 0
58_0 2) + (uw) e —(u *) 4 ——(uw) =0, (2.36)
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)
%@(“ )+“_( = )+——( y Y 2 (2.37)
%0 (ug)+ 2.0 'Bi'_lei,_
P ug') + ;W(’w!] )= > 8z,(ug)+ " (,)x,(wg ) =0. (2.38)

These equations can be rewritten in the form

%(uv) + cos 0%(wu) — sin 0—(w2) =0, (2.39)
_('wv) + cosﬂaal(w ) — sin 0——(u'w) = g, (2.40)
8%( v) + cos 9—(wg ) — sin 0—(11J 1=, (2.41)

Equations (2.39)-(2.41) will now be integrated over a cross-section through the jet, A(a'),
with respect to 2’ and y, with the boundary of the region of integration defined as before.
Due to the curvature of the jet, it is possible that some integration regions may overlap.
The contradictions that this implies for the ‘top-hat’ profiles will be ignored and the velocity

contributions of order o will be neglected. The integration gives

E%(zﬂuv) =0, (2.42) |
d |
W(wav) = Ab2g', (2.43) |

d

W(b%g') = 0. (2.44)

Note that the arclength element

ds = \/da? + dz? = \/da” + dz7,

w 2l dz' 2l " (2]
1+(_J> dr = 1+<(11)(m'
But dz'/da' = 0 at P and so
ds=da'. (2.46)
Thus equations (2.42)-(2.44) can be written
i(b2u1)) = (2.47)
ds - '
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d o 242 -1
—(b*wv) = A°b°g, (2.48)
ds

d—‘i(b%g’) =0. (2.49)

This is the final form of the conservation equations; the variables u,v,w,b and g’ are now
considered as functions of the arclength s(z). Before making any assumptions about the
nature of the entrainment into the jet, the immediate implications of the above conservation

equations will be examined.

2.4.2 Implications of the conservation equations
The implications of the above conservation equations (2.47)-(2.49) will now be considered,
when applied to the case of an initially horizontal buoyant jet.

Equations (2.47) and (2.49) may be integrated immediately giving
bluv = My, (2.50)
b*>vg' = By, (2.51)

where the constants of integration have been calculated by considering the initial motion
as follows. Initially, for small s the behaviour is jet-like. The vertical velocity is small
compared with the horizontal velocity (w is zero at s = 0) and so v ~ u. Hence initially
b uv ~ b*u? = My and b?vg’ ~ b>ug’ = By (see equation (2.18)). Consideration of the final
motion (comparing with section 2.3) reveals that H = My and F = By. Equations (2.50)
and (2.51) state that the fluxes of buoyancy and horizontal momentum are constant over
the whole trajectory of the buoyant jet flow. A further immediate consequence of (2.50) and
(2.51) is that

! BO

o S, 2.52
My (2:52)

g

i.e. the reduced gravity ¢’ is always proportional to the horizontal velocity u (as was the case
in the solutions to the limiting cases above).

Eliminating ¢’ from (2.48) gives

d, _ AMBo
E(b wv) = o (2.53)
and using (2.50) to substitute for b%v gives
d \’B
cl_é = 1\/[01? ; where f= % (2.54)
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Hence using the fact that v = u4/1 + f2, all the variables in the problem can be expressed

in terms of the gradient, f and its derivative f' = df/ds
o(s) A2 By (s) A2By w(s) A2By f
=37 g WS)= ———F/—— =7 e 23
Mo f' Mof'/1+ f? Mo f'\/1 + f?

3
2
b(s) = Mo i+ fQ)% and . =4/1+ f2. (2.55)
/\230 dz

Each of the two hypotheses will now be used in turn to derive an equation in f and conse-

quently solve the problem.

2.4.3 Hypothesis 1: The radius is proportional to the arclength
In this section the effect of making the first of the two hypotheses, namely that the radius

of the jet varies linearly with the arclength
b = ks, (2.56)

will be examined. As stated above this is based on experiments on horizontal buoyant jets
presented by Schatzmann (1976) and the author (see figure 1 - experimental details given
in section 4), and also experiments and theoretical analysis on vertical jets and plumes by
Morton, Taylor & Turner (1956), Morton (1959) and Kotsovinos & List (1977). In order that
the initial behaviour matches that of a pure jet (see equations (2.20)), it is assumed that the
constant of proportionality k£ = 2a;.

Equations (2.50) and (2.51) may be rewritten as

stuv = K where K= %, (2.57)
and
s*ug' = % where J = % (2.58)
Thus, substituting for b(s) in (2.55) above gives
K3 o
s=—["(1+ )5, (2.59)

which is the equation for the gradient f. Using ds/daz = /1 + f?, equation (2.59) may be

written in the the alternative form

cf o f A 23
W‘W(J{) +og L+ (2.60)
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It is convenient to non-dimensionalise the variables, scaling lengths [L] and time [T] with

Ki_, K.
[L] = —-[L7] and [T] = 7[T ]. (2.61)
J3
The problem then reduces to
*, Kk k2 I***?__l b* = ks*
wos =1, g v's = = kS
with
df 1 s*

e e o 2.62
ds* v* (1+ fz)% ( )
Note also that My = k% and Bj = k*/A%. Use of (2.57) and (2.58) above reveals that this

length scaling is proportional to the ‘jet-length’ defined in section 1 above with

1

=75

L;[L"]. (2.63)
The numerical solution to equation (2.62) will be discussed in section 3, but it is possible to

obtain approximate solutions in the limits of small and large f.

Small values of the gradient, f

The scaled version of (2.60) takes the form

f= sl vae i, (2.64)

(1+/2)

where the dot denotes differentiation with respect to a*. For small f, f ~ 1 and so f ~ :L‘*2/2.

This approximation may be made more accurate by searching for a series solution of the form

f(z*) = ‘2 Z a;z*’. (2.65)

Substituting this into (2.64), expanding the powers of (1 + f?) binomially, requires that all

but the powers of 2** have zero coefficient. The solution is

O T 49 s
UG (H%“ ~ 345600 +) 55
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and integrating with respect to a* gives the centreline trajectory

3
z* 1 4 49 8
*(z*) = Rl . R, I 2.67
¥ @)= (Hso“’ 1267200° T ) \257)

This means that the initial trajectory follows a cubic course, which agrees with the result of
Chan & Kennedy (1975) in their analysis of the momentum dominated part of the flow.

A similar procedure may be applied to (2.62) giving

8*2

£ =

1 19 s
<1—@s st ) (2.68)

and the fifth of equations (2.55) may be used to calculate that

(R % 1 x4 1 x8
s(z")=u <1+40.z 17280° + ) (2.69)

The velocity components can also be found by using (2.55)

. 0 1 . 19 . 1 7 . 2801
== (1-= 2 L )==(1-Lg FEee), (270
T e ( 16° tTisse® T ) o ( 50" t3ame00” T ol

* a* 4
w*:%(l—isﬂ-i- L *8+-~')=%(1—L.’L‘*4+—9 *8+"'), (2.71)

12 1920° 120 8640
1 1 .4 13 g 1 3 .4 1069 g
T (1 t16° "I T ) T (1 T 5% ~3me0° T) (272

These series solutions may be used to give approximate values, whilst the gradient f < 1. In
this case the corrective terms are generally small compared with the first terms in the series,
indicating that the behaviour of the buoyant jet is like that of a pure jet even though the jet

may have begun to divert from its horizontal course.

Large values of the gradient, f
The behaviour of the equations will now be considered for large values of the gradient f.

Equation (2.62) now becomes

df s*
~ 2.7
ds* — J/f’ (2:73)
which may be integrated with respect to s*, giving
N
f (z) (s + 50)3, (2.74)
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where sy is a constant of integration. The arclength, s*, may be chosen to be sufficiently

large so that s** > so and (2.74) then approximates to

fo <§> ¢ o3 (2.75)

Now for'large f,
ds*
da*

~ f, (2.76)
and so substituting for f from (2.75) and integrating gives
s* = 48(ak, — 2*) 73, (2.77)

where 27, is a constant of integration. This is an important result, showing that the jet
centreline can only reach a maximum horizontal displacement given by 2} . The values of
s*,z and b are infinite at this point, whereas the velocity components are zero. The value
of ., cannot be calculated analytically but it will be calculated from the numerical solution

later.

Substituting (2.77) into (2.75) gives
f@*) = 144(a}, — %)™, (2.78)
which may be integrated to give
2(z*) = 48(xk, — 2*) 7% + 2. (2.79)

The velocity components can be found using (2.55) giving

wien

* 3 _% K== * * Y\«
g = (Z) s = %(zm —2*)°, (2.80)
* 3 5 x—1 1 * *
w*=\(=) §73% =—(a;, —2a%), (2.81)

* 213—*_% 1 * * 282
vi={7) s _Z(am—m). (2.82)

As expected, in the limit of s* — oo, v* ~ w* and substituting for (2}, — 2*) using (2.79)
and comparing with equations (2.31) shows that the velocity components have plume-like

behaviour.
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2.4.4 Hypothesis 2: The entrainment constant varies linearly with the
local Richardson number
The implications of the second hypothesis will now be examined. In this case it is assumed
that the entrainment constant varies linearly with the local Richardson number, Ri, of the
jet
_ QB _ by

Ri ) .
a = ajet + (Aplume — Ojet) <R_7p> with Ri = i (2.83)

where ), B and M are the local fluxes of specific volume, buoyancy and momentum defined

by
TQ = /vdS, B = /vg'(lS, ™M = /v2 ds, (2.84)
dS denoting integration across the jet. This was first suggested by Priestly & Ball (1955)

and has been supported by Kotsovinos & List (1977). Assuming that the solution tends to

that of a pure plume as s — 00, equations (2.31) may be used to calculate Ri,, giving

_ 8a,

Bip = g3

a constant, with value R, = 0.133.
The analysis proceeds similarly to that of section 2.4.3. It is convenient to write (2.50)

and (2.51) in the form
buv = My = k*°K and b*vg' = By = A*k?J, (2.85)

where k = 2a;, for ease of comparison with the previous section. The continuity equation

ou Ow
9 + B = 0, (2.86)

must be integrated in order to obtain the equation defining f. In the rotated coordinate

system of section 2.4.1, the continuity equation becomes

0 ., 0 ., 0 )
(cos 0% — sin 0@) u+ (sm 9@ + cos ()ﬁ) w=0. (2.87)
The terms in 2’ may be rewritten giving
dv . ,0u ow
w — Sin 0% + cos 9% = 0. (2-88)
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Integrating, making the same assumptions about the integration region as before, gives
d , :
d—(b v) = 2b(usinf — w cos f). (2.89)
s

However (wcos@ — usin@) is the exterior flow perpendicular to the jet axis, and so has

magnitude proportional to the interior velocity scale, v. Hence

(usin® — wcos ) = av, (2.90)
and so
d o
ls(b v) = 2abv. (2.91)

This is the conservation of volume equation that will be used to solve the problem when using

the second hypothesis, recalling that « is dependent on the local Richardson number of the

jet. Hence the problem is to solve (2.85), (2.91) and (2.54) with the hypothesis of (2.83).
The result of (2.55) still holds here, and substituting this into (2.91) with the hypothesis

of (2.83), gives the equation for the gradient f

(\/ )= 51+ )i+ W (2.92)

P

By non-dimensionalising the variables as in section 2.4.3, (2.92) reduces to

d (\/+_f2df> (14 oyt 4 Mo =) (%)2, (2.93)

ds* da,

This is the equation for f that will be solved numerically later, but series solutions for small

f, analogous to (2.66)-(2.72), may be found. These are

a2 B .2 1 A .

2*) = P T T DT 94
f(z™) 3 (1-!—67, +2[40+ 5]1 + ), (2.94)
* [ % ‘1:*3 ﬂ %2 6 1 ﬁ2 *4
<(@7) = (1+10 +7[E+E}"’ +) (2.95)

*2 2 3

* ﬂ Qﬂ x4 17ﬂ *6

f(s™) = 5 (1—}— "4 T + 1260° + g (2.96)
s(z®)=2* (14 —a** + i.’v*s + - (2.97)
40 168 i
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u*:i(l_és”_[ﬁ_2+1:|3*4+...):_1_<1_ﬁx*2_ [gloﬁ2+ 3]$*4+-~'>,

s* 3 45 " 8 z* 3 20
(2.98)
* s* ﬂ *2 132 1 x4 x* ﬂ *2 1 ﬂ2 x4
= —_— _—— -— —_— —_ “ e = — ]_ —_—— _— m— —_— H B
v 2(1 6° [30+8]8 u 2 6" ots|® T
‘ (2.99)
1 B a2 PB? a4 1 B 2 [ T o, 3 ] 4 )
b — (=@t roi ) o [1-Ea¥ = | § | @ wen |, 20D
VS ( 3% " T - 3" 00” Tt 2100}
where
5(ap — o) .
B= o % 0.447 with the values suggested above.
Qap

Note that the series are now in z*? rather than in 2** as they were in (2.66)-(2.72).
The behaviour for large f is the same as that of the previous section, although the inte-

gration constants may be different.

2.5 The rate of entrainment

There is a fundamental difference between the two hypotheses - the second hypothesis
defines the local rate of entrainment by defining the local entrainment constant in terms of
the variables of the problem; whereas in the first hypothesis a simple experimentally based
assumption is made, allowing this to determine the entrainment. However an effective local

entrainment constant may be calculated when using the first hypothesis by defining

1 d
T 2b*v* ds*

a(s*) (b*2v*), (2.101)

(see equation (2.19)). Thus this is the from of the entrainment function that would have to
be used to give a linear variation of radius with arclength. The numerical solution will be
discussed later but the plume-like limit of @ may be deduced when using the first hypothesis.

Since it is assumed that b = ks with £ = 2a;, by comparison with the pure jet solution

(2.20), considering the solution for the plume-like limit (2.31) then

5
k=204 = ga'],, ie. ap = 3aj. (2.102)

So, using the value of a; suggested by Fischer et al. (1979), a; = 0.0757, then (2.102)
implies that o, = 0.1261, which compares favourably with the value a;, = 0.1178 that they

also suggest.
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3. Numerical solutions

Equations (2.59) and (2.93) may be easily handled numerically, and (2.55) can be used
to calculate all the other variables in the problem. For an initially horizontal jet, the initial
conditions are that f,w,s,z,b, and @ are zero. An off-horizontal jet could be considered
by taking the initial value of f = tanf, where fp is the initial inclination of the jet to the
horizontal. In both cases pure jet-like behaviour, f ~ s?/2 ~ :1:*2/2, is expected initially.

The solutions, obtained using a NAG Fortran routine, are given in figures 4-9; variations
with s* are shown in figure 4, variations with 2* are shown in figure 5 and the variation of s*
with 2* is shown in figure 6. The behaviour of the Richardson number is shown in figures 7
and 8, and the effective entrainment constant in figure 9. The solid lines are the solution with
the first hypothesis, b = ks, and the dotted lines are the solution with the second hypothesis,
a = a(Ri). The similarity between the two solutions is somewhat surprising. It is perhaps
explained by the behaviour of *(s*) using the second hypothesis, shown in figure 4f. This
graph shows that the second hypothesis, which makes no statement on the behaviour of the
radius, b*, gives a solution in which the radius varies almost linearly with s* (which was
assumed in the first hypothesis), although the effective spreading rate is slightly lower than
that of the first hypothesis.

Figure 5b shows that the jet is still approximately horizontal at 2* =~ 1, this being reflected
by s* ~ a* in figure 7, with horizontal motion for s* < 1 in figure 4b. The transition to plume-
like behaviour can be considered to take place between 2* = 1 and a* = 3.5, with the buoyant
jet having almost vertical motion after * = 3.5. Notice the curious result that, to the degree
of accuracy of the graphical plot, the two solutions are almost identical for z*(s*), although
they are different in real terms, as shown in figure 5b. Using either hypothesis, for s* = 2, 2*

varies approximately linearly with s*, with
Z* ~ s* —1.25. (3.1)

Figure 5¢ shows how the horizontal velocity, u*, behaves initially as it would for a pure jet,
decaying reciprocally with 2*, but as the transition to plume behaviour takes place (z* > 1),
u* decreases more rapidly, eventually to zero at z7,.

The most interesting graphs are of the vertical velocity, w*, in figures 4d and 5d. Initially
w* increases linearly during the jet-like phase (see equation (2.17)). As the upward velocity

of a plume decreases with height, w* must reach a maximum velocity and then decay. This
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is clear from the figures, with the maximum reached at about * = 1.6 in the first hypothesis
solution, and * = 1.7 in the second hypothesis solution. The vertical velocity then decays,
tending to the linear decay given by (2.81). The numerical solution may be used to compute

the maximum value of * reached by the jet, and this is found to be
zy, = 4.6207  using the first hypothesis, b= ks (3.2)

and

z;, = 4.5824 using the second hypothesis, «a = a(R?). (3.3)

The graphs of the Richardson numbers, figures 7 and 8, show the greatest difference
between the two solutions. In figure 7 the actual values of the Richardson number have been
plotted against 2* and s*, with Ri/Ri, plotted in figure 8. Note that in figure 7, the curves
tend to different limits for large z* and s* as they have different values of a,. What can
be immediately seen, is that for both hypotheses, the Richardson number is higher during
the transition period than at its plume limit. This means that in the case of the second
hypothesis (that the entrainment constant varies linearly with the Richardson number), the
value of the local entrainment constant is higher during the transition period than at the
plume limit, i.e. that the rate of entrainment into the jet is greatest during the transition
phase.

Finally, in figure 9 the effective entrainment constant divided by its initial value, a(z*)/c;,
has been plotted. The two solutions are surprisingly different here also, considering their
similarity elsewhere. The first hypothesis solution (solid line) maintains its initial value until
x* ~ 0.6, whereas the entrainment constant from the second solution increases more rapidly.
Both solutions show maximum entrainment during the transition phase, although this is more

noticeable in the solution obtained when using the second hypothesis.

4. Comparison with experiments

It is important to check theoretical results with those of practical experiments. The
solutions for the horizontal and vertical limits have already been well documented (see Fis-
cher 1979) with good experimental agreement for pure jets and plumes. For horizontal
buoyant jets it is easiest to compare the theoretical prediction with the measured radii and

trajectories.
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Experiments were performed to do this by placing a jet of dyed salt solution in a large
tank of fresh water, illuminated from behind. The flow rate of the source was varied, keeping
the nozzle diameter of the jet and the reduced gravity of the buoyant source fluid constant
(with g§ = 51.0 £ 0.4 cms~2). The flow was recorded on video tape. The radius of the jet at
points along its axis can be measured directly from the video picture and the trajectory was
found by eye, estimating the points mid-way between the boundaries of the jet along a line
perpendicular to the axis of the jet. The video picture was also analysed digitally taking a
time average of a succession of frames in order to obtain a clearer definition of the boundary
of the jet.

Figure 1 shows the variation of the radius b with arclength s, where the results of radius
measurements made here and some taken from Schatzmann (1976, who used the experiments
of Fan 1967) have been plotted. A good linear agreement is seen in every case although the
gradient of the line or ‘spreading rate’ varies between experiments. This linear relationship
was used as the basis for the first hypothesis. A line through the points might have been
expected to pass through a point on the negative s axis, rather than the origin. This is
because the values of s measured in experiment are relative to the jet nozzle and not the
point of zero radius (which should correspond to s = 0), the virtual origin. However, from
the equation for b(2) in (2.20), the distance between the virtual origin and the nozzle exit
is expected to be proportional to the nozzle radius - which is very small (~ 0.25 mm) in
these experiments. Thus any corrections required to compensate for the virtual origin/nozzle
disparity are negligible and have been ignored.

A comparison between the theoretical and experimental trajectories, using both the ex-
periments presented here and some of those listed by Schatzmann (1976), will now be made.
Schatzmann (1976), however, only lists the Froude number for each experiment. The Froude
number is proportional to the jet-length with constant of proportionality dependent on the
nozzle radius, which is not known. Therefore, the theoretical scaling used in (2.61) for these
experiments cannot be calculated and so the best fit between the experimental and theoretical
centrelines is shown in figure 10. Figure 10a shows the actual trajectories observed experi-
mentally (2 and z have unknown units) and the scaled trajectories are shown in figure 106 -
the curve is the theoretical solution obtained when using the first hypothesis. The agreement
is excellent - however because the theoretical and best fit scalings cannot be compared, it is
not possible to endorse the theoretical solution using this data.

The same procedure is carried out with the experiments described above. Now, however,
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—

Symbol Flow Rate (cm3s~1) Theoretical scale Best fit scale
+ 0.70 0.0583 + 0.0087 0.0585
* 1.03 0.0396 + 0.0059 0.0443
A 1.20 0.0340 £ 0.0051 0.0331
o 1.50 0.0272 + 0.0041 0.0284
O 1.57 0.0260 + 0.0039 0.0232

TABLE 1. The theoretical and best fit scalings.

all of the data required to make a proper comparison is available, although the experimental
errors in Qo and gg, together with the uncertainty in o; mean that the scaling can only be
calculated to £15%. The experimental flow rates and theoretical scaling factors are given
in table 1 (the scale given in the table is the scaling used to transform the experimental
lengths into the theoretical starred variables) with figure 11a showing the actual observed jet
trajectories. The theoretical and scaled experimental curves are shown in figure 11b. In this
figure, the scaling which provides the best fit with the theoretical curve has been chosen, but
in each case the ‘best fit scale’ is well within the degree of accuracy of the ‘theoretical scale’.
Again, the agreement between the theoretical and experimental jet trajectories is excellent,

providing good support to the analysis above.

5. Discussion and Conclusions

The motion of a horizontally directed buoyant jet has been examined both analytically
and numerically, comparing the theoretical predictions with experimental measurements. The
conservation equations were derived by integrating over a cross-section of the jet, a technique
initially illustrated by the consideration of the horizontal and vertical limiting cases, which
have established solutions. The important feature of the analysis was that the entrainment
constant was allowed to vary along the flow of the buoyant jet, as it changes from a jet-like
to a plume-like state. This was achieved by using one of two hypotheses which have been
detailed above.

Considering the analytical calculations first, it was found that for both hypotheses the

reduced gravity was proportional to the horizontal velocity component (2.52) and that all
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the variables in the problem could be expressed in terms of the gradient of the trajectory
(2.55). It was also found that the equations governing the gradient (2.59) and (2.93) could
be simplified by scaling the lengths by a factor proportional to the jet-length (2.63). These
equations for f could not be integrated analytically and so they were considered for small
and large values of the gradient in turn. Series expansions for small values of the gradient
indicated that the behaviour of the velocity components remains pure jet-like, even though
the jet may have begun to divert from its initially horizontal course. The analysis for large
values of the gradient showed that the centreline axis of the jet reaches a maximum horizontal
distance from the origin. At this point the velocity components are zero, and the gradient,
vertical elevation and radius are infinite.

In order to examine the transition between the jet-like and plume-like states, equations
(2.59) and (2.93) were integrated numerically to obtain the theoretical solution, using the two
different hypotheses. The two solutions are generally similar in behaviour and were discussed
in section 3. This similarity was explained by observing that the second hypothesis implies an
almost linear variation of the radius with arclength and so will agree well with the solution of
the first hypothesis which actually assumes that the radius varies linearly with the arclength.
It was found that the transition between jet-like and plume-like states occurs between z* = 1
and z* = 3.5 approximately, the buoyant jet having almost vertical motion after z* = 3.5.

In terms of the original variables, the transition takes place between

Lz 3.5L;
T = - 2.2L; and g= e 7.6L;.
/\ 20’j )\\/20_7'

This agrees well with the observations of Linden, Marshall & Cleaver (1991), who observed
that the jet-plume transition appeared to take place from 2 ~ 2.6L;. The numerical solution
was also used to determine the maximum horizontal distance travelled by the jet. This was

found to be
461,
N /\ 20’j

x> ~4.6 or Ton

VX
m

229,905,

although at this point the radius is infinite. The greatest difference between the two solutions
was seen in the behaviour of the Richardson number and the effective entrainment constant.
With both solutions the values of the Richardson number and the effective entrainment
constant become greater than their asymptotic plume values during the transition phase.
This means that the entrainment into the buoyant jet is greatest during the transition phase,

possibly a result of the high curvature of the jet there.
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The theoretical predictions for the trajectory followed by the buoyant jet were then com-
pared with experimental measurements, in order to endorse the theoretical results. The
agreement was excellent, with the scaling providing the best fit to the theoretical curve be-
ing well within the experimental error of the theoretical scaling in each case. This provided
suitable support of the analysis, although at this stage further measurements are required to
decide which of the two hypotheses provides the best model for buoyant jet flow.

The theoretical calculations of the jet trajectory, reduced gravity and maximum distance
reached (z,,) could have practical uses. For example, considering the horizontal discharge of
a buoyant fluid into a container, it would be desirable to know if the jet will impinge on the
side of the container or if it will reach a vertical plume-like state before reaching the boundary.
If the container was closed, then in the latter case the ‘filling-box’ model (Baines & Turner
1969) could be used to describe the flow, whereas in the former case, the impingement may
affect the subsequent concentration build-up inside the container (see Linden, Marshall &
Cleaver 1991). Alternatively, consider the dumping of sewage or other negatively buoyant
fluid from a horizontal pipe into the sea. If the flow in the region where the dumping took

place was small compared with the buoyant jet flow, then the above analysis could be used to

calculate the theoretical trajectory of the jet. This would give an indication of the distance

from the pipe that the source material would travel before reaching the sea bed, and an 4

estimate of the concentration level there (neglecting the effect of approaching the sea bed). |

The effects of stratification can be neglected near to the source if the density changes in the |

environment are small (over the length scale of the jet) compared with the buoyancy of the

buoyant jet. A further use of the analysis could be to calculate the criterion for a buoyant

jet to penetrate the interface between two fluids of different density (stably stratified). The

buoyant jet will penetrate if, at the interface, it is more buoyant than the fluid into which it

is trying to flow. ‘
The analysis is also easily adaptable. Off-horizontal buoyant jets could be considered by ‘

simply changing the initial conditions of the numerical integration as outlined in section 3.

Stratification of the environment could be included by adding the term —waa"; to the right
hand side of (2.6), assuming that density variations in the @ and y directions are negligible.
This modifies (2.49) to

9 0pa
po 0z’

d 2
E(b%g’) =b*wN?  where N?=

and the analysis would proceed as before using one of the two hypotheses to solve the problem.
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Notation
Below is a list of the symbols used in this chapter, provided for reference purposes. }
b Transverse length scale of the buoyant jet
Byo) (Initial) buoyancy flux
f Gradient of the jet trajectory
F Constant proportional to the buoyancy flux, used in the vertical limit
g Reduced gravity of the buoyant jet fluid
H Vertical flux of horizontal momentum, used in the vertical limit
J Constant proportional to the initial buoyancy flux
k Constant of proportionality relating the jet radius and arclength in (2.56)
K Constant proportional to the initial momentum flux
L Length scale
L; Jet-length
M o) (Initial) momentum flux
N? Buoyancy frequency
P Pressure
Q Local volume flux
Ri Local Richardson number of the jet l
Ry, Plume Richardson number l
S Arclength | |
v Time scale
U Horizontal velocity component
v Mean centreline velocity
w Vertical velocity component
@ Horizontal coordinate
! Rotated coordinate
iy Maximum horizontal displacement of the jet centreline
z Vertical coordinate
2! Rotated coordinate
‘ z(2) The centreline trajectory
a(z) Effective entrainment constant using the first hypothesis
i 75 =
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Entrainment constant using the second hypothesis

Entrainment constants for jets and plumes

Parameter in the series expansion using second hypothesis

Factor by which length scale for the density difference is larger than that of the
velocity

Density

Ambient density

Reference density

The angle between the jet centreline and the horizontal axis

Denotes transformed variables using (2.61)
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CHAPTER FOUR

The Flow of a Vertical Buoyant Jet
with High Momentum in a

Long, Ventilated Tunnel

The purpose of this chapter is to investigate and understand the flow resulting from the
release of buoyant material within a long tunnel of rectangular cross section. The source is
discharged through a nozzle of small radius with sufficiently high flow rate to ensure that the
‘jet-length’ is several times the depth of the tunnel, d. The ends of the tunnel may be either
open or closed and a number of ventilation points may exist along it. Consideration of a
source with high momentum is an important development in the study of confined jet flows,
as most previous studies have assumed that the source has little or no initial momentum.

It is found that circulation cells are driven near to the source and that the concentration
within them increases to a steady-state maximum. At a distance of about 2.5d from the source
the buoyancy forces are then sufficiently strong to drive a two-layered stratified counterflow.

The steady state conservation equations are analysed in order to calculate the mean flow
variables. The flow past a ventilation point and the characteristics of the secondary outflow
are derived, enabling the calculation of total number of vents needed to vent the buoyant fluid.
The time dependence of the mean concentration in the circulation cell near to the source is
also deduced. This could be used to calculate time dependent solutions for the other mean

flow variables. All the theoretical results are compared with experimental measurements.
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1. Introduction

The dynamics of buoyant releases in confined regions were first examined by Baines &
Turner (1969) who studied the behaviour of a vertical pure plume in a rectangular box (see
chapter 1). Their ‘filling-box’ model makes the assumption that on reaching the upper surface
of the box, the plume material immediately spreads out in a horizontal layer, slightly less
buoyant than the preceding layer, so that stratification of the interior occurs. To ensure that
the instantaneous spreading-out assumption is reasonably valid, Baines & Turner made a
restriction on the aspect ratio of the box: height/width<1. In the present case, this ratio is
satisfied, but the sou<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>