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We use a coarse-grained model for generic proteins to investigate the formation of structures with P2;2,2;
symmetry, the most prevalent space group of protein crystals. To account for the string directionality of
protein-protein interactions that has been suggested by previous studies, we represent proteins as spherical
particles that are covered by a large number of small, attractive ‘patches’ that are randomly distributed on
the protein surface. Attractive interactions between two proteins can then involve several pairs of patches
interacting simultaneously. Our results suggest that the unit cell with the lowest energy is not necessarily
the one that grows fastest. Rather, growth is favoured if 1) new particles can attach with enough bonds to
the growth front and 2) particles that attach in crystallographically inequivalent positions bind to the surface
with similar strength. We subsequently study the impact of interactions that are not part of crystalline
contacts, and find that when these non-specific interactions are few and weaker than the crystal contacts,
both nucleation and growth are successful. If the proportion of non-specific interactions is increased, crystal

growth is still possible in a small range of model temperature.

I. INTRODUCTION

Making high-quality protein crystals is crucial for suc-
cessful protein structure determination by X-ray diffrac-
tion. Moreover, the control of protein crystal morphology
is increasingly important for the formulation of pharma-
ceutical compounds’. Yet very little can be predicted
about the crystallization process, and in practice, grow-
ing high-quality protein crystals proceeds through trial-
and-error involving a scan of a wide range of protein solu-
tion conditions. Questions concerning, for instance, the
role of co-solutes, the properties of possible intermediate
phases, and the kinetics of nucleation and growth are still
not fully answered.

If these questions are to be investigated through com-
putational means, the main difficulty is due to the large
sizes of these molecules (even a fairly small protein
like lysozyme contains ~1000 atoms). This makes long
enough large-scale simulations using an atomistic repre-
sentation unfeasible. While there are calculations of pro-
tein solution properties performed with 500-1000 atomi-
cally detailed rigid molecules®?, theoretical studies of the
full protein phase behavior typically require hundreds,
if not thousands of different simulations. This can at
present, for systems containing hundreds of proteins, only
be carried out using coarse-grained models, where globu-
lar proteins are portrayed as colloidal spheres, and their
interactions are mediated by short-range isotropic poten-
tials®™” or attractive spots® ™. Such descriptions have,
for example, successfully managed to generate phase dia-
grams consistent with experimental measurements> 6811,
explained re-entrant condensation of proteins whose in-
teractions are ion-activated!'®, and proposed how nucle-
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ation barriers might depend on the distribution of attrac-
tive patches on the molecular surface!'>'%,

Here we use a patchy-sphere model to address fun-
damental questions related to crystal formation, and to
study the relative importance of specific and non-specific
interactions for the crystal growth process. Previous the-
oretical studies typically designed patch positions, size
and amounts such that only one or two'® single crystal
structures had the possibility to assemble. The model
that we present here is based on spheres decorated com-
pletely randomly with a large number of small attractive
patches, portraying the fact that proteins have large sur-
face areas allowing for several non-specific interactions.
Intermolecular contacts that consist of more than one
patch-pair are also taking into account the directionality
of protein-protein interactions'®. This random patch po-
sitioning enables us to explore the possibility of finding a
unit cell without a priori stipulating a structure. A simi-
lar model was recently shown to be able to fit liquid-liquid
phase separation curves and osmotic compressibilities to
experimental data'6.

We focus on structures with P2;2:2; symmetry, since
this is the most prevalent space group of protein crys-
tals, and find that proteins represented in this fashion can
crystallize only if the crystal contacts are strong enough
compared to the non-specific interactions. The larger the
number of non-specific interactions, the narrower is the
temperature interval where crystals can grow. Similarly
to supersaturation conditions, the region in model pa-
rameter space for successful crystal nucleation and the
one for growth are not entirely identical. Finally we ob-
serve that a unit cell with the same energy as the P272,2;
structure but of another symmetry does not correspond
to a crystal capable of growing. We suggest that this
could be due to a large spread in the interaction energies
that different crystal layers offer to attaching particles.
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FIG. 1. Patchy protein model. (A) An illustration of the
coarse-grained protein model with N, = 40 patches on the
surface, each represented as a sphere with a diameter that
corresponds to the range of interaction (0.10, where o is the
protein diameter). (B) An example of the assignment of ;;
for specific interactions when the crystal contacts are formed
by one (dark blue), two (lighter blue) and three (lightest blue)
patch-pairs. For an interacting patch-pair that is not part of
a crystal contact (represented with gray in the figure), ;; =
Ens = Ec/f

Il. METHODS
A. Protein model

Proteins are modeled as hard spheres of diameter o,
interacting with each other through patches on their sur-
face (see figure 1A). The N, patches of a protein are
randomly distributed, and a patch ¢ on a molecule inter-
acts with patch j on another molecule with a square well
potential:

y ) €y if r<0.10
Eij(r) = { 0 otherwise 1)

where r is the distance between the patches. All particles
in a simulation have identical patch decorations.

During the initial scan for potential crystal structures
g;; were set equal (non-specific) for all combinations of
patch-pairs, i.e. &;; = ens = 1KT for all i,5. For
this choice of parameters, we measured a distribution
of molecular pairwise interaction minima (see figure 2).
We note that our ‘micro-patch’ model qualitatively re-
produces the distribution of interaction energies between
pairs of atomistically modeled proteins, as studied by
Quang et ol.'". In particular, it shows the same long-
tail shape. This similarity is obtained when N, (or the
patch width) is large enough. In order to facilitate an effi-
cient execution of the simulations, and to be able to vary
patch specificity later on, in what follows NV, is chosen to
be 40.

Once a structure was chosen for the study of the im-
pact of non-specific interactions on crystal nucleation and
growth, two parameters, £ and 7, were introduced to reg-
ulate the competition between correct crystalline bonds
and improper associations. 7, a parameter that can as-

sume values between 0 and 1, sets the amount of non-
specific interactions present by allocating nN,, possible
binding partners per patch. Aside from patch-pairs that
are identified as part of a crystal contact, the remaining
patches are paired randomly until the correct number of
interactions is reached.

£ establishes the relative strength between specific and
non-specific interactions and is defined as follows: if
patches 7,7 do not participate in a crystalline contact,
€ij = €ns. For simplicity, and since it has been shown
that high asymmetry in crystal contact energies impedes
crystallization thermodynamics and kinetics'2, we keep
all crystal contacts equally strong, independently of how
many patch-pairs they comprise. In each crystal contact,
the contact energy E¢ is divided equally among the con-
stituting patch-pairs (see figure 1B). £ is then defined as
the ratio between the energies of a crystal contact and
the non-specific patch-pair interaction, i.e. & = E¢/eps.

In general, the choice of equal strength of crystal con-
tacts may seem to be a strong constraint. However, this
is where the special feature of the P2;2,2; crystal lat-
tice comes in: the position and orientation of particles
in the unit cell of such lattices is characterized by 7 in-
dependent parameters'®. Hence, the ‘space’ of possible
P212,2; unit cells is very large. We argue that the unit
cells that form are precisely the ones where all crystal
contacts are of comparable strength.

B. Simulation techniques

The search for symmetric low-energy configurations
was done with the Monte Carlo variable box shape
method described by Filion et al.'?. A unit cell with pe-
riodic boundary conditions containing 4 particles (since
this number is sufficient to represent the most frequent
space groups of protein crystals'®) was simulated, where
the particles’ positions and orientations were varied, as
well as the shape and size of the cell. The symmetry
of the configurations was checked using the software of
Stokes and Hatch?®. The crystal growth was studied with
Monte Carlo (MC) NVT simulations where a solution of
100 monomers was brought into contact with a crystalline
substrate with a thickness of one unit cell. The particles
of the preformed layer were free to rotate, but were bound
to their ideal crystal sites with harmonic potentials. A
particle was considered as crystalline if it had made cor-
rect bonds to at least two other crystalline particles. For
each examined crystal structure, growth was simulated
in the z, y and z directions.

Results of the NVT computations were validated
against more expensive simulations in the grand-
canonical ensemble (constant pV'T), where the systems
where prepared as described previously, and p was cho-
sen to give a density of particles that allowed for growth
of the crystal layer.
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FIG. 2. Distribution of pairwise energies.

Sampled energies between two particles for different relative orientations.

Comparison is made between atomistically represented lysozyme (A) and our model (B and C), for particles with N, = 100
(B) and N, = 40 (C) patches. The different curves are for different patch decorations. The data values in (A) are extracted
from figure 1 in Quang et al., J. Chem. Theory. Comput., vol 10, pp. 835-845 (2014).

Ill. RESULTS
A. Searching for symmetric low-energy structures

We analyzed the lowest-energy structures rendered
with the variable box shape method, for several differ-
ent patch decorations. Our results showed that they did
not possess any symmetry other than the one of space
group P1. The search was therefore narrowed down by
constraining the generated configurations to only assume
P2:212; symmetry. This choice was made because this
is the most prevalent space group for proteins, found in
~ 30% of the crystals (see figure S121).

The introduced constraints implied keeping the sim-
ulation box orthorhombic and relating the relative po-
sitions and orientations of the particles to the relevant
symmetry operators. This was done by modifying the
variable box method so that only the lengths of the vec-
tors spanning the unit cell were varied. Furthermore,
once the first particle was placed in the unit cell with a
random position and orientation, the P2;2,2; symmetry
operators were applied on the coordinates of its center of
mass and those of its patches to calculate the positions
and orientations of the remaining three particles. Only
unit cells that, when repeated, would form fully bonded
three-dimensional networks were considered.

This second set of generated conformations spanned a
wide range of energies and densities (see figure S2). Such
continuous distribution of unit cell energies does not sin-
gle out one particular candidate structure for subsequent
growth calculations. Importantly, simply choosing the
configurations with minimum energy proved not to be
sufficient for determining the crystal that will grow suc-
cessfully. This was mainly because of the large variation
in crystal bond strengths, that would lead to situations
where one particle layer readily binds, while the next one
does not.

The same procedure was repeated using particles with
a lower number of patches, N, = 15. As before, there was
not one single structure with distinguishable low energy.
Configurations with the lowest energies could not show
successful growth for all layers or growth directions. To

test whether growth was inhibited by non-specific inter-
actions, the particles were stripped of all their patches
apart from the ones participating in crystal contacts.
One patch-pair per contact was kept, and the range of
attraction of the patches was doubled. Even with all
non-specific interactions removed, the structure failed to
grow. The reason was that the initiation of every second
layer required the first particle to attach through one
single bond. Growth could not be achieved by tuning
the strength of the crystal contacts. Choosing a lower
lens| prevented the particles from attaching at all, while
increasing |e,s| did not resolve the problem of distin-
guishing the formation of correct patch pairing from the
incorrect ones. Our findings thus suggest that crystal
growth is facilitated if the attaching particle can form
bonds with several members of the underlying layer, and
furthermore, if not all patches have equivalent interac-
tions.

B. A successful structure

Inspired by the observations reported above, we turned
our focus to finding a configuration where each new par-
ticle would attach with a maximum amount of crystal
bonds, no matter whether the crystal was grown in the z,
y or z direction. One such structure was found, where in
each direction each particle was making at least 4 bonds
upon attachment to the crystal layer. The particles in
this structure had 10 contacts each, consistent with the
8 — 10 molecular pairwise interfaces observed in protein
crystals??. The bonds were formed out of single (four of
the bonds), double (two of the bonds) and triple patch-
pairs.

C. Growth dependence on relative interaction strength and
specificity

Having identified an adequate crystal structure, we
used it to explore how non-specific interactions influ-
ence crystal growth. Growth simulations were performed



varying the specificity and the crystal contact strengths,
represented by 7 and &, respectively. Figure 3 shows the
fraction of particles that have attached correctly to the
crystal layer at the end of simulations of length ~ 3 - 107
MC cycles. As can be seen, below & &~ 2.1 nothing at-
taches, and in some cases the layer is itself not stable (the
crystallinity is lost due to rotation of the layer particles).
Note however that at & = 2.7 crystal growth is possible,
even though it means, for this particular structure, that
g;; of some crystal-related patch-pairs (those that form
a contact of valency three) is lower than the non-specific
interactions.

Best growth is found in a region with high ¢ and low 7
(strong crystal contacts and few interfering interactions).
However, as seen in figure 4, if the non-specific inter-
actions, e,s, are lowered and the crystal contacts are
strong enough, crystal growth is possible also for cases
when n = 1.0, i.e. when the amount of interfering,
non-crystalline interactions is maximal. This is consis-
tent with the observation of George and Wilson?? that
protein crystallization often occurs in conditions charac-
terized by a slightly negative osmotic second virial co-
efficient, i.e. modest attraction between the proteins. In
this case modest attraction is obtained through either a
few non-specific patch-pairs, or through a larger amount
but with weaker interactions. Furthermore, for a fixed
E¢, the range of non-specific interaction strengths where
crystal growth is observed is larger for lower 1 compared
to high ones (figure 5).

D. Possibility to grow other structures

The patch-patch interaction matrices for a set of the
7, £ combinations that rendered successful crystal growth
were used to check if unit cells of lower energies can be
built. Attempts were made to build new structures of
P212,2; symmetry, as well as structures with P2; sym-
metry (the second most common space group of protein
crystals). When looking for other P2;212; structures and
using ¢;; from the high-¢ /low-7 region, the lowest-energy
configurations found were very similar to the original
unit cell (crystal contacts differing by only a few patch-
pairs). Applying instead the interaction parameters used
at e,s = 2kT,n =1.0,£ = 3.0, new configurations featur-
ing the same energy per particle as the original structure
were generated from both types of space groups, but they
did not grow.

A possible explanation for this inability could be that
the tested structures displayed a larger variation in inter-
action energies between the different crystalline surfaces
and particles commencing a new layer. As presented in
figure 6, even if the average attachment energy for one of
the new configurations (denoted “P212;21”) is lower than
the original structure, the standard deviation of this com-
puted mean is larger.

Proportion of crystalline particles

unique surface 1 | unique surface 2

117
wé .. 0.8
~ [ [ ] ] 06
o | 04 X
Il [ |
W HEN 0.2
LI LT T] 0
2 04 O 02 04 O
36 (TT] T
£ 33 | [ [ ]
74l il
27
1y y
| 24 B [ |
ap 2.1 HEN [ ] ]
& [ T[] HEN
02 04 06 08 1| 02 04 06
36 [T ] [T 17
£33 [ | [ | |
< s8¢t =
O 27t | |
o V4
| 24 t ]
w241 [ | r EEEEEE
1.8 [ [ 1] Lo [ [T TTTH

02 04 06 08 1
n n

FIG. 3. Crystal growth as a function of crystal con-
tact strength and amount of interfering interactions.
The proportion of crystallized particles at the end of growth
simulations for €,s = 3.0 kT. The six different images corre-
spond to three different growth directions (z, y and z), each
initialized with two unique crystal layer surfaces, obtained
by periodic shifts within the unit cell. Violet indicates that
there are particles in the initial crystal layer that have lost
their correct orientations. Blue to green specifies a stable and
growing crystal layer. The more light green the color, the
larger amount of particles have attached correctly.

E. Nucleation dependence on relative interaction strength
and specificity

The possibility to nucleate a crystal from solution,
without any crystalline layer present, was examined for
the same range of n and £ as in the growth studies. Fig-
ure 7 shows that the monomers can only crystallize for
high &, when the crystal contacts are much stronger than
the non-specific interactions. For < 0.4 and ¢ 2 3.3 the
particles crystallize into a few, compact nuclei, while for
larger n several crystallites form. However, as inferred
from figure 8, which shows the ratio between the sizes
of the largest assembly and the largest crystalline clus-
ter, these smaller domains are generally part of larger
aggregates interspersed with non-crystalline particles.

When ¢ instead is low and n 2 0.4 the particles form
disordered dynamic aggregates, with few or no crystalline
particles (see figure 9). Examples of final configurations
for different values of n and & are demonstrated in fig-
ure 10. Comparing figures 3 and 7, it is notable that in
the region of n < 0.3 and low ¢ where growth of a pre-
formed layer is possible, nucleation does not occur. This
is analogous to how a higher supersaturation is needed
for nucleation compared to crystal growth??. As figure 9
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FIG. 4. Possibility for crystal growth with a maximum
amount of non-specific interactions. The proportion of
particles that have crystallized at the end of growth simula-
tions when n = 1.0, as a function of e,s for & = 3.0 (left)
and & = 2.4 (right). The six columns represent three differ-
ent growth directions, each with two unique surfaces obtained
through periodic shifts within the unit cell. Violet indicates
that there are particles in the initial crystal layer that have
lost their correct orientations. Blue to green specifies a stable
and growing crystal layer. The more light green the color, the
larger amount of particles have attached correctly.
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FIG. 5. Ranges for crystal growth at a specific crys-
tal contact strength. The proportion of particles that
have crystallized at the end of growth simulations when
Ec = 7.2kT, as a function of e,s for n = 0.1 (left) and
n = 0.3 (right). The six columns represent three different
growth directions, each with two unique surfaces obtained
through periodic shifts within the unit cell. Violet indicates
that there are particles in the initial crystal layer that have
lost their correct orientations. Blue to green specifies a stable
and growing crystal layer. The more light green the color, the
larger amount of particles have attached correctly.
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FIG. 6. Comparison of attachment energies. Energies
for correctly attaching the first particle of a new layer, aver-
aged over layer formation in three directions and over all par-
ticles in a unit cell. Values are calculated for the successfully
growing structure (“original”) at ens = 2kT,n = 1.0,& = 3.0,
and for two other structures that use the same patch-patch
interaction matrix and have the same energy per particle: an-
other configuration with P212:2; symmetry (“P212:121”), and
one from the P2; space group (“P21”).
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FIG. 7. Crystal nucleation as a function of crystal con-
tact strength and number of interfering interactions.
The proportion of crystalline particles (A) and number of
crystalline clusters (B) at the end of nucleation simulations.

shows, instead of crystalline nuclei, only small, mainly
disordered clusters containing S 8 particles form. These
aggregates are transient and do therefore not provide a
nucleus for further growth. The same observation is made
for the state with n = 1.0 and £ = 3.0. While such par-
ticles, as described before, correctly attach to a crystal
layer in the narrow range ¢,s = 2 — 2.2kT, no nucle-
ation was observed for these conditions over the dura-
tion of the simulations. As figures 9B and S3 illustrate,
at €,s = 2 kT the particles do not cluster much, while at
ens = 2.2 kT larger aggregates do assemble, but they are
predominantly disordered.

IV. DISCUSSION

There has been some discussion about the suitability
of colloidal models for studies of protein solution proper-
ties?®. In this study we consider that keeping this simpli-
fication is admissible, as it is assumed that the proteins
are fully folded under crystallization conditions, and the
questions addressed are related to crystal growth.

Our finding that crystallization is swiftest when the
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FIG. 9. Cluster statistics of nucleation simulations.
(A) Average number of clusters of any type of structure, as
a function of 7 and £ at e,s = 3.0kT. (B) Probability for
a particle to be part of a cluster of size s, calculated for re-
gions in parameter space where growth is observed but not
nucleation. The different curves correspond to the following
parameters: (i) ens = 3.0kT,n = 0.1,£ = 3.0; (ii) €ns =
3.0kT,n =02, = 2.7; (iil) ens = 3.0kT,n = 0.3, = 2.7;
(iv) ens = 2.0kT,n = 1.0,£ = 3.0. (C) The size of the largest
aggregate as a function of n and £ at ens = 3.0kT. (D) The
size of the largest crystalline cluster as a function of 7 and &
at ens = 3.0kT.

non-specific interactions are distinctively weaker com-
pared to the crystal contact energies is similar to what
was concluded from studies of 2D crystallization®®27.
Here we did not only study the effect of varying the

strength of the non-specific interactions, but also the pro-
portion of them, observing that crystal growth is achiev-
able also in the presence of a substantial amount of pos-
sibilities to form non-crystalline bonds. Since this case is
presumably most similar to real proteins, the effects of
the non-specific interactions, i.e.narrowing the tempera-
ture interval where a crystal can grow, concurrent with
hampering nucleation due to sparse cluster formation or
aggregation of disordered structures, could explain the
experimental difficulties in obtaining crystals. The poor
nucleation in conditions that otherwise allow growth is
also in line with the recent suggestion that heterogeneous
nucleation of protein crystals is likely to be dominant?3.
The degeneracy in constructing unit cells leads us
to speculate that the high degree of freedom that the
P212,2; space group offers could be both a strength and
an obstruction for protein crystal growth. The strength
resides in the adaptability of the unit cells, providing
multiple options to allow macromolecules with no intrin-
sic symmetry to be incorporated into a periodic three-
dimensional network!®. The disadvantage on the other
hand is that, although a small nucleus can be formed,
these numerous possibilities could obstruct finding a suit-
able conformation that would grow into a full crystal.
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FIG. 10. Crystal nuclei for different amounts of interfering interactions. Snapshots from the end of four simulations.
In the left panel n = 0.1 and £ = 3.0 and 3.3 (upper and lower images, respectively). In the right panel n = 0.6 and £ = 2.4
and 3.6 (upper and lower images, respectively). Particles colored gray have not created any crystalline bonds. Any other color

indicates a crystalline cluster.
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