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This thesis concerns the development and mathematical analysis of statistical procedures for

classification problems. In supervised classification, the practitioner is presented with the

task of assigning an object to one of two or more classes, based on a number of labelled

observations from each class. With modern technological advances, vast amounts of data can

be collected routinely, which creates both new challenges and opportunities for statisticians.

After introducing the topic and reviewing the existing literature in Chapter 1, we investigate

two of the main issues to arise in recent times.

In Chapter 2 we introduce a very general method for high-dimensional classification,

based on careful combination of the results of applying an arbitrary base classifier on random

projections of the feature vectors into a lower-dimensional space. In one special case that

we study in detail, the random projections are divided into non-overlapping blocks, and

within each block we select the projection yielding the smallest estimate of the test error.

Our random projection ensemble classifier then aggregates the results after applying the

chosen projections, with a data-driven voting threshold to determine the final assignment.

We derive bounds on the test error of a generic version of the ensemble as the number of

projections increases. Moreover, under a low-dimensional boundary assumption, we show that

the test error can be controlled by terms that do not depend on the original data dimension.

The classifier is compared empirically with several other popular classifiers via an extensive

simulation study, which reveals its excellent finite-sample performance.

Chapter 3 focuses on the k-nearest neighbour classifier. We first derive a new global

asymptotic expansion for its excess risk, which elucidates conditions under which the dom-

inant contribution to the risk comes from the locus of points at which each class label is

equally likely to occur, as well as situations where the dominant contribution comes from the

tails of the marginal distribution of the features. The results motivate an improvement to the

k-nearest neighbour classifier in semi-supervised settings. Our proposal allows k to depend

on an estimate of the marginal density of the features based on the unlabelled training data,

using fewer neighbours when the estimated density at the test point is small. We show that

the proposed semi-supervised classifier achieves a better balance in terms of the asymptotic

local bias-variance trade-off. We also demonstrate the improvement in terms of finite-sample

performance of the tail adaptive classifier over the standard classifier via a simulation study.
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Preface

The main theme of this thesis – the development of new statistical procedures for

the modern era – is, as is the case for many works in statistics nowadays, motivated

by advances in technology. In particular, the facility to collect vast amounts of data

routinely has created both new challenges and opportunities for statisticians. Primarily,

can we make efficient use of all the data recorded?

At the beginning of the 21st century we entered the digital age. Analog formats,

such as printed text and VHS tapes, were overtaken as the primary storage format.

By 2007, 94% of data stored globally was in digital form, on PC hard disks and DVDs

(Hilbert and López, 2011).

More recently, we have experienced what may be regarded as a media storm around

big data, a broad term used to refer to any situation where one has more data than tra-

ditional techniques can cope with. As an example of the scale of the problems encoun-

tered, consider the Square Kilometre Array telescope1, which is capable of recording

more than an exabyte (1018 bytes) of raw data per day. Even processing and storing

that amount of data is severely problematic!

The naive application of traditional statistical procedures in the context of big

data may often lead to false conclusions. There are also ethical uncertainties, regarding

privacy and legislation. Mayer-Schönberger and Cukier (2013) provide an accessible

overview of many of the issues encountered. The big data era is likely still in its salad

days. If we are to realise anywhere near the advertised potential, as statisticians, we

must provide the pathway from (big) data to knowledge.

There are many people without whom this thesis would have most likely remained

incomplete. First and foremost, it has been a privilege to work with Richard Sam-

worth. His encouragement, guidance and patience have led to vast improvements in

the contents of this work, and my development as a researcher. I would like to thank

my friends and colleagues in the Statistical Laboratory, including John Aston, Tom

Berrett, Julia Blackwell, Alexandra Carpentier, Nayia Constantinou, Yining Chen,

Robin Evans, Arlene Kim, Danning Li, Will Matthews, Susan Pitts, Rajen Shah, John

Shimmon, Tengyao Wang and Yi Yu, who have helped to provide a stimulating and

1https://www.skatelescope.org
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friendly working environment over the past four years. Thank you also to all the friends

who have taken an interest (or otherwise) in my work, especially Alan Sola, Peter Logg,

Ed Barsley, Max Cooper, Tom Clarke, Jon Wilcox, Ellie Buckell, Thomas Whitcombe,

Oliver Southwick, David Sykes, Thomas Hendicott, William Balfour, Damon Civin,

Meline Joaris, Charlie Perrott and Sarah Gedye.

This dissertation is the result of my own work and includes nothing

which is the outcome of work done in collaboration except as declared in

the Preface and specified in the text. It is not substantially the same as any

that I have submitted, or, is being concurrently submitted for a degree or

diploma or other qualification at the University of Cambridge or any other

University or similar institution. I further state that no substantial part of

my dissertation has already been submitted, or, is being concurrently sub-

mitted for any such degree, diploma or other qualification at the University

of Cambridge or any other University of similar institution.

Chapters 2 and 3 are joint work with Richard J. Samworth. A slightly shorter ver-

sion of Chapter 2 has been submitted to the Journal of the Royal Statistical Society,

Series B, and is available as Cannings and Samworth (2015a). We present here a more

extensive simulation study. The corresponding R package RPEnsemble is available from

CRAN (Cannings and Samworth, 2015b). We intend to submit Chapter 3 for publication

soon.

Timothy Ivor Cannings

Cambridge, August 2015
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Chapter 1

Introduction

In a classification problem, the practitioner is presented with the task of assigning an

object to one of two or more classes, based on a number of previous observations from

each class. Many everyday decision problems fit into this framework. Traditional ex-

amples include, an email filter determining whether or not a message is spam, diagnoses

of a disease based on the symptoms of a patient, or identifying a fraudulent financial

transaction.

The supervised setting, where all the previous observations are labelled, was intro-

duced by Fisher (1936). He developed Fisher’s Linear Discriminant Analysis (LDA),

and applied it to his Iris dataset, identifying the species of Iris plants based on mea-

surements of the sepals and petals; see Figure 1.1. The LDA method, and the related

Quadratic Discriminant Analysis (QDA), is still widely used today in forming the basis

of many modern classification techniques.

Moving on from Fisher’s work, the 1950s and ’60s was a revolutionary period for

statistics. Rosenblatt (1956) and Parzen (1962) introduced a rigorous framework for

the analysis of nonparametric methods. In fact, Fix and Hodges (1951) (later repub-

lished as Fix and Hodges, 1989) proposed a nonparametric method for classification.

This would later become the well-known k-nearest neighbour classifier (Cover and Hart,

1967). Furthermore, there was the development of Vapnik–Chervonenkis (VC) The-

ory (Vapnik and Chervonenkis, 1971), which facilitates distribution-free analysis of

learning techniques. Then, with the production of the microprocessor and subsequent

widespread use of the electronic computer in the 1970s, there was an influx of data,

generating unprecedented demand for new, faster statistical procedures. Classification

was one of the central problems arising.

With more recent technological advances, complex data structures are common-

place. The scope of applications extends far beyond the everyday problems mentioned

above. Observations may be high-resolution 3D fMRI images, full gene-expression se-

quences, or accelerometer recordings from wearable technology. The resulting problems

1
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Figure 1.1: A scatter plot of Fisher’s Iris dataset. The three different species, namely
versicolor, setosa, and virginica, are represented by the red, blue and black points,
respectively.

for the statistician are numerous. There may simply be too much data to directly ap-

ply a traditional method or the data may only be accessible for a short time; one may

need to combine data from many different sources, and there may be a large number

nuisance (or noise) variables.

A comparison of Figures 1.1 and 1.2 further elucidates some of these issues. Note

first that the plot of the Iris data is very informative, the classes are nicely clustered and

the distribution of each class is well approximated by a Normal distribution, suggesting

that Fisher’s LDA should work well (cf. Section 1.3.2). This is not the case for the latter

figure, which presents the Cardiac Arrhythmia1 data (available from the UCI machine

learning repository). The task here is to identify and, if present, characterise a patient’s

irregular heartbeat, based on a number of electrocardiogram (ECG) recordings. The

plot in Figure 1.2 presents just 5 of the 279 variables and 6 of the 16 classes recorded

in the dataset.

The topic of classification receives interest not only from the mainstream statistical

1https://archive.ics.uci.edu/ml/datasets/Arrhythmia
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Figure 1.2: A scatter plot of a subset of the Cardiac Arrhythmia dataset. The colours
represent six different types of Cardiac Arrhythmia. The five components shown are
different ECG recordings.

community, but also computer scientists and engineers. In fact, The British Classifica-

tion Society2, which celebrated its 50 anniversary in 2014, has members from diverse

fields such as anthropology, astronomy, biology, forensic science and psychology. With

such interdisciplinary approaches, the literature has advanced rapidly over the last

decade. A search for the phrase “statistical classification” on Google Scholar returns

3560 results from the last year alone3. Other particularly active classification societies

of note include the Gesellschaft für Klassifikation e.V.4 and The Section of Classifica-

2http://www.brclasssoc.org.uk
3Search performed on 31 July 2015.
4http://www.gfkl.org/en/
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tion and Data Analysis5 of the Polish Statistical Association. Moreover, the Interna-

tional Federation of Classification Societies6 - currently consisting of 16 international

member societies - host a biennial conference, publish a newsletter and support two

journals dedicated to the subject, namely the Journal of Classification and Advances

in Data Analysis and Classification.

The practitioner now has perhaps thousands of classification methods at their

disposal. Hastie, Tibshirani and Friedman (2009) provide a good overview of popu-

lar statistical learning procedures, including many for classification. There are also

many books focussing on classification, notably Hand (1981), Devroye, Györfi and Lu-

gosi (1996), Gordon (1999) and Duda, Hart and Stork (2000). The survey paper by

Boucheron, Bousquet and Lugosi (2005) provides a substantial review of the relevant

literature up to 2005. A more up to date survey can be found in Fan, Fan and Wu

(2010).

1.1 Thesis overview

The two main chapters in this thesis focus on different aspects of modern classification

problems. In Chapter 2, we introduce a new method for high-dimensional data, where

the dimension p of the feature vectors may be comparable to or even greater than the

number of training data points, n. In such settings, classical methods such as those

mentioned in Section 1.3 tend to perform poorly (Bickel and Levina, 2004), and may

even be intractable; for example, this is the case for LDA, where the problems are

caused by the fact that the sample covariance matrix is not invertible when p ≥ n.

Many methods proposed to overcome such problems assume that the optimal de-

cision boundary between the classes is linear, e.g. Friedman (1989) and Hastie et al.

(1995). Another common approach assumes that only a small subset of features are

relevant for classification. Examples of works that impose such a sparsity condition

include Fan and Fan (2008), where it is also assumed that the features are independent,

as well as Tibshirani et al. (2003) and Guo, Hastie and Tibshirani (2007), where soft

thresholding is used to obtain a sparse boundary.

More recently, Witten and Tibshirani (2011) and Fan, Feng and Tong (2012) both

solve an optimisation problem similar to Fisher’s linear discriminant, with the addition

of an `1 penalty term to encourage sparsity. Other works in this area include Cai and

Liu (2011); Clemmensen et al. (2011); Fan et al. (2015) and Hao et al. (2015). An

attractive property of many of these methods is their interpretability; often a list of

the most important features will be returned along with the class assignments. This

5http://www.us.szc.pl/main.php/skad_ang/
6http://ifcs.boku.ac.at



1.1. THESIS OVERVIEW 5

information may be very useful to the practitioner, for example, it may enable a doctor

to effectively target their treatment of a particular disease.

In Chapter 3, we propose a semi-supervised k-nearest neighbour classifier, where

the number of neighbours considered varies with the location of the test point. More

precisely, we first estimate the marginal density of the features using a large unlabelled

training data set, then let k depend on this estimate at the test point, using fewer

neighbours when the density is small.

An increasing number of modern classification problems are of so-called semi-

supervised form, where only some of the observations are labelled, while others (often

the large majority) are unlabelled. Such problems typically occur because acquiring the

label associated with a large set of observations may be particularly time-consuming

or expensive, such as determining whether there is oil at a potential drilling site, or

whether historical bank transactions are fraudulent or legitimate.

An overview of semi-supervised learning techniques can be found in Chapelle et al.

(2006). Arguably their most successful application in classification problems is in

density-based metric methods. For instance, when the features take values in some

lower-dimensional manifold, one can use the unlabelled training data to first learn the

manifold and use this structure to improve on the naive method that works directly

in the larger ambient space. As another example, when using the k-nearest neighbour

classifier, one may use the unlabelled samples to determine a more suitable distance

metric (Friedman, 1994; Bijral et al., 2012). Azizyan et al. (2013) provide a rigorous

statistical framework for the analysis of semi-supervised methods of this type; see also

Liang et al. (2007).

Another common condition used in semi-supervised classification problems is the

cluster assumption. This assumption states that the high-density regions of feature

space can be written as a countable disjoint union of measurable sets or clusters, on

which the Bayes classifier (defined in (1.1) below) is constant. For instance, Rigollet

(2007) first uses the unlabelled data to estimate the clusters, then the labelled training

data to provide information for the classification for each set. The unlabelled data, in

contrast to the proposal here, do not help with classification in the low density regions.

Before presenting the main chapters, we outline the statistical setting used in this

thesis, provide a brief review of some traditional classification methods, and highlight

two under-developed aspects of classification problems.
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1.2 Statistical setting

The setting used throughout this thesis is as follows: For n,m ∈ N, we have indepen-

dent random pairs (X, Y ), (X1, Y1), . . . , (Xn+m, Yn+m) taking values in7 Rp×{1, . . . , K},
each with joint distribution P . We will focus on the binary classification problem (K =

2), and briefly mention the extension to the general K case where relevant. In super-

vised problems, we observe X and the training data pairs Tn := {(X1, Y1), . . . (Xn, Yn)},
and would like to predict the class label Y . In the semi-supervised setting, we further

observe the feature vectors Xn+1, . . . , Xn+m.

Alternatives to this setting, which are not considered here, include the Poisson

model (see Hall et al., 2008), which assumes the pairs are generated from a marked

Poisson process. In this case, the sample size is not fixed, reflecting a situation where

observations arise sequentially, consider, for example, a bank looking to detect fraud

in financial transactions. The discriminant analysis model assumes that the class sizes

are fixed in advance, so there is no randomness in the class labels (see, for example,

Mammen and Tsybakov, 1999). Such a setting would arise if the training data pairs

were generated by experimental design. For instance, a doctor may choose a fixed

number of healthy and unhealthy patients to form the training set.

In our setting, the joint distribution P can be characterised in two ways. We may

first generate the class label from the marginal distribution of Y . That is Y takes the

value 1 with probability π1 and the 2 with probability π2 := 1− π1. Then, conditional

on Y = r, X has distribution Pr, for r = 1, 2. Alternatively, we may first generate X

from its marginal distribution PX := π1P1 + π2P2; then, conditional on X = x, the

probability that Y = 1 is given by the regression function η(x) := P(Y = 1|X = x).

To formally define η : Rp → [0, 1], for a Borel set B ⊆ Rp × {1, 2}, write

B = {B ∩ (Rp × {1})} ∪ {B ∩ (Rp × {2})} =: (B1 × {1}) ∪ (B2 × {2}),

then

P{(X, Y ) ∈ B} =

∫
B1

η(x) dPX(x) +

∫
B2

{1− η(x)} dPX(x).

Alternatively,

P{(X, Y ) ∈ B} = π1

∫
B1

dP1(x) + π2

∫
B2

dP2(x).

Thus, specifying either π1, P1 and P2, or PX and η, will fix the joint distribution P .

A classifier is a measurable function C : Rp → {1, 2}, with the interpretation that

C assigns x to the class C(x). We let Cp denote the set of all such classifiers. The

central task in this thesis is to find classifiers with small misclassification rate, or risk,

7In fact, in Chapter 3 we denote the dimension of feature vectors by d, following an informal
convention that p and d refer to high and low dimensions, respectively.
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over a prescribed set R ⊆ Rp, given by RR(C) := P{C(X) 6= Y,X ∈ R}. Here, the

set R may be the whole of Rd, in which case the subscript R will be dropped, or a

particular subset of Rd of interest.

The Bayes classifier

CBayes(x) =

{
1 if η(x) ≥ 1/2;

2 otherwise,
(1.1)

(e.g. Devroye, Györfi and Lugosi, 1996, p. 10) minimises the risk over any set R. Its

risk is

RR(CBayes) =

∫
R
η(x)1{η(X)<1/2} + {1− η(x)}1{η(X)≥1/2} dPX(x)

= E[min{η(X), 1− η(X)}1{X∈R}].

The set of points S := {x ∈ Rp : η(x) = 1/2} is commonly referred to as the Bayes

decision boundary. Of course, in practice the regression function is unknown, so the

the Bayes classifier cannot be used directly.

A classifier Ĉn, based on the n labelled training data points, is a measurable

function from (Rp × {1, 2})n to Cp. A number of statistical questions naturally arise

regarding the non-negative excess risk, or regret, given by R(Ĉn)−R(CBayes):

• Can we bound the difference between limn→∞R(Ĉn) and R(CBayes)?

• Is Ĉn consistent, i.e. does the excess risk converge to 0 as n→∞?

• How fast does the excess risk of a consistent classifier converge as n (and possibly

p) →∞?

• Are there finite sample bounds on the excess risk?

An elegant result relating to the first question is for the 1-nearest neighbour (1nn)

classifier, which assigns the point x to the class of its closest (according to some norm

on Rp) point in the training set. It can be shown that the asymptotic error of the 1nn

classifier is E[2η(X){1− η(X)}]. Cover and Hart (1967) provide the following bounds

R(CBayes) ≤ E[2η(X){1− η(X)}] ≤ 2R(CBayes){1−R(CBayes)} ≤ 2R(CBayes);

see also Devroye et al. (1996, p. 22). The 1nn classifier, then, potentially provides a

lot of information about the Bayes risk, especially if it is small.
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1.3 Traditional classification methods

In this section, we outline and discuss many classification methods and some of the

theory developed for them.

1.3.1 Nonparametric methods

A large subclass of techniques are known as plug-in classifiers. The idea here is to first

estimate the regression function nonparametrically, and then use the estimate in place

of η in the Bayes classifier. Many methods fit into this framework, for example the

k-nearest neighbour classifier, histogram classifiers and kernel classifiers.

Formally, let η̂n denote the regression estimate, and define the plug-in classifier

Ĉn(x) =

{
1 if η̂n(x) ≥ 1/2;

2 otherwise.
(1.2)

In this case, the excess risk satisfies (Devroye et al., 1996, Theorem 2.2)

R(Ĉn)−R(CBayes) = E{|2η(X)− 1||1{η̂n(X)<1/2} − 1{η(X)<1/2}|} ≤ 2E|η̂n(X)− η(X)|.

It follows that, if η̂n is a consistent estimate of η, then the plug-in classifier based on

η̂n is also consistent. In fact, classification is an easier problem than regression, in the

sense that the rate of convergence of the misclassification error will be faster than the

L2-error of the regression estimate (Devroye et al., 1996, Chapter 6.7).

To obtain precise rates of convergence, we must restrict the class of joint distribu-

tions of the pair (X, Y ) considered. Two assumptions are commonly made. The first

is a complexity or smoothness assumption, for example that the function η belongs

to a Hölder class with smoothness parameter β0. The second is the so-called margin

assumption, which states that there exists C0 > 0 and α0 ≥ 0, such that

P{0 < |η(X)− 1/2| ≤ t} = C0t
α0 ,

for all t > 0 (Mammen and Tsybakov, 1999; Tsybakov, 2004; Audibert and Tsybakov,

2007).

These two assumptions characterise the difficulty of a classification problem. In-

tuitively, since we need only determine whether or not η > 1/2, when η is far from

1/2, classification is easy. That is, the problem is easier for larger α0. Moreover, if η

is smooth, then estimating it will be easier. Audibert and Tsybakov (2007) derive the

rate of convergence of a general plug-in classifier. In particular, it is shown, under a

further regularity assumption on the distribution PX , that a local polynomial estimator
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of η can achieve a O(n−β0(1+α0)/(2β0+p)) rate of convergence. They show further that

this is the minimax rate for this class of distributions.

Arguably the most popular plug-in classifier is the k-nearest neighbour (knn) clas-

sifier, which estimates η at x ∈ Rp by a majority vote over the classes of the k nearest

neighbours to x. This method has the attractive property of being universally consis-

tent (Stone, 1977). That is, so long as k := kn diverges with n, but kn/n → 0, then

the knn classifier is consistent for any distribution P . Furthermore, Hall et al. (2008)

showed that the knn classifier, with an optimal choice of k, can achieve the minimax

rate above when α0 = 1 and β0 = 2. Samworth (2012a) studies the more general

weighted nearest neighbour classifier, where decreasing weights are given to more dis-

tant neighbours. An optimal weighting scheme is derived, under which the resulting

classifier is guaranteed to outperform its vanilla knn counterpart asymptotically.

As one can see presented above, the rate of convergence of the excess risk of the

knn classifier (and for general nonparametric plug-in classifiers) is slow when p is large.

This is often referred to as suffering from the curse of dimensionality.

1.3.2 Parametric methods

Suppose we have a parametric model for each of the conditional class distributions.

Then one can simply estimate the parameters (via maximum likelihood, or otherwise)

and if the model is a good approximation the resulting classifier will perform well.

Fisher’s original proposal followed this framework. Recall that in the case where

X|Y = r ∼ Np(µr,Σ), we have

sgn{η(x)− 1/2} = sgn
{

log
π1

π2

+
(
x− µ1 + µ2

2

)T
Σ−1(µ1 − µ2)

}
.

In LDA, πr, µr and Σ are estimated by their sample versions, using a pooled estimate

of Σ. We then define

ĈLDA
n (x) :=

{
1 if log π̂1

π̂2
+
(
x− µ̂1+µ̂2

2

)T
Ω̂(µ̂1 − µ̂2) ≥ 0;

2 otherwise,
(1.3)

where Ω̂ := Σ̂−1. When p > n the estimate of Σ is singular and the LDA method

cannot be applied directly.

Under this model, when π1 = π2 = 1/2 we have that R(CBayes) = Φ
(
−‖Σ−1/2(µ1−

µ2)‖
)
, where Φ denotes the standard Normal distribution function. The fact the Bayes

risk can be written in closed form facilitates more straightforward analysis.
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1.3.3 Combinatorial methods

Combinatorial methods do not rely on a statistical model. Instead, the idea is to divide

the feature space into regions which classify the training data well.

One simple and intuitive idea is empirical risk minimisation. Suppose we have a

set C of potential classifiers. To pick a classifier from C, we choose the one with the

smallest empirical error over the training set,

Ĉ∗n := argmin
C∈C

{ 1

n

n∑
i=1

1{C(Xi)6=Yi}

}
.

This idea was developed significantly in a series of papers by Vapnik and Chervonenkis

(1971, 1974a,b), which led in part to what is now known as Vapnik–Chervonenkis (VC)

Theory; see also Devroye et al. (1996, Chapters 12-14) and Vapnik (2000).

Let Ln(C) := P{C(X) 6= Y |Tn} denote the test error of the classifier C. By

writing

Ln(Ĉ∗n)−R(CBayes) =
{
Ln(Ĉ∗n)− inf

C∈C
Ln(C)

}
+
{

inf
C∈C
Ln(C)−R(CBayes)

}
,

we see there is a trade-off in the choice of the set C. If the class is large enough, then

the second term will be small, but this may come at the cost of increasing the first

term. More precisely, Vapnik and Chervonenkis provide the remarkable, distribution-

free result (see Devroye et al., 1996, Theorem 12.6) that

P
{
Ln(Ĉ∗n)− inf

C∈C
Ln(C) > ε

}
≤ 8S(C, n) exp(−nε2/128).

Here, S(C, n) is the nth shatter coefficient of the class C, which does not depend on

the distribution P .

Suppose C is chosen to be the set of all linear classifiers on Rp. In this case, it can

be shown that S(C, n) = np+1 (see Devroye et al., 1996, Chapter 13.3). As with plug-in

classifiers, this method is not well suited to high-dimensional problems.

Another popular technique, motivated by the work of Vapnik and Chervonenkis in

the 1960s on optimal separating hyperplanes (see Vapnik and Chervonenkis, 1974c), is

the support vector machine (SVM) (Cortes and Vapnik, 1995). The SVM is constructed

by finding an optimal separating hyperplane after mapping the feature vectors into a

high-dimensional space via the so-called kernel trick. The method is easy to implement

and can be very general, depending on the kernel chosen. The reader is referred to

Vapnik (2000, Chapter 5) for an in-depth review of this topic.
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1.3.4 Bagging

There are also techniques aimed at improving the performance of an existing method.

One of the first ideas of this type was bootstrap aggregating, or bagging (Breiman,

1996), in which test point is classified after many bootstrap resamples of the training

data, then the final assignment is made via a majority vote. Bagging was shown to

be particularly effective in one setting by Hall and Samworth (2005): a bagged version

of the typically inconsistent 1-nearest neighbour classifier is universally consistent. A

more general rule of thumb states bagging a weak classifier can lead to vast improve-

ments in performance; however, bagging a strong classifier is often futile.

Breiman’s early work on bagging led to the development of the extremely popular

Random Forest classifier (Breiman, 2001). This method combines bootstrap resam-

pling with random feature selection, and classifies the test point using a tree (Breiman

et al., 1984) grown on the chosen features. As in bagging, the individual trees are then

combined via a majority vote. Whilst the method enjoys very good empirical perfor-

mance, its theoretical properties are not well understood. One paper of note on this

topic, however, is Biau et al. (2008), where it is shown that a variant of the original

Random Forest proposal is consistent.

Another related idea is boosting, in which the importance, or weight, of each train-

ing data pair is updated at each stage of the ensemble. A particularly successful

proposal is Adaptive Boosting (AdaBoost) by Freund and Schapire (1997). The idea

here is to incrementally update the algorithm, giving an increased weight to the train-

ing points that were incorrectly classified during the previous step. The final ensemble

then also weights the individual learners based on their error. As with the Random

Forest method, it’s not yet fully understood why boosting works so well. Bartlett and

Traskin (2007) study the consistency properties of AdaBoost. A comprehensive review

of boosting techniques can be found in Freund and Schapire (2012); see also Schapire

(2013).

1.4 Error estimation

An important practical aspect of classification problems is error estimation. In partic-

ular, we would like to estimate the test error, Ln(Ĉn) := P{Ĉn(X) 6= Y |Tn}. Of course,

the distribution of the pair (X, Y ) is unknown, and therefore so is Ln. A simple way

to estimate the error is to use a test set: consider a situation in which we also observe

the pairs (Xn+1, Yn+1), . . . , (Xn+m, Yn+m). Then a natural, unbiased error estimate is

L̂n,m(Ĉn) :=
1

m

m∑
i=1

1{Ĉn(Xn+i) 6=Yn+i}.
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This is often used to estimate the error in simulation studies, where one can generate

as many test pairs as desired. The estimate is very good for large m; more precisely,

by Hoeffding’s inequality (Devroye et al., 1996, p. 122), we have that

P
{
|Ln(Ĉn)− L̂n,m(Ĉn)| ≥ ε

∣∣ Tn} ≤ 2e−2mε2 .

In practical problems we rarely have a labelled test set. In some situations, it’s pos-

sible that one may have enough training data to split the sample into a smaller training

set and a test set. If this isn’t the case, then more sophisticated methods are available.

The simplest is the empirical error, or resubstitution, estimator 1
n

∑n
i=1 1{Ĉn(Xi)6=Yi}.

The problem here is the tendency to overfit to the training sample; for instance, the

estimate is always zero for the 1-nearest neighbour classifier.

A method less susceptible to overfitting is the leave-one-out estimator, given by
1
n

∑n
i=1 1{Ĉn,−i(Xi) 6=Yi}, where Ĉn,−i denotes the classifier trained without the ith data

pair. Corresponding results to the Hoeffding bound above can also be found for these

estimators; see Devroye et al. (1996), Chapters 23 and 24.

Error estimates are also often used in order to select a classifier from a subset of

possible choices, usually to choose a tuning parameter. A widely used method here is

N -fold cross validation. The training sample is split into N approximately equal sized

blocks at random, then the number of errors made on each block is counted when the

classifier is trained with the remaining data after removing the current block. (Note

that when N = n we have the leave-one-out estimator.) This process is repeated for

each choice of the parameter, and the one yielding the smallest estimate is retained.

A remaining problem is that of error uncertainty quantification. We would like to

have a confidence interval for the error of a particular classifier, so that the practitioner,

a doctor for example, can make an informed decision regarding a diagnoses. Laber and

Murphy (2011) propose a method to calculate a confidence interval for the error of a

linear empirical risk minimiser (c.f. Section 1.3.3), which adapts to the non-smoothness

of the test error.

1.5 Unbalanced class priors

A major problem, perhaps somewhat neglected by the mainstream classification com-

munity, is the situation where one class is far more prevalent than the other. Primarily,

there will be a lack of data from the minority class. One proposal is to repeatedly sub-

sample the majority class, so that the class sizes are balanced. However, in extreme

cases, the minority class may be so small that this method becomes unstable.

A further issue in this setting, is that the risk (as defined in Section 1.2) may

not be a good measure of performance; the ‘optimal’ method may simply assign every
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observation to the majority class. Some proposals attempt to minimise the area under

the receiver operator characteristics (ROC) curve, that is the false positive-true positive

rate (see, for example, Xue and Hall (2015)). However, such a criteria will to be too

optimistic in some settings; we may do better by targeting a trade-off specific to the

problem at hand.

Consider a scenario in which a doctor is diagnosing a rare disease. As a preliminary

step, the doctor tests patients with the purpose of giving the all clear (class 1), or

sending a patient for further (more intensive, expensive) testing, since they potentially

have the disease (class 2). Now, the risk of a classifier C has the following expansion:

R(C) = P{C(X) 6= Y } = π1P{C(X) = 2|Y = 1}+ π2P{C(X) = 1|Y = 2}.

Since the disease is rare, we are expecting π1 � π2, so the risk is giving a much higher

weight to sending a healthy patient for further testing than giving an unhealthy patient

the all clear. In practice, the trade-off would likely be the other way round.

This poses a question to the statistician. What is a suitable measure of performance

in this setting? It will likely depend on the problem at hand. There is desire, therefore,

for flexible methods that can be easily adapted to target the specific criteria.
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Chapter 2

Random projection ensemble

classification

2.1 Introduction

In this chapter, we introduce a very general method for high-dimensional classification,

based on careful combination of the results of applying an arbitrary base classifier to

random projections of the feature vectors into a lower-dimensional space. In one special

case that we study in detail, the random projections are divided into non-overlapping

blocks, and within each block we select the projection yielding the smallest estimate of

the test error. Our random projection ensemble classifier then aggregates the results

of applying the base classifier on the selected projections, with a data-driven voting

threshold to determine the final assignment.

The use of random projections in high-dimensional statistical problems is moti-

vated by the celebrated Johnson–Lindenstrauss Lemma (e.g. Dasgupta and Gupta,

2002). This lemma states that, given x1, . . . , xn ∈ Rp, ε ∈ (0, 1) and d > 8 logn
ε2

, there

exists a linear map f : Rp → Rd such that

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2,

for all i, j = 1, . . . , n. In fact, the function f that nearly preserves the pairwise distances

can be found in randomised polynomial time using random projections distributed

according to Haar measure as described in Section 2.3 below. It is interesting to note

that the lower bound on d in the Johnson–Lindenstrauss Lemma does not depend on

p. As a result, random projections have been used successfully as a computational

time saver: when p is large compared to log n, one may project the data at random

into a lower-dimensional space and run the statistical procedure on the projected data,

potentially making great computational savings, while achieving comparable or even

15
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improved statistical performance. As one example of the above strategy, Durrant and

Kaban (2013) obtained Vapnik–Chervonenkis type bounds on the generalisation error

of a linear classifier trained on a single random projection of the data. See also Dasgupta

(1999), Ailon and Chazelle (2006) and McWilliams et al. (2014) for other instances.

Other works have sought to reap the benefits of aggregating over many random

projections. For instance, Marzetta, Tucci and Simon (2011) considered estimating

a p× p population inverse covariance matrix using B−1
∑B

b=1A
T
b (AbΣ̂A

T
b )−1Ab, where

Σ̂ denotes the sample covariance matrix and A1, . . . , AB are random projections from

Rp to Rd. Lopes, Jacob and Wainwright (2011) used this estimate when testing for a

difference between two Gaussian population means in high dimensions, while Durrant

and Kaban (2014) applied the same technique in Fisher’s linear discriminant for a

high-dimensional classification problem.

The main motivation here extends beyond the Johnson–Lindenstrauss Lemma.

Suppose that X1 and X2 are random vectors taking values in Rp. It follows that, by

considering characteristic functions, if AX1 and AX2 are identically distributed for

all projections A from Rp to Rd, for a given d ≤ p, then X1 and X2 are identically

distributed. Put another way, if the distributions of X1 and X2 are different, then, for

each d ≤ p, there exists a projection A0 : Rp → Rd such that the distributions of A0X1

and A0X2 are different.

Our proposed methodology for high-dimensional classification has some similari-

ties with the techniques described above, in the sense that we consider many random

projections of the data, but is also closely related to bagging (Breiman, 1996) and the

Random Forest classifier (Breiman, 2001), since the ultimate assignment of each test

point is made by aggregation and a vote. Bagging has proved to be an effective tool for

improving unstable classifiers; indeed, a bagged version of the (generally inconsistent)

1-nearest neighbour classifier is universally consistent as long as the resample size is

carefully chosen; see Hall and Samworth (2005). More generally, bagging has been

shown to be particularly effective in high-dimensional problems such as variable selec-

tion (Meinshausen and Bühlmann, 2010; Shah and Samworth, 2013). Another related

approach to ours is Blaser and Fryzlewicz (2015), who consider ensembles of random

rotations, as opposed to projections.

One of the basic but fundamental observations that underpins our proposal is the

fact that aggregating the classifications of all random projections is not sensible, since

most of these projections will typically destroy the class structure in the data; see the

top row of Figure 2.1. For this reason, we advocate partitioning the projections into

non-overlapping blocks, and within each block we retain only the projection yielding

the smallest estimate of the test error. The attraction of this strategy is illustrated

in the bottom row of Figure 2.1, where we see a much clearer partition of the classes.
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Figure 2.1: Different two-dimensional projections of a sample of size n = 200 from
Model 2 in Section 2.6.1 with p = 50 dimensions and prior probability π1 = 1/2.
Top row: three projections drawn from Haar measure; bottom row: the projections
with smallest estimate of test error out of 100 Haar projections with LDA (left), QDA
(middle) and k-nearest neighbours (right).

Another key feature of our proposal is the realisation that a simple majority vote of the

classifications based on the retained projections can be highly suboptimal; instead, we

argue that the voting threshold should be chosen in a data-driven fashion in an attempt

to minimise the test error of the infinite-simulation version of our random projection

ensemble classifier. In fact, this estimate of the optimal threshold turns out to be

remarkably effective in practice; see Section 2.5.1 for further details. We emphasise

that our methodology can be used in conjunction with any base classifier, though we

particularly have in mind classifiers designed for use in low-dimensional settings. The

random projection ensemble classifier can therefore be regarded as a general technique

for either extending the applicability of an existing classifier to high dimensions, or

improving its performance.

Our theoretical results are divided into three parts. In the first, we consider a

generic base classifier and a generic method for generating the random projections into

Rd and quantify the difference between the test error of the random projection ensemble

classifier and its infinite-simulation counterpart as the number of projections increases.

We then consider selecting random projections from non-overlapping blocks by initially
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drawing them according to Haar measure, and then within each block retaining the

projection that minimises an estimate of the test error. Under a condition implied

by the widely-used sufficient dimension reduction assumption (Li, 1991; Cook, 1998;

Lee et al., 2013), we can then control the difference between the test error of the

random projection classifier and the Bayes risk as a function of terms that depend

on the performance of the base classifier based on projected data and our method for

estimating the test error, as well as terms that become negligible as the number of

projections increases. The final part of our theory gives risk bounds on the first two

of these terms for specific choices of base classifier, namely Fisher’s linear discriminant

and the k-nearest neighbour classifier. The key point here is that these bounds only

depend on d, the sample size n and the number of projections, and not on the original

data dimension p.

The remainder of this chapter is organised as follows. Our methodology and gen-

eral theory are developed in Sections 2.2 and 2.3. Specific choices of base classifier

are discussed in Section 2.4, while Section 2.5 is devoted to a consideration of the

practical issues of the choice of voting threshold, projected dimension and the num-

ber of projections used. In Section 2.6 we present results from an extensive empirical

analysis on both simulated and real data where we compare the performance of the ran-

dom projection ensemble classifier with several popular techniques for high-dimensional

classification. The outcomes are extremely encouraging, and suggest that the random

projection ensemble classifier has excellent finite-sample performance in a variety of

different high-dimensional classification settings. We conclude with a discussion of

various extensions and open problems. All proofs are deferred to the Appendix.

Finally in this section, we introduce the following general notation used throughout

this chapter. For a sufficiently smooth real-valued function g defined on a neighbour-

hood of t ∈ R, let ġ(t) and g̈(t) denote its first and second derivatives at t, and let btc
and JtK := t− btc denote the integer and fractional part of t respectively.

2.2 A generic random projection ensemble classifier

We start by recalling our setting from Section 1.2 in the Introduction and defining the

relevant notation. Suppose that the pair (X, Y ) takes values in Rp × {1, 2}, with joint

distribution P , characterised by π1 := P(Y = 1), and Pr, the conditional distribution

of X|Y = r, for r = 1, 2. For convenience, we let π2 := P(Y = 2) = 1 − π1. In the

alternative characterisation of P , we let PX denote the marginal distribution of X and

write η(x) := P(Y = 1|X = x) for the regression function. Recall that a classifier on

Rp is a Borel measurable function C : Rp → {1, 2}, with the interpretation that we

assign a point x ∈ Rp to class C(x). We let Cp denote the set of all such classifiers.
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The misclassification rate, or risk, of a classifier C is R(C) := P{C(X) 6= Y }, and

is minimised by the Bayes classifier

CBayes(x) =

{
1 if η(x) ≥ 1/2;

2 otherwise.

Of course, we cannot use the Bayes classifier in practice, since η is unknown.

Nevertheless, we have access to a sample of training data that we can use to construct

an approximation to the Bayes classifier. Throughout this section and Section 2.3, it

is convenient to consider the training sample Tn := {(x1, y1), . . . , (xn, yn)} to be fixed

points in Rp×{1, 2}. Our methodology will be applied to a base classifier Ĉn = Ĉn,Tn,d ,

which we assume can be constructed from an arbitrary training sample Tn,d of size n

in Rd × {1, 2}; thus Ĉn is a measurable function from (Rd × {1, 2})n to Cd.
Now assume that d ≤ p. We say a matrix A ∈ Rd×p is a projection if AAT = Id×d,

the d-dimensional identity matrix. Let A = Ad×p := {A ∈ Rd×p : AAT = Id×d} be the

set of all such matrices. Given a projection A ∈ A, define projected data zAi := Axi

and yAi := yi for i = 1, . . . , n, and let T An := {(zA1 , yA1 ), . . . , (zAn , y
A
n )}. The projected

data base classifier corresponding to Ĉn is ĈA
n : (Rd × {1, 2})n → Cp, given by

ĈA
n (x) = ĈA

n,T An (x) := Ĉn,T An (Ax).

Note that although ĈA
n is a classifier on Rp, the value of ĈA

n (x) only depends on x

through its d-dimensional projection Ax.

We now define a generic ensemble classifier based on random projections. For

B1 ∈ N, let A1, A2, . . . , AB1 denote independent and identically distributed projections

in A, independent of (X, Y ). The distribution on A is left unspecified at this stage, and

in fact our proposed method ultimately involves choosing this distribution depending

on Tn. Now set

ν̂B1
n (x) :=

1

B1

B1∑
b1=1

1
{Ĉ

Ab1
n (x)=1}

. (2.1)

For α ∈ (0, 1), the random projection ensemble classifier is defined to be

ĈRP
n (x) :=

{
1 if ν̂B1

n (x) ≥ α;

2 otherwise.
(2.2)

We emphasise again here the additional flexibility afforded by not pre-specifying the

voting threshold α to be 1/2. Our analysis of the random projection ensemble classifier

will require some further definitions. Let

µ̂n(x) := E{ν̂B1
n (x)} = P{ĈA1

n (x) = 1},
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where the randomness here comes from the random projections. Let Gn,1 and Gn,2

denote the distribution functions of µ̂n(X)|{Y = 1} and µ̂n(X)|{Y = 2}, respectively.

We will make use of the following assumption:

(A.1) Gn,1 and Gn,2 are twice differentiable at α.

The first derivatives of Gn,1 and Gn,2, when they exist, are denoted as gn,1 and gn,2

respectively; under (A.1), these derivatives are well-defined in a neighbourhood of

α. Our first main result below gives an asymptotic expansion for the test error

L(ĈRP
n ) := P{ĈRP

n (X) 6= Y } of our generic random projection ensemble classifier

as the number of projections increases. In particular, we show that this test error can

be well approximated by the test error of the infinite-simulation random projection

classifier

ĈRP∗

n (x) :=

{
1 if µ̂n(x) ≥ α;

2 otherwise.

This infinite-simulation classifier turns out to be easier to analyse in subsequent results.

Note that under (A.1),

L(ĈRP∗

n ) := P{ĈRP∗

n (X) 6= Y } = π1Gn,1(α) + π2{1−Gn,2(α)}. (2.3)

Theorem 2.1. Assume (A.1). Then

L(ĈRP
n )− L(ĈRP∗

n ) =
γn(α)

B1

+ o
( 1

B1

)
as B1 →∞, where

γn(α) :=(1− α− JB1αK){π1gn,1(α)− π2gn,2(α)}+
α(1− α)

2
{π1ġn,1(α)− π2ġn,2(α)}.

Lopes (2013) provides a similar conclusion for a majority vote over a general ex-

changeable sequence of base classifiers, satisfied by procedures such as bagging (cf.

Section 1.3.4). The conditions of his result are different to those imposed here. The

proof of Theorem 2.1 in the Appendix is lengthy, and involves a one-term Edgeworth

approximation to the distribution function of a standardised Binomial random vari-

able. One of the technical challenges is to show that the error in this approximation

holds uniformly in the binomial proportion.

Define the test error of ĈA
n by1

LAn :=

∫
Rp×{1,2}

1{ĈAn (x)6=y} dP (x, y).

1We define LA
n through an integral rather than defining LA

n := P{ĈA
n (X) 6= Y } to make it clear

that when A is a random projection, it should be conditioned on when computing LA
n .
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Our next result controls the test excess risk, i.e. the difference between the test error

and the Bayes risk, of the infinite-simulation random projection classifier in terms of

the expected test excess risk of the classifier based on a single random projection. An

attractive feature of this result is its generality: no assumptions are placed on the

configuration of the training data Tn, the distribution P of the test point (X, Y ) or on

the distribution of the individual projections.

Theorem 2.2. We have

L(ĈRP∗

n )−R(CBayes) ≤ 1

min(α, 1− α)
{E(LA1

n )−R(CBayes)}.

2.3 Choosing good random projections

In this section, we study a special case of the generic random projection ensemble

classifier introduced in Section 2.2, where we propose a screening method for choosing

the random projections. Let L̂An be an estimator of LAn , based on the projected data

{(zA1 , yA1 ), . . . , (zAn , y
A
n )}, that takes values in the set {0, 1/n, . . . , 1}. Examples of such

estimators include resubstitution and leave-one-out estimates; we discuss these choices

in greater detail in Section 2.4. For B1, B2 ∈ N, let {Ab1,b2 : b1 = 1, . . . , B1, b2 =

1, . . . , B2} denote independent projections, independent of (X, Y ), distributed accord-

ing to Haar measure on A. One way to simulate from Haar measure on the set A is

to first generate a matrix R ∈ Rd×p, where each entry is drawn independently from

a standard normal distribution, and then take AT to be the matrix of left singular

vectors in the singular value decomposition of RT . For b1 = 1, . . . , B1, let

b∗2(b1) := sargmin
b2∈{1,...,B2}

L̂
Ab1,b2
n , (2.4)

where sargmin denotes the smallest index where the minimum is attained in the case

of a tie. We now set Ab1 := Ab1,b∗2(b1), and consider the random projection ensemble

classifier from Section 2.2 constructed using the independent projections A1, . . . , AB1 .

Let

L̂∗n := min
A∈A

L̂An

denote the optimal test error estimate over all projections. The minimum is attained

here, since L̂An takes only finitely many values. For j = 0, 1, . . . , bn(1− L̂∗n)c, let

βn(j) := P
(
L̂An ≤ L̂∗n + j/n

)
,

where A is distributed according to Haar measure on A. We assume the following:
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(A.2) There exist β0 ∈ (0, 1) and β, ρ > 0 such that

βn(j) ≥ β0 +
βjρ

nρ

for j ∈
{

0, 1, . . . ,
⌊
n
(

log2B2

βB2

)1/ρ⌋
+ 1
}

.

Condition (A.2) asks for a certain growth rate of the distribution function of L̂An

close to its minimum value L̂∗n; observe that the strength of the condition decreases

as B2 increases. Under this condition, the following result is a starting point for

controlling the expected test excess risk of the classifier based on a single projection

chosen according to the scheme described above.

Proposition 2.3. Assume (A.2). Then

E(LA1
n )−R(CBayes) ≤ L̂∗n −R(CBayes) + εn

+ (1− β0)B2

{
1

n
+

(1− β0)1/ρΓ(1 + 1/ρ)

B
1/ρ
2 β1/ρ

+ exp
(
− log2B2

1− β0

)}
,

where εn = ε
(B2)
n := E(LA1

n − L̂A1
n ).

The form of the bound in Proposition 2.3 motivates us to seek to control L̂∗n −
R(CBayes) in terms of the test excess risk of a classifier based on the projected data, in

the hope that we will be able to show this does not depend on p. To this end, define

the regression function on Rd induced by the projection A ∈ A to be ηA(z) := P(Y =

1|AX = z). The corresponding induced Bayes classifier, which is the optimal classifier

knowing only the distribution of (AX, Y ), is given by

CA−Bayes(z) :=

{
1 if ηA(z) ≥ 1/2;

2 otherwise.

Its risk is

RA−Bayes :=

∫
Rp×{1,2}

1{CA−Bayes(Ax) 6=y} dP (x, y).

In order to ensure that L̂∗n will be close to the Bayes risk, we will invoke an additional

assumption on the form of the Bayes classifier:

(A.3) There exists a projection A∗ ∈ A such that

PX({x ∈ Rp : η(x) ≥ 1/2}4{x ∈ Rp : ηA
∗
(A∗x) ≥ 1/2}) = 0,

where B4C := (B ∩Cc)∪ (Bc ∩C) denotes the symmetric difference of two sets

B and C.
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Condition (A.3) requires that the set of points x ∈ Rp assigned by the Bayes classifier

to class 1 can be expressed as a function of a d-dimensional projection of x. Note that if

the Bayes decision boundary is a hyperplane, then (A.3) holds with d = 1. Moreover,

(A.3) holds if the problem is sparse; for example, suppose that only the first d of

the p features are relevant for classification, then A∗ can be taken to be the first d

Euclidean basis vectors. Proposition 2.4 below shows that, in fact, (A.3) holds under

the sufficient dimension reduction condition, which states that Y is independent of X

given A∗X; see Cook (1998) for many statistical settings where such an assumption is

natural.

Proposition 2.4. If Y is independent of X given A∗X, then (A.3) holds.

Finally, then, we are in a position to control the test excess risk of our random

projection ensemble classifier in terms of the test excess risk of a classifier based on

d-dimensional data, as well as terms that reflect our ability to estimate the test error

of classifiers based on projected data and terms that depend on B1 and B2.

Theorem 2.5. Assume (A.1), (A.2) and (A.3). Then

L(ĈRP
n )−R(CBayes) ≤ L

A∗
n −RA∗−Bayes

min(α, 1− α)
+

εn − εA
∗

n

min(α, 1− α)
+
γn(α)

B1

{1 + o(1)}

+
(1− β0)B2

min(α, 1− α)

{
1

n
+

(1− β0)1/ρΓ(1 + 1/ρ)

B
1/ρ
2 β1/ρ

+ exp
(
− log2B2

1− β0

)}
as B1 → ∞, where γn(α) is defined in Theorem 2.1, εn is defined in Proposition 2.3

and εA
∗

n := LA∗n − L̂A
∗

n .

Regarding the bound in Theorem 2.5 as a sum of four terms, we see that the

last two of these can be seen as the price we have to pay for the fact that we do not

have access to an infinite sample of random projections. These terms can be made

negligible by choosing B1 and B2 to be sufficiently large, but it should be noted that

εn may increase with B2. This is a reflection of the fact that minimising an estimate

of test error may lead to overfitting. The behaviour of this term, together with that

of LA∗n − RA∗−Bayes and εA
∗

n , depends on the choice of base classifier, but in the next

section below we describe settings where these terms can be bounded by expressions

that do not depend on p.

2.4 Possible choices of the base classifier

In this section, we change our previous perspective and regard the training data Tn :=

{(X1, Y1), . . . , (Xn, Yn)} as independent random pairs with distribution P , so our earlier
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statements are interpreted conditionally on Tn. We consider particular choices of base

classifier, and study the first two terms in the bound in Theorem 2.5.

2.4.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), introduced by Fisher (1936), is arguably the

simplest classification technique. Recall that in the special case where X|Y = r ∼
Np(µr,Σ), we have

sgn{η(x)− 1/2} = sgn

{
log

π1

π2

+
(
x− µ1 + µ2

2

)T
Σ−1(µ1 − µ2)

}
,

so (A.3) holds with d = 1 and A∗ = (µ1−µ2)TΣ−1

‖Σ−1(µ1−µ2)‖ , a 1×p matrix. In LDA, πr, µr and Σ

are estimated by their sample versions, using a pooled estimate of Σ. Although LDA

cannot be applied directly when p ≥ n since the sample covariance matrix is singular,

we can still use it as the base classifier for a random projection ensemble, provided that

d < n. Indeed, noting that for any A ∈ A, we have AX|Y = r ∼ Nd(µ
A
r ,Σ

A), where

µAr := Aµr and ΣA := AΣAT , we can define

ĈA
n (x) = ĈA−LDA

n (x) :=

{
1 if log

π̂A1
π̂A2

+
(
Ax− µ̂A1 +µ̂A2

2

)T
Ω̂A(µ̂A1 − µ̂A2 ) ≥ 0;

2 otherwise.
(2.5)

Here, π̂Ar := n−1
∑n

i=1 1{Y Ai =r}, µ̂
A
r := n−1

∑n
i=1 AXi1{Y Ai =r},

Σ̂A :=
1

n− 2

n∑
i=1

2∑
r=1

(AXi − µ̂Ar )(AXi − µ̂Ar )T1{Y Ai =r}

and Ω̂A := (Σ̂A)−1.

Write Φ for the standard normal distribution function. Under the normal model

specified above, the test error of the LDA classifier can be written as

LAn = π1Φ

(
log

π̂A2
π̂A1
− (δ̂A)T Ω̂A(¯̂µA − µA1 )√
(δ̂A)T Ω̂AΣAΩ̂Aδ̂A

)
+ π2Φ

(
log

π̂A1
π̂A2

+ (δ̂A)T Ω̂A(¯̂µA − µA2 )√
(δ̂A)T Ω̂AΣAΩ̂Aδ̂A

)
,

where δ̂A := µ̂A2 − µ̂A1 and ¯̂µA := (µ̂A1 + µ̂A2 )/2. Okamoto (1963) studied the excess risk

of the LDA classifier in an asymptotic regime in which d is fixed as n diverges. In fact,

he considered the very slightly different discriminant analysis data generating model,

in which the training sample sizes from each population are assumed to be known in

advance, so that without loss of generality, we may assume that Y1 = . . . = Yn1 = 1

and Yn1+1 = . . . = Yn = 2, while Xi|Yi = r ∼ Np(µr,Σ), as before. Specialising his
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results for simplicity to the case where n is even and n1 = n2, Okamoto (1963) showed

that using the LDA classifier (2.5) with A = A∗, π̂A
∗

1 = n1/n and π̂A
∗

2 = n2/n yields

E(LA∗n )−RA∗−Bayes = R(ĈA∗

n )−RA∗−Bayes =
d

n
φ
(
−∆

2

)(∆

4
+
d− 1

d∆

)
{1+O(n−1)} (2.6)

as n→∞, where ∆ := ‖Σ−1/2(µ1 − µ2)‖ = ‖(ΣA∗)−1/2(µA
∗

1 − µA
∗

2 )‖.

It remains to control the errors εn and εA
∗

n in Theorem 2.5. For the LDA classifier,

we consider the resubstitution estimator

L̂An :=
1

n

n∑
i=1

1{ĈA−LDA
n (Xi)6=Yi}. (2.7)

Devroye and Wagner (1976) provided a Vapnik–Chervonenkis bound for L̂An under no

assumptions on the underlying data generating mechanism: for every n ∈ N and ε > 0,

sup
A∈A

P(|LAn − L̂An | > ε) ≤ 8nde−nε
2/32; (2.8)

see also Devroye et al. (1996, Theorem 23.1). We can then conclude that

E(|εA∗n |) ≤ E
{

(LA∗n − L̂A
∗

n )2
}1/2 ≤ inf

ε0∈(0,1)

{
ε0 + 8nd

∫ 1

ε0

e−ns/32 ds

}1/2

≤ 8

√
d log n+ 3 log 2 + 1

2n
. (2.9)

The more difficult term to deal with is E(|εn|) = E
{∣∣E(LA1

n −L̂A1
n |Tn)

∣∣} ≤ E
∣∣LA1

n −L̂A1
n

∣∣.
In this case, the bound (2.8) cannot be applied directly; since A1 depends on the

training data, the pairs (X1, Y1), . . . , (Xn, Yn) are no longer independent conditional on

A1. Nevertheless, since A1,1, . . . , A1,B2 are independent of Tn, we still have that

P
{

max
b2=1,...,B2

|LA1,b2
n − L̂A1,b2

n | > ε
∣∣∣ A1,1, . . . , A1,B2

}
≤

B2∑
b2=1

P
{
|LA1,b2

n − L̂A1,b2
n | > ε

∣∣ A1,b2

}
≤ 8ndB2e

−nε2/32.

We can therefore conclude by almost the same argument as that leading to (2.9) that

E(|εn|) ≤ E
{

max
b2=1,...,B2

(LA1,b2
n − L̂A1,b2

n )2
}1/2

≤ 8

√
d log n+ 3 log 2 + logB2 + 1

2n
. (2.10)

Note that none of the bounds (2.6), (2.9) and (2.10) depend on the original data

dimension p. Moreover, substituting the bound (2.10) into Theorem 2.5 reveals a

trade-off in the choice of B2 when using LDA as the base classifier. Choosing B2 to be
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large gives us a good chance of finding a projection with a small estimate of test error,

but we may incur a small overfitting penalty as reflected by (2.10).

2.4.2 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is designed to handle situations where the

class-conditional covariance matrices are unequal. Recall that when X|Y = r ∼
Np(µr,Σr), and πr := P(Y = r), for r = 1, 2, the Bayes decision boundary is given by

{x ∈ Rp : ∆(x; π1, µ1, µ2,Σ1,Σ2) = 0}, where

∆(x; π1, µ1, µ2,Σ1,Σ2) := log
π1

π2

− 1

2
log
(det Σ1

det Σ2

)
− 1

2
xT (Σ−1

1 − Σ−1
2 )x

+ xT (Σ−1
1 µ1 − Σ−1

2 µ2)− 1

2
µT1 Σ−1

1 µ1 +
1

2
µT2 Σ−1

2 µ2.

In QDA, πr, µr and Σr are estimated by their sample versions. If p ≥ min(n1, n2),

where nr :=
∑n

i=1 1{Yi=r} is the number of training sample observations from the rth

class, then at least one of the sample covariance matrix estimates is singular, and QDA

cannot be used directly. Nevertheless, we can still choose d < min{n1, n2} and use

QDA as the base classifier in a random projection ensemble. Specifically, we can set

ĈA
n (x) = ĈA−QDA

n (x) :=

{
1 if ∆(x; π̂A1 , µ̂

A
1 , µ̂

A
2 , Σ̂

A
1 , Σ̂

A
2 ) ≥ 0;

2 otherwise,

where π̂Ar , Σ̂A
r and µ̂Ar were defined in Section 2.4.1, and where

Σ̂A
r :=

1

nr − 1

∑
i:Y Ai =r

(AXi − µ̂Ar )(AXi − µ̂Ar )T

for r = 1, 2. Unfortunately, analogous theory to that presented in Section 2.4.1 does

not appear to exist for the QDA classifier (unlike for LDA, the risk does not have a

closed form). Nevertheless, we found in our simulations presented in Section 2.6 that

the QDA random projection ensemble classifier can perform very well in practice. In

this case, we estimate the test errors using the leave-one-out method given by

L̂An :=
1

n

n∑
i=1

1{ĈAn,i(Xi) 6=Yi}
, (2.11)

where ĈA
n,i denotes the classifier ĈA

n , trained without the ith pair, i.e. based on T An \
{XA

i , Y
A
i }. For a method like QDA that involves estimating more parameters than

LDA, we found that the leave-one-out estimator was less susceptible to overfitting

than the resubstitution estimator.
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2.4.3 The k-nearest neighbour classifier

The k-nearest neighbour classifier (knn), first proposed by Fix and Hodges (1951), is a

nonparametric method that classifies the test point x ∈ Rp according to a majority vote

over the classes of the k nearest training data points to x. The enormous popularity

of the knn classifier can be attributed partly due to its simplicity and intuitive appeal;

however, it also has the attractive property of being universally consistent: for every

distribution P , as long as k →∞ and k/n→ 0, the risk of the knn classifier converges

to the Bayes risk (Devroye et al., 1996, Theorem 6.4).

Hall, Park and Samworth (2008) derived the rate of convergence of the excess

risk of the k-nearest neighbour classifier. Under regularity conditions, the optimal

choice of k, in terms of minimising the excess risk, is O(n4/(p+4)), and the rate of

convergence of the excess risk with this choice is O(n−4/(p+4)). Thus, in common with

other nonparametric methods, there is a ‘curse of dimensionality’ effect that means the

classifier typically performs poorly in high dimensions. Samworth (2012a,b) found the

optimal way of assigning decreasing weights to increasingly distant neighbours, and

quantified the asymptotic improvement in risk over the unweighted version, but the

rate of convergence remains the same.

We can use the knn classifier as the base classifier for a random projection ensemble

as follows: let T An := {(ZA
1 , Y

A
1 ), . . . , (ZA

n , Y
A
n )}, where ZA

i := AXi and Y A
i := Yi.

Given z ∈ Rd, let (ZA
(1), Y

A
(1)), . . . , (Z

A
(n), Y

A
(n)) be a re-ordering of the training data such

that ‖ZA
(1) − z‖ ≤ . . . ≤ ‖ZA

(n) − z‖, with ties split at random. Now define

ĈA
n (x) = ĈA−knn

n (x) :=

{
1 if ŜAn (Ax) ≥ 1/2;

2 otherwise,

where ŜAn (z) := k−1
∑k

i=1 1{Y A(i)=1}. The theory described in the previous paragraph

can be applied to show that, under regularity conditions, E(LA∗n ) − R(CA∗−Bayes) =

O(n−4/(d+4)).

Once again, a natural estimate of the test error in this case is the leave-one-out

estimator defined in (2.11), where we use the same value of k on the leave-one-out

datasets as for the base classifier, and where distance ties are split in the same way as

for the base classifier. For this estimator, Devroye and Wagner (1979) showed that for

every n ∈ N,

sup
A∈A

E{(L̂An − LAn )2} ≤ 1

n
+

24k1/2

n
√

2π
;

see also Devroye et al. (1996, Chapter 24). It follows that

E(|εA∗n |) ≤
( 1

n
+

24k1/2

n
√

2π

)1/2

≤ 1

n1/2
+

2
√

3k1/4

n1/2
√
π
.



28 CHAPTER 2. RANDOM PROJECTION ENSEMBLE CLASSIFICATION

Devroye and Wagner (1979) also provided a tail bound analogous to (2.8) for the leave-

one-out estimator. Arguing very similarly to Section 2.4.1, we can deduce that under

no conditions on the data generating mechanism,

E(|εn|) ≤ 3{4(3d + 1)}1/3

{
k(1 + logB2 + 3 log 2)

n

}1/3

.

2.5 Practical considerations

2.5.1 Choice of α

We now discuss the choice of the voting threshold α in (2.2). The expression for the

test error of the infinite-simulation random projection ensemble classifier given in (2.3)

suggests the ‘oracle’ choice

α∗ ∈ argmin
α′∈[0,1]

[
π1Gn,1(α′) + π2{1−Gn,2(α′)}

]
. (2.12)

Note that, if assumption (A.1) holds and α∗ ∈ (0, 1) then π1gn,1(α∗) = π2gn,2(α∗) and

in Theorem 2.1, we have

γn(α∗) =
1

2
α∗(1− α∗){π1ġn,1(α∗)− π2ġn,2(α∗)}.

Of course, α∗ cannot be used directly, because we do not know Gn,1 and Gn,2 (and

we may not know π1 and π2 either). Nevertheless, for the LDA base classifier we can

estimate Gn,r using

Ĝn,r(t) :=
1

nr

∑
i:Yi=r

1{ν̂n(Xi)<t}

for r = 1, 2. For the QDA and k-nearest neighbour base classifiers, we use the leave-

one-out-based estimate ν̃n(Xi) := B−1
1

∑B1

b1=1 1{Ĉ
Ab1
n,i (Xi)=1}

in place of ν̂n(Xi). We also

estimate πr by π̂r := n−1
∑n

i=1 1{Yi=r}, and then set the cut-off in (2.2) as

α̂ ∈ argmin
α′∈[0,1]

[
π̂1Ĝn,1(α′) + π̂2{1− Ĝn,2(α′)}

]
. (2.13)

Since empirical distribution functions are piecewise constant, the objective function

in (2.13) does not have a unique minimum, so we choose α̂ to be the average of

the smallest and largest minimisers. An attractive feature of the method is that

{ν̂n(Xi) : i = 1, . . . , n} (or {ν̃n(Xi) : i = 1, . . . , n} in the case of QDA and knn)

are already calculated in order to choose the projections, so calculating Ĝn,1 and Ĝn,2

carries negligible extra computational cost.

Figures 2.2 and 2.3 illustrate π̂1Ĝn,1(α′) + π̂2{1 − Ĝn,2(α′)} as an estimator of
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π1Gn,1(α′) + π2{1 − Gn,2(α′)}, for different base classifiers as well as different values

of n and π1. Here, a very good approximation to the estimand was obtained using an

independent data set of size 5000. Unsurprisingly, the performance of the estimator

improves as n increases, but the most notable feature of these plots is the fact that for

all classifiers and even for small sample sizes, α̂ is an excellent estimator of α∗, and

may be a substantial improvement on the naive choice α̂ = 1/2 (which may result in a

classifier that assigns every point to a single class).
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Figure 2.2: π1Gn,1(α′) + π2{1 − Gn,2(α′)} in (2.12) (black) and π̂1Ĝn,1(α′) + π̂2{1 −
Ĝn,2(α′)} (red) for the LDA (left), QDA (middle) and knn (right) base classifiers after
projecting for one training data set of size n = 50 (top), 100 (middle) and 1000 (bottom)
from Model 1. Here, π1 = 0.5, p = 50 and d = 2.

2.5.2 Choice of d

We want to choose d as small as possible in order to obtain the best possible perfor-

mance bounds as described in Section 2.4 above. This also reduces the computational
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Figure 2.3: π1Gn,1(α′) + π2{1 − Gn,2(α′)} in (2.12) (black) and π̂1Ĝn,1(α′) + π̂2{1 −
Ĝn,2(α′)} (red) for the LDA (left), QDA (middle) and knn (right) base classifiers after
projecting for one training data set of size n = 50 (top), 100 (middle) and 1000 (bottom)
from Model 1. Here, π1 = 0.33, p = 50 and d = 2.

cost. However, the performance bounds rely on assumption (A.3), whose strength

decreases as d increases, so we want to choose d large enough that this condition holds

(at least approximately).

In Section 2.6 we see that the random projection ensemble method is quite robust

to the choice of d. Nevertheless, in some circumstances it may be desirable to have

an automatic choice. As one way to do this, suppose that we wish to choose d from a

set D ⊆ {1, . . . , p}. For each d ∈ D, generate independent and identically distributed

projections {Ad,b1,b2 : b1 = 1, . . . , B1, b2 = 1, . . . , B2} according to Haar measure on

Ad×p. For each d ∈ D and for b = 1, . . . , B1, we can then set

Ad,b1 := Ad,b1,b∗2(b1),
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where b∗2(b1) := sargminb2∈{1,...,B2} L̂
Ad,b1,b2
n . Finally, we can select

d̂ := sargmin
d∈D

1

B1

B1∑
b1=1

L̂
Ad,b1
n .

In Figures 2.4 and 2.5 below we present the empirical distribution functions of

{L̂Ad,b1n }B1
b1=1, where d ∈ {2, 3, 4, 5}, for one training dataset from Model 1 (described in

Section 2.6.1), and Model 3 (described in Section 2.6.1). In each case, we set π1 = 1/2,

n = 100, p = 50 and B1 = B2 = 100.
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Figure 2.4: Empirical distribution functions of the test error estimates {L̂Ad,b1n }B1
b1=1

for the LDA (left), QDA (middle) and knn (right) base classifiers after projecting for
Model 1, π1 = 1/2, n = 100, p = 50, and d = 2 (black), 3 (red), 4 (blue) and 5 (green).
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Figure 2.5: Empirical distribution functions of the test error estimates {L̂Ad,b1n }B1
b1=1

for the LDA (left), QDA (middle) and knn (right) base classifiers after projecting for
Model 2, π1 = 1/2, n = 100, p = 50, and d = 2 (black), 3 (red), 4 (blue) and 5 (green).

Figures 2.4 and 2.5 do not suggest great differences in performance for different

choices of d, especially for the QDA and knn base classifiers. For the LDA classifier,

it appears, particularly for Model 2, that projecting into a slightly larger dimensional

space is preferable, and indeed this appears to be the case from the relevant entry of

Table 2.2 below.
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The ideas presented here may also be used to decide between two different base

classifiers. For example, comparing the green lines across different panels of Figure 2.4,

we see that for Model 1 and d = 5, we might expect the best results with the QDA base

classifier, and indeed this is confirmed by the simulation results in Table 2.1 below.

2.5.3 Choice of B1 and B2

In order to minimise the third term in the bound in Theorem 2.5, we should choose

B1 to be as large as possible. The constraint, of course, is that the computational cost

of the random projection classifier scales linearly with B1. The choice of B2 is more

subtle; while the fourth term in the bound in Theorem 2.5 decreases as B2 increases,

we saw in Section 2.4 that upper bounds on E(|εn|) may increase with B2. In principle,

we could try to use the expressions given in Theorem 2.5 and Section 2.4 to choose

B2 to minimise the overall upper bound on L(ĈRP
n ) − R(CBayes). Although β0, β and

ρ are unknown to the practitioner, these could be estimated based on the empirical

distribution of {L̂Abn }Bb=1, where {Ab}Bb=1 are independent projections drawn according

to Haar measure. In practice, however, we found that an involved approach such as

this was unnecessary, and that the ensemble method was robust to the choice of B1

and B2. In all of our simulations, we set B1 = B2 = 100.

2.6 Empirical analysis

In this section, we assess the empirical performance of the random projection ensemble

classifier. Throughout, RP-LDAd, RP-QDAd, and RP-knnd denote the random pro-

jection ensemble classifier with LDA, QDA, and knn base classifiers, respectively; the

subscript d refers to the dimension of the image space of the projections. For compar-

ison, we present the results of the related Random Forests (RF) classifier (Breiman,

2001); and the widely used methods, Support Vector Machines (SVM) (Cortes and Vap-

nik, 1995) and Gaussian Process (GP) classifiers (Williams and Barber, 1998). We also

present results for several state-of-the-art methods for high-dimensional classification,

namely Penalized LDA (PenLDA) (Witten and Tibshirani, 2011), Nearest Shrunken

Centroids (NSC) (Tibshirani et al., 2003), Shrunken Centroids Regularized Discrimi-

nant Analysis (SCRDA) (Guo, Hastie and Tibshirani, 2007), and Independence Rules

(IR) (Bickel and Levina, 2004), as well as for the base classifier applied in the original

space.

For the standard knn classifier, we chose k via leave-one-out cross validation.

The Random Forest used was an ensemble of 1000 trees, with d√pe components ran-

domly selected when training each tree. This method was implemented using the

randomForest package (Liaw and Wiener, 2014). For the Radial SVM, we used the
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reproducing basis kernel K(u, v) = exp(−1
p
‖u−v‖2). Both SVM classifiers were imple-

mented using the svm function in the e1071 package (Meyer et. al., 2015). For the GP

classifier, we used a radial basis function, with the hyperparameter chosen via the au-

tomatic method in the guasspr function in the kernlab package (Karatzoglou et al.,

2015). The tuning parameters for the other methods were chosen using the default

settings in the corresponding R packages PenLDA (Witten, 2011), NSC (Hastie et al.,

2015) and SCRDA (Islam and Mcleod, 2015), namely 6-fold, 10-fold and 10-fold cross

validation, respectively.

2.6.1 Simulated examples

In each of the simulated examples below, we used n ∈ {50, 100, 200}, d = 2, 5 and

B1 = B2 = 100, the experiment was repeated 100 times and the risk was estimated

on an independent test set of size 1000. For all except Model 5, we take p = 50,

investigate two different values of the prior probability, and use Haar projections. In

Model 5, where the class label is deterministic, we investigate two different values of

p, namely, 20 and 50. Moreover, in this example, we use axis-aligned projections, see

Section 2.7 for further discussion. The mean and standard error of the risk estimates

are presented in Tables 2.1 - 2.5. In each case, we highlight the method achieving the

best performance.

Independent features

Model 1: Here, P1 is the distribution of p independent components, each with a stan-

dard Laplace distribution, while P2 = Np(µ, Ip×p), with µ = 1
8
(1, . . . , 1)T . We set

p = 50.

In Model 1, the class boundaries are non-linear and, in fact, assumption (A.3)

is not satisfied for any d < p. Nevertheless, in Table 2.1 we see that the random

projection versions outperform their respective vanilla counterparts (when these are

tractable) as well as nearly all of the other methods implemented. The only exception

is that the radial SVM performs well when the priors are equal and the sample size is

large, surprisingly the SVM classifier doesn’t cope well with the change in prior. The

RP-QDA classifiers perform especially well; in particular, they are able to cope better

with the non-linearity of the class boundaries than the RP-LDA classifiers. There is

little difference between the performance of the d = 2 and d = 5 versions of the random

projection classifiers.
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Table 2.1: Misclassification rates multiplied by 100 (with standard errors as subscripts)
for Model 1, with smallest in bold. *N/A: not available due to singular covariance
estimates.

π1 = 0.5, Bayes risk = 4.91 π1 = 0.33, Bayes risk = 4.09
n 50 100 200 50 100 200

RP-LDA2 43.990.64 41.990.58 41.140.55 29.830.51 26.700.33 23.760.25

RP-LDA5 43.950.44 42.100.39 41.150.37 33.110.52 30.030.36 26.550.24

LDA N/A 44.170.27 41.880.20 N/A 37.640.31 33.750.20

RP-QDA2 19.740.43 15.650.24 13.600.15 17.640.50 13.370.27 11.880.21

RP-QDA5 19.050.42 14.050.24 11.750.14 18.060.46 12.860.31 10.640.16

QDA N/A N/A 39.930.29 N/A N/A 33.050.16

RP-knn2 26.190.37 20.960.23 18.560.14 23.580.34 20.020.22 16.580.21

RP-knn5 27.410.35 21.300.24 17.480.15 24.640.31 19.330.28 16.150.20

knn 48.810.18 48.680.19 48.290.18 32.690.17 32.500.16 32.640.15

RF 42.750.31 35.630.25 26.250.23 31.650.20 28.210.20 22.920.21

Radial SVM 38.381.36 15.810.54 10.810.13 32.030.46 30.480.48 22.270.72

Linear SVM 45.240.24 44.130.26 42.440.22 36.500.39 35.840.29 31.820.18

Radial GP 47.140.35 44.320.43 39.860.34 32.790.17 32.670.16 32.660.16

PenLDA 44.400.27 42.600.25 41.050.20 33.190.33 32.610.25 31.310.17

NSC 46.510.33 44.600.39 43.030.39 31.760.21 31.130.17 31.650.18

SCRDA 46.760.31 44.550.38 42.550.37 33.560.37 32.520.23 31.940.18

IR 43.870.24 42.250.25 40.550.18 35.040.34 36.260.28 36.480.23

t-distributed features

Model 2: Here, X|{Y = r} = µr+
Z√
U/νr

, where Z ∼ Np(0,Σr) independent of U ∼ χ2
νr .

Thus, Pr is the multivariate t-distribution centred at µr, with νr degrees of freedom

and shape parameter Σr. We set p = 50, µ1 = 0, µ2 = 2(1, . . . , 1, 0, . . . , 0)T , where µ2

has 5 non-zero components, ν1 = 1, ν2 = 2, Σ1 = Ip×p and Σ2 = (Σj,k), where Σj,j = 1,

Σj,k = 0.5 if max(j, k) ≤ 5 and j 6= k, Σj,k = 0 otherwise.

Model 2 explores the effect of heavy tails and the presence of correlation between

the features. Again, assumption (A.3) is not satisfied for any d < p. We see in Table 2.2

that both the RP-knn and Random Forest classifiers perform well. There is little

difference between the d = 2 and d = 5 versions of the random projection ensembles.

The RP-QDA classifiers perform poorly here because the heavy-tailed distributions

leads to poor mean and covariance matrix estimates.

Multi-modal features

Model 3: Here, X|{Y = 1} ∼ 1
2
Np(µ1,Σ1) + 1

2
Np(−µ1,Σ1) and X|{Y = 2} has p

independent components, the first five of which are standard Cauchy and the remaining

p − 5 of which are standard normal. We set p = 50, µ1 = (1, . . . , 1, 0, . . . , 0)T , where

µ1 has 5 non-zero components, and Σ1 = Ip×p.
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Table 2.2: Misclassification rates for Model 2.

π1 = 0.5, Bayes risk = 10.07 π1 = 0.75, Bayes risk = 6.67
n 50 100 200 50 100 200

RP-LDA2 23.860.91 21.740.81 22.901.06 29.430.48 26.690.34 25.480.19

RP-LDA5 21.140.52 18.230.35 17.500.43 31.290.45 30.260.43 27.260.31

LDA N/A 26.490.28 21.740.22 N/A 23.350.26 20.150.23

RP-QDA2 32.970.87 33.411.03 38.890.71 18.970.79 22.951.08 27.341.07

RP-QDA5 34.910.69 37.350.75 40.900.40 20.250.74 28.781.09 40.560.96

QDA N/A N/A 39.950.23 N/A N/A N/A
RP-knn2 17.160.31 15.020.20 13.310.14 13.240.37 11.080.23 9.510.13

RP-knn5 16.860.27 15.370.22 13.560.13 12.170.31 9.990.17 9.020.12

knn 20.260.37 18.330.18 16.790.14 15.640.33 13.710.25 12.180.13

RF 16.410.34 14.130.19 12.420.12 14.480.45 10.560.18 9.230.12

Radial SVM 44.360.85 40.081.12 35.881.33 25.290.14 24.750.13 24.990.13

Linear SVM 25.690.89 23.740.80 21.730.81 23.500.41 22.990.36 24.170.33

Radial GP 23.550.95 15.490.24 13.990.12 20.900.44 17.400.37 13.370.18

PenLDA 38.691.08 35.071.24 35.191.23 28.961.19 25.690.33 26.110.19

NSC 40.031.19 38.481.24 39.291.19 26.180.21 25.250.14 25.320.13

SCRDA 21.950.59 18.350.28 16.980.20 20.340.44 18.350.32 16.980.22

IR 39.241.04 37.021.15 38.061.08 48.452.08 49.102.02 50.931.98

Table 2.3: Misclassification rates for Model 3.

π1 = 0.5, Bayes risk = 11.58 π1 = 0.75, Bayes risk = 13.13
n 50 100 200 50 100 200

RP-LDA2 43.950.63 42.570.61 41.600.70 23.410.57 22.240.34 22.310.22

RP-LDA5 45.290.49 44.570.43 43.780.49 27.150.68 23.670.43 22.480.24

LDA N/A 49.390.19 49.370.16 N/A 35.330.43 30.570.29

RP-QDA2 29.780.57 26.340.42 23.470.29 19.360.70 17.190.44 15.360.30

RP-QDA5 29.930.64 24.830.39 22.200.26 20.040.86 16.500.45 14.230.28

QDA N/A N/A 27.580.34 N/A N/A N/A
RP-knn2 29.430.39 26.480.61 23.570.23 19.310.37 16.640.26 14.610.20

RP-knn5 29.360.38 26.290.29 23.380.19 19.930.40 18.820.36 14.740.18

knn 34.460.32 31.260.23 28.880.21 22.460.20 19.850.19 17.700.16

RF 40.490.42 33.510.32 25.020.22 24.500.16 22.060.18 17.520.19

Radial SVM 48.870.36 49.660.19 48.180.31 25.090.13 24.960.13 24.960.14

Linear SVM 48.660.20 49.310.19 48.870.19 34.170.53 32.700.41 24.710.23

Radial GP 38.940.48 33.620.34 29.660.25 23.060.14 21.750.14 20.230.15

PenLDA 48.340.22 48.970.37 49.210.17 27.540.50 27.050.42 26.260.29

NSC 47.670.42 47.690.37 47.830.32 23.030.16 23.120.15 23.630.14

SCRDA 45.440.52 44.860.55 43.270.51 23.650.42 21.890.27 21.630.19

IR 48.400.21 48.910.17 49.290.16 32.260.59 35.350.53 38.540.37

Model 3 is chosen to investigate a setting in which one class is multi-modal. Note

that assumption (A.3) holds with d = 5; indeed, for example, the five rows of A∗

may be taken to be the first five standard Euclidean basis vectors. In Table 2.3, we
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see that the the random projection ensembles for each of the three base classifiers

outperform their standard counterparts. The RP-knn and RP-QDA classifiers are

particularly effective here. Even though the Bayes decision boundary here is sparse –

it only depends on the first 5 features – the PenLDA, NSC, SCRDA and IR classifiers

perform poorly because the Bayes decision boundary is non-linear.

Rotated Sparse Normal

Model 4: Here, X|{Y = 1} ∼ Np(Rµ1, RΣ1R
T ) and X|{Y = 2} ∼ Np(Rµ2, RΣ2R

T )

where R is a p × p rotation matrix that was sampled once according to Haar mea-

sure, and remained fixed thereafter, and we set p = 50, µ1 = (0, . . . , 0)T , µ2 =

(1, 1, 1, 0, . . . , 0)T . Moreover, Σ1 and Σ2 are block diagonal, with blocks Σr,1, and Σr,2,

for r = 1, 2, where Σ1,1 is a 3×3 matrix with diagonal entries equal to 1 and off-diagonal

entries equal to 1/2, and Σ2,1 = Σ1,1 + I3×3. In both cases Σr,2 is a (p − 3) × (p − 3)

matrix, with diagonal entries equal to 1 and off-diagonal entries equal to 1/2.

Table 2.4: Misclassification rates for Model 4.

π1 = 0.5, Bayes risk = 11.83 π1 = 0.75, Bayes risk = 7.21
n 50 100 200 50 100 200

RP-LDA2 35.340.34 32.500.22 30.520.17 26.790.47 23.490.30 21.870.21

RP-LDA5 35.350.28 32.420.18 30.520.14 28.240.54 23.350.28 22.100.21

LDA N/A 41.030.26 36.340.21 N/A 32.900.36 27.300.23

RP-QDA2 35.310.32 32.560.25 30.360.16 26.820.53 23.470.31 22.090.23

RP-QDA5 35.680.29 32.200.23 30.060.14 28.860.54 23.940.31 22.100.22

QDA N/A N/A 44.130.19 N/A N/A N/A
RP-knn2 36.780.35 33.300.21 31.090.17 26.860.47 24.450.29 22.350.21

RP-knn5 36.580.34 33.100.23 30.770.17 26.180.36 23.780.26 22.190.19

knn 40.390.29 38.960.26 37.430.19 26.270.28 25.770.26 25.000.19

RF 37.290.36 33.350.21 31.090.15 24.320.18 23.130.18 22.090.17

Radial SVM 46.530.59 40.500.65 32.960.40 25.060.13 25.190.14 24.980.16

Linear SVM 40.660.34 39.430.25 36.370.20 30.530.46 28.320.30 25.220.18

Radial GP 39.130.47 33.610.25 31.020.16 24.750.14 24.460.15 23.110.17

PenLDA 36.220.41 33.490.31 31.240.22 29.650.56 27.730.50 26.590.40

NSC 39.060.51 35.410.36 32.770.27 25.630.43 24.190.29 22.900.26

SCRDA 39.280.53 34.260.40 30.780.19 25.620.32 23.840.24 22.930.20

IR 36.400.43 33.670.34 31.230.26 32.720.59 31.420.49 30.880.40

The setting in Model 4 is chosen so that assumption (A.3) holds with d = 3; in

fact, A∗ can be taken to be the first three rows of RT . Note that, if R = Ip×p, then the

model would be sparse and we would expect the PenLDA, NSC, and SCRDA methods

to perform very well. However, for a generic R, the model is not sparse and the random

projection ensemble methods, which are invariant to the choice of coordinate system,

typically perform as well or better (especially RP-LDA and RP-QDA). The random
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forest method also performs well here. Classification is difficult in this setting, and the

risks of all of the classifiers are considerably greater than the Bayes risk.

Sphere vs. Cube

Model 5: Here, the first 3 components of X, independently of the remaining p − 3,

have a uniform distribution on the unit cube {z ∈ R3 : −1 ≤ z1, z2, z3 ≤ 1}. The other

p − 3 components have a Np−3(0, Ip−3) distribution. Then, we set Y = 1 if the first

three components of X lie outside the unit sphere {z ∈ R3 : z2
1 + z2

2 + z3
3 ≤ 1}, and

Y = 2 otherwise. The prior for class 1 is 1− π/6 ∼ 0.48. We conduct the experiment

for p = 20, 50. Due to the number of noise variables, the random projection ensembles

with Haar projections do not perform well here, however, since the model is sparse,

axis-aligned projections – see the discussion in Section 2.7 – are able to pick up the

class structure. Note that (A.3) holds with d = 3, for example A∗ can be taken to be

the projection that picks out the first three Euclidean basis vectors.

Table 2.5: Misclassification rates for Model 5. *The random projection ensembles here
are using axis-aligned projections.

p = 20, π1 = 0.48 p = 50, π1 = 0.48
n 50 100 200 50 100 200

*RP-LDA2 47.160.46 46.640.45 43.740.49 48.340.39 46.140.46 45.050.50

*RP-LDA5 48.540.34 48.920.27 46.960.39 49.200.26 48.940.26 47.900.36

LDA 49.630.18 49.600.17 49.300.17 N/A 49.620.16 49.800.16

*RP-QDA2 33.260.46 25.860.45 20.250.37 33.420.57 27.080.37 24.930.44

*RP-QDA5 35.550.46 25.230.40 17.090.32 37.260.51 25.420.39 18.600.32

QDA 48.460.23 44.350.15 40.160.18 N/A N/A 46.930.17

*RP-knn2 33.330.58 24.990.29 20.600.29 33.780.47 25.610.34 23.190.38

*RP-knn5 43.400.36 33.890.39 21.710.22 47.060.23 39.560.41 25.370.34

knn 48.970.16 48.700.17 48.350.18 49.730.17 49.400.17 49.150.15

RF 33.780.39 25.270.30 18.540.24 40.090.37 31.470.39 22.590.31

Radial SVM 48.750.28 47.990.26 46.000.25 49.320.26 48.960.25 48.700.24

Linear SVM 49.160.22 49.440.19 48.370.21 49.680.19 49.540.18 49.730.17

Radial GP 49.220.22 49.260.19 48.620.17 49.420.23 49.140.21 49.350.19

PenLDA 49.370.21 49.640.18 49.230.17 49.580.18 49.590.18 49.750.15

NSC 49.470.26 49.140.25 48.810.25 49.810.22 49.060.22 49.140.23

SCRDA 49.240.34 49.140.25 48.210.30 49.640.22 48.960.22 48.650.32

IR 49.530.17 49.850.16 49.760.17 49.730.17 49.590.17 49.920.15

The setting in Model 5 is such that the Bayes risk is zero, but it represents a

situation where existing classifiers perform poorly; indeed, only the random forest

classifier is much better than a random guess. The random projection ensembles with

axis-aligned projections and the QDA or knn base classifiers perform comparatively

very well. The LDA base classifier does not perform well here since the boundary is
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non-linear.

2.6.2 Real data examples

In this section, we compare the classifiers discussed at the beginning of this section on

four real datasets available from the UC Irvine (UCI) Machine Learning Repository

(http://archive.ics.uci.edu/ml/index.html). In each example, we first subsam-

ple the data to obtain a training set of size n ∈ {50, 100, 200}, then use the remaining

data (or take a subsample of size 1000 from remaining data, whichever is smaller) to

form the test set. As with the simulated examples, each experiment is repeated 100

times and we present the mean and standard error of the risk estimates in Tables 2.6

and 2.7. In each case we took B1 = B2 = 100 and used Haar distributed projections.

Eye state detection

The Electroencephalogram (EEG) Eye State dataset2 contains p = 14 EEG measure-

ments for 14980 observations. The task is to use the EEG reading to determine the

state of the eye. There are 8256 observations for which the eye is open (class 1), and

6723 for which the eye is closed (class 2). In this example, see Table 2.6, the random

projection ensemble with knn base classifier and d = 5 is very good, outperforming all

other comparators.

Ionosphere dataset

The Ionosphere dataset3 consists of p = 32 high-frequency antenna measurements for

351 observations. Observations are classified as good (class 1, size 225) or bad (class 2,

size 126), depending on whether there is evidence for free electrons in the ionosphere

or not. In the right panel of Table 2.6, we see that the random projection ensembles

with the QDA and knn base classifiers are performing very well.

Musk identification

The Musk dataset4 consists of 1016 musk (class 1) and 5581 non-musk (class 2)

molecules. The task is to classify a new molecule, based on p = 166 shape mea-

surements. The results are presented in the left panel of Table 2.7. We see that all

of the random projection ensemble classifiers performed very well, especially with the

knn base classifier.

2http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
3http://archive.ics.uci.edu/ml/datasets/Ionosphere
4https://archive.ics.uci.edu/ml/datasets/Musk+(Version+2)
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Table 2.6: Misclassification rates for the Eye State and Ionosphere datasets.

Eye State p = 14 Ionosphere p = 32
n 50 100 200 50 100 200

RP-LDA2 41.640.30 39.840.26 38.700.24 13.120.39 10.750.29 9.680.25

RP-LDA5 42.140.36 40.050.28 38.420.24 13.100.31 11.080.21 10.070.24

LDA 42.380.37 40.820.29 39.150.26 23.720.38 18.270.25 15.580.29

RP-QDA2 40.840.36 38.340.34 36.040.41 9.500.34 6.960.19 5.890.18

RP-QDA5 38.940.33 35.660.37 32.270.40 8.200.35 6.200.18 5.050.18

QDA 39.910.35 33.520.30 29.240.38 N/A N/A 14.070.32

RP-knn2 39.200.35 34.930.29 30.700.24 10.480.32 6.640.20 5.340.17

RP-knn5 37.780.36 31.580.29 24.470.23 11.440.38 7.210.22 5.090.18

knn 41.650.36 35.650.36 29.180.23 21.810.72 18.050.45 16.390.33

RF 39.180.36 34.450.30 29.070.21 10.550.28 7.630.17 6.520.16

Radial SVM 46.330.47 42.740.42 38.710.43 27.671.15 12.850.90 6.670.20

Linear SVM 42.380.39 40.960.30 39.550.33 19.410.33 17.050.24 15.490.27

Radial GP 40.600.35 36.790.30 32.210.20 22.530.73 17.780.44 14.430.27

PenLDA 44.370.40 43.470.32 42.500.24 21.200.56 19.830.55 19.810.53

NSC 44.740.46 43.590.34 42.370.25 22.620.51 19.110.40 17.520.32

SCRDA 44.090.44 42.020.30 40.080.30 19.710.41 16.740.22 15.280.24

IR 45.040.39 44.180.33 43.360.26 22.190.58 21.320.53 21.970.55

Cardiac Arrhythmia diagnoses

The Cardiac Arrhythmia dataset5 has one normal class of size 245, and 15 abnormal

classes, which we combined to form the second class of size 206. We removed the

nominal features and those with missing values, leaving p = 194 electrocardiogram

(ECG) measurements. We see in the right panel of Table 2.7 that all random projection

ensembles perform well, but for the larger sample size the random forest classifier is

better.

2.7 Discussion and extensions

We have introduced a general framework for high-dimensional classification via the

combination of the results of applying a base classifier on carefully selected low-dimensional

random projections of the data. One of its attractive features is its generality: the ap-

proach can be used in conjunction with any base classifier. Moreover, although we

explored in detail one method for combining the random projections (partly because

it facilitates rigorous statistical analysis), there are many other options available here.

For instance, instead of only retaining the projection within each block yielding the

smallest estimate of test error, one might give weights to the different projections,

where the weights decrease as the estimate of test error increases. Another interesting

5https://archive.ics.uci.edu/ml/datasets/Arrhythmia
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Table 2.7: Misclassification rates for the Musk and Cardiac Arrhythmia datasets.

Musk p = 166 Cardiac p = 194
n 50 100 200 50 100 200

RP-LDA2 17.500.36 15.530.25 14.220.18 33.610.36 31.290.31 28.860.26

RP-LDA5 18.810.57 14.860.30 12.090.21 33.180.40 29.880.27 27.470.27

LDA N/A N/A 24.880.40 N/A N/A N/A
RP-QDA2 15.580.32 14.170.26 13.020.18 31.330.30 29.610.24 27.590.26

RP-QDA5 14.700.34 12.720.29 9.930.16 30.840.30 28.460.24 26.570.23

QDA N/A N/A N/A N/A N/A N/A
RP-knn2 14.920.32 12.330.23 10.090.15 32.780.35 30.580.28 28.080.25

RP-knn5 13.880.33 10.960.30 8.670.11 33.400.35 30.730.30 27.240.22

knn 16.220.29 14.410.23 11.140.16 40.630.29 38.940.30 35.760.33

RF 14.400.17 13.180.16 10.670.16 31.590.35 26.790.27 22.610.27

Radial SVM 15.270.10 15.250.10 15.210.10 48.370.47 47.230.43 46.850.40

Linear SVM 16.490.35 13.910.22 10.390.15 36.160.45 35.610.36 35.200.32

Radial GP 15.170.11 14.890.12 14.120.16 37.260.39 33.780.36 29.350.31

PenLDA 29.570.72 27.760.22 27.150.53 N/A N/A N/A
NSC 16.410.34 15.450.15 15.190.10 34.980.44 33.000.37 31.080.38

SCRDA 15.690.34 16.400.52 15.140.22 38.710.44 36.550.45 30.860.39

IR 32.220.82 30.830.67 30.580.66 32.050.37 30.290.33 28.670.32

avenue to explore would be alternative methods for estimating the test error, such as

sample splitting. The idea here would be to split the sample Tn into Tn,1 and Tn,2, say,

where |Tn,1| = n(1) and |Tn,2| = n(2). We then use

L̂An(1),n(2) :=
1

n(2)

∑
(Xi,Yi)∈Tn,2

1{
ĈA
n(1),TAn,1

(Xi)6=Yi
}

to estimate the test error LA
n(1),1

based on the training data Tn,1. Since Tn,1 and Tn,2
are independent, we can apply Hoeffding’s inequality to deduce that

sup
A∈A

P
{
|LAn(1),1 − L̂

A
n(1),n(2) | ≥ ε

∣∣ Tn,1} ≤ 2e−2n(2)ε2 .

It then follows by very similar arguments to those given in Section 2.4.1 that

E
(
|LA∗n(1) − L̂A

∗

n(1),n(2)|
∣∣ Tn,1) ≤ (1 + log 2

2n(2)

)1/2

,

E
(
|LA1

n(1) − L̂A1

n(1),n(2) |
∣∣ Tn,1) ≤ (1 + log 2 + logB2

2n(2)

)1/2

. (2.14)

The advantages of this approach are twofold: first, the bounds hold for any choice of

base classifier (and still without any assumptions on the data generating mechanism);

second, the bounds on the terms in (2.14) merely rely on Hoeffding’s inequality as

opposed to Vapnik–Chervonenkis theory, so are typically sharper. The disadvantage
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is that the other terms in the bound in Theorem 2.5 will tend to be larger due to the

reduced effective sample size. The choice of n(1) and n(2) in such an approach therefore

becomes an interesting question.

Many practical classification problems involve K > 2 classes. The main issue in

extending our methodology to such settings is the definition of ĈRP
n analogous to (2.2).

To outline one approach, let

ν̂B1
n,r(x) :=

1

B1

B1∑
b1=1

1
{Ĉ

Ab1
n (x)=r}

for r = 1, . . . , K. Given α1, . . . , αK > 0 with
∑K

r=1 αr = 1, we can then define

ĈRP
n (x) := sargmax

r=1,...,K
{αrν̂B1

n,r(x)}.

The choice of α1, . . . , αK is analogous to the choice of α in the caseK = 2. It is therefore

natural to seek to minimise the the test error of the corresponding infinite-simulation

random projection ensemble classifier as before.

In other situations, it may be advantageous to consider alternative types of projec-

tion, perhaps because of additional structure in the problem. One particularly interest-

ing issue concerns ultrahigh-dimensional settings, say p in the thousands. Here, it may

be too time-consuming to generate enough random projections to explore adequately

the space Ad×p. As a mathematical quantification of this, the cardinality of an ε-net in

the Euclidean norm of the surface of the Euclidean ball in Rp increases exponentially

in p (e.g. Vershynin, 2012; Kim and Samworth, 2014). In such challenging problems,

one might restrict the projections A to be axis-aligned, so that each row of A consists

of a single non-zero component, equal to 1, and p−1 zero components. There are then

only
(
p
d

)
≤ pd/d! choices for the projections, and if d is small, it may be feasible even

to carry out an exhaustive search. Of course, this approach loses one of the attractive

features of our original proposal, namely the fact that it is equivariant to orthogonal

transformations. Nevertheless, corresponding theory can be obtained provided that

the projection A∗ in (A.3) is axis-aligned. This is a much stronger requirement, but

it seems that imposing greater structure is inevitable to obtain good classification in

such settings. A less restrictive option is to use sparse random projections: we first

choose a subset of size r < p of the variables and then use a Haar projection from

the r-dimensional space to the d-dimensional space. The resulting method is again

not equivariant to orthogonal transformations, but the corresponding projection A∗ in

(A.3) need only be sparse, not axis-aligned.

Finally here, we pose the question: are similar methods using random projection

ensembles useful for other high-dimensional statistical problems, such as clustering or
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regression?

2.8 Appendix

Proof of Theorem 2.1. Recall that the training data Tn = {(x1, y1), . . . , (xn, yn)} are

fixed and the projections A1, A2, . . . , are independent and identically distributed in

A, independent of the pair (X, Y ). The test error of the random projection ensemble

classifier has the following representation:

L(ĈRP
n )=P{ĈRP

n (X) 6= Y }= π1P{ĈRP
n (X) = 2|Y = 1}+ π2P{ĈRP

n (X) = 1|Y = 2}

= π1P
{
ν̂B1
n (X) < α|Y = 1

}
+ π2P

{
ν̂B1
n (X) ≥ α|Y = 2

}
,

where ν̂B1
n (x) is defined in (2.1).

Let Ub1 := 1
{Ĉ

Ab1
n (X)=1}

, for b1 = 1, . . . B1. Then, conditional on µ̂n(X) = θ ∈
[0, 1], the random variables U1, . . . , UB1 are independent, each having a Bernoulli(θ)

distribution. Recall that Gn,1 and Gn,2 are the distribution functions of µ̂n(X)|{Y = 1}
and µ̂n(X)|{Y = 2}, respectively. We can therefore write

P
{
ν̂B1
n (X) < α|Y = 1

}
=

∫ 1

0

P
{ 1

B1

B1∑
b1=1

Ub1 < α
∣∣∣µ̂n(X) = θ

}
dGn,1(θ)

=

∫ 1

0

P(T < B1α) dGn,1(θ),

where here and throughout the proof, T denotes a Bin(B1, θ) random variable. Simi-

larly,

P
{
ν̂B1
n (X) ≥ α|Y = 2

}
= 1−

∫ 1

0

P(T < B1α) dGn,2(θ).

It follows that

L(ĈRP
n ) = π2 +

∫ 1

0

P(T < B1α) dG◦n(θ),

where G◦n := π1Gn,1 − π2Gn,2. Writing g◦n := π1gn,1 − π2gn,2, we now show that∫ 1

0

{
P(T < B1α)− 1{θ<α}

}
dG◦n(θ) =

1− α− JB1αK
B1

g◦n(α) +
α(1− α)

2B1

ġ◦n(α) + o
( 1

B1

)
(2.15)

as B1 → ∞. Our proof involves a one-term Edgeworth expansion to the binomial

distribution function in (2.15), where the error term is controlled uniformly in the

parameter. The expansion relies on the following version of Esseen’s smoothing lemma.

Theorem 2.6. (Esseen, 1945, Chapter 2, Theorem 2b) Let c1, C1, S > 0, let F :

R → [0,∞) be a non-decreasing function and let G : R → R be a function of bounded
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variation. Let F ∗(s) :=
∫∞
−∞ exp(ist) dF (t) and G∗(s) :=

∫∞
−∞ exp(ist) dG(t) be the

Fourier–Stieltjes transforms of F and G, respectively. Suppose that

• limt→−∞ F (t) = limt→−∞G(t) = 0 and limt→∞ F (t) = limt→∞G(t);

•
∫∞
−∞ |F (t)−G(t)| dt <∞;

• The set of discontinuities of F and G is contained in {ti : i ∈ Z}, where (ti) is a

strictly increasing sequence with infi{ti+1 − ti} ≥ c1; moreover F is constant on

the intervals [ti, ti+1) for all i ∈ Z;

• |Ġ(t)| ≤ C1 for all t /∈ {ti : i ∈ Z}.

Then there exist constants c2, C2 > 0 such that

sup
t∈R
|F (t)−G(t)| ≤ 1

π

∫ S

−S

∣∣∣∣F ∗(s)−G∗(s)s

∣∣∣∣ ds+
C1C2

S
,

provided that Sc1 ≥ c2.

Let σ2 := θ(1− θ), and let Φ and φ denote the standard normal distribution and

density functions, respectively. Moreover, for t ∈ R, let

p(t) = p(t, θ) :=
(1− t2)(1− 2θ)

6σ
,

and

q(t) = q(t, B1, θ) :=
1/2− JB1θ +B

1/2
1 σtK

σ
.

In Proposition 2.7 below we apply Theorem 2.6 to the following functions:

FB1(t) = FB1(t, θ) := P
(
T −B1θ

B
1/2
1 σ

< t

)
, (2.16)

and

GB1(t) = GB1(t, θ) := Φ(t) + φ(t)
p(t, θ) + q(t, B1, θ)

B
1/2
1

. (2.17)

Proposition 2.7. Let FB1 and GB1 be as in (2.16) and (2.17). There exists a constant

C > 0 such that, for all B1 ∈ N,

sup
θ∈(0,1)

sup
t∈R

σ3|FB1(t, θ)−GB1(t, θ)| ≤
C

B1

.

Proposition 2.7, whose proof is given after the proof of Theorem 2.5, bounds uni-

formly in θ the error in the one-term Edgeworth expansion GB1 of the distribution func-

tion FB1 . Returning to the proof of Theorem 2.1, we will argue that the dominant con-

tribution to the integral in (2.15) arises from the interval (max{0, α−ε1},min{α+ε1, 1}),
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where ε1 := B
−1/2
1 logB1. For the remainder of the proof we assume B1 is large enough

that [α− ε1, α + ε1] ⊆ (0, 1).

For the region |θ − α| ≥ ε1, by Hoeffding’s inequality, we have that

sup
|θ−α|≥ε1

∣∣P(T < B1α)− 1{θ<α}
∣∣ ≤ sup

|θ−α|≥ε1
exp
(
−2B1(θ − α)2

)
≤ exp(−2 log2B1) = O(B−M1 ),

for each M > 0, as B1 →∞. It follows that∫ 1

0

{
P(T < B1α)− 1{θ<α}

}
dG◦n(θ)

=

∫ α+ε1

α−ε1

{
P(T < B1α)− 1{θ<α}

}
dG◦n(θ) +O(B−M1 ), (2.18)

for each M > 0, as B1 →∞.

For the region |θ − α| < ε1, by Proposition 2.7, there exists C ′ > 0 such that, for

all B1 sufficiently large,

sup
|θ−α|<ε1

∣∣∣∣P(T < B1α)− Φ

(
B1

1/2(α− θ)
σ

)
− 1

B
1/2
1

φ

(
B1

1/2(α− θ)
σ

)
r

(
B1

1/2(α− θ)
σ

)∣∣∣∣ ≤ C ′

B1

,

where r(t) := p(t) + q(t). Hence, using the fact that for large B1, sup|θ−α|<ε1 |g
◦
n(θ)| ≤

|g◦n(α)|+ 1 <∞ under (A.1), we have∫ α+ε1

α−ε1

{
P(T < B1α)− 1{θ<α}

}
dG◦n(θ)

=

∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)

σ

)
− 1{θ<α}

}
dG◦n(θ)

+
1

B
1/2
1

∫ α+ε1

α−ε1
φ

(
B

1/2
1 (α− θ)

σ

)
r

(
B

1/2
1 (α− θ)

σ

)
dG◦n(θ) + o

( 1

B1

)
,

(2.19)

as B1 →∞. To aid exposition, we will henceforth concentrate on the dominant terms

in our expansions, denoting the remainder terms as R1, R2, . . .. These remainders are
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then controlled at the end of the argument. For the first term in (2.19), we write

∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)

σ

)
− 1{θ<α}

}
dG◦n(θ)

=

∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

}
dG◦n(θ)

+
(1− 2α)B

1/2
1

2{α(1− α)}3/2

∫ α+ε1

α−ε1
(α− θ)2φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dG◦n(θ) +R1.

(2.20)

Now, for the first term in (2.20),

∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

}
dG◦n(θ)

=

∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

}{
g◦n(α) + (θ − α)ġ◦n(α)

}
dθ +R2

=

√
α(1− α)

B
1/2
1

∫ ∞
−∞
{Φ(−u)− 1{u<0}}

{
g◦n(α) +

√
α(1− α)

B
1/2
1

uġ◦n(α)

}
du+R2 +R3

=
α(1− α)

2B1

ġ◦n(α) +R2 +R3. (2.21)

For the second term in (2.20), write

(1− 2α)B
1/2
1

2{α(1− α)}3/2

∫ α+ε1

α−ε1
(α− θ)2φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dG◦n(θ)

=
(1− 2α)B

1/2
1

2{α(1− α)}3/2
g◦n(α)

∫ α+ε1

α−ε1
(α− θ)2φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dθ +R4

=
1/2− α
B1

g◦n(α)

∫ ∞
−∞

u2φ(−u) du+R4 +R5 =
1/2− α
B1

g◦n(α) +R4 +R5.

(2.22)
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Returning to the second term in (2.19), observe that

1

B
1/2
1

∫ α+ε1

α−ε1
φ

(
B

1/2
1 (α− θ)

σ

)
r

(
B

1/2
1 (α− θ)

σ

)
dG◦n(θ)

=
1/2− JB1αK

B
1/2
1

∫ α+ε1

α−ε1

1

σ
φ

(
B

1/2
1 (α− θ)

σ

)
dG◦n(θ)

+
1

6B
1/2
1

∫ α+ε1

α−ε1

(1− 2θ)

σ

{
1− B1(α− θ)2

σ2

}
φ

(
B

1/2
1 (α− θ)

σ

)
dG◦n(θ)

=
1/2− JB1αK

B
1/2
1

∫ α+ε1

α−ε1

1

σ
φ

(
B

1/2
1 (α− θ)

σ

)
dG◦n(θ) +R6

=
1/2− JB1αK

B
1/2
1

√
α(1− α)

g◦n(α)

∫ α+ε1

α−ε1
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dθ +R6 +R7

=
1/2− JB1αK

B1

g◦n(α) +R6 +R7 +R8. (2.23)

The claim (2.15) will now follow from (2.18), (2.19), (2.20), (2.21), (2.22) and (2.23),

once we have shown that
8∑
j=1

|Rj| = o(B−1
1 ) (2.24)

as B1 →∞.

To bound R1: For ζ ∈ (0, 1), let hθ(ζ) := Φ
(B1/2

1 (α−θ)√
ζ(1−ζ)

)
. Observe that, by a Taylor

expansion about ζ = α, there exists B0 ∈ N, such that, for all B1 > B0 and all

θ, ζ ∈ (α− ε1, α + ε1),∣∣∣∣Φ(B1/2
1 (α− θ)√
ζ(1− ζ)

)
− Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
+ (ζ − α)

(1− 2α)B
1/2
1 (α− θ)

2{α(1− α)}3/2
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)∣∣∣∣
= |hθ(ζ)− hθ(α)− (ζ − α)ḣθ(α)|

≤ (ζ − α)2

2
sup

ζ′∈[α−ζ,α+ζ]

|ḧθ(ζ ′)| ≤ (ζ − α)2 log3B1

2
√

2π{α(1− α)}7/2
.
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Using this bound with ζ = θ, we deduce that, for all B1 sufficiently large,

|R1| =
∣∣∣∣∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)

σ

)
− Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− (1− 2α)B

1/2
1 (α− θ)2

2{α(1− α)}3/2
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)}
dG◦n(θ)

∣∣∣∣
≤ log3B1

2
√

2π{α(1− α)}7/2

∫ α+ε1

α−ε1
(θ − α)2|g◦n(θ)| dθ

≤ log6B1

3
√

2πB
3/2
1 {α(1− α)}7/2

sup
|θ−α|≤ε1

|g◦n(θ)| = o
( 1

B1

)
as B1 →∞.

To bound R2: Since g◦n is differentiable at α, given ε > 0, there exists δε > 0 such

that

|g◦n(θ)− g◦n(α)− (θ − α)ġ◦n(α)| < ε|θ − α|,

for all |θ − α| < δε. It follows that, for all B1 sufficiently large,

|R2| =
∣∣∣∣∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

}
dG◦n(θ)

−
∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

}{
g◦n(α) + (θ − α)ġ◦n(α)

}
dθ

∣∣∣∣
≤ ε

∫ α+ε1

α−ε1

∣∣∣∣Φ(B1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

∣∣∣∣|θ − α| dθ
≤ εα(1− α)

B1

∫ logB1/
√
α(1−α)

− logB1/
√
α(1−α)

∣∣Φ(−u)− 1{u<0}
∣∣|u| du

≤ 2εα(1− α)

B1

∫ ∞
0

uΦ(−u) du =
εα(1− α)

2B1

.

We deduce that |R2| = o(B−1
1 ) as B1 →∞.

To bound R3: For large B1, we have

|R3| =
∣∣∣∣∫ α+ε1

α−ε1

{
Φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
− 1{θ<α}

}{
g◦n(α) + (θ − α)ġ◦n(α)

}
dθ

−
√
α(1− α)

B
1/2
1

∫ ∞
−∞
{Φ(−u)− 1{u<0}}

{
g◦n(α) +

√
α(1− α)

B
1/2
1

uġ◦n(α)

}
du

∣∣∣∣
=

2α(1− α)

B1

|ġ◦n(α)|
∫ ∞
ε1B

1/2
1 /{α(1−α)}1/2

uΦ(−u) du

≤ 2{α(1− α)}3/2

B1 logB1

|ġ◦n(α)|
∫ ∞

0

u2Φ(−u) du=
2
√

2{α(1− α)}3/2

3
√
πB1 logB1

|ġ◦n(α)|=o(B−1
1 )
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as B1 →∞.

To bound R4: By the bound in (2.25), we have that, given ε > 0, for all B1

sufficiently large,

|R4| =
∣∣∣∣ (1− 2α)B

1/2
1

2{α(1− α)}3/2

∫ α+ε1

α−ε1
(α− θ)2φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
{g◦n(θ)− g◦n(α)} dθ

∣∣∣∣
≤ ε|1− 2α|

2B1

∫ ∞
−∞

u2φ(−u) du =
ε|1− 2α|

2B1

.

To bound R5: For all B1 sufficiently large,

|R5| =
|1− 2α|
B1

|g◦n(α)|
∫ ∞

logB1/
√
α(1−α)

u2φ(−u) du

≤
√
α(1− α)

B1 logB1

|g◦n(α)|
∫ ∞

0

u3φ(−u) du =

√
2α(1− α)√
πB1 logB1

|g◦n(α)| = o
( 1

B1

)
as B1 →∞.

To bound R6: We write R6 = R61 +R62, where

R61 :=
(1− 2α)

6B
1/2
1

√
α(1− α)

∫ α+ε1

α−ε1

{
1− B1(α− θ)2

α(1− α)

}
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dG◦n(θ)

and

R62 :=
1

6B
1/2
1

∫ α+ε1

α−ε1

(1− 2θ)

σ

{
1− B1(α− θ)2

σ2

}
φ

(
B

1/2
1 (α− θ)

σ

)
dG◦n(θ)

− (1− 2α)

6B
1/2
1

√
α(1− α)

∫ α+ε1

α−ε1

{
1− B1(α− θ)2

α(1− α)

}
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dG◦n(θ).

Since g◦n is continuous at α, given ε > 0, there exists B′0 ∈ N such that, for all B1 > B′0,

sup
|θ−α|≤ε1

|g◦n(θ)− g◦n(α)| < ε. (2.25)
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It follows that, for B1 > B′0,

|R61| ≤
|1− 2α|

6B
1/2
1

√
α(1− α)

|g◦n(α)|
∣∣∣∣∫ α+ε1

α−ε1

{
1− B1(α− θ)2

α(1− α)

}
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dθ

∣∣∣∣
+ ε

|1− 2α|
6B

1/2
1

√
α(1− α)

∫ α+ε1

α−ε1

∣∣∣∣1− B1(α− θ)2

α(1− α)

∣∣∣∣φ(B1/2
1 (α− θ)√
α(1− α)

)
dθ.

≤ |1− 2α|
6B1

|g◦n(α)|
∣∣∣∣∫ logB1/

√
α(1−α)

− logB1/
√
α(1−α)

(1− u2)φ(−u) du

∣∣∣∣
+ ε
|1− 2α|

6B1

∫ ∞
−∞

(1 + u2)φ(−u) du ≤ ε

B1

for all sufficiently large B1. We deduce that R61 = o(B−1
1 ) as B1 →∞.

To control R62, by the mean value theorem, we have that for all B1 sufficiently

large and all ζ ∈ [α− ε1, α + ε1],

sup
|θ−α|<ε1

∣∣∣∣∣ (1− 2ζ)√
ζ(1− ζ)

{
1−B1(α− θ)2

ζ(1− ζ)

}
φ

(
B

1/2
1 (α− θ)√
ζ(1− ζ)

)

− (1− 2α)√
α(1− α)

{
1− B1(α− θ)2

α(1− α)

}
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)∣∣∣∣∣
≤ log4B1√

2π{α(1− α)}7/2
|ζ − α|.

Thus, for large B1,

|R62| ≤
log4B1

6
√

2πB
1/2
1 {α(1− α)}7/2

sup
|θ−α|≤ε1

|g◦n(θ)|
∫ α+ε1

α−ε1
|θ − α| dθ

≤ log6B1{1 + |g◦n(α)|}
6
√

2πB
3/2
1 {α(1− α)}7/2

= o
( 1

B1

)
.

We deduce that |R6| = o(B−1
1 ) as B1 →∞.

To bound R7: write R7 = R71 +R72, where

R71 :=
1/2− JB1αK

B
1/2
1

√
α(1− α)

∫ α+ε1

α−ε1
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
{g◦n(θ)− g◦n(α)} dθ,

and

R72 :=
1/2− JB1αK

B
1/2
1

∫ α+ε1

α−ε1

{
1

σ
φ

(
B

1/2
1 (α− θ)

σ

)
− 1√

α(1− α)
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)}
dG◦n(θ).
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By the bound in (2.25), given ε > 0, for all B1 sufficiently large,

|R71| ≤
ε

2B
1/2
1

√
α(1− α)

∫ ∞
−∞

φ

(
B

1/2
1 (α− θ)√
α(1− α)

)
dθ =

ε

2B1

.

Moreover, by the mean value theorem, for all B1 sufficiently large and all |ζ − α| ≤ ε1,

sup
|θ−α|<ε1

∣∣∣∣∣ 1√
ζ(1− ζ)

φ

(
B

1/2
1 (α− θ)√
ζ(1− ζ)

)
− 1√

α(1− α)
φ

(
B

1/2
1 (α− θ)√
α(1− α)

)∣∣∣∣∣
≤ log2B1√

2π{α(1− α)}5/2
|ζ − α|.

It follows that, for all B1 sufficiently large,

|R72| ≤
log2B1

2
√

2πB
1/2
1 {α(1− α)}5/2

sup
|θ−α|≤ε1

|g◦n(θ)|
∫ α+ε1

α−ε1
|θ − α| dθ

≤ log4B1{1 + |g◦n(α)|}
2
√

2πB
3/2
1 {α(1− α)}5/2

.

We deduce that |R7| = o(B−1
1 ) as B1 →∞.

To bound R8: We have

|R8| =
2(1/2− JB1αK)

B1

|g◦n(α)|
∫ ∞
ε1B

1/2
1 /{α(1−α)}1/2

φ(−u) du = o
( 1

B1

)
as B1 →∞.

We have now established the claim at (2.24), and the result follows.

Proof of Theorem 2.2. We have

L(ĈRP∗

n )−R(CBayes) = E[P{ĈRP∗

n (X) 6= Y |X} − P{CBayes(X) 6= Y |X}]

= E
[
η(X)(1{ĈRP∗

n (X)=2} − 1{CBayes(X)=2})

+ {1− η(X)}(1{ĈRP∗
n (X)=1} − 1{CBayes(X)=1})

]
= E

{
|2η(X)− 1||1{µ̂B2

n (X)<α} − 1{η(X)<1/2}|
}

= E
{
|2η(X)− 1|1{µ̂B2

n (X)≥α}1{η(X)<1/2}
}

+ E
{
|2η(X)− 1|1{µ̂B2

n (X)<α}1{η(X)≥1/2}
}

≤ 1

α
E
{
|2η(X)− 1|µ̂B2

n (X)1{η(X)<1/2}
}

+
1

1− α
E
[
|2η(X)− 1|{1− µ̂B2

n (X)}1{η(X)≥1/2}
]

≤ 1

min(α, 1− α)
E
{
|2η(X)− 1||1− µ̂B2

n (X)− 1{η(X)<1/2}|
}
.
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Now, for each x ∈ Rp,

|1− µ̂B2
n (x)− 1{η(x)<1/2}| = |P{ĈA1

n (x) = 2} − 1{η(x)<1/2}|

= E|1{ĈA1
n (x)=2} − 1{η(x)<1/2}|.

We deduce that

E
{
|2η(X)− 1||1− µ̂B2

n (X)−1{η(X)<1/2}|
}

= E
[
E
{
|2η(X)− 1||1{ĈA1

n (X)=2} − 1{η(X)<1/2}|
∣∣X}]

= E
[
E
{
|2η(X)− 1||1{ĈA1

n (X)=2} − 1{η(X)<1/2}|
∣∣A1

}]
= E(LA1

n )−R(CBayes).

The result follows.

Proof of Proposition 2.3. First write

E(LA1
n )−R(CBayes) = E(L̂A1

n )−R(CBayes) + εn.

Using (A.2), we have that

E(L̂A1
n ) = L̂∗n +

1

n

bn(1−L̂∗n)c−1∑
j=0

{1− βn(j)}B2

≤ L̂∗n +
1

n

J∑
j=0

(
1− β0 − β

jρ

nρ

)B2

+
1

n

bn(1−L̂∗n)c−1∑
j=J+1

{1− βn(j)}B2 ,

where J :=
⌊
n
(

log2B2

βB2

)1/ρ⌋
. Now,

1

n

J∑
j=0

(
1− β0 − β

jρ

nρ

)B2

≤ (1− β0)B2

n
+

∫ J/n

0

(1− β0 − βxρ)B2 dx

≤ (1− β0)B2

{
1

n
+

∫ J/n

0

exp
(
−B2βx

ρ

1− β0

)
dx

}
≤ (1− β0)B2

{
1

n
+

(1− β0)1/ρΓ(1 + 1/ρ)

B
1/ρ
2 β1/ρ

}
.

Moreover, since (J + 1)ρ/nρ ≥ log2B2/(βB2), we have

1

n

bn(1−L̂∗n)c−1∑
j=J+1

{1− βn(j)}B2 ≤
(

1− β0 −
log2B2

B2

)B2

≤ (1− β0)B2 exp
(
− log2B2

1− β0

)
.
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The result follows.

Proof of Proposition 2.4. For a Borel set C ⊆ Rd, let PA∗X(C) :=
∫
{x:A∗x∈C} dPX(x),

so that PA∗X is the marginal distribution of A∗X. Further, for z ∈ Rd, write PX|A∗X=z

for the conditional distribution of X given A∗X = z. If Y is independent of X given

A∗X, and if B is a Borel subset of Rp, then∫
B

ηA
∗
(A∗x) dPX(x) =

∫
Rd

∫
B∩{x:A∗x=z}

ηA
∗
(A∗x) dPX|A∗X=z(w) dPA∗X(z)

=

∫
Rd
ηA
∗
(z)P(X ∈ B|A∗X = z) dPA∗X(z)

=

∫
Rd

P(Y = 1, X ∈ B|A∗X = z) dPA∗X(z)

= P(Y = 1, X ∈ B) =

∫
B

η(x) dPX(x).

We deduce that PX({x ∈ Rp : η(x) 6= ηA
∗
(A∗x)}) = 0; in particular, (A.3) holds, as

required.

Proof of Theorem 2.5. By the definitions of L̂∗n and εA
∗

n , we have L̂∗n ≤ L̂A
∗

n = LA∗n −εA
∗

n .

Moreover,

RA∗−Bayes =

∫
Rp×{1,2}

1{CA∗−Bayes(A∗x)6=y} dP (x, y)

=

∫
Rp
η(x)1{ηA∗ (A∗x)<1/2} dPX(x) +

∫
Rp
{1− η(x)}1{ηA∗ (A∗x)≥1/2} dPX(x)

=

∫
Rp
η(x)1{η(x)<1/2} dPX(x) +

∫
Rp
{1− η(x)}1{η(x)≥1/2} dPX(x)

= R(CBayes).

Note that we have used (A.3) to obtain the penultimate equality. The result now

follows immediately from these facts, together with Theorem 2.1, Theorem 2.2 and

Proposition 2.3.

Proof of Proposition 2.7. Recall that σ2 := θ(1− θ). Let

F ∗B1
(s) = F ∗B1

(s, θ) :=

∫ ∞
−∞

eist dFB1(t)

=

{
(1− θ) exp

(
− isθ

B
1/2
1 σ

)
+ θ exp

(
is(1− θ)
B

1/2
1 σ

)}B1

.

Moreover, let P (t) := φ(t)p(t)

B
1/2
1

and Q(t) := φ(t)q(t)

B
1/2
1

. By, for example, Gnedenko and
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Kolmogorov (1954, Chapter 8, Section 43), we have

Φ∗(s) :=

∫ ∞
−∞

exp(ist) dΦ(t) = exp(−s2/2),

P ∗(s) :=

∫ ∞
−∞

exp(ist) dP (t) = − 1− 2θ

6B
1/2
1 σ

is3 exp(−s2/2)

and

Q∗(s) :=

∫ ∞
−∞

exp(ist) dQ(t)

= − s

2πB
1/2
1 σ

∑
l∈Z\{0}

exp(i2πB1lθ)

l
exp
{
−1

2

(
s+ 2πB

1/2
1 σl

)2
}
.

Thus

G∗B1
(s) = G∗B1

(s, θ) :=

∫ ∞
−∞

exp(ist) dGB1(t) = Φ∗(s) + P ∗(s) +Q∗(s)

= exp(−s2/2)− 1− 2θ

6B
1/2
1 σ

is3 exp(−s2/2)

− s

2πB
1/2
1 σ

∑
l∈Z\{0}

exp(i2πB1lθ)

l
exp
{
−1

2

(
s+ 2πB

1/2
1 σl

)2
}
.

Letting c2 > 0 be the constant given in the statement of Theorem 2.6 (in fact we

assume without loss of generality that c2 > π), we show that there exists a constant

C ′ > 0 such that, for all B1 ∈ N,

sup
θ∈(0,1)

σ3

∫ c2B
1/2
1 σ

−c2B1/2
1 σ

∣∣∣∣F ∗B1
(s, θ)−G∗B1

(s, θ)

s

∣∣∣∣ ds ≤ C ′

B1

. (2.26)

To show (2.26), write

∫ c2B
1/2
1 σ

−c2B1/2
1 σ

∣∣∣∣F ∗B1
(s)−G∗B1

(s)

s

∣∣∣∣ ds =

∫ S1

−S1

∣∣∣∣F ∗B1
(s)−G∗B1

(s)

s

∣∣∣∣ ds
+

∫
S1≤|s|≤S2

∣∣∣∣F ∗B1
(s)−G∗B1

(s)

s

∣∣∣∣ ds+

∫
S2≤|s|≤c2B1/2

1 σ

∣∣∣∣F ∗B1
(s)−G∗B1

(s)

s

∣∣∣∣ ds,
(2.27)

where S1 :=
B

1/2
1 σ3/2

32(3θ2−3θ+1)3/4
and S2 := πB

1/2
1 σ. Note that S1 ≤ S2/2 for all θ ∈ (0, 1).

We bound each term in (2.27) in turn. By Gnedenko and Kolmogorov (1954,

Theorem 1, Section 41), there exists a universal constant C3 > 0, such that, for all
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|s| ≤ S1,

|F ∗B1
(s, θ)− Φ∗(s)− P ∗(s)| ≤ C3

B1σ3
(s4 + s6) exp(−s2/4).

Thus∫ S1

−S1

∣∣∣∣F ∗B1
(s)− Φ∗(s)− P ∗(s)

s

∣∣∣∣ ds ≤ C3

B1σ3

∫ ∞
−∞

(|s|3 + |s|5) exp(−s2/4) ds =
144C3

B1σ3
.

(2.28)

Moreover, observe that
(
s + 2πB

1/2
1 σl

)2 ≥ s2 + 2π2B1σ
2l2 for all |s| ≤ S1. Thus, for

|s| ≤ S1, ∣∣∣∣Q∗(s)s

∣∣∣∣ ≤ 1

2πB
1/2
1 σ

∣∣∣∣ ∑
l∈Z\{0}

exp(i2πB1lθ)

l
exp
{
−1

2

(
s+ 2πB

1/2
1 σl

)2
}∣∣∣∣

≤ φ(s)
√

2πB
1/2
1 σ

∫ ∞
−∞

exp
(
−π2B1σ

2u2
)
du =

φ(s)√
2πB1σ2

.

It follows that ∫ S1

−S1

∣∣∣∣Q∗(s)s

∣∣∣∣ ds ≤ 1√
2πB1σ2

. (2.29)

For |s| ∈ [S1, S2], observe that

|F ∗B1
(s)| =

[
1− 2σ2

{
1− cos

( s

B
1/2
1 σ

)}]B1/2

≤ exp(−s2/8).

Thus ∫
S1≤|s|≤S2

∣∣∣∣F ∗B1
(s)

s

∣∣∣∣ ds ≤ 2

S2
1

∫ S2

S1

s exp(−s2/8) ds ≤ 213

B1σ3
. (2.30)

Now, ∫
S1≤|s|≤S2

∣∣∣∣Φ∗(s)s

∣∣∣∣ ds ≤ 2

S2
1

∫ ∞
0

s exp(−s2/2) ds ≤ 211

B1σ3
, (2.31)

and ∫
S1≤|s|≤S2

∣∣∣∣P ∗(s)s

∣∣∣∣ ds ≤ 1

3S1B
1/2
1 σ

∫ ∞
0

s3 exp(−s2/2) ds ≤ 26

3
√

2B1σ3
. (2.32)

To bound the final term, observe that, for all |s| ∈ [S1, S2], since (a+ b)2 ≥ (a2 + b2)/5

for all |a| ≤ |b|/2, we have∫
S1≤|s|≤S2

∣∣∣∣Q∗(s)s

∣∣∣∣ ds ≤ 1

2πB
1/2
1 σ

∫
S1≤|s|≤S2

e−s
2/10

∫ ∞
−∞

e−2π2B1σ2u2/5 du ds

≤ 5

2
√

2πB1σ3
. (2.33)
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Finally, for |s| ∈ [S2, c2B
1/2
1 σ], note that∫

S2≤|s|≤c2B1/2
1 σ

∣∣∣∣Φ∗(s) + P ∗(s)

s

∣∣∣∣ ds ≤ 2

S2
2

∫ ∞
0

se−s
2/2 ds+

1

3S2B
1/2
1 σ

∫ ∞
0

s3e−s
2/2 ds

≤ 1

π2B1σ3

(
1 +

π

3

)
. (2.34)

To bound the remaining terms, by substituting s = B
1/2
1 σu, we see that

∫ c2B
1/2
1 σ

S2

∣∣∣∣F ∗B1
(s)−Q∗B1

(s)

s

∣∣∣∣ ds =

∫ c2

π

∣∣∣∣F ∗B1
(B

1/2
1 σu)−Q∗B1

(B
1/2
1 σu)

u

∣∣∣∣ du
=

J∑
j=1

∫ π(2j+1)

π(2j−1)

∣∣∣∣F ∗B1
(B

1/2
1 σu)−Q∗B1

(B
1/2
1 σu)

u

∣∣∣∣ du
+

∫ c2

π(2J+1)

∣∣∣∣F ∗B1
(B

1/2
1 σu)−Q∗B1

(B
1/2
1 σu)

u

∣∣∣∣ du, (2.35)

where J := b c2−π
2π
c. Let

Ij :=

∫ π(2j+1)

π(2j−1)

∣∣∣∣F ∗B1
(B

1/2
1 σu)−Q∗B1

(B
1/2
1 σu)

u

∣∣∣∣ du
=

∫ π

−π

∣∣∣∣F ∗B1

(
B

1/2
1 σ(v + 2πj)

)
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(
B
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1 σ(v + 2πj)

)
v + 2πj

∣∣∣∣ dv. (2.36)

Observe that

F ∗B1

(
B

1/2
1 σ(v + 2πj)

)
=
[
(1− θ) exp

{
−i(v + 2πj)θ

}
+ θ exp

{
i(v + 2πj)(1− θ)

}]B1

= exp(−i2πB1jθ)
[
(1− θ) exp(−ivθ) + θ exp{iv(1− θ)}

]B1

= exp(−i2πB1jθ)F
∗
B1

(B
1/2
1 σv).

Similarly,
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2πj
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∑
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l
exp

{
−B1σ

2

2

(
v + 2πj + 2πl

)2
}
.
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But, for v ∈ [−π, π],∣∣∣∣ 1

2π

∑
l∈Z\{0,−j}

ei2πB1lθ

l
exp

{
−B1σ

2

2

(
v + 2πj + 2πl

)2
}∣∣∣∣ ≤ 1

2π

∑
m∈Z\{0}

e−
B1σ

2

2
(v+2πm)2

≤ e−B1σ2v2/10

2π

∑
m∈Z\{0}

e−2π2B1σ2m2/5 ≤ e−B1σ2v2/10

π(e2π2B1σ2/5 − 1)
≤ 5e−B1σ2v2/10

2π3B1σ2
.

It follows that

Ij ≤
∫ π

−π

∣∣∣∣F ∗B1
(B

1/2
1 σv)−

(
v

2πj
+ 1
)

exp
(
−B1σ2v2

2

)
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∣∣∣∣ dv +
5
√

5
√

2π5/2B
3/2
1 σ3

. (2.37)

Now∫ π

−π

∣∣∣∣F ∗B1
(B

1/2
1 σv)− exp

(
−B1σ2v2

2

)
v + 2πj

∣∣∣∣ dv ≤ 1

πjB
1/2
1 σ

∫ πB
1/2
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−πB1/2
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∣∣F ∗B1
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∣∣ du
=

1

πjB
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−S3
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(u)− e−u2/2

∣∣ du, (2.38)

where S3 :=
B

1/2
1 σ

5(2θ2−2θ+1)
≥ S1. By Gnedenko and Kolmogorov (1954, Theorem 2,

Section 40), we have that

1

πjB
1/2
1 σ
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−S3
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(u)− e−u2/2

∣∣ du ≤ 7
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Moreover,
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Finally,
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By (2.35), (2.36), (2.37), (2.38), (2.39), (2.40) and (2.41), it follows that

∫
S2≤|s|≤c2B1/2

1 σ

∣∣∣∣F ∗B1
(s)−Q∗B1

(s)

s

∣∣∣∣ ds ≤ 10
√

5(J + 1)
√

2π5/2B
3/2
1 σ3

+
140

πB1σ2

J+1∑
j=1

1

j

=
10
√

5(J + 1)
√

2π5/2B
3/2
1 σ3

+
140

πB1σ2
{1 + log (J + 1)}.

(2.42)

By (2.27), (2.28), (2.29), (2.30), (2.31), (2.32), (2.33), (2.34) and (2.42), we conclude

that (2.26) holds. The result now follows from Theorem 2.6, by taking c1 = 1

B
1/2
1 σ

,

C1 = 1

3B
1/2
1 σ

and S = c2B
1/2
1 σ in that result.

2.9 R code

Here we present the R code for the simulation experiments presented in Section 2.6.

setwd("~/RPEnsemble/Sims")

library(class ,mvtnorm ,MASS ,Matrix ,parallel ,distr ,ascrda ,pamr ,

penalizedLDA ,randomForest ,e1071 ,kernlab)

##RandProjHaar: generates a random projection

RandProjHaar <- function(p=1000, d=10)

{

R <- matrix (1/sqrt(p)*rnorm(p*d, 0, 1), p, d)

R <- qr.Q(qr(R))[, 1:d]

return(R)

}

##RPChoose: Chooses the best projection from a block of size B2

RPChoose <- function(B2, d, XTrain , YTrain , XTest , k = c(3,5,10,15,25)

)

{

n <- length(YTrain)

p <- ncol(XTrain)

w1 <- n

w2 <- n

w3 <- n

for (j in 1:B2)

{

RP <- RandProjHaar(p, d)

kcv.voteRP <- sapply(k, function(x){sum(knn.cv(XTrain%*%RP , YTrain

, x) != YTrain , na.rm = TRUE)/n})

weight.test1 <- min(kcv.voteRP)

if (weight.test1 <= w1)
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{

w1 <- weight.test1

RP1 <- RP

k1 <- order(kcv.voteRP)[1]

}

weight.test2 <- mean(predict(lda(x = XTrain%*%RP , grouping =

YTrain), XTrain%*%RP)$class != YTrain , na.rm = TRUE)

if (weight.test2 <= w2)

{

w2 <- weight.test2

RP2 <- RP

}

weight.test3 <- mean(qda(x = XTrain%*%RP , grouping = YTrain , CV =

TRUE)$class != YTrain , na.rm = TRUE)

if (weight.test3 <= w3)

{

w3 <- weight.test3

RP3 <- RP

}

}

Cutoff.val <- c(as.numeric(knn.cv(XTrain%*%RP1 , YTrain , k1)), as.

numeric(predict(lda(x = XTrain%*%RP2 ,grouping = YTrain), XTrain%*%

RP2)$class), as.numeric(qda(x = XTrain%*%RP3 ,grouping = YTrain , CV

= TRUE)$class))

class.vote <- c(as.numeric(knn(XTrain%*%RP1 , XTest%*%RP1 , YTrain , k1))

, as.numeric(predict(lda(x = XTrain%*%RP2 , grouping = YTrain),

XTest%*%RP2)$class), as.numeric(predict(qda(x = XTrain%*%RP3 ,

grouping = YTrain), XTest%*%RP3)$class))

return(c(Cutoff.val , class.vote))

}

## RPclassifer: averages over B1 carefully chosen random projections

in parallel to classify the test set

RPClassifier <- function(XTrain , YTrain , XTest , YTest , d, B1 = 100, B2

= 100, k = c(3,5,9,15,25))

{

n <- length(YTrain)

n.test <- length(YTest)

p = ncol(XTrain)

n1 <- table(YTrain)[[1]]

n2 <- table(YTrain)[[2]]

p1 <- n1/(n1+n2)

p2 <- 1-p1

RP.out <- simplify2array(mclapply(rep(1,B1), function(x){return(

RPChoose(B2, d, XTrain , YTrain , XTest , k))}, mc.cores = 4))

errRP <- rep(0,3)
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for (b in 1:3)

{

b1 <- (b-1)*n

b2 <- 3*n + (b-1)*n.test

Cutoff.val <- RP.out[b1+1:n, ]

Class.vote <- RP.out[b2+1:n.test , ]

vote1 <- rowMeans(Cutoff.val[1:n1, ], na.rm = TRUE)

vote2 <- rowMeans(Cutoff.val[n1+1:n2, ], na.rm = TRUE)

errecdfm <- function(x){

p1*ecdf(vote1)(x) + (1-p1)*(1-ecdf(vote2)(x))

}

errecdfM <- function(x){

p1*ecdf(vote1)(-x) + (1-p1)*(1-ecdf(vote2)(-x))

}

alpham <- optimise(errecdfm ,c(1,2),maximum=TRUE)$maximum

alphaM <- optimise(errecdfM ,c(-2,-1),maximum=TRUE)$maximum

alpha <- (alpham -alphaM)/2

vote <- rowMeans(Class.vote , na.rm = TRUE)

Class <- 1 + as.numeric(vote > alpha)

errRP[b] <- 100*mean(Class != YTest , na.rm = TRUE)

}

return(errRP)

}

##MainSim: RP Ensemble simulations

MainSim <- function(Model.No , n.train = 50, n.test = 1000, n.reps =

100, d = 5, B1 = 100, B2 = 100, k = c(3,5,9,15,25))

{

Risk <- NULL

for (i in 1:n.reps)

{

set.seed (100 + i)

data.train <- Model(Model.No , n.train , p = 50, s0 = 1, Pi = 1/2)

data.test <- Model(Model.No , n.test , p = 50, s0 = 1, Pi = 1/2)

if(i==1) Risk <- RPClassifier(data.train$x, data.train$y, data.

test$x, data.test$y, d = d, B1 = B1 , B2 = B2)

else Risk <- rbind(Risk , RPClassifier(data.train$x, data.train$y,

data.test$x, data.test$y, d = d, B1 = B1 , B2 = B2))

}

return(Risk)

}

##CompSim: comparitor simulations

CompSim <- function(Model.No , n.train = 50, p = 50, s0 = 1, prior = 1/

2, n.test = 1000, n.reps = 100, k = c(3,5,9,15,25))

{
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for (i in 1:n.reps)

{

set.seed (100 + i)

data.train <- Model(Model.No , n.train , p, s0 , prior)

data.test <- Model(Model.No , n.test , p, s0 , prior)

n.min <- min(table(data.train$y))

errLDA <- NA

if (n.train > p) errLDA <- 100*mean(predict(lda(x = data.train$x,

grouping = data.train$y), data.test$x)$class != data.test$y, na.rm

= TRUE)

errQDA <- NA

if (n.min > p) errQDA <- 100*mean(predict(qda(x = data.train$x,

grouping = data.train$y), data.test$x)$class != data.test$y, na.rm

= TRUE)

errknn <- NA

kcv <- sapply(k,function(x){sum(knn.cv(data.train$x, data.train$y,

x) != data.train$x)})

errknn <- 100*mean(knn(data.train$x, data.test$x, data.train$y, k

= k[which.min(kcv)]) != data.test$y, na.rm = TRUE)

err1PEN <- NA

cv.out1 <- PenalizedLDA.cv(data.train$x, data.train$y, lambdas=c

(0.055 ,0.06 ,0.065 ,.07 ,.075 ,0.08 ,.085 ,0.09 ,0.095))

out1 <- PenalizedLDA(data.train$x, data.train$y, data.test$x,

lambda = cv.out1$bestlambda , K = cv.out1$bestK)

err1PEN <- 100*mean(out1$ypred[,1] - data.test$y != 0, na.rm =

TRUE)

err1NSC <- NA

Trainout1 <- pamr.train(list(x = t(data.train$x), y = data.train$y

))

CV.out1NSC <- pamr.cv(Trainout1 , list(x = t(data.train$x), y =

data.train$y), nfold = 10)

out1NSC <- pamr.predict(Trainout1 , t(data.test$x), threshold = CV.

out1NSC$threshold[which.min(CV.out1NSC$error)], type = c("class"))

err1NSC <- 100*mean(out1NSC != data.test$y, na.rm = TRUE)

err1SCRDA <- NA

out1SCRDA <- ascrda(data.train$x, data.train$y, data.test$x, data.

test$y, SCRDAmethod = "SCRDA")

err1SCRDA <- as.numeric(out1SCRDA$SCRDA)*100

err1IR <- NA
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err1IR <- FitDLDA(data.train$x, data.train$y, data.test$x, data.

test$y)$Err*100

errRandForest <- NA

RandForest <- randomForest(x = data.train$x, y = factor(data.train

$y), xtest = data.test$x, ytest = factor(data.test$y), ntree =

1000, mtry = sqrt(p), replace = TRUE , classwt = c(n1/n.train , n2/n

.train), cutoff = c(0.5 ,0.5), sampsize = n.train , nodesize = 1,

keep.forest= TRUE)

errRandForest <- 100*mean(as.numeric(predict(RandForest , newdata =

data.test$x)) != data.test$y, na.rm = TRUE)

errSVMRad <- NA

SVMRad <- svm(x = data.train$x, y = factor(data.train$y), kernel =

"radial", gamma = 1/p, cost = 1, class.weights = list("1" = n1/n.

train , "2" = n2/n.train), cachesize = 40, tolerance = 0.001,

epsilon = 0.1, shrinking = TRUE , cross = 0, probability = FALSE ,

fitted = TRUE , na.action = na.omit)

errSVMRad <- 100*mean(as.numeric(predict(SVMRad , newdata = data.

test$x)) != data.test$y, na.rm = TRUE)

errSVMLin <- NA

SVMLin <- svm(x = data.train$x, y = factor(data.train$y), kernel =

"linear", gamma = 1/p, cost = 1, class.weights = list("1" = n1/n.

train , "2" = n2/n.train), cachesize = 40, tolerance = 0.001,

epsilon = 0.1, shrinking = TRUE , cross = 0, probability = FALSE ,

fitted = TRUE , na.action = na.omit)

errSVMLin <- 100*mean(as.numeric(predict(SVMLin , newdata = data.

test$x)) != data.test$y, na.rm = TRUE)

errGPRad <- NA

GPRad <- gausspr(x = data.train$x, y = factor(data.train$y),

scaled = FALSE , type= "classification", kernel="rbfdot", kpar="

automatic", var=1, variance.model = FALSE , tol =0.0005 , cross=0,

fit=FALSE , na.action = na.omit)

errGPRad <- 100*mean(1 + (predict(GPRad , newdata = data.test$x,

type = "probabilities", coupler = "pkpd")[,2]>0.5) != data.test$y)

risknew <- c(errLDA , errQDA , errknn ,errRandForest , errSVMRad ,

errSVMLin , errGPRad , errGPLin , err1PEN , err1NSC , err1SCRDA , err1IR

)

if(i==1) Risk <- risknew

else Risk <- rbind(Risk , risknew)

}

return(Risk)

}
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##Model: Generates data

Model <- function(Model.No, n, p, s0, Pi = 1/2)

{

if (Model.No == 1)

{

Y1 <- rmultinom(1, n, c(Pi , 1-Pi))

Y <- c(rep(1, Y1[1,1]), rep(2, Y1[2 ,1]))

mu <- rep(1/8, p)

D <- DExp (1)

X1 <- cbind(matrix(r(D)(Y1[1,1]*p), Y1[1,1], p))

X2 <- mvrnorm(Y1[2,1], mu , diag(p))

X <- rbind(X1 , X2)

}

if (Model.No == 2)

{

Y1 <- rmultinom(1, n, c(Pi , 1-Pi))

Y <- c(rep(1, Y1[1,1]),rep(2, Y1[2 ,1]))

mu <- c(rep(2, 5), rep(0, p-5))

U1 <- rchisq(Y1[1, 1], 1)

U2 <- rchisq(Y1[2, 1], 2)

Sigma1 <- diag(p)

Sigma2 <- 0.5*diag(p) + 0.5*c(rep(1, 5), rep(0, p-5))%*%t(c(rep(1,

5) ,rep(0, p-5))) + 0.5*diag(c(rep(0, 5), rep(1, p-5)))

X1 <- mvrnorm(Y1[1, 1], rep(0, p), Sigma1)/sqrt(U1/1)

X2 <- t(mu + t(mvrnorm(Y1[2, 1], rep(0, p), Sigma2)/sqrt(U2/2)))

X <- rbind(X1 , X2)

}

if (Model.No == 3)

{

Y1 <- rmultinom(1, n, c(Pi , 1-Pi))

Y <- c(rep(1, Y1[1, 1]), rep(2, Y1[2, 1]))

Y11 <- rmultinom(1, Y1[1, 1], c(1/2, 1/2))

mu <- c(rep(1, 5), rep(0, p-5))

Sigma <- diag(p)

X1 <- rbind(t(matrix(mu/2, p, Y11[1, 1])), t(matrix(mu/2, p, Y11

[2, 1]))) + mvrnorm(Y1[1, 1], rep(0, p), Sigma)

X2 <- cbind(matrix(rcauchy(Y1[2, 1]*5), Y1[2, 1], 5), matrix(rnorm

(Y1[2, 1]*(p-5), 0, 1), Y1[2, 1], p-5))

X <- rbind(X1 , X2)

}

if (Model.No == 4)

{

load("R.RData")

Y1 <- rmultinom(1, n, c(Pi , 1-Pi))

Y <- c(rep(1, Y1[1, 1]), rep(2, Y1[2, 1]))
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mu <- c(rep(1, 3), rep(0, p-3))

Sigma1 <- 0.5*diag(c(rep(1, 3), rep(0, p-3))) + 0.5*c(rep(1, 3),

rep(0, p-3))%*%t(c(rep(1, 3), rep(0, p-3))) + 0.5*diag(c(rep(0, 3)

, rep(1, p-3))) + 0.5*c(rep(0, 3), rep(1, p-3))%*%t(c(rep(0, 3),

rep(1, p-3)))

Sigma2 <- 1.5*diag(c(rep(1, 3), rep(0, p-3))) + 0.5*c(rep(1, 3),

rep(0, p-3))%*%t(c(rep(1, 3), rep(0, p-3))) + 0.5*diag(c(rep(0, 3)

, rep(1, p-3))) + 0.5*c(rep(0, 3), rep(1, p-3))%*%t(c(rep(0, 3),

rep(1, p-3)))

X1 <- mvrnorm(Y1[1, 1], R%*%rep(0, p), R%*%Sigma1%*%t(R))

X2 <- mvrnorm(Y1[2, 1], R%*%mu , R%*%Sigma2%*%t(R))

X <- rbind(X1, X2)

}

if (Model.No == 5)

{

mu <- c(rep(0, p-3))

EX <- mvrnorm(n, rep(0, p-3), diag(p-3))

Z2 <- matrix(runif(3*n, -1, 1), n, 3)

Y1 <- sum(diag(Z2%*%t(Z2)) >= 1)

Y <- c(rep(1, Y1), rep(2, n-Y1))

X1 <- Z2[diag(Z2%*%t(Z2)) >= 1, ]

X2 <- Z2[diag(Z2%*%t(Z2)) < 1, ]

X <- cbind(rbind(X1, X2), EX)

}

return(list(x=X, y=Y))

}

##Settings <- c(Model.No , n, p, prior , ntest , nreps , d, B1, B2)

##Settings <- read.csv(" Settings.txt", header = T)

Settings <- rbind(c(1, 50, 50, 0.5, 1000, 100, 2, 100, 100), c(1, 50,

50, 0.5, 1000, 100, 5, 100, 100))

for (Job in 1:2)

{

out <- MainSim(Model.No = Settings[Job , 1], n.train = Settings[Job ,

2], p = Settings[Job , 3], prior = Settings[Job , 4], n.test =

Settings[Job , 5], n.reps = Settings[Job , 6], d = Settings[Job , 7],

B1 = Settings[Job , 8], B2 = Settings[Job , 9])

save(out , file = paste("Risk -",Job ,".RData", sep=""))

}

for (Job in 1)

{

outcomp <- CompSim(Model.No = Settings[Job , 1], n.train = Settings[

Job , 2], p = Settings[Job , 3], prior = Settings[Job , 4], n.test =

Settings[Job , 5], n.reps = Settings[Job , 6])

save(outcomp , file = paste("RiskComp -",Job ,".RData", sep=""))

}
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Chapter 3

Semi-supervised tail adaptive

nearest neighbour classification

3.1 Introduction

In this chapter, we propose a semi-supervised k-nearest neighbour classifier, where

the number of neighbours considered varies with the location of the test point. More

precisely, we first estimate the marginal density of the features using a large unlabelled

training data set, then let k depend on this estimate at the test point, using fewer

neighbours when the density is small. The method is motivated by a new asymptotic

expansion for the global excess risk of the standard k-nearest neighbour classifier.

This expansion elucidates conditions under which the dominant contribution to the

excess risk comes from the locus of points at which each class label is equally likely

to occur, as well as situations where the dominant contribution comes from the tails

of the marginal distribution of the features. We show further that the proposed semi-

supervised classifier exploits a local bias-variance trade-off. As a result, the tail excess

risk is shown to be negligible when the features have more than four finite moments,

regardless of their dimension d (for the standard k-nearest neighbour classifier, our

theory requires d ≥ 5 and more than 4d/(d− 4) finite moments).

Introduced by Fix and Hodges (1951), the k-nearest neighbour (knn) classifier

assigns the test point according to a majority vote over the classes of its k nearest

points in the training set. While this simple and intuitive method has become extremely

popular in practical problems, it was not until recently that detailed understanding of

its error properties was known (Hall, Park and Samworth, 2008; Samworth, 2012a).

Even then the expansion of the excess risk is restricted to a compact set, ignoring the

tail of the distribution.

The first goal in this chapter is to characterise the error properties of the standard

k-nearest neighbour classifier in the tail of the feature vector distribution, when these

65
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vectors take values in Rd. Intuitively, points in the tail will be harder to classify since

there are typically fewer training data points in that region. On the other hand such

points will rarely be observed, and may contribute little to the overall risk even if

classified incorrectly. In Theorem 3.2 in Section 3.3 we investigate and characterise

this trade-off. It is shown that, under some regularity conditions, for d ≥ 5, if the

features have more than 4d/(d − 4) finite moments, then the excess risk in the tail of

the k-nearest neighbour classifier is asymptotically smaller than the risk in the body of

the distribution. In this case, we derive an asymptotic expansion for the global excess

risk. However, when d ≤ 4, or when moment condition above is not satisfied, the error

in the tail may dominate.

The results discussed above motivate a modification of the knn classifier in semi-

supervised classification settings. We propose to allow the choice of k to depend on (an

estimate of) the feature vector density f̄ at the test point. We argue that, by using fewer

neighbours in low density regions, we are able to achieve a better balance in the local

bias-variance trade-off. In particular, using an oracle, local choice of k that depends on

f̄ , and under regularity conditions, we show that the excess risk over Rd is O(n−4/(d+4))

provided that the feature vectors have more than four finite moments. By contrast, our

theory for the standard knn classifier with a global choice of k requires that d ≥ 5 and

the feature vectors have more than 4d/(d−4) finite moments. Of course, in practice f̄ is

unknown, but in a semi-supervised setting with m additional, independent, unlabelled

observations, we can estimate it by f̂m, say. Provided m/n2+d/2 → ∞, we show that

the tail-adaptive semi-supervised classifier mimics the asymptotic performance of the

oracle.

The local classifier is similar in spirit to a neighbourhood classifier (see, for example,

Owen, 1984), where classification is made according to a majority vote over the classes

of the points in a ball of fixed radius about the test point. On the other hand, there

are few results on the topic of classification in the tails. Indeed, asymptotic expansions

for the excess risk of plug-in type classifiers usually require that the feature vectors are

compactly supported (Mammen and Tsybakov, 1999; Audibert and Tsybakov, 2007;

Biau, Cérou and Guyader, 2010), or at least the expansion is restricted to a compact

set (Hall and Samworth, 2005). Hall, Park and Samworth (2008) showed that, under

weak regularity conditions, the excess risk of the k-nearest neighbour classifier over a

compact set R is given by

B1,R
1

k
+B2,R

(k
n

)4/d

+ o
{

1/k + (k/n)4/d
}

(3.1)

as n → ∞; see also Samworth (2012a). Let (X, Y ) ∈ Rd × {1, 2} denote a generic

feature vector–class label pair, and let η(x) := P(Y = 1|X = x) denote the regression

function. The constants B1,R and B2,R, given explicitly in Samworth (2012a), depend
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only on the behaviour of the joint distribution of (X, Y ) in a neighbourhood of the

Bayes decision boundary, where η(x) = 1/2. The expansion in (3.1) can be interpreted

as a bias-variance decomposition of an estimate of η. A simple calculation shows that

the optimal k, which balances the two dominant terms to minimise the risk, is given

by

k∗R =
⌊(dB1,R

4B2,R

)d/(d+4)

n4/(d+4)
⌋
. (3.2)

The excess risk of the k∗R-nearest neighbour classifier over R is O(n−4/(d+4)). Sam-

worth (2012a) shows further that by using a weighted classifier – that is by assigning

increasingly distant neighbours a smaller weight – one can guarantee improvements

in the constant preceding the leading order term in the asymptotic expansion. The

improvement is at least 5% when d ≤ 15, and most significant when d = 4. As d

increases, however, the benefit becomes negligible.

Hall and Kang (2005) study the tail error properties of a kernel classifier for uni-

variate data. Their method first computes kernel estimates for the class conditional

densities, then classifies according to which density estimate, weighted by the prior

probability of each class, is larger. However, both estimates may be zero, for instance

for points beyond the maximum order statistic of the training sample. In this case,

the test point is classified according to which density is first non-zero as one looks

back toward the body of the distribution. It is shown that, under certain regularity

conditions, the contribution to the excess risk from the tail is of smaller order than the

contribution from the body of the distribution. However, these regularity conditions

exclude, for example, Pareto-type tails. For instance, following an example from Hall

and Kang (2005), suppose that, for large x, one class has density ax−α, while the other

has density bx−β, where a, b > 0 and 1 < α < β < α + 1 < ∞. Then the excess risk

from the right tail is of larger order than that in the body of the distribution. We

will see later that the knn classifier does not suffer the same disadvantage and that, in

the example above – in fact, the contribution to the excess risk of the knn classifier is

O(n−M) for every M > 0.

Gedat, Klein and Marteau (2014) derive global rates of convergence for the k-

nearest neighbour classifier, when η is Lipschitz and the well-known margin assumption

of Mammen and Tsybakov (1999); Tsybakov (2004) is satisfied. Under the further

condition that P{f̄(X) < δ} < δ, as δ → 0, it is shown that the global risk of knn

classifier, with k = bn
2

3+α+d c, is O(n−
1+α

3+α+d ). This is a slower rate than the O(n−
1+α
2+d )

rate that one can expect under the same conditions when considering the risk over a

compact set.

The remainder of this chapter is organised as follows. After introducing our nota-

tion and giving a preliminary result in Section 3.2, we present in Section 3.3 our main

results for the standard knn classifier. This leads on, in Section 3.4, to our study of the
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semi-supervised setting, where we derive asymptotic results of the excess risk of our

tail-adaptive classifier. We illustrate the finite-sample benefits of the adaptive classi-

fiers over the standard knn classifier in a simulation study in Section 3.5. Technical

arguments are deferred to the appendix.

Finally we fix here some notation used throughout this chapter. Let ‖·‖ denote the

Euclidean norm and, for δ > 0 and x ∈ Rd, let Bδ(x) := {z ∈ Rd : ‖x− z‖ ≤ δ} denote

the closed ball of radius δ centred at x. Let ad := 2πd/2

dΓ(d/2)
denote the d-dimensional

Lebesgue measure of B1(0). For a real-valued function g defined on A ⊆ Rd that is

twice differentiable at x, write ġ(x) = (g1(x), . . . , gd(x))T and g̈(x) =
(
gjk(x)

)
for its

gradient vector and Hessian matrix at x, and let ‖g‖∞ = supx∈A |g(x)|. Let ‖ · ‖op

denote the operator norm of a matrix.

3.2 Statistical setting

We recall the semi-supervised classification setting outlined in the main introduction.

Let (X, Y ), (X1, Y1), . . . , (Xn+m, Yn+m) be independent random pairs taking values in

Rd × {1, 2}, each with joint distribution P . Let πr := P(Y = r), for r = 1, 2, and

X|Y = r ∼ Pr, for r = 1, 2, where Pr is a probability measure on Rd. Define the

regression function η(x) := P(Y = 1|X = x) and let PX := π1P1 + π2P2 denote the

marginal distribution of X.

We observe labelled training data, Tn := {(X1, Y1), . . . , (Xn, Yn)}, and unlabelled

training data, T ′m := {Xn+1, . . . , Xn+m}, and are presented with the task of assigning

the test point X to either class 1 or 2.

A classifier is a Borel measurable function C : Rd → {1, 2}, with the interpretation

that C assigns x ∈ Rd to the class C(x). Given a Borel measurable set R ⊆ Rd, the

misclassification rate, or risk, over R is

RR(C) := P[{C(X) 6= Y } ∩ {X ∈ R}]. (3.3)

Here, the set R may be the whole of Rd, in which case the subscript R will be dropped,

or a particular subset of Rd of interest. The Bayes classifier

CBayes(x) :=

{
1 if η(x) ≥ 1/2;

2 otherwise,
(3.4)

minimises the risk over any region R (Devroye et al., 1996, p. 20). Thus, the per-

formance of a classifier C is measured via its (non-negative) excess risk, RR(C) −
RR(CBayes). A classifier Ĉn, based on the training data Tn, is said to be consistent if

the excess risk converges to zero as n → ∞, but we will also be interested in a more
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precise description of the asymptotic behaviour of the excess risk.

We can now formally define the local-k-nearest neighbour classifier, which allows

the number of neighbours considered to vary depending on the location of the test

point. Suppose kL : Rd → {1, . . . , n} is measurable. Given the test point x ∈ Rd, let

(X(1), Y(1)), . . . , (X(n), Y(n)) be a reordering of the training data such that ‖X(1)− x‖ ≤
· · · ≤ ‖X(n) − x‖. (When a distinction needs to be made, we also write X(i)(x) for the

ith nearest neighbour of x.) Let Ŝn(x) := kL(x)−1
∑kL(x)

i=1 1{Y(i)=1}. Then the local-k-

nearest neighbour classifier (kLnn) is defined to be

ĈkLnn
n (x) :=

{
1 if Ŝn(x) ≥ 1/2;

2 otherwise.
(3.5)

Given k ∈ {1, . . . , n}, let k0 denote the constant function k0(x) := k for all x ∈
Rd. Using kL = k0 the definition above reduces to the standard k-nearest neighbour

classifier (knn), and we will write Ĉknn
n in place of Ĉk0nn

n .

For β ∈ (0, 1), let

Kβ,0 := {dlog4 ne, dlog4 ne+ 1, . . . , bn1−βc} (3.6)

denote a region of values of k that will be of interest to us. Note that Kβ1,0 ⊃ Kβ2,0,

for β1 < β2. Moreover, when β is small, the upper and lower bounds are only a very

slightly stronger requirement than Stone’s conditions for consistency that k = kn →∞,

kn/n→ 0 as n→∞.

3.2.1 Preliminary result

In Proposition 3.1 below we show that, if η is bounded away from 1/2 in the tails, then

the knn classifier performs very well in that region.

Proposition 3.1. Let δ > 0 and suppose that R ⊆ Rd is a bounded, open, convex set

with the property that infx∈∂R PX
(
Bδ(x)

)
> 0. Now suppose that R0 ⊆ R is such that

x ∈ R whenever ‖x− w‖ ≤ 2δ for some w ∈ R0, and such that

inf
x∈Rc0

η(x)− 1

2
> ε (3.7)

for some ε ∈ (0, 1/2). Then for each β ∈ (0, 1) and each M > 0,

sup
k∈Kβ,0

RRc(Ĉ
knn
n )−RRc(CBayes) = O(n−M) (3.8)

as n→∞.
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Remark The conclusion in (3.8) also holds if (3.7) is replaced with the condition that

there exists ε ∈ (0, 1/2) such that 1/2− supx∈Rc0 η(x) > ε.

When X is univariate, the assumption that η is bounded away from 1/2 in the tail is

relatively weak. Indeed, for the particular case described in the introduction, where P1

and P2 have Lebesgue densities f1 and f2 satisfying f1(x) ∼ ax−α and f2(x) ∼ bx−β as

x → ∞, with 1 < α < β < α + 1 < ∞, we in fact have that η(x) → 1 as x → ∞. It

follows that, unlike the kernel-based classifiers studied by Hall and Kang (2005), the

knn classifier performs well in the tails in this case.

For multivariateX, the assumption in (3.7) is rather strong; in particular, it implies

that {x ∈ Rd : η(x) = 1/2} is bounded. In Section 3.3 below, therefore, we consider

the global risk of the k-nearest neighbour classifier in settings where η is not bounded

away from 1/2 in the tails.

3.3 Global risk of the k-nearest neighbour classifier

Our analysis will make use of the following assumptions:

(B.1) The probability measures P1 and P2 are absolutely continuous with respect to

Lebesgue measure with twice continuously differentiable Radon–Nikodym deriva-

tives f1 and f2, respectively, satisfying f̄(x) := π1f1(x) + π2f2(x) > 0 for all

x ∈ Rd.

(B.2) The set S := {x ∈ Rd : η(x) = 1/2} is non-empty with infx0∈S ‖η̇(x0)‖ > 0 and

supx0∈S a(x0)2 < ∞, where the function a is given in (3.9) below. Furthermore,∫
S f̄(x0) dVold−1(x0) <∞, where Vold−1 denotes the natural (d− 1)-dimensional

volume measure that S inherits as a subset of Rd.

(B.3) There exists δ0 > 0, such that

sup
δ∈(0,δ0)

sup
x:f̄(x)≥δ log2d(1/δ)

sup
‖u‖≤log−2(1/δ)

‖ ¨̄f(x+ u)‖op

f̄(x) log2(2‖f̄‖∞/f̄(x))
<∞.

(B.4)(ρ) We have that
∫
Rd ‖x‖

ρdPX(x) <∞ and
∫
S f̄(x0)d/(ρ+d) dVold−1(x0) <∞.

The density assumption in (B.1) serves several purposes. First, it enables us to

define the tail of the distribution as the region where f̄ is smaller than some threshold.

The assumption that f̄ is supported on Rd finesses the problem of classification near

the boundary of the support of f̄ . The behaviour of f1 and f2 in a neighbourhood of

S is crucial for deriving an asymptotic expansion for the excess risk. The continuity of

f1 and f2 ensures that η is continuous, so in particular it cannot jump discontinuously



3.3. GLOBAL RISK OF THE K-NEAREST NEIGHBOUR CLASSIFIER 71

across 1/2. Moreover, the smoothness of η and the lower bound on its derivative on S,

implies that S is a (d − 1)-dimensional manifold, and facilitates the definition of the

Vold−1 measure. The assumption on the function

a(x) :=

∑d
j=1{ηj(x)f̄j(x) + 1

2
ηjj(x)f̄(x)}

(d+ 2)a
2/d
d f̄(x)

(3.9)

allows us to approximate the bias and variance of Ŝn(x), when x is in a neighbourhood

of S, by the first and second order terms in their asymptotic expansions. The last

part of assumption (B.2) requires the restriction of the density to the set S to decay

appropriately in the tails.

Assumption (B.3) is a technical condition on the second derivatives of f̄ , which

means that the PX-measure of a small ball at x is well approximated by taking the

density to be constant over the ball. It is satisfied, for instance, by densities of the

form, f̄(x) ∝ exp(−‖x‖b), for b > 0, and f̄(x) ∝ (1 + ‖x‖)−(d+c), for c > 0. The

moment assumption in (B.4)(ρ) is used to bound the PX-measure of the region where

f̄ is small.

We are now in a position to present our asymptotic expansion for the global excess

risk of the standard knn classifier.

Theorem 3.2. Assume (B.1), (B.2), (B.3) and (B.4)(ρ).

(i) Suppose that d ≥ 5 and ρ > 4d
d−4

. Then for each β ∈ (0, 1),

R(Ĉknn
n )−R(CBayes) =

{B1

k
+B2

(k
n

)4/d}
{1 + o(1)} (3.10)

as n→∞, uniformly for k ∈ Kβ,0, where B1 and B2 are given in (3.12).

(ii) Suppose that either d ≤ 4, or, d ≥ 5 and ρ ≤ 4d
d−4

. Then for each β ∈ (0, 1),

R(Ĉknn
n )−R(CBayes) =

B1

k
+ o
(1

k
+
(k
n

) ρ
ρ+d

log2dρ/(ρ+d) n
)

(3.11)

as n→∞, uniformly for k ∈ Kβ,0.

We see in Theorem 3.2, part (i) that, for d ≥ 5, if PX has enough moments then the

main contribution to the risk arises from neighbourhood of the Bayes decision boundary

in the body of the distribution, where f̄(x) ≥ k
n

log2d(n/k). Furthermore, due to the

moment condition, the excess risk over
{
x ∈ Rd : f̄(x) < k

n
log2d(n/k)

}
is negligible

in comparison. In this case we are able to give the dominant term in the asymptotic

expansion of the global excess risk, where the integrability condition ensures that the
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constants

B1 :=

∫
S

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0) and B2 :=

∫
S

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0), (3.12)

are finite.

On the other hand, in part (ii), it is possible that the main contribution to the

excess risk is coming from the region where f̄(x) < k
n

log2d(n/k). Indeed, the bias is

large in the tail. In particular, it is possible that the kth nearest neighbour can be far

from a test point, so that the knn classifier is almost certain to classify differently to

the Bayes classifier. Note that, for d ≤ max{4, 4ρ
ρ−4
}, we have ρ ≤ max{4, 4d

d−4
}; with

too few moments the PX-measure of
{
x ∈ Rd : f̄(x) < k

n
log2d(n/k)

}
can be large.

In this case ρ/(ρ + d) < 4/d, and, without further assumptions, it may be the case

that the excess risk in the tail is dominating the excess risk from the main body of the

distribution.

If the marginal distribution of X has infinitely many moments, then for d ≤ 4,

part (ii) has the following corollary:

Corollary 3.3. Assume (B.1), (B.2), (B.3) and (B.4)(ρ), for all ρ > 0. Suppose

that d ≤ 4. Then for each β ∈ (0, 1) and all γ > 0,

R(Ĉknn
n )−R(CBayes) =

B1

k
+ o
(1

k
+
(k
n

)1−γ)
(3.13)

as n→∞, uniformly for k ∈ Kβ,0.

Under the conditions of Theorem 3.2, part (i), we can balance the dominant terms

in the expansion in (3.10) by setting

k∗ :=
⌊(dB1

4B2

)d/(d+4)

n4/(d+4)
⌋
. (3.14)

Note that this is the same as the choice in (3.2), except that that the constants B1 and

B2 have changed. Under the assumptions of part (i), the excess risk of the k∗-nearest

neighbour classifier satisfies

R(Ĉk∗nn
n )−R(CBayes) = (d+ 4)

(B1

4

)4/(d+4)(B2

d

)d/(d+4)

n−4/(d+4){1 + o(1)}. (3.15)

In the case of Theorem 3.2, part (ii), however, there is no direct trade-off. To minimise

the risk in the worst case one would chose, up to logarithmic terms, k = O(nρ/(2ρ+d)),

and in the case that X has infinitely many moments, k = O(n1/2).

Consider the important practical problem of choosing k. One could try to estimate

the constants B1 and B2 in (3.14) and use a ‘plug-in’ choice of k. However, as discussed
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in Samworth (2012b), estimating these is hard. One needs to first estimate the set S,

and then compute integrals of unknown functions over this set.

In practice, choosing k via a data-driven method works well, for example, using

N -fold cross validation. Theorem 3.2 suggests a way to re-scale the cross validated

choice based on the rate of convergence of the risk. Indeed, for 5-fold cross validation,

the risks are estimated with a training set 4/5ths of the original size, thus, if the

assumptions of part (i) are satisfied, one should re-scale the best cross validated choice

by (5/4)4/(d+4), and if the assumptions of part (ii) are satisfied, then the appropriate

re-scaling is (5/4)ρ/(2ρ+d). Of course, the number of moments needs to be estimated

here too.

3.4 Tail adaptive classification

The results of Section 3.3, suggest that one may be able to achieve a faster rate of

convergence for the global excess risk in some cases by letting k depend on the location

of the test point.

3.4.1 Oracle classifier

To aid a preliminary discussion, suppose that the marginal density f̄ is known. For

β ∈ (0, 1), let

kO(x) := max
[
1,min

{⌊
B
{
f̄(x)n

}4/(d+4)⌋
, bn1−βc

}]
, (3.16)

where the subscript O refers to the fact that this is an oracle choice of the function

kL, since it depends on f̄ . This choice balances the first order terms in the asymptotic

expansions of the local squared-bias and variance of Ŝn(x), which, under our assump-

tions, are O
(
[k(x)/{nf̄(x)}]4/d

)
and O(1/k(x)), respectively. We start by stating the

global excess risk result:

Theorem 3.4. Assume (B.1), (B.2), (B.3) and (B.4)(ρ). Then for each β ∈ (0, 1)

and each B > 0,

(i) if ρ > 4,

R(ĈkOnn
n )−R(CBayes) = B3n

−4/(d+4){1 + o(1)} (3.17)

as n→∞, where

B3 :=
1

B

∫
S

f̄(x0)d/(d+4)

4‖η̇(x0)‖
dVold−1(x0) +B4/d

∫
S

f̄(x0)d/(d+4)

‖η̇(x0)‖
a(x)2 dVold−1(x0);
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(ii) if ρ ≤ 4, then

R(ĈkOnn
n )−R(CBayes) = o(n−ρ/(ρ+d) log2(d+4)ρ/(ρ+d) n) (3.18)

as n→∞.

Note here that, in comparison to Theorem 3.2, the condition on ρ in Theorem 3.4

does not depend on the dimension d, and the conditions imposed in Theorem 3.4 to

achieve a O(n−4/(d+4)) global rate of convergence are much weaker than those in The-

orem 3.2. The proof of Theorem 3.4 is similar to Theorem 3.2 and can be summarised

as follows: in part (i), the main contribution arises from a neighbourhood of the Bayes

decision boundary S inside the set R′n :=
{
x ∈ Rd : f̄(x) ≥ log2(d+4) n

n

}
. Then, as

before, the moment condition ensures that the constant B3 is finite, and gives that the

risk over the set Rd \R′n is negligible. In part (ii), however, the dominant contribution

may arise from the tail, giving the little o term in (3.18).

Consider minimising the constant B3 in (3.17). A simple calculation shows that

the minimum is achieved by setting

B = B∗ :=

(
d
∫
S
f̄(x0)d/(d+4)

4‖η̇(x0)‖ dVold−1(x0)

4
∫
S
f̄(x0)d/(d+4)

‖η̇(x0)‖ a(x0)2 dVold−1(x0)

) d
d+4

.

This yields that

B∗3 := (d+ 4)
(∫
S

f̄(x0)d/(d+4)

16‖η̇(x0)‖
dVold−1(x0)

) 4
d+4
(∫
S

f̄(x0)d/(d+4)

d‖η̇(x0)‖
a(x)2 dVold−1(x0)

) d
d+4
.

It is informative to compare B∗3 with the optimal constant for the standard knn

classifier given in (3.15). Indeed, by Hölder’s inequality, we have that

B
4/(d+4)
1 B

d/(d+4)
2 ≥

∫
S

f̄(x0)d/(d+4)

44/(d+4)‖η̇(x0)‖
a(x0)2d/(d+4) dVold−1(x0).

Therefore

B∗3

(d+ 4)
(
B1/4

)4/(d+4)(
B2/d

)d/(d+4)
≤
(supx0∈S a(x0)2

infx0∈S a(x0)2

)d/(d+4)

.

Thus, if the function a is constant on S, then the oracle tail adaptive classifier will

(asymptotically) perform at least as well as the standard knn classifier (with optimal

k). In practice, of course, f̄ is unknown. In the semi-supervised setting we propose to

estimate f̄ using the unlabelled training set.
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3.4.2 The semi-supervised nearest neighbour classifier

Suppose that f̂m is an estimate of f̄ , based on the unlabelled training set T ′m. Many

different techniques are available, including kernel methods, nearest neighbours, his-

tograms, and many more. Silverman (1986) provides a good practical introduction

to the subject; see also Jones et al. (1996). More recently, shape-constrained methods

have enjoyed popularity: see, for example, Walther (2009); Chen and Samworth (2013);

Kim and Samworth (2014) and the references therein.

Now, for β ∈ (0, 1), let

kSS(x) := max[1,min{bB{f̂m(x)n}4/(d+4)c, bn1−βc}], (3.19)

where f̂m denotes the kernel density estimator of f̄ , given by

f̂m(x) = f̂m,h(x) :=
1

mhd

m∑
j=1

K
(x−Xn+j

h

)
,

where K(x) is a bounded, square-integrable kernel function, with finite second moment,

and is of the form Q(p(x)), for a polynomial p and a function of bounded variation Q.

Let S ′n := S ∩R′n. We have the following:

Theorem 3.5. Assume (B.1), (B.2), (B.3) and (B.4)(ρ). Suppose further that

m = mn ≥ m0n
2+d/2, for some sufficiently large m0 > 0, and h = hm := Am−1/(d+4),

for some A > 0. Then for each β ∈ (0, 1) and each B > 0,

(i) if ρ > 4,

R(ĈkSSnn
n )−R(CBayes) = B4n

−4/(d+4){1 + o(1)} (3.20)

as n→∞, where

B4 := E
{

1

B

∫
S′n

f̄(x0)d/(d+4)

4‖η̇(x0)‖

( f̄(x0)

f̂m(x0)

)4/(d+4)

dVold−1(x0)

+B4/d

∫
S′n

f̄(x0)d/(d+4)

‖η̇(x0)‖

( f̂m(x0)

f̄(x0)

)16/(d(d+4))

a(x0)2 dVold−1(x0)

}
.

(ii) if ρ ≤ 4, then

R(ĈkSSnn
n )−R(CBayes) = o(n−ρ/(ρ+d) log2(d+4)ρ/(ρ+d) n)

as n→∞.

The lower bound on m is used to control the sup-norm loss of f̂m as estimate of f̄

over R′n. In fact, a similar result holds for any multivariate density estimator f̃m = f̃mn
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satisfying

P
(
‖f̃m − f‖∞ ≥

log2(d+4) n

2n

)
= o(n−4/(d+4))

as n → ∞. This ensures that c ≤ infx∈R′n
f̄(x)

f̃m(x)
≤ supx∈R′n

f̄(x)

f̃m(x)
≤ C, for some

0 < c ≤ C, with high probability.

3.5 Empirical analysis

We compare the tail adaptive kOnn and kSSnn classifiers, introduced in the previous

section, with the standard knn classifier. We investigate three settings that reflect the

differences between the main results in Sections 3.3 and 3.4.

• Setting 1: P1 is the distribution of d independent Laplace components; P2 is the

d-dimensional multivariate Normal distribution with mean µ = (1, . . . , 1)T and

covariance Id×d.

• Setting 2: P1 is the distribution of d independent t5 components; P2 is the distri-

bution of d independent components, the first bd/2c have a t5 distribution and

the remaining d− bd/2c a N(1, 1) distribution.

• Setting 3: P1 is the distribution of d independent standard Cauchy components;

P2 is the distribution of d independent components, the first bd/2c standard

Cauchy and the remaining d− bd/2c standard Laplace.

The corresponding marginal distribution PX in Setting 1 has infinitely many mo-

ments. Therefore, by Theorem 3.2, for d ≤ 4, the global risk of the optimal standard

knn classifier has, up to log terms, a O(n−1/2) rate of convergence. However, for the tail

adaptive versions of the classifier, we can expect O(n−4/(d+4)) rates. If d ≥ 5, all three

classifiers have a O(n−4/(d+4)) rate. In Setting 2, we have only up to (but not including)

5 finite moments. In this case, by Theorem 3.2, for d < 20, the optimal standard knn

classifier has (up to log terms) a O(n−5/(d+5)) rate of convergence. Whereas, we can

expect a O(n−4/(d+4)) rate for optimal the tail adaptive classifiers. Finally, in Setting

3, there is no first moment and the dominant contribution to the excess risk is arising

from the tail for the standard and adaptive knn classifiers, the rates of convergence

expected are (up to log terms) O(n−1/(d+2)) and O(n−1/(d+1)), respectively.

We use 5-fold cross validation to choose the tuning parameter for each classifier.

More precisely, for the standard knn classifier, we set k = k̂ = b(5/4)4/(d+4)k̃c, where

k̃ is the value of k (from an equally spaced sequence of length at most 40 of values be-

tween 1 and bn/4c) that yields the smallest 5-fold cross-validation error. The rescaling

(5/4)4/(d+4) is used since k̃ is chosen based on a sample of size 4n/5. Note that we are
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Table 3.1: Misclassification rates for Settings 1, 2 and 3. In the final two columns we
present the regret ratios given in (3.21) (with standard errors calculated via the delta
method). Highlighted in bold are the cases were there is a significant (more than 1
standard error) difference between the standard and semi-supervised classifiers.

d Bayes risk n k̂nn risk k̂Onn risk k̂SSnn risk O RR SS RR
Setting 1
1 30.02 50 35.620.15 35.570.14 35.430.15 0.990.021 0.970.022

200 31.790.08 31.340.07 31.310.07 0.750.031 0.730.030

1000 30.730.05 30.300.05 30.330.05 0.390.046 0.440.043

2 24.21 50 30.000.12 30.010.12 29.950.12 1.000.017 0.990.017

200 26.730.06 26.040.06 26.080.06 0.730.018 0.740.019

1000 25.720.05 24.960.04 25.020.04 0.500.019 0.540.018

5 13.17 50 21.490.10 21.760.10 21.600.10 1.030.009 1.010.009

200 17.900.05 17.480.05 17.420.05 0.910.008 0.900.008

1000 16.030.04 15.430.04 15.480.04 0.790.008 0.810.008

Setting 2
1 31.16 50 36.450.14 36.070.14 35.930.14 0.930.021 0.900.021

200 32.800.08 32.380.07 32.420.07 0.740.034 0.770.035

1000 31.580.05 31.370.05 31.370.05 0.510.067 0.510.068

2 31.15 50 37.790.13 38.020.12 37.900.12 1.030.015 1.020.015

200 33.580.08 33.630.07 33.540.07 1.020.029 0.980.027

1000 31.810.05 31.810.05 31.800.05 1.000.039 0.980.039

5 20.10 50 28.700.13 29.160.12 29.130.11 1.050.011 1.050.011

200 23.630.06 23.770.06 23.930.06 1.030.014 1.080.015

1000 21.850.04 21.700.04 21.770.04 0.920.013 0.950.014

Setting 3
1 41.95 50 47.590.09 46.630.10 46.580.10 0.830.014 0.820.014

200 45.530.08 44.660.08 44.740.08 0.760.018 0.780.019

1000 43.410.06 42.800.06 42.840.05 0.580.030 0.610.029

2 41.96 50 47.990.07 47.160.09 47.230.09 0.860.011 0.880.012

200 46.360.07 45.630.07 45.670.08 0.830.013 0.840.014

1000 44.090.06 43.730.06 43.640.06 0.830.022 0.790.021

5 32.00 50 45.050.10 43.000.10 43.150.12 0.840.006 0.850.006

200 41.150.08 38.930.07 39.350.08 0.760.007 0.800.007

1000 36.930.05 35.050.05 36.230.05 0.820.008 0.860.008

choosing the k̂ to minimise the error from the body of the distribution – in some cases

this is a sub-optimal choice for the global risk.

For the oracle tail adaptive classifier, we set

k̂O(x) := max
[
1,min

[
bB̂O{f̄(x)n/‖f̄‖∞}4/(d+4)c, n/2

]]
.
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Similarly, for the semi-supervised classifier, we set

k̂SS(x) := max
[
1,min

[
bB̂SS{f̂m(x)n/‖f̂m‖∞}4/(d+4)c, n/2

]]
,

where f̂m is the multidimensional kernel density estimator, with a truncated Normal

kernel and bandwidths chosen via the default method in the R package ks (Duong,

2015). The choice of B̂O and B̂SS is made as follows: Let nj denote the training sam-

ple size used in the jth fold of the cross-validation procedure, then for each possible

choice of BO, we use k̂O(x) = max[1,min{bBO{f̄(x)nj/‖f̄‖∞}4/(d+4)c, nj/2}]. (A simi-

lar method is used to choose B̂SS.) The choices of B̂O and B̂SS, therefore, do not require

rescaling. In our simulations, B̂O and B̂SS are chosen from a sequence of 40 equally

spaced points between n−4/(d+4) and nd/(d+4). Moreover, for the semi-supervised classi-

fier we estimate ‖f̂m‖∞ by the maximum value attained on the unlabelled training set.

Note that using the lower limits, namely when B̂O, B̂SS = n−4/(d+4), yield the standard

1-nearest neighbour classifier.

In each of the 3 settings above, we used three different values of d, a training set

of size n ∈ {50, 200, 1000}, an unlabelled training set of size 1000, and a test set of size

1000. In Table 3.1, we present the sample mean and standard error (in subscript) of

the risks for 1000 repetitions of each experiment. Further, we present estimates of the

regret ratios, given by

R(Ĉ k̂Onn
n )−R(CBayes)

R(Ĉ k̂nn
n )−R(CBayes)

and
R(Ĉ k̂SSnn

n )−R(CBayes)

R(Ĉ k̂nn
n )−R(CBayes)

, (3.21)

for which the standard errors given are estimated via the delta method.

In Table 3.1 we see improvement in performance from the tail adaptive classifiers

in 20 of the 27 experiments, comparable performance (the risk estimates are within 1

standard error) in 5 of the 27, and there are just 2 settings where the standard knn

classifier is best.

In Setting 1, there is an improvement in each dimension when n ≥ 200. When

n = 50 the classifiers perform comparatively (the estimated regret ratio is within one

standard error of 1). Possibly the sample size is too small for the asymptotic theory used

in constructing the tail adaptive classifier to hold. Note further that the improvement is

greater for the smaller values of d. This agrees with the result in Theorem 3.4, namely

that the excess risk of tail adaptive classifier converges slower for larger d. In Setting 2,

we only see an improvement when d = 1. For d = 2, 5 the improvement expected in

theory is small, e.g for d = 5 the optimal standard knn classifier has a O(n−1/2) rate of

convergence and the optimal tail adaptive classifier has a O(n−4/9) rate – it is possible

that the sample sizes used here are insufficient to detect the theoretical improvement
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in rate and the leading constant is driving the performance. In Setting 3, we see

improvement in performance from the oracle tail adaptive classifiers in every situation.

Whilst the dominant contribution to the excess risk for all classifiers is arising from

the tail, the improvement in rate is large. Again the improvement is greater for lower

dimensional data.

A further comparison to draw from these experiments is between the oracle and

semi-supervised version of the tail adaptive classifiers. The performance is the same

(the risk estimates are within one standard error) in all cases except in Settings 2

and 3 and when d = 5. In this case, the semi-supervised version performs worse than

the oracle. This is likely due to the fact that density estimation is harder in higher

dimensions, if one had a larger unlabelled training data set we could expect similar

performance.

3.6 Appendix

We first require some further notation. Define the n × d matrices Xn := (X1 . . . Xn)

and xn := (x1 . . . xn). Write

µ̂n(x) = µ̂n(x, xn) := E{Ŝn(x)|Xn = xn} =
1

kL(x)

kL(x)∑
i=1

η(x(i)),

and

σ̂2
n(x) = σ̂2

n(x, xn) := Var{Ŝn(x)|Xn = xn} =
1

kL(x)2

kL(x)∑
i=1

η(x(i)){1− η(x(i))}.

Here we have used the fact that the ordered labels Y(1), . . . , Y(n) are independent given

Xn, satisfying P(Y(i) = 1|Xn) = η(X(i)). Since η takes values in [0, 1] it is clear that 0 ≤
σ̂2
n(x) ≤ 1

4kL(x)
for all x ∈ Rd. Further, write µn(x) := E{Ŝn(x)} = 1

kL(x)

∑kL(x)
i=1 Eη(X(i))

for the unconditional expectation of Ŝn(x). Finally, we will write pδ(x) := PX
(
Bδ(x)

)
.

Proof of Proposition 3.1. Fix x ∈ Rc, and let z denote the orthogonal projection of x

onto the boundary of R, denoted ∂R, so that (x− z)T (w− z) ≤ 0 for all w ∈ R. First

suppose that x 6= z, and observe that if w0 ∈ R0, then w0 + 2δ(x−z)
‖x−z‖ ∈ R, so

0 ≥ (x− z)T
(
w0 +

2δ(x− z)

‖x− z‖
− z
)

= (x− z)T (w0 − z) + 2δ‖x− z‖.
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We deduce that if w0 ∈ R0, then

‖x− w0‖2 = ‖x− z‖2 − 2(x− z)T (w0 − z) + ‖z − w0‖2

> ‖x− z‖2 + 4δ‖x− z‖+ 4δ2 =
(
‖x− z‖2 + 2δ

)2
.

The same conclusion also holds when x = z. On the other hand, if y ∈ B2δ(z), then

‖x− y‖ ≤ ‖x− z‖+ 2δ.

It follows that if ‖X(k)(z) − z‖ ≤ 2δ, then none of the k nearest neighbours of x

belong to R0. Now, from the proof of Lemma 8.4.3 of Dudley (1999), there exist

z1, . . . , zN ∈ ∂R and Cd > 0 such that N ≤ Cdδ
−(d−1) and given any z ∈ ∂R, we

can find j ∈ {1, . . . , N} such that ‖z − zj‖ ≤ δ. Note that if ‖X(k)(zj) − zj‖ ≤ δ for

j = 1, . . . , N , then ‖X(k)(z)− z‖ ≤ 2δ for all z ∈ ∂R. Let

Ak :=
k⋂
i=1

⋂
x∈Rc

{
(x1, . . . , xn) : x(i)(x) /∈ R0

}
,

let p∗ := infz∈∂R PX
(
Bδ(z)

)
, and T1 ∼ Bin(n, p∗). Then by Hoeffding’s inequality, for

every M > 0,

P(Xn ∈ Ack) ≤ P
(

max
j=1,...,N

‖X(k)(zj)− zj‖ > δ

)
≤ Cd
δd−1

P(T1 < k) ≤ Cd
δd−1

exp

(
−2(np∗ − k)2

n

)
= O(n−M),

uniformly for k ∈ Kβ,0. Now, by assumption on η, if xn ∈ Ak, then

inf
x∈Rc

µ̂n(x, xn) = inf
x∈Rc

1

k

k∑
i=1

η(x(i)(x)) ≥ 1/2 + ε/2.

Thus, by a further application of Hoeffding’s inequality, we have that for each M > 0,

sup
k∈Kβ,0

sup
x∈Rc

P{Ŝn(x) < 1/2,Xn ∈ Ak}

= sup
k∈Kβ,0

sup
x∈Rc

∫
Ak

P{Ŝn(x) < 1/2|Xn = xn} dP n
X(xn)

≤ sup
k∈Kβ,0

sup
x∈Rc

∫
Ak

exp
(
−{µ̂n(x)− 1/2}2

2σ̂2
n(x)

)
dP n

X(xn)

≤ sup
k∈Kβ,0

sup
x∈Rc

exp
(
−kε

2

2

)
= O(n−M),
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since 4σ̂2
n(x) ≤ 1

k
for all k ∈ Kβ,0. We conclude that

sup
k∈Kβ,0

{RRc(Ĉknn
n )−RRc(CBayes)}

= sup
k∈Kβ,0

2

∫
Rc

P{Ŝn(x) < 1/2}{η(x)− 1/2} dPX(x) = O(n−M),

for each M > 0, as n→∞.

3.6.1 Asymptotic expansions

We prove the main results in Section 3.2.1. First, we derive an asymptotic expansion for

the excess risk of the local-k-nearest neighbour (kLnn) classifier over the region where

f̄(x) ≥ kL(x)
n

log2d(n/kL(x)). For a point x in this region, its kL(x) nearest neighbours

will concentrate on a shrinking ball at x. We can therefore derive asymptotic expansions

for the bias and variance of Ŝn(x), and using the Berry–Esseen Theorem to approximate

the probability of error, derive an asymptotic expansion for the excess risk of the kLnn

classifier, uniformly for kL in a certain class of functions. Let Rn :=
{
x ∈ Rd : f̄(x) ≥

kL(x)
n

log2d
(

n
kL(x)

)}
, and note that Rn is compact, since Assumption (B.3) ensures that

f̄(x)→ 0 as ‖x‖ → ∞. Recall that S = {x ∈ Rd : η(x) = 1/2}. For β ∈ (0, 1), define

the class of functions

Kβ := {kL : Rd → {dlog4 ne, . . . , bn1−βc}|kL(x) = bg(x)c, g : Rd → R continuous}.

Theorem 3.6. Assume (B.1), (B.2), (B.3) and (B.4)(ρ), for some ρ > 0. Then

for each β ∈ (0, 1),

RRn(ĈkLnn
n )−RRn(CBayes) = γn(kL){1 + o(1)}+ o

(
sup
x∈Rcn

f̄(x)
)

as n→∞, uniformly for kL ∈ Kβ, where

γn(kL) :=

∫
S∩Rn

f̄(x0)

4kL(x0)‖η̇(x0)‖
dVold−1(x0)

+
1

n4/d

∫
S∩Rn

f̄(x0)1−4/dkL(x0)4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0).

Proof of Theorem 3.6. First observe that

RRn(ĈkLnn
n )−RRn(CBayes)

=

∫
Rn

[
P{Ŝn(x) < 1/2} − 1{η(x)<1/2}

]
{2η(x)− 1}f̄(x) dx. (3.22)
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Let Sn := S ∩Rn. For ε > 0, let

Sεεn := {x ∈ Rd : η(x) = 1/2 and dist(x,Sn) < ε},

where dist(x,Sn) := infx0∈Sn ‖x− x0‖ and

Sεn :=
{
xt0 := x0 + t

η̇(x0)

‖η̇(x0)‖
: x0 ∈ Sεεn , |t| < ε

}
.

The proof is presented in seven steps. We will see that the dominant contribution

to the integral in (3.22) arises for a small neighbourhood about the Bayes decision

boundary, i.e. the region Sεnn ∩ Rn, where εn := 1

log1/2(nβ)
. Outside of this region, the

kLnn classifier agrees with the Bayes classifier with high probability (asymptotically).

More precisely, we show in Step 4 that

sup
kL∈Kβ

sup
x∈Rn\Sεnn

|P{Ŝn(x) < 1/2} − 1{η(x)<1/2}| = O(n−M),

for each M > 0, as n → ∞. In Steps 1, 2 and 3, we derive asymptotic expansions for

the bias, conditional (on Xn) bias and variance of Ŝn(x). In Step 5 we show that the

integral over Sεn can be decomposed to one over Sn and one perpendicular to Sn. Step

6 is dedicated to combining the results of Steps 1 - 5; we derive the leading order terms

in the asymptotic expansion of the integral in (3.22). Finally, we bound the remaining

error terms to conclude the proof in Step 7. To ease notation, in Steps 1, 2, 3 and 4

we write kL in place of kL(x).

Step 1: Let µn(x) := E{Ŝn(x)}. We show that

µn(x)− η(x)−
( kL

nf̄(x)

)2/d

a(x) = o
(( kL

nf̄(x)

)2/d

{1 + |a(x)|}
)
,

uniformly for kL ∈ Kβ and x ∈ Sεnn ∩Rn. Write

µn(x) = η(x) +
1

kL

kL∑
i=1

E{η(X(i))− η(x)}

= η(x) +
1

kL

kL∑
i=1

E{(X(i) − x)T η̇(x)}+
1

2
E{(X(i) − x)T η̈(x)(X(i) − x)}+R1,

where we show in Step 7 that |R1| = o
(
{kL/nf̄(x)}2/d

)
, uniformly for x ∈ Sεnn ∩Rn.

Now, the density of X(i) − x at u ∈ Rd is given by

f(i)(u) := nf̄(x+ u)

(
n− 1

i− 1

)
pi−1
‖u‖(1− p‖u‖)

n−i = nf̄(x+ u)pn−1
‖u‖ (i− 1),
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where pn−1
‖u‖ (i−1) denotes the probability that a Bin(n−1, p‖u‖) random variable equals

i− 1. Let δn = δn(x) :=
(

2kL
nf̄(x)ad

)1/d
. We show in Step 7 that

R2 := sup
kL∈Kβ

sup
x∈Rn

E{‖X(kL) − x‖21{‖X(kL)−x‖>δn}} = O(n−M), (3.23)

for each M > 0, as n→∞. It follows that

E{(X(i) − x)T η̇(x)} =

∫
Bδn (0)

η̇(x)Tun{f̄(x+ u)− f̄(x)}pn−1
‖u‖ (i− 1) du+O(n−M),

uniformly for 1 ≤ i ≤ kL and x ∈ Rn. Moreover

E{(X(i) − x)T η̈(x)(X(i) − x)} =

∫
Bδn (0)

uT η̈(x)unf̄(x+ u)pn−1
‖u‖ (i− 1) du+O(n−M),

uniformly for 1 ≤ i ≤ kL and x ∈ Rn. Hence, summing over i, we see that

1

kL

kL∑
i=1

E{(X(i) − x)T η̇(x)}+
1

2kL

kL∑
i=1

E{(X(i) − x)T η̈(x)(X(i) − x)}

=

∫
Bδn (0)

[
η̇(x)Tun{f̄(x+ u)− f̄(x)}+

1

2
uT η̈(x)unf̄(x+ u)

]
qn−1
‖u‖ (kL) du+O(n−M),

where qn−1
‖u‖ (kL) denotes the probability that a Bin(n− 1, p‖u‖) random variable is less

than kL. By a Taylor expansion of f̄ and assumption (B.3), there exists C0 > 0 such

that∣∣∣f̄(x+ t)− f̄(x)− tT ˙̄f(x)
∣∣∣ ≤ ‖t‖2

2
sup

u∈B‖t‖(0)

‖ ¨̄f(x+ u)‖op ≤ C0‖t‖2f̄(x) log2
( f̄(x)

2‖f̄‖∞

)
,

for all n sufficiently large, all x ∈ Rn, and all ‖t‖ ≤ δn. Hence, for all n sufficiently

large,

|p‖u‖ − f̄(x)ad‖u‖d| ≤
∫
‖t‖≤‖u‖

|f̄(x+ t)− f̄(x)− tT ˙̄f(x)| dt

≤ C0f̄(x) log2{f̄(x)/(2‖f̄‖∞)}
∫
‖t‖≤‖u‖

‖t‖2 dt

≤ C0f̄(x) log2{f̄(x)/(2‖f̄‖∞)}‖u‖d+2 dad
d+ 2

(3.24)

for all ‖u‖ ≤ δn.

Let bn = bn(kL) :=
( (n−1)f̄(x)ad

kL

)1/d
. By (3.24), we have that

kL − (n− 1)p‖v‖/bn = kL − (n− 1)f̄(x)ad‖v‖d/bdn +R4 = kL(1− ‖v‖d) +R4,
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where

|R4| ≤
(n− 1)C0f̄(x) log{f̄(x)/(2‖f̄‖∞)}‖v‖d+2dad

(d+ 2)bd+2
n

=
kLC0 log2{f̄(x)/(2‖f̄‖∞)}‖v‖d+2d

(d+ 2)b2
n

≤ kLC02d+2d

a
2/d
d (d+ 2) log2(n/kL)

,

since b2
n ≥ a

2/d
d log4(n/kL), for x ∈ Rn. It follows that there exists n0 ∈ N such that,

for all x ∈ Rn and all ‖v‖d ∈ (0, 1− 2/ log (n/kL)],

kL − (n− 1)p‖v‖/bn ≥
kL

log(n/kL)
, (3.25)

for all n > n0. Similarly, for all ‖v‖d ∈ [1 + 2/ log(n/kL), 2],

(n− 1)p‖v‖/bn − kL ≥
kL

log(n/kL)
.

Hence, by Bernstein’s inequality, we have that

sup
kL∈Kβ

sup
x∈Rn

sup
‖v‖d∈(0,1−2/ log(n/kL)]

1− qn−1
‖v‖/bn(kL) ≤ exp

(
− log2 n

β2

)
= O(n−M), (3.26)

and

sup
kL∈Kβ

sup
x∈Rn

sup
‖v‖d∈[1+2/ log(n/kL),2]

qn−1
‖v‖/bn(kL) ≤ exp

(
− log2 n

β2

)
= O(n−M), (3.27)

for each M > 0, as n→∞. We conclude that

1

kL

∫
Bδn (0)

[η̇(x)Tun{f̄(x+ u)− f̄(x)}+
1

2
uT η̈(x)unf̄(x+ u)]qn−1

‖u‖ (kL) du

=
1

kL

∫
‖u‖≤1/bn

[
η̇(x)Tun{f̄(x+ u)− f̄(x)}+

1

2
uT η̈(x)unf̄(x+ u)

]
du{1 + o(1)}

=
(kL

n

)2/d
∑d

j=1{ηj(x)f̄j(x) + 1
2
ηjj(x)f̄(x)}

(d+ 2)a
2/d
d f̄(x)1+2/d

{1 + o(1)}

=
( kL

nf̄(x)

)2/d

a(x){1 + o(1)} (3.28)

as n → ∞, uniformly for x ∈ Rn and kL ∈ Kβ. Here we have used the fact that∫
B1(0)

v2
jdv = ad

d+2
, for j = 1, . . . , d.

Step 2: Recall that σ̂2
n(x, xn) = Var{Ŝn(x)|Xn = xn}. We show that∣∣∣σ̂2

n(x,Xn)− 1

4kL

∣∣∣ = op(1/kL), (3.29)
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uniformly for kL ∈ Kβ and x ∈ Sεnn ∩Rn.

To show (3.29): write

σ̂2
n(x,Xn) =

1

k2
L

kL∑
i=1

η(X(i)){1− η(X(i))} =
1

k2
L

kL∑
i=1

η(X(i))−
1

k2
L

kL∑
i=1

η(X(i))
2.

Define Ak := {xn : ‖x(k) − x‖ < εn/2, for all x ∈ Rn}. Observe, by a similar argument

to that leading to (3.25), that pε(x) > ad
2
εdf̄(x) ≥ ad

2
εd kL

n
log2d(n/kL), for all ε < εn

and all x ∈ Rn. Now suppose that z1, . . . , zN ∈ Rn are such that ‖zi− zj‖ > εn/3, but

supx∈Rn mini=1,...,N ‖x− zi‖ ≤ εn/3. We have that

1 = PX(Rd) ≥
N∑
i=1

pεn/6(zi) ≥
adN

2
(εn/6)d

log4(n)

n
log2d(nβ).

It follows that

N ≤ 2d+13dn

ad log4(n) log3d/2(nβ)
.

Now, given x ∈ Rn, let i0 := argmin ‖x − zi‖, so that Bεn/6(zi0) ⊆ Bεn/2(x). Thus, if

there are k points inside each of the balls Bεn/6(zi), then there are k inside the ball of

radius εn/2 about every x ∈ Rn. Moreover, there exists κ > 0, such that

npεn/6(x)− kL ≥ nκ
(εn

6

)d
f̄(x)− kL ≥ nκ

(εn
6

)dkL

n
log2d(n/kL)− kL

≥ kL{κ log3d/2(nβ)− 1} ≥ log4(n){κ log3d/2(nβ)− 1},

for all kL ∈ Kβ and x ∈ Rn. Hence, by Bernstein’s inequality, we conclude that

1− P(Xn ∈ Ak) = P
{

sup
x∈Rn

‖X(k) − x‖ ≥ εn/2
}

≤ P
{

max
i=1,...,N

‖X(k)(zi)− zi‖ ≥ εn/6
}

≤
N∑
i=1

P
{
‖X(k)(zi)− zi‖ ≥ εn/6

}
≤ N exp(− log4(n)/2) = O(n−M),

uniformly for k ∈ [log4 n, n1−β].

Now, we have that

sup
kL∈Kβ

sup
x∈Rn∩Sεn

sup
xn∈AkL

sup
1≤i≤kL(x)

|η(x(i))− 1/2| → 0.
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It follows that

sup
x∈Rn∩Sεnn

sup
xn∈AkL

∣∣∣ 1

k2
L

kL∑
i=1

{η(x(i))− 1/2}
∣∣∣ = o

( 1

kL

)
as n→∞, uniformly for kL ∈ Kβ. Similarly,

sup
x∈Rn∩Sεn

sup
xn∈AkL

∣∣∣ 1

k2
L

kL∑
i=1

{η(x(i))
2 − 1/4}

∣∣∣ = o
( 1

kL

)
as n→∞, uniformly for kL ∈ Kβ, and we conclude (3.29).

Step 3: Recall that µ̂n(x, xn) = E{Ŝn(x)|Xn = xn}. We show that

Var{µ̂n(x,Xn)} = o
( 1

kL

+
( kL

nf̄(x)

)4/d

a(x)2
)

(3.30)

as n→∞, uniformly for x ∈ Rn and kL ∈ Kβ. By writing the variance of the sum as

the sum of covariance terms, observe first that

Var{µ̂n(x,Xn)} =
1

k2
L

kL∑
i=1

E{η(X(i))
2} − E{η(X(i))}2

+
2

k2
L

kL∑
j=2

j−1∑
i=1

E{η(X(i))η(X(j))} − E{η(X(i))}E{η(X(j))}. (3.31)

Then, we have that

1

k2
L

∣∣∣ kL∑
i=1

{Eη(X(i))
2 − η(x)2}

∣∣∣ ≤ 1

kL

sup
1≤i≤kL

|E{η(X(i))
2} − η(x)2|

≤ 2

kL

sup
1≤i≤kL

E|η(X(i))− η(x)| = o
( 1

kL

)
.

Similarly

1

k2
L

∣∣∣ kL∑
i=1

{Eη(X(i))}2 − η(x)2
∣∣∣ ≤ 2

kL

sup
1≤i≤kL

E|η(X(i))− η(x)| = o
( 1

kL

)
,

uniformly for x ∈ Rn and kL ∈ Kβ.

Now, for the second term in (3.31), note that for x ∈ Rd and i < j the joint density

of (X(i) − x,X(j) − x) at (u1, u2), with ‖u1‖ < ‖u2‖, is given by

fi,j(u1, u2) := f̄(x+ u1)f̄(x+ u2)n(n− 1)P{(I, J,K) = (i− 1, j − i− 1, n− j)}.

where (I, J,K) ∼ Multi(n−2, p‖u1‖, p‖u2‖−p‖u1‖, 1−p‖u2‖). By writing the multinomial
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probability as a product of two binomial probabilities, we see that

fi,j(u1, u2) = f̄(x+ u1)f̄(x+ u2)n(n− 1)rj−2
‖u1‖,‖u2‖(i− 1)pn−2

‖u2‖(j − 2),

where rj−2
‖u1‖,‖u2‖(i− 1) denotes the probability that a Bin

(
j − 2,

p‖u1‖
p‖u2‖

)
random variable

equals i− 1. To ease notation let

γ(x, u1, u2) := {η(x+ u1)− η(x)}{η(x+ u2)− η(x)}f̄(x+ u1)f̄(x+ u2). (3.32)

Observe that, for x ∈ Rn, 2 ≤ j ≤ kL and n sufficiently large, we have that

2

k2
L

kL∑
j=2

j−1∑
i=1

E
[
{η(X(i))− η(x)}{η(X(j))− η(x)}

]
=

2n(n− 1)

k2
L

kL∑
j=2

∫
Rd

∫
u1:‖u1‖<‖u2‖

γ(x, u1, u2)pn−2
‖u2‖(j − 2) du1 du2

=
2n(n− 1)

k2
L

∫
Rd

∫
u1:‖u1‖<‖u2‖

γ(x, u1, u2)qn−2
‖u2‖(kL − 1) du1 du2

since, for all ‖u1‖ ≤ ‖u2‖,
∑j−1

i=1 r
j−2
‖u1‖,‖u2‖(i − 1) = 1. Let b′n := bn−1(kL − 1) =( (n−2)f̄(x)ad

kL−1

)1/d
. By similar arguments to those in (3.26) and (3.27), that lead to (3.28),

we have that

2n(n− 1)

k2
L

∫
Rd

∫
u1:‖u1‖<‖u2‖

γ(x, u1, u2)qn−2
‖u2‖(kL − 1) du1 du2

=
2n(n− 1)

k2
L

∫
Rd

∫
‖u1‖<1

‖u2‖dγ(x, ‖u2‖u1, u2)qn−2
‖u2‖(kL − 1) du1 du2

=
2n(n− 1)

k2
L

∫
‖u2‖≤1/b′n

∫
‖u1‖<1

‖u2‖dγ(x, u1‖u2‖, u2) du1 du2{1 + o(1)}

=
2n(n− 1)

b′2dn k2
L

∫
‖u2‖≤1

∫
‖u1‖<1

‖u2‖dγ(x, u1‖u2‖/b′n, u2b
′
n) du1 du2{1 + o(1)}

=
2n(n− 1)(kL − 1)2+4/d

(n− 2)2+4/dk2
L

a(x)2Cd
f̄(x)4/dcd

{1 + o(1)} =
2Cd
cd

( kL

nf̄(x)

)4/d

a(x)2{1 + o(1)},

(3.33)

where cd :=
∫
‖t‖≤1

t21 dt and Cd :=
∫
‖t‖≤1

‖t‖d+2t21 dt. Now, for the sum of terms involving
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E{η(X(i))− η(x)}E{η(X(j))− η(x)}, we have that

1

k2
L

kL∑
j=2

j−1∑
i=1

E{η(X(i))− η(x)}E{η(X(j))− η(x)}

=
n2

k2
L

kL∑
j=2

j−1∑
i=1

∫
u2∈Rd

∫
u1∈Rd

γ(x, u1, u2)pn−1
‖u2‖(j − 1)pn−1

‖u1‖(i− 1) du1 du2

=
n2

k2
L

kL∑
j=2

∫
u2∈Rd

∫
u1∈Rd

γ(x, u1, u2)pn−1
‖u2‖(j − 1)qn−1

‖u1‖(j − 1) du1 du2.

By relabelling the indices in the sum, it follows that

1

k2
L

kL−1∑
j=1

kL∑
i=j+1

E{η(X(i))− η(x)}E{η(X(j))− η(x)}

=
n2

k2
L

kL−1∑
j=1

kL∑
i=j+1

∫
u2∈Rd

∫
u1∈Rd

γ(x, u1, u2)pn−1
‖u2‖(j − 1)pn−1

‖u1‖(i− 1) du1 du2

=
n2

k2
L

kL−1∑
j=1

∫
u2∈Rd

∫
u1∈Rd

γ(x, u1, u2)pn−1
‖u2‖(j − 1){qn−1

‖u1‖(kL)− qn−1
‖u1‖(j)} du1 du2.

Observe that

kL∑
j=2

pn−1
‖u2‖(j − 1)qn−1

‖u1‖(j − 1) +

kL−1∑
j=1

pn−1
‖u2‖(j − 1){qn−1

‖u1‖(kL)− qn−1
‖u1‖(j)}

=

kL−1∑
j=1

pn−1
‖u2‖(j − 1)qn−1

‖u1‖(kL){1 + o(1)} = qn−1
‖u2‖(kL − 1)qn−1

‖u1‖(kL){1 + o(1)}

as n→∞, uniformly for x ∈ Rn and kL ∈ Kβ. Thus

2

k2
L

kL∑
j=2

j−1∑
i=1

E{η(X(i))− η(x)}E{η(X(j))− η(x)}

=
n2

k2
L

∫
u2∈Rd

∫
u1∈Rd

γ(x, u1, u2)qn−1
‖u2‖(kL − 1)qn−1

‖u1‖(kL) du1 du2{1 + o(1)}

=
{ n
kL

∫
‖u1‖≤1/bn

{η(x+ u1)− η(x)}f̄(x+ u2) du1

}2

{1 + o(1)}

=
( kL

nf̄(x)

)4/d

a(x)2{1 + o(1)} (3.34)

as n→∞, uniformly for x ∈ Rn and kL ∈ Kβ, where bn =
( (n−1)f̄(x)ad

kL

)1/d
. Using (3.33)
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and (3.34) we have that

2

k2
L

kL∑
j=2

j−1∑
i=1

E
[
{η(X(i))}{η(X(j))}

]
− E

[
{η(X(i))}E{η(X(j))}

]
=

2Cd
cd

( kL

nf̄(x)

)4/d

a(x)2{1 + o(1)} −
( kL

nf̄(x)

)4/d

a(x)2{1 + o(1)}, (3.35)

uniformly for x ∈ Rn and kL ∈ Kβ. As a final observation, note that

2Cd
cd

=
2
∫
‖v‖≤1

‖v‖d+2v2
1 dv∫

‖v‖≤1
v2

1 dv
= 1.

Therefore, the two dominant terms in (3.35) cancel and we deduce that (3.30) holds.

This concludes Step 3.

Step 4: Recall that εn := 1

log1/2(nβ)
. We show that

sup
kL∈Kβ

sup
x∈Rn\Sεnn

|P{Ŝn(x) < 1/2} − 1{η(x)<1/2}| = O(n−M),

for each M > 0, as n→∞.

First note that, since ‖η̇(x)‖ is bounded away from zero on the whole of S, there

exists c1 > 0 and ε0 > 0 (independent of n) such that, for all ε < ε0,

inf
x∈Rn\Sεn

|η(x)− 1/2| ≥ c1ε.

Moreover, by Bernstein’s inequality,

sup
kL∈Kβ

sup
x∈Rn

qnεn/2(kL) ≤ sup
kL∈Kβ

sup
x∈Rn

exp
(
−

(npεn/2 − kL)2

2npεn/2(1− pεn/2) + 2(npεn/2 − kL)/3

)
≤ sup

kL∈Kβ
sup
x∈Rn

exp
(
−
npεn/2

3

(
1− kL

npεn/2

)2)
= O(n−M),

for each M > 0, as n→∞, since, by assumption (B.3) there exists κ > 0 such that

inf
x∈Rn

npεn/2 ≥ κkL log3d/2(nβ),

for all n sufficiently large. It follows that

inf
x∈Rn\Sεnn :

η(x)≥1/2

µn(x)− 1/2 ≥ inf
x∈Rn\Sεnn :

η(x)≥1/2

1

kL

kL∑
i=1

P{Y(i) = 1 ∩ ‖X(i) − x‖ ≤ εn/2} − 1/2

≥
{1

2
+ c1εn/2

}
{1− qnεn/2(kL)} − 1/2 ≥ c1εn

4
.
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Similarly

sup
x∈Rn\Sεnn :

η(x)≤1/2

µn(x)− 1/2 ≤ −c1εn
4
.

Now, conditioned on Xn, Ŝn(x) is the sum of kL(x) independent terms. Therefore, by

Hoeffding’s inequality,

sup
x∈Rn\Sεnn

|P{Ŝn(x) < 1/2}−1{η(x)≤1/2}|

= sup
x∈Rn\Sεnn

|E{P{Ŝn(x) < 1/2|Xn} − 1{η(x)≤1/2}|

≤ sup
x∈Rn\Sεnn

E exp(−2kL{µ̂n(x,Xn)− 1/2}2)

= sup
x∈Rn\Sεnn

exp(−2kL{µn(x)− 1/2}2) +R5

≤ sup
x∈Rn\Sεnn

exp
(
−1

8
c2

1kL(x)ε2n

)
+R5 = O(n−M),

where we show in Step 7 that |R5| = O(n−M), for each M > 0. We conclude that

sup
kL∈Kβ

∫
Rn\Sεnn

[P{Ŝn(x) < 1/2} − 1{η(x)≤1/2}]{η(x)− 1/2}f̄(x) dx = O(n−M),

for each M > 0, as n→∞. This completes Step 4.

Step 5: Recall that xt0 = x0 + tη̇(x0)/‖η̇(x0)‖, and let

ψ(x) := {2η(x)− 1}f̄(x) = π1f1(x)− π2f2(x).

We show that∫
Sεnn ∩Rn

[P{Ŝn(x) < 1/2} − 1{η(x)<1/2}]{2η(x)− 1}f̄(x) dx

=

∫
S∩Rn

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0){1 + o(1)}

+ o
(

sup
x∈Rcn
{f̄(x)}

)
,

uniformly for kL ∈ Kβ.

Recall further Sεεn = {x ∈ Rd : η(x) = 1/2 and dist(x,Sn) < ε}. Now, the map

φ(x0, tη̇(x0)/‖η̇(x0)‖) = xt0

is a diffeomorphism from {(x0, tη̇(x0)/‖η̇(x0)‖) : x0 ∈ Sεnεnn , |t| < εn} onto Sεnn . Fur-

thermore, for large n, and |t| ≤ εn, sgn{η(xt0) − 1/2} = sgn(t). The pullback of the
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d-form dx is given at (x0, tη̇(x0)/‖η̇(x0)‖) by

detφ̇(x0, tη̇(x0)/‖η̇(x0)‖) dt dVold−1(x0) = {1 + o(1)} dt dVold−1(x0),

where the error is uniform for x0 ∈ Sεnεnn , |t| ≤ εn. Therefore, since, for each n, Sεnn is

compact, by Weyl’s tube formula (Gray, 2004), we have that∫
Sεnn ∩Rn

[P{Ŝn(x) < 1/2} − 1{η(x)<1/2}]{η(x)− 1/2}f̄(x) dx

=

∫
Sεnεn

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0){1 + o(1)}.

Moreover∣∣∣∫
Sεnn

[P{Ŝn(x) < 1/2} − 1{η(x)<1/2}]{η(x)− 1/2}f̄(x) dx

−
∫
Sεnn ∩Rn

[P{Ŝn(x) < 1/2} − 1{η(x)<1/2}]{η(x)− 1/2}f̄(x) dx
∣∣∣

≤ sup
x∈Rcn
{f̄(x)}

∫
Sεnn ∩Rcn

dx = O
(

sup
x∈Rcn
{f̄(x)}ε2n

)
.

Then, by another application of Weyl’s tube formula, we have that∣∣∣∫
Sεnεnn

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0)

−
∫
S∩Rn

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0)

∣∣∣
≤ sup

x∈Rcn
{f̄(x)}

∫
Sεnεnn ∩Rcn

∫ εn

−εn
dt dVold−1(x0) = O

(
sup
x∈Rcn
{f̄(x)}ε2n

)
.

This completes step 5.

Step 6: The last step in the main argument is to show that∫
S∩Rn

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0)

=
{∫

S∩Rn

f̄(x0)

4kL(x0)‖η̇(x0)‖
dVold−1(x0)

+
1

n4/d

∫
S∩Rn

f̄(x0)1−4/dkL(x0)4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0)

}
{1 + o(1)}

as n→∞, uniformly for kL ∈ Kβ.
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First observe that∫
Rn∩S

∫ εn

−εn
ψ(xt0)[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0)

=

∫
Rn∩S

∫ εn

−εn
t‖ψ̇(x0)‖[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt dVold−1(x0){1 + o(1)}.

Now, write P{Ŝn(xt0) < 1/2} − 1{t<0} = E[P{Ŝn(xt0) < 1/2|Xn} − 1{t<0}]. Note that,

given Xn, Ŝn(x) = 1
kL(x)

∑kL(x)
i=1 1{Y(i)=1} is the sum of kL(x) independent Bernoulli vari-

ables, satisfying P(Y(i) = 1|Xn) = η(X(i)). Therefore, by the Berry–Esseen Theorem,

there exists C1 > 0, such that

sup
z∈R

∣∣∣P{ Ŝn(xt0)− µ̂n(xt0, x
n)

σ̂n(xt0, x
n)

< z
∣∣∣Xn = xn

}
− Φ(z)

∣∣∣
≤
C1

∑kL(xt0)
i=1 η(x(i)){1− η(x(i))}{2η(x(i))

2 − 2η(x(i)) + 1}
kL(xt0)3σ̂3

n(xt0, x
n)

≤ C1

4kL(xt0)2σ3
n(xt0, x

n)
,

where Φ denotes the standard normal distribution function. Thus∣∣∣P{Ŝn(xt0) < 1/2|Xn = xn} − Φ
(1/2− µ̂n(xt0, x

n)

σ̂n(xt0, x
n)

)∣∣∣ ≤ C1

4kL(xt0)2σ3
n(xt0, x

n)
. (3.36)

It follows that∫ εn

−εn
t‖ψ̇(x0)‖[P{Ŝn(xt0) < 1/2} − 1{t<0}] dt

=

∫ εn

−εn
t‖ψ̇(x0)‖

{
Φ
(
2kL(x0)1/2{1/2− µn(xt0)}

)
− 1{t<0}

}
dt+R6(x0)

=

∫ εn

−εn
t‖ψ̇(x0)‖

{
Φ
(
−2kL(x0)1/2

{
t‖η̇(x0)‖+

( kL(x0)

nf̄(x0)

)2/d

a(x0)
})
− 1{t<0}

}
dt

+R6(x0) +R7(x0),

where we have used the fact that, for all kL ∈ Kβ, and all n sufficiently large,

sup|t|≤εn |kL(xt0)− kL(x0)| ≤ 1. We show in Step 7 that

∣∣∣∫
Rn∩S

R6(x0) +R7(x0) dVold−1(x0)
∣∣∣ = o(γn(kL)).
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Then, substituting r = 2kL(x0)1/2t, we see that∫ εn

−εn
t‖ψ̇(x0)‖

[
Φ
(
−2kL(x0)1/2

{
t‖η̇(x0)‖+

( kL(x0)

nf̄(x0)

)2/d

a(x0)
})
− 1{t<0}

]
dt

=
1

4kL(x0)

∫ 2kL(x0)1/2εn

−2kL(x0)1/2εn

r‖ψ̇(x0)‖
{

Φ
(
−r‖η̇(x0)‖ − 2kL(x0)1/2

( kL(x0)

nf̄(x0)

)2/d

a(x0)
)

− 1{r<0}

}
dr

=

{
f̄(x0)

4kL(x0)‖η̇(x0)‖
+
( kL(x0)

nf̄(x0)

)4/d f̄(x0)a(x0)2

‖η̇(x0)‖

}
{1 + o(1)}.

The conclusion follows by integrating x0 over Rn ∩ S.

Step 7: It remains to bound the error terms R1, R2, R5, R6, and R7.

To bound R1: write

R1 =
1

kL

kL∑
i=1

Eη(X(i))− η(x)− E{(X(i) − x)T η̇(x)} − 1

2
E{(X(i) − x)T η̈(x)(X(i) − x)}.

By a Taylor expansion, for all ε > 0, there exists δ = δε > 0, such that

|η(z)− η(x)− (z − x)T η̇(x)− 1

2
(z − x)T η̈(x)(z − x)| ≤ ε‖z − x‖2,

for all ‖z − x‖ < δ. Hence

|R1| ≤ ε
1

kL

kL∑
i=1

E{‖X(i) − x‖21{‖X(kL)−x‖≤δ}}+ 2P{‖X(kL) − x‖ > δ}

+ (1 +D1)E{‖X(kL) − x‖1{‖X(kL)−x‖>δ}}

+ (1 +D2)E{‖X(kL) − x‖21{‖X(kL)−x‖>δ}},

where D1 := supx0∈S ‖η̇(x0)‖, and D2 := supx0∈S λmax{η̈(x0)} (here λmax(·) denotes the

largest eigenvalue of a matrix). Now, by similar arguments to those leading to (3.28),

we have that

ε

kL

kL∑
i=1

E(‖X(i) − x‖21{‖X(kL)−x‖≤δ}) = ε
( kL

nadf̄(x)

)2/d d

d+ 2
{1 + o(1)}.

Moreover,

P{‖X(kL) − x‖ > δ} = qnδ (kL) = O(n−M),
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by (3.27) in Step 1. For the remaining terms, note that

E{‖X(kL) − x‖21{‖X(kL)−x‖>δ}} = P{‖X(kL) − x‖ > δ}+

∫ ∞
δ2

P{‖X(kL) − x‖ >
√
t}dt

= qnδ (kL) +

∫ ∞
δ2

qn√
t
(kL) dt.

Now, for all t0 > δ2, there exists c3 > 0, such that npδ − kL ≥ c3δ
dn for all x ∈ S ∩Rn,

thus

sup
x∈S∩Rn

sup
kL∈Kβ

{
qnδ (kL) +

∫ t0

δ2
qn√

t
(kL) dt

}
≤ (1 + t0) exp(−2c2

2nδ
2d) = O(n−M).

Furthermore, using Assumption (B.4)(ρ), by Bennett’s inequality, for all n sufficiently

large and all t0, there exist c4, c5 > 0 such that, for all t > t0,

sup
kL∈Kβ

sup
x∈S∩Rn

qn√
t
(kL) ≤ (1 + c4t

ρ/2)−c5n.

Then, using Markov’s inequality to deal with the final term, we conclude that |R1| =
o
((

kL
nf̄(x)

)2/d{1 + |a(x)|}
)
. Note further that, with only simple modifications, we have

also shown (3.23), which bounds R2.

To bound R5: Observe that

|R5| ≤ sup
x∈Rn\Sεn

|E exp(−2kL{µ̂n(x,Xn)− 1/2}2)− exp(−2kL{µn(x)− 1/2}2)|.

Let θ̂(x) := −(2kL)1/2{µ̂n(x,Xn)− 1/2} and θ(x) := Eθ̂(x) = −(2kL)1/2E{µ̂n(x,Xn)−
1/2}. By Step 3, given ε > 0 sufficiently small, for all n sufficiently large we have that,

for all kL ∈ Kβ, x ∈ Rn \ Sεn ,

Eθ̂(x)2 − θ(x)2 = 2kLVar{µ̂(x,Xn)} ≤ ε
{

1 + kL(x)a(x)2
( kL(x)

nf̄(x)

)4/d}
.

By a Taylor expansion, it follows that

|Ee−θ̂(x)2 − e−θ(x)2| ≤ E|e−θ̂(x)2 − e−θ(x)2|

= E|θ̂(x)2 − θ(x)2|e−θ(x)2{1 + o(1)} = O(n−M),

for each M > 0.

To bound R6: using the θ notation introduced above, we decompose R6 as follows:

R6 :=

∫
Rn∩S

R6(x0) dVold−1(x0) = R61 +R62,
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where

R61 :=

∫
Rn∩S

∫ εn

−εn
t‖ψ̇(x0)‖

[
P{Ŝn(xt0) < 1/2} − EΦ

(
θ̂(xt0)

)]
dt dVold−1(x0),

and

R62 :=

∫
Rn∩S

∫ εn

−εn
t‖ψ̇(x0)‖

{
EΦ
(
θ̂(xt0)

)
− Φ

(
θ(xt0)

)}
dt dVold−1(x0).

To bound R61: Write

R61 :=

∫
Rn∩S

∫ εn

−εn
t‖ψ̇(x0)‖E

[
P{Ŝn(xt0) < 1/2|Xn} − Φ

(
θ̂(xt0)

)]
dt dVold−1(x0).

By Step 1 and 2, there exists c1 and C2, such that, for all x0 ∈ S ∩ Rn and |t| ∈
(C2(kL(xt0)/n)4/d, εn),

θ̂(xt0) ≥ c1kL(xt0)1/2|t|.

Hence, by the non-uniform version of the Berry–Esseen Theorem (Petrov, 1975), we

have that

E
[
P{Ŝn(xt0) < 1/2|Xn} − Φ

(
θ̂(xt0)

)]
≤ C1

kL(xt0)1/2

1

1 + c3
1kL(xt0)3/2|t|3

,

for all |t| ∈ (C2(kL(xt0)/n)2/d, εn). Now, by the Berry–Esseen bound in (3.36) and Step

2, we have, for all |t| ∈ (0, C2(kL/n)2/d),

E
[
P{Ŝn(xt0) < 1/2|Xn} − Φ

(
θ̂(xt0)

)]
≤ C ′1
kL(xt0)1/2

.

It follows that

|R61| ≤ C ′1

∫
Rn∩S

∫ C2(kL(xt0)/n)2/d

−C2(kL(xt0)/n)2/d

t‖ψ̇(x0)‖
kL(xt0)1/2

dt dVold−1(x0)

+ C ′1

∫
Rn∩S

∫
|t|∈(C2(kL(xt0)/n)2/d,εn)

|t|‖ψ̇(x0)‖
1 + c3

1kL(xt0)2|t|3
dt dVold−1(x0)

= C ′1

∫
Rn∩S

∫ C2(kL(x0)/n)2/d

−C2(kL(x0)/n)2/d

t‖ψ̇(x0)‖
kL(x0)1/2

dt dVold−1(x0)

+ C ′1

∫
Rn∩S

∫
|t|∈(C2(kL(x0)/n)2/d,εn)

|t|‖ψ̇(x0)‖
1 + c3

1kL(x0)2|t|3
dt dVold−1(x0){1 + o(1)}

= o(γn(kL)),

uniformly for kL ∈ Kβ.

To bound R62: By Step 3, given ε > 0 sufficiently small, for all sufficiently large n,
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we have that, for all kL ∈ Kβ, x0 ∈ S ∩Rn and all |t| ∈ [ε(kL(xt0)/n)2/d, εn],

E
∣∣θ̂(xt0)− θ(xt0)

∣∣ ≤ 2kL(xt0)1/2Var{µ̂(xt0, X
n)}1/2 ≤ ε2

{
1 + k

1/2
L a(xt0)

( kL(xt0)

nf̄(xt0)

)2/d}
≤ ε2 +

εa(xt0)kL(xt0)1/2|t|
f̄(xt0)2/d

.

It follows that, for large n, |t| ∈ [ε(kL(x0)/n)2/d, εn] and all kL ∈ Kβ,

E|Φ(θ̂)− Φ(θ)| ≤
{
ε2 +

εa(x0)kL(x0)1/2|t|
f̄(x0)2/d

}
φ
(
−kL(x0)1/2|t|‖η̇(x0)‖ − kL(x0)1/2a(x0)

{ kL(x0)

nf̄(x0)

}2/d)
,

since, by Steps 1 and 2,

θ(xt0) = −2k
1/2
L

[
t‖η̇(x0)‖+

{ kL(x0)

nf̄(x0)

}2/d

a(x0)
]

+ o
(
kL(x0)1/2a(x0)

{ kL(x0)

nf̄(x0)

}2/d)
.

For |t| ∈ [0, ε(kL(x0)/n)2/d], we use the fact that E|Φ(θ̂(xt0)) − Φ(θ(xt0))| ≤ 1. Finally,

by making the substitution r = kL(x0)1/2t, we see that

R62 ≤
∫
Sn

∫
|t|≤ε(kL(x0)/n)2/d

|t|‖ψ̇(x0)‖ dt dVold−1(x0)

+

∫
Sn

∫ ∞
−∞

‖ψ̇(x0)‖
kL(x0)

{
ε2 +

εa(x0)|r|
f̄(x0)2/d

}
φ
(
−|r| ‖η̇(x0)‖ −

{ kL(x0)

nf̄(x0)

}2/d

k
1/2
L a(x0)

)
dr dVold−1(x0)

≤ ε

∫
Sn

[{kL(x0)

n

}4/d{
1 +

a(x0)2

f̄(x0)4/d

}
+

1

kL(x0)

]
‖ψ̇(x0)‖ dVold−1(x0).

for all n sufficiently large, and all kL ∈ Kβ.

To bound R7: write R7 :=
∫
Sn R7(x0) dVold−1(x0). Let

rx :=
−a(x)

f̄(x)2/d

kL(x)1/2+2/d

n2/d
.

By Steps 1 and 2, given ε > 0 sufficiently small, for all sufficiently large n, we have

that, for all kL ∈ Kβ, x0 ∈ S and all |r| < kL(x0)1/2εn,

∣∣θ(xkL(x0)1/2r
0 ) + 2‖η̇(x0)‖(r − rx0)

∣∣ ≤ ε2
[
|r|+ kL(x0)1/2a(x0)

{ kL(x0)

nf̄(x0)

}2/d]
.
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It follows that∣∣∣Φ(θ(xt0)
)
− Φ

(
2kL(x0)1/2

[
−t‖η̇(x0)‖ − a(x0)

{ kL(x0)

nf̄(x0)

}2/d])∣∣∣
≤ ε2

[
|r|+ kL(x0)1/2a(x0)

{ kL(x0)

nf̄(x0)

}2/d]
φ(‖η̇(x0)‖(r − rx0)),

for all kL ∈ Kβ, x0 ∈ S and εkL(x0)1/2+2/d

n2/d ≤ |r| < kL(x0)1/2εn. Furthermore, for

|r − rx0| ∈ [0, εkL(x0)1/2+2/d/n2/d] we use the fact that

E|Φ(θ̂(xt0))− Φ(θ(xt0))| ≤ 1.

Substituting r − rx0 = kL(x0)1/2t, it follows that

|R7| ≤
∫
Rn∩S

∫
|r−rx0 |≤εk

1/2+2/d
L /n2/d

|r − rx0|
‖ψ̇(x0)‖
kL(x0)

dr dVold−1(x0)

+

∫
Rn∩S

∫ ∞
−∞

ε2
‖ψ̇(x0)‖
kL(x0)

(|r| − rx0)2φ(‖η̇(x0)‖(r − rx0)) dr dVold−1(x0)

≤ ε

∫
Rn∩S

[{kL(x0)

n

}4/d{
1 +

a(x0)2

f̄(x0)4/d

}
+

1

kL(x0)

]
‖ψ̇(x0)‖ dVold−1(x0).

We conclude that |R7| = o(γn(kL)). This completes the proof.

Proof of Theorem 3.2, part (i). By applying Theorem 3.6 with kL(x) = k for all x ∈
Rd, we have that

RRn(Ĉknn
n )−RRn(CBayes) =

{
B1,n

1

k
+B2,n

(k
n

)4/d}
{1 + o(1)}. (3.37)

We show that the contribution from the tail, i.e. for x ∈ Rd \ Rn, is of smaller order

than the terms in (3.37) above. Furthermore, we show that B1,n and B2,n are well

approximated by integrals over the whole of S and that those values are finite.

Let tn := k
n

log2d(n/k) and fix α ∈ (0, 1 − 4(ρ+d)
dρ

). By Markov’s inequality and

Hölder’s inequality, observe that

RRd\Rn(Ĉknn
n )−RRd\Rn(CBayes) ≤

∫
Rcn
f̄(x) dx ≤ t

4
d(1−α)
n

∫
Rcn
f̄(x)1− 4

d(1−α) dx

≤ t
4

d(1−α)
n

{∫
Rcn

(1 + ‖x‖ρ)f̄(x) dx
}1− 4

d(1−α)
{∫
Rcn

1

(1 + ‖x‖ρ)d(1−α)/4−1
dx
} 4
d(1−α)

= o
((k

n

)4/d)
, (3.38)

uniformly for k ∈ Kβ,0, as n→∞, since ρ{d(1− α)/4− 1} > d.

It remains to show that B1 and B2 are finite, and that B1,n and B2,n are well
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approximated by the corresponding integrals over the whole region S. Firstly, by

Assumption (B.2),

B1 =

∫
S

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0) ≤ 1

4
sup
x0∈S

{ 1

‖η̇(x0)‖

}∫
S
f̄(x0) dVold−1(x0) = O(1).

Moreover

B1 −B1,n =

∫
S\Rn

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0)

≤ 1

4
sup
x0∈S

{ 1

‖η̇(x0)‖

}∫
S\Rn

f̄(x) dVold−1(x0) = o(1),

To bound B2: by Assumption (B.2) we can define a probability measure on S by

PS(A) =

∫
A
f̄(x) dVold−1(x)∫

S f̄(x) dVold−1(x)
,

for A ⊆ S. Then, by Jensen’s inequality (since 4(ρ+ d)/dρ < 1), we have that

B2 =

∫
S

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0)

≤ sup
x0∈S

{ a(x0)2

‖η̇(x0)‖

}∫
S
f̄(x0)−4/d dPS(x0)

∫
S
f̄(x) dVold−1(x)

≤ sup
x0∈S

{ a(x0)2

‖η̇(x0)‖

}{∫
S
f̄(x0)−ρ/(ρ+d) dPS(x0)

}4(ρ+d)/dρ
∫
S
f̄(x) dVold−1(x),

which is finite by assumptions (B.2) and (B.4)(ρ). Similarly,

B2 −B2,n =

∫
S\Rn

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0)

≤ sup
x0∈S

{ a(x0)2

‖η̇(x0)‖

}∫
S\Rn

f̄(x0)1−4/d dVold−1(x0)

≤ sup
x0∈S

{ a(x0)2

‖η̇(x0)‖

}
tρ/(ρ+d)−4/d
n

∫
S\Rn

f̄(x0)1−ρ/(ρ+d) dVold−1(x0)→ 0,

uniformly for k ∈ Kβ,0, as n→∞.

Proof of Theorem 3.2, part (ii). Recall that

Rn =
{
x ∈ Rd : f̄(x) ≥ k

n
log2d(n/k)

}
=
{
x ∈ Rd : f̄(x) ≥ tn

}
.

In contrast to part (i), the dominant contribution to the excess risk could now arise
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from the tail of the distribution. First, by Theorem 3.6, we have that

RRn(Ĉknn
n )−RRn(CBayes) =

{
B1,n

1

k
+B2,n

(k
n

)4/d}
{1 + o(1)}+ o(tn),

uniformly for k ∈ Kβ,0. Observe that, by assumption (B.2),

B1,n

k
≤ 1

4k
sup
x0∈S

{ 1

‖η̇(x0)‖

}∫
S∩Rn

f̄(x0) dVold−1(x0) = O
(1

k

)
,

uniformly for k ∈ Kβ,0. Furthermore, using assumption (B.4)(ρ), we see that

B2,n

(k
n

)4/d

= tρ/(ρ+d)
n

∫
S∩Rn

t4/d−ρ/(ρ+d)
n

1

log8(n/k)

f̄(x0)1−4/d

‖η̇(x0)‖
a(x0)2 dVold−1(x0)

≤ sup
x0∈S

{ a(x0)2

‖η̇(x0)‖

}
tρ/(ρ+d)
n

∫
S∩Rn

t
4/d− ρ

ρ+d
n

1

log8(n/k)
f̄(x0)1−4/d dVold−1(x0)

≤ sup
x0∈S

{ a(x0)2

‖η̇(x0)‖

} t
ρ/(ρ+d)
n

log8(n/k)

∫
S∩Rn

f̄(x0)d/(ρ+d) dVold−1(x0).

= O((k/n)ρ/(ρ+d) log2dρ/(ρ+d)−8(n/k)),

uniformly for k ∈ Kβ,0. Finally, by the moment assumption in (B.4)(ρ) and Hölder’s

inequality, observe that

RRd\Rn(Ĉknn
n )−RRd\Rn(CBayes) ≤

∫
Rcn
f̄(x) dx ≤ tρ/(ρ+d)

n

∫
Rcn
f̄(x)1−ρ/(ρ+d) dx

≤ tρ/(ρ+d)
n

{∫
Rcn

(1 + ‖x‖ρ)f̄(x) dx
}1−ρ/(ρ+d){∫

Rcn

1

(1 + ‖x‖ρ)(ρ+d)/ρ
dx
}ρ/(ρ+d)

= o(tρ/(ρ+d)
n )

as n→∞, uniformly for k ∈ Kβ,0.

3.6.2 Tail adaptive results

Proof of Theorem 3.4. Recall that

kO(x) := max
[
1,min

{⌊
B
{
f̄(x)n

}4/(d+4)⌋
, bn1−βc

}]
.

Let R′n := {x : f̄(x) ≥ log2(d+4) n
n

} ⊆
{
x : f̄(x) ≥ kO(x)

n
log2d( n

kO(x)
)
}

. Moreover, for

x ∈ R′n, we have kO(x) ∈ [B log8 n, n1−β], we suppose, therefore, that n is large enough

that B log8 n > log4 n. Observe that we can replace Rn in Theorem 3.6 with any

compact subset R ⊆ Rn. Therefore, setting R = R′n, kL = kO, and using also the fact
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that f̄ is continuous, we deduce from Theorem 3.6 that

RR′n(ĈkOnn
n )−RR′n(CBayes) = B3n

−4/(d+4){1 + o(1)} (3.39)

as n→∞.

It remains to bound the risk on Rd \R′n. To prove Part (i): Fix α ∈
(
0, 1− 4(ρ+d)

(d+4)ρ

)
.

Let t′n := log2(d+4) n
n

. By Markov’s inequality and Hölder’s inequality, observe that

RRd\R′n(ĈkOnn
n )−RRd\R′n(CBayes) ≤ t′n

4
(d+4)(1−α)

∫
Rd\R′n

f̄(x)1− 4
d(1−α) dx

≤ t′n
4

(d+4)(1−α)
{∫

Rd\R′n
(1 + ‖x‖ρ)f̄(x) dx

}1− 4
(d+4)(1−α)

{∫
Rd\R′n

1

(1 + ‖x‖ρ)(d+4)(1−α)/4−1
dx
} 4

(d+4)(1−α)

= o
(( 1

n

)4/(d+4))
as n→∞, since ρ{(d+ 4)(1− α)/4− 1} > d. It remains to show B3 is finite, this can

be done in the same way as in the proof of Theorem 3.2, part (i).

To prove Part (ii): By the same argument as that in Theorem 3.2, part (ii), we

have that

B3,n

( 1

n

)4/(d+4)

= O
(( 1

n

) ρ
ρ+d

log2(d+4)ρ/(ρ+d)−8 n
)
.

Now, for the region Rd \ R′n, observe that

RRd\R′n(Ĉknn
n )−RRd\R′n(CBayes) ≤ t′n

ρ/(ρ+d)

∫
Rd\R′n

f̄(x)1−ρ/(ρ+d) dx

≤ t′n
ρ/(ρ+d)

{∫
Rd\R′n

(1 + ‖x‖ρ)f̄(x) dx
} d
ρ+d
{∫

Rd\R′n

1

(1 + ‖x‖ρ)(ρ+d)/ρ
dx
} ρ
ρ+d

= o
(( 1

n

) ρ
ρ+d

log2(d+4)ρ/(ρ+d) n
)

as n→∞.

Proof of Theorem 3.5. We prove parts (i) and (ii) of the theorem simultaneously, by

appealing to the corresponding arguments in the proof of Theorem 3.4. First, we

introduce the following class of functions: for 0 < c ≤ C and n ∈ N, let

Gn,c,C :=
{
g : Rd → R : g continuous, c ≤ inf

x∈R′n

f̄(x)

g(x)
≤ sup

x∈R′n

f̄(x)

g(x)
≤ C

}
.

Now, for g ∈ Gn,c,C , let

kg(x) := max[1,min{bB{g(x)n}4/(d+4)c, bn1−βc}]. (3.40)
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Write

R(Ĉkgnn
n )−R(CBayes)

= RR′n(Ĉkgnn
n )−RR′n(CBayes) +RRd\R′n(Ĉkgnn

n )−RRd\R′n(CBayes).

To deal with the first term, we note that, for all sufficiently large n, R′n ⊆ {f̄(x) ≥
kg(x)

n
log2d(n/kg(x))

}
and kg ∈ Kβ, uniformly for g ∈ Gn,c,C . We can therefore apply

Theorem 3.6 (similarly to the application in the proof of Theorem 3.4) to conclude that

RR′n(Ĉkgnn
n )−RR′n(CBayes) =

{
1

B

∫
S′n

f̄(x0)d/(d+4)

4‖η̇(x0)‖

( f̄(x0)

g(x0)

)4/(d+4)

dVold−1(x0)

+B4/d

∫
S′n

f̄(x0)d/(d+4)

‖η̇(x0)‖

( g(x0)

f̄(x0)

)16/(d(d+4))

a(x0)2 dVold−1(x0)

}
n−4/(d+4){1 + o(1)},

(3.41)

uniformly for g ∈ Gn,c,C . Moreover, for the tail region, we have that

RRd\R′n(Ĉkgnn
n )−RRd\R′n(CBayes) ≤ P(X ∈ Rd \ R′n) = o

(( 1

n

) ρ
ρ+d

log2(d+4)ρ/(ρ+d) n
)
,

(3.42)

uniformly for g ∈ Gn,c,C , due to the moment condition in (B.4)(ρ).

Thus, by similar arguments to those in the proof of Theorem 3.4, parts (i) and (ii),

we have that

(i) if ρ > 4, then

R(Ĉkgnn
n )−R(CBayes) = B4,gn

−4/(d+4){1 + o(1)}, (3.43)

uniformly for g ∈ Gn,c,C , as n→∞, where

B4,g :=
1

B

∫
S′n

f̄(x0)d/(d+4)

4‖η̇(x0)‖

( f̄(x0)

g(x0)

)4/(d+4)

dVold−1(x0)

+B4/d

∫
S′n

f̄(x0)d/(d+4)

‖η̇(x0)‖

( g(x0)

f̄(x0)

)16/(d(d+4))

a(x0)2 dVold−1(x0);

(ii) if ρ ≤ 4, then

R(Ĉkgnn
n )−R(CBayes) = o(n−ρ/(ρ+d) log2(d+4)ρ/(ρ+d) n),

uniformly for g ∈ Gn,c,C , as n→∞.

Now, we show that f̂m ∈ Gn,c,C with high probability, for m > m0n
2+d/2 and n
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large. First observe that, for all x ∈ R′n,

∣∣∣ f̂m(x)

f̄(x)
− 1
∣∣∣ ≤ n

log2(d+4) n
|f̂m(x)− f̄(x)| ≤ n

log2(d+4) n
‖f̂m − f̄‖∞.

Write

‖f̂m − f̄‖∞ ≤ ‖f̂m − Ef̂m‖∞ + ‖Ef̂m − f̄‖∞. (3.44)

To bound the first term in (3.44), by Giné and Guillou (2002, Theorem 2.1), there

exists L > 0, such that

P(‖f̂m − Ef̂m‖∞ ≥ sm−2/(d+4)) ≤ L exp
( −Ads2

4L2‖f̄‖∞R(K)

)
, (3.45)

for all 2CA−d/2‖f̄‖1/2
∞ R(K)1/2 log1/2

( ‖K‖∞md/(2(d+4))

‖f̄‖1/2∞ Ad/2R(K)1/2

)
≤ s ≤ L‖f̄‖∞R(K)m2/(d+4)

‖K‖∞ , where

R(K) :=
∫
Rd ‖x‖

2K(x) dx. Let

s0 :=
2 max{C,L}‖f̄‖1/2

∞ R(K)1/2

Ad/2
log2(d+4) n.

Then, by applying the bound in (3.45) with s = s0, for all

m0 >
(

8 max{C,L}‖f̄‖1/2∞ R(K)1/2

Ad/2

)2+d/2

, we have that, for large n,

P
{
‖f̂m − Ef̂m‖∞ ≥

log2(d+4) n

4n

}
≤ P

{
‖f̂m − Ef̂m‖∞ ≥

2 max{C,L}‖f̄‖1/2
∞ R(K)1/2 log2(d+4) n

Ad/2m
2/(d+4)
0 n

}
≤ P

{
‖f̂m − Ef̂m‖∞ ≥

2 max{C,L}‖f̄‖1/2
∞ R(K)1/2 log2(d+4) n

Ad/2m2/(d+4)

}
≤ L exp

(
− log4(d+4) n

)
= O(n−M),

for all M > 0. For the second term in (3.44), by a Taylor expansion, we have that, for

all m0, n sufficiently large,

‖Ef̂m − f̄‖∞ ≤
A2m−2/(d+4) supx∈Rd ‖ ¨̄f(x)‖op

∫
Rd K(z)‖z‖2 dz

2
≤ log2(d+4) n

4n
.

It follows that supm>m0n2+d/2 P{f̂m /∈ Gn,1/2,3/2} = O(n−M), for each M > 0, as n→∞.

To conclude the proof, let xm′ := (xn+1 . . . xn+m) and let f̃m(x) = f̃m,h(x, x
m′) :=
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1
mhd

∑m
j=1K

(x−xn+j
h

)
. For ρ > 4, we have that

|R(ĈkSSnn
n )−R(CBayes)−B4n

−4/(d+4)|

≤
∫
{xm′:f̃m∈Gn,1/2,3/2}

|R(Ĉ
kf̃mnn
n )−R(CBayes)−B4,f̃m

n−4/(d+4)| dP⊗mX (xn+1, . . . , xn+m)

+ P{f̂m /∈ Gn,1/2,3/2}

≤ sup
g∈Gn,1/2,3/2

|R(Ĉkgnn
n )−R(CBayes)−B4,gn

−4/(d+4)|+O(n−M) = o(n−4/(d+4)),

by (3.43). Similarly, for ρ ≤ 4,

|R(ĈkSSnn
n )−R(CBayes)|

≤
∫
{xm′:f̃m∈Gn,1/2,3/2}

|R(Ĉ
kf̃mnn
n )−R(CBayes)| dP⊗mX (xn+1, . . . , xn+m)

+ P{f̂m /∈ Gn,1/2,3/2}

≤ sup
g∈Gn,1/2,3/2

|R(Ĉkgnn
n )−R(CBayes)|+O(n−M) = o(n−ρ/(ρ+d) log2(d+4)ρ/(ρ+d) n).
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