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Abstract We consider an h-partite version of Dilworth’s theorem with multiple partial
orders. Let P be a finite set, and let <1, ..., <r be partial orders on P . Let G(P,<1, ..., <r)

be the graph whose vertices are the elements of P , and x, y ∈ P are joined by an edge if
x <i y or y <i x holds for some 1 ≤ i ≤ r . We show that if the edge density of G(P,<1
, ..., <r) is strictly larger than 1−1/(2h−2)r , then P contains h disjoint sets A1, ..., Ah such
that A1 <j ... <j Ah holds for some 1 ≤ j ≤ r , and |A1| = ... = |Ah| = �(|P |). Also, we
show that if the complement of G(P,<) has edge density strictly larger than 1−1/(3h−3),
then P contains h disjoint sets A1, ..., Ah such that the elements of Ai are incomparable
with the elements of Aj for 1 ≤ i < j ≤ h, and |A1| = ... = |Ah| = |P |1−o(1). Finally,
we prove that if the edge density of the complement of G(P,<1,<2) is α, then there are
disjoint sets A,B ⊂ P such that any element of A is incomparable with any element of B

in both <1 and <2, and |A| = |B| > n1−γ (α), where γ (α) → 0 as α → 1. We provide a
few applications of these results in combinatorial geometry, as well.
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1 Introduction

Let k and n be positive integers. A weak version of the widely used Dilworth’s theorem [2]
states that every partially ordered set with n elements either contains a chain of size k or an
antichain of size �n/k�. Applying Dilworth’s theorem multiple times, one can easily deduce
the following result. Let P be an n element set, and let <1, ..., <r be partial orders on P .
There exists H ⊂ P such that |H | ≥ r+1

√
n, and H is either a <i-chain for some 1 ≤ i ≤ r

or any two elements of H are incomparable in any of the partial orders <1, ..., <r .
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Bipartite versions of Dilworth’s theorem have been considered in a series of papers by
Fox, Pach and Tóth. Before we state their results, we introduce some notation.

Let <1, ..., <r be partial orders on a set P . If a, b ∈ P , write a ⊥i b if a and b are
incomparable in <i . Also, write a ⊥ b if a ⊥i b holds for i = 1, ..., r . If A,B ⊂ P and
1 ≤ i ≤ r , let A <i B if for every a ∈ A and b ∈ B we have a <i b. Define A ⊥i B and
A ⊥ B analogously.

In [4], Fox proved the following theorem for a single partial order.

Theorem 1 ([4]) There exists n0 such that for all n > n0 and for all partially ordered sets
(P,<) on n elements, there exist A, B ⊂ P such that A and B are disjoint,

|A| = |B| >
n

4 log2 n
,

and either A < B or A ⊥ B.

In [5], Fox and Pach generalized this result for multiple partial orders.

Theorem 2 ([5]) Let r be a fixed positive integer and let <1, ..., <r be partial orders on
the n element set P . There exist A,B ⊂ P such that A and B are disjoint,

|A| = |B| >
n

2(1+o(1))(log2 log2 n)r
,

and either A <i B holds for some 1 ≤ i ≤ r or A ⊥ B.

In [6], Fox, Pach and Tóth proved a Turán-type version of these results. Before we state it
we introduce some further notation. If <1, ..., <r are partial orders on the set P , let G(P,<1
, ..., <r) be the graph whose vertex set is P and in which two elements a, b ∈ P are
joined by an edge if a <i b or b <i a holds for some 1 ≤ i ≤ r . Call this graph the r-
comparability graph of (P,<1, ..., <r), and call the complement of G(P,<1, ..., <r) the
r-incomparability graph of (P,<1, ..., <r). Similarly, the directed comparability graph of

(P,<1, ..., <r) is
−→
G(P,<1, ..., <r), in which −→

xy is an edge if x <i y for some 1 ≤ i ≤ r .
We note that it is allowed to have both −→

xy and −→
yx in the directed edge set.

For positive integers h, r, n, m, define f C
r,h(n,m) and f I

r,h(n,m) as follows. Let

f C
r,h(n,m) be the maximal s such that if P is an n element set with partial orders <1, ..., <r ,

and G(P,<1, ..., <r) has exactly m edges, then there exist 1 ≤ i ≤ r and A1, ..., Ah ⊂ P

pairwise disjoint subsets such that |A1| = ... = |Ah| = s, and A1 <i ... <i Ah.
Similarly, let f I

r,h(n, m) be the maximal s such that if P is an n element set with partial
orders <1, ..., <r , and the incomparability graph of (P,<1, ..., <r) has exactly m edges,
then there exist A1, ..., Ah ⊂ P pairwise disjoint subsets such that |A1| = ... = |Ah| = s,
and Aj ⊥ Al for all 1 ≤ j < l ≤ h.

Here is the promised theorem by Fox, Pach and Tóth [6].

Theorem 3 ([6])

(i) For every ε > 0, there exists c(ε) > 0 such that

f C
1,2

(
n,

(
1

4
− ε

)
n2

)
< c(ε) log n.
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(ii) For every ε > 0,

f C
1,2

(
n,

(
1

4
+ ε

)
n2

)
>

εn

2
.

(iii) There is a constant c2 > 0 such that for every 0 < λ < 1/2,

f I
1,2(n, λn2) >

c2λn

log n log 1/λ
.

The aim of this paper is to generalize the previous theorem and to understand the behavior
of the functions f C

r,h and f I
r,h. Let us note a few things about Theorem 3. The functions f I

1,2

and f C
1,2 behave quite differently. As we can see, f C

1,2(n,m) has a large jump at m/n2 = 1/4,

and for m/n2 > 1/4 the function f C
1,2(n,m) is linear in n. We show that f C

r,h has a similar
behavior.

However, as we shall see, f I
1,h also jumps at some value of m/n2 for h > 2.

Our paper is organized as follows. In the next section, we prove bounds on f C
r,h for

arbitrary r, h positive integers. We show that if α = 1/2 − 1/2(2h − 2)r , the function
f C

r,h(n,m) jumps at the point m/n2 = α. If m/n2 is strictly below the threshold α, then

f C
r,h(n,m) is O(log n), while above this point f C

r,h(n, m) becomes linear in n.
An h-partite graph is balanced if its classes have the same size. In Section 3, we investi-

gate the largest balanced h-partite graph of the 1-incomparability graph. We show that f I
1,h

also jumps. If m/n2 < 1/2 − 1/2(h − 1), then f I
1,h(n,m) = 0. However, for

m

n2
>

1

2
− 1

18(h − 1)
+ ε,

we have f I
1,h(n, m) = n1−o(1).

In Section 4, we investigate the largest balanced bipartite graph of the 2-incomparability
graph. As we shall see, f I

2,2 behaves quite differently as f I
1,2. We show that f I

2,2(n,m) is

approximately nα for some α satisfying α → 1 as m/n2 → 1/2.
In the last section, we provide applications of these results for two problems in

combinatorial geometry.
Before we start, we introduce some of the standard notation we use. As usual, [n] denotes

the set {1, ..., n}. If G is a graph, V (G) is the vertex set of of G, E(G) is the edge, e(G) =
|E(G)| is the number of edges, and d(G) = e(G)/

(|V (G)|
2

)
is the edge density of G. If

X, Y ⊂ V (G), G[X] is the subgraph of G induced on X, and G[X, Y ] is the induced
bipartite subgraph of G with vertex classes X and Y . Also, Ks is the complete graph on s

vertices and Ks,t is complete bipartite graph with vertex classes having sizes s and t .
A linear extension of a partial order < is a total order <∗ such that x < y implies x <∗ y.

Also, the dual of < is <d , where <d is defined such that x <d y if y < x.
To avoid clutters, we omit floors and ceilings whenever they are not crucial.

2 The r-Comparability Graph

In this section, generalizing part (i) and (ii) of Theorem 3, we prove the following result
about the behaviour of f C

r,h.
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Theorem 4 Let h, r, n be positive integers and 0 < ε < 1/2(2h − 2)r .

(i) We have

f C
r,h

(
n,

(
1

2
− 1

2(2h − 2)r
− ε

)
n2

)
< 2ε−1(2h − 2)r log n.

(ii) There exists a constant c(r, h, ε) > 0 such that

f C
r,h

(
n,

(
1

2
− 1

2(2h − 2)r
+ ε

)
n2

)
> c(r, h, ε)n. (*)

Also, for h = 2, we have

f C
r,2

(
n,

(
1

2
− 1

2r+1
+ ε

)
n2

)
>

εn

r2r+1
. (**)

Proof of (i). Let G = (A,B,E) be a bipartite graph with

|A| = |B| = n

(2h − 2)r
,

and |E| > |A||B|(1 − ε) such that G does not contain Kt,t with t > 2ε−1 log n. A random
bipartite graph, where the edges are chosen with probability (1 − ε/2), has this property
with high probability, see [1].

Define (P,<1, ..., <r) as follows. Let {Pt }t∈[2h−2]r be a partition of the n-element set
P into (2h − 2)r equal sized parts, and let ft : Pt → A and gt : Pt → B be arbitrary
bijections. Let t = (t1, ..., tr ) and u = (u1, ..., ur ) be two different elements of [2h − 2]r
and suppose that the first coordinate they differ in is the q-th coordinate. Without loss of
generality, tq < uq . If tq + 1 < uq , let x <q y for all x ∈ Pt and y ∈ Pu. If tq + 1 = uq ,
let x <q y if ft (x)gu(y) ∈ E.

One can easily check that the relations <1, ..., <r we have defined are partial orders.
Also, G(P,<1, ..., <r) contains at least(

(2h − 2)r

2

)
(1 − ε)n2

(2h − 2)2r
>

(
1

2
− 1

2(2h − 2)r
− ε

)
n2

edges.
Suppose that A1, ..., Ah are disjoint subsets of P such that |A1| = ... = |Ah| = t and

A1 <q ... <q Ah with some q ∈ [r]. Then there exist t1, ..., th such that for i = 1, ..., h,
we have

|Pti
∩ Ai | >

t

(2h − 2)r
.

Also, the q-th coordinates of t1, ..., th are strictly monotone increasing. Hence, there exists
1 ≤ j < h such that the difference between the q-th coordinate of tj and tj+1 is 1. But then
ftj

(Aj ∩Ptj
) and gtj+1

(Aj+1∩Ptj+1
) span a complete bipartite graph in G, so t/(2h−2)r <

2ε−1 log n. Hence,

f C
r,h

(
n,

(
1

2
− 1

2(2h − 2)r
− ε

)
n2

)
< 2(2h − 2)rε−1 log n.

In the rest of this section, we shall prove part (ii) of the theorem. We are going to
deduce part (ii) from a Turán-type result for multicolored directed graphs. But first, we need
some definitions.
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Fig. 1 Diamond, spiral and rooted spiral

A directed graph D = (V ,E) is a k-diamond, if V = {a, a′, b1, ..., bk} and

E = {−→abi : i = 1, ..., k} ∪ {−→
bia

′ : i = 1, ..., k}.
Call the vertex a the bottom of D and a′ the top of D.

The directed graph S = (V ′, E′) is an h-part spiral, if its vertex set can be partitioned as
V ′ = {a1, ..., ah−1} ∪ B1 ∪ ... ∪ Bh such that |B1| = ... = |Bh| and

E′ = {−→bai : i = 1, ..., h − 1; b ∈ Bi} ∪ {−→
aib

′ : i = 1, ..., h − 1; b′ ∈ Bi+1}.
Call |B1| the width of the spiral and B1, ..., Bh the classes of the spiral.

Also, a directed graph R = (V ′′, E′′) is an h-part rooted spiral, if its vertex set can be
partitioned as V ′′ = {a1, ..., ah} ∪ B2 ∪ ... ∪ Bh+1 such that |B1| = ... = |Bh+1| and

E′′ = {−→aib : i = 1, ..., h; b ∈ Bi+1} ∪ {−→baj : j = 2, ..., h; b ∈ Bj }.
Call a1 the root and |B1| the width of the rooted spiral (Fig. 1).

It is clear that if the directed comparability graph of a partially ordered set (P,<) con-
tains an h-part rooted spiral with classes B1, ..., Bh, then B1 < ... < Bh. Hence, it is enough
to find an h-part spiral with large width in the directed comparability graph. To prove such
a result, we need the following lemma first.

Lemma 5 Let ε > 0 and q, n be positive integers. Let G = (V ,E) be a directed graph
with |V | = n, |E| > (1/2 − 1/2q+1 + ε)n2. Let χ : E → [q] be a q coloring of the edges.
Then G contains a monochromatic k-diamond with

k >
ε2n

q222q+2
.

Proof Let λ = ε/q2q+1. For W ⊂ V , x ∈ V and i = 1, ..., q, let

UW
i (x) = {y ∈ W : −→

xy ∈ E,χ(
−→
xy) = i},

and let
DW

i (x) = {z ∈ W : −→
zx ∈ E,χ(

−→
zx) = i}.

For simplicity, write UV
i (x) = Ui(x) and DV

i (x) = Di(x). Also, for all H ⊂ [q], let

VH = {x ∈ V (G) : |Ui(x)| > λn ⇔ i ∈ H }.
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The sets {VH }H⊂[q] partition V into 2q parts. The number of edges connecting two different
parts in this partition is at most

∑
H1,H2⊂[q];H1 �=H2

|VH1 ||VH2 | ≤
(

2q

2

)( n

2q

)2 =
(

1

2
− 1

2q+1

)
n2.

Hence, there exists F ⊂ [q] such that G[VF ] contains at least εn2/2q edges. Let E′ be the
set of edges in G[VF ] whose color is in F . Note that for every x ∈ VF there are at most qλn

edges e containing x such that χ(e) �∈ F . Thus,

|E′| >
( ε

2q
− qλ

)
n2 = εn2

2q+1
.

But then there exists p ∈ F such that G[VF ] contains at least εn2/q2q+1 edges of color p.
So there exists a ∈ VF with

|UVF
p (a)| >

εn

q2q+1
.

Let A = U
VF
p (a). There are at least

λn|A| >
ε2n2

q222(q+1)

edges of color p connecting an element of A with an element of V , as every element of A

has at least λn edges of color p containing it. Hence, there exists a′ ∈ V with

|DA
p (a′)| >

ε2n

q222(q+1)
.

Then the vertex set {a, a′} ∪ DA
p (a′) spans a p-colored k-diamond with

k >
ε2n

q222(q+1)
.

Now we are ready to prove our key result about spirals.

Theorem 6 Let r, h be positive integers and ε > 0. There exists c(r, h, ε) > 0 with the
following property. Let G = (V ,E) be a directed graph with |V | = n and

|E| >

(
1

2
− 1

2(2h − 2)r
+ ε

)
n2,

and let χ : E → [r] be an r-coloring of the edges of G. Then G contains a monochromatic
h-part spiral of width at least c(r, h, ε)n.

Proof Let λ be the unique solution of the quadratic equation
√

ε/hr(ε/hr − rλ)2

r222r+2
= λ

satisfying λ < ε/hr . We shall prove that G contains an h-part spiral of width at least λn.
Suppose to the contrary that G does not contain an h-part spiral of width at least λn. For

W ⊂ V , x ∈ V and i ∈ [r], define UW
i (x) and DW

i (x) as in the previous proof. For x ∈ V

and i ∈ [r], let li (x) be the largest l such that G contains an l-part rooted spiral with root x

and width λn in color i. Note that if there exists x ∈ V and i ∈ [r] with li (x) ≥ h, we are
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done as an h-part rooted spiral of width λn trivially contains an h-part spiral of width λn.
Hence, we can suppose that 0 ≤ li (x) < h.

For t = (t1, ..., tr ) ∈ {0, ..., h − 1}r , define

Vt = {x ∈ V : li (x) = ti , i ∈ [r]}.
The sets {Vt }t∈{0,...,h−1}r partition V into hr parts. Let nt = |Vt |. Also, let

I (t) = {i ∈ [r] : ti �∈ {0, h − 1}},
and ε′ = ε/hr . We show that G[Vt ] contains at most(

1

2
− 1

2|I (t)|+1

)
n2

t
+ ε′n2

edges.
Suppose that G[Vt ] has more than(

1

2
− 1

2|I (t)|+1

)
n2

t
+ ε′n2

edges. First of all, this forces nt to be at least
√

ε′n, as G[Vt ] has more than ε′n2 edges. If
ti = 0 for some i, then the number of edges of color i in G[Vt ] is at most λn2. Otherwise,
there exists x ∈ G[Vt ] with |Ui(x)| > λn, and x ∪ Ui(x) spans a 1-part rooted spiral of
width λn, contradicting ti = 0.

Similarly, if ti = h − 1 for some i, then the number of edges of color i in G[Vt ] is also
at most λn2, otherwise there exist x ∈ G[Vt ] with |Di(x)| > λn. Taking the union of Di(x)

and an (h − 1)-part rooted spiral with root x and width λn, we get an h-part spiral of width
λn.

Hence, the number of edges in G[Vt ] with color in I (t) is at least(
1

2
− 1

2|I (t)|+1

)
n2

t
+ (ε′ − rλ)n2 >

(
1

2
− 1

2|I (t)|+1
+ ε′ − rλ

)
n2

t
.

Applying Lemma 5 with q = |I (t)|, we get that there exists a monochromatic k-diamond
in G[Vt ] with color in p ∈ I (t), where

k >
(ε′ − rλ)2nt

q222q+2
>

(ε′ − rλ)2
√

ε′n
r222r+2

= λn.

Let a, a′, b1, ..., bk ∈ Vt be the vertices of this k-diamond, where the vertex a is the bottom
and a′ is the top of the diamond. Let S be a tp-part rooted spiral with root a′ and width λn,
then taking the union of this k-diamond and S, we get a p colored tp + 1-part rooted spiral
with root a and width λn, contradicting lp(a) = tp .

So far, we showed that the graph induced on Vt can contain at most(
1

2
− 1

2|I (t)|+1

)
n2

t
+ ε′n2

edges. Hence, the complement of G contains at least

−εn2 +
∑

t∈{0,...,h−1}r

n2
t

2|I (t)|+1
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edges. Using the Cauchy-Schwarz inequality, we have

∑
t∈{0,...,h−1}r

n2
t

2|I (t)|+1
≥

⎛
⎝ ∑

t∈{0,...,h−1}r
nt

⎞
⎠

2 ⎛
⎝ ∑

t∈{0,...,h−1}r
2|I (t)|+1

⎞
⎠

−1

=

= n2

2(2h − 2)r
.

Hence, G contains less than (
1

2
− 1

2(2h − 2)r
+ ε

)
n2

edges, which is a contradiction.

Solving the quadratic equation in the beginning of the proof yields

c(r, h, ε) = �

(
ε5/2

r222rh5r/2

)
.

However, in the case h = 2, we can get a better bound. In this special case, while we
repeat the previous proof, we do not need to use Lemma 5 at any point. We can deduce the
following result.

Proposition 7 Let r be a positive integer and ε > 0. Let G = (V ,E) be a directed graph
with |V | = n and |E| > (1/2 − 1/2r+1 + ε)n2. Any r coloring of the edges of G contains
a monochromatic 2-part spiral of width at least εn/r2r+1.

Proof We shall proceed similarly as in the previous proof and in the proof of Lemma 5. Let
λ = ε/r2r+1. For any H ⊂ [r] let

VH = {x ∈ V : |Ui(x)| ≥ λn ⇔ i ∈ H }.
The set system {VH }H⊂[r] partitions V into 2r parts. Thus, the number of edges connect-

ing two different parts is at most (1/2 − 1/2r+1)n2. Hence, there exists H0 ⊂ [r] such that
e(G[VH0 ]) > εn2/2r . Let f be the number of edges of G[VH0 ] whose color is not in H0.
Then

f < (r − |H0|)|VH0 |λn < rλn2.

Hence, the number of edges of G[VH0 ] whose color is in H0 is at least( ε

2r
− rλ

)
n2 = rλn2.

But then, there exists i ∈ H0 and v ∈ VH0 such that

|Di(v)| ≥ |DVH0
i (v)| > λn.

Setting B1 = Di(v), a1 = v and B2 = Ui(x), the set {a1} ∪ B1 ∪ B2 spans a 2-spiral of
width λn of color i in G.

After these preparations, the proof of Theorem 4 is immediate.

Proof of Theorem 4, part (ii). Let <1, ..., <r be partial orders on the n element set P .
Define the directed graph G = (P,E) and the coloring χ : E → [r] as follows: if x, y ∈ P

are comparable in at least one of the partial orders <1, ..., <r , then choose one of them, say
<i . Without loss of generality, x <i y. Let −→

xy ∈ E and χ(
−→
xy) = i. By Theorem 6, there



Order

exists a color p such that the directed graph G contains a p-colored h-part spiral of width
c(r, h, ε)n, let its vertex set be {a1, ..., ah−1} ∪B1 ∪ ...∪Bh. But then B1 <p ... <p Bh and
|B1| = ... = |Bh| > c(r, h, ε)n. Hence, (*) is proved.

In case h = 2, we repeat the proof of (*), but we use Proposition 7 instead of Theorem
6. This yields

f C
r,2

(
n,

(
1

2
− 1

2r+1
+ ε

)
n2

)
>

εn

r2r+1
.

3 Balanced Complete h-Partite Subgraph in the Incomparability Graph

In this section, we prove a result about large balanced complete h-partite subgraphs in the
incomparability graph of (P,<). Note that if P is the disjoint union of h − 1 chains, each
of size n/(h − 1), then there is no Kh in the incomparability graph of (P,<). Hence, the
incomparability graph of (P,<) needs to have density at least 1 − 1/(h − 1) if we hope
to find a large balanced complete h-partite graph in it. Our next result shows that if we
are slightly above this density, we do find a large balanced complete h-partite graph in the
incomparability graph.

Theorem 8 Let h ≥ 2 be a positive integer and let s = �log2 h�.
(i) For m < (1/2 − 1/2(h − 1))n2, we have f I

1,h(n,m) = 0.
(ii) For every ε > 0, there exists c(h, ε) > 0 such that

f I
1,h

(
n,

(
1

2
− 1

18(h − 1)
+ ε

)
n2

)
>

c(h, ε)n

(log n)s
.

In the proof, we shall use the following easy corollary of Theorem 3 and Theorem 4.

Proposition 9 Let h, n be positive integers. Let s be the smallest integer such that h ≤ 2s .
There exist c(h) > 0 with the following property. Let < be a partial order on the n element
set P . If n is sufficiently large, then either

(i) there exist A1, ..., Ah ⊂ P disjoint sets such that

|A1| = ... = |As | >
c(h)n

(log n)s
,

and Ai ⊥ Aj for 1 ≤ i < j ≤ h;
(ii) or there exist B1, B2, B3 ⊂ P disjoint sets such that

|B1| = |B2| = |B3| >
c(h)n

(log n)s
,

and B1 < B2 < B3.

Proof Let c = c(1, 3, 1/16), where c(r, h, ε) is the constant defined in Theorem 4. If the
comparability graph of a poset (Q,<), with |Q| = m has more than 7m2/16 edges, then
by Theorem 4 there exists B1, B2, B3 ⊂ Q satisfying |B1| = |B2| = |B3| > cm and
B1 < B2 < B3. Hence, we can suppose that the comparability graph of P does not contain
a subgraph of size at least n/(log n)s with edge density larger than 7/8, otherwise (ii) holds
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if c(h) < c. But then, applying Theorem 3, every subgraph of size n′ > n/(log n)s contains
two sets, A and A′ such that |A| = |A′| > c0n

′/(log n′) with a suitable constant c0 > 0,
and A ⊥ A′.

For k = 0, ..., s and i = 1, ..., 2k , we shall define the sets Xk,1, ..., Xk,2k ⊂ P with the
following properties: X0,1 = P ; |Xk,1| = ... = |Xk,2k | > ck

0n/(log n)k , and Xk,i ⊥ Xk,j for
1 ≤ i < j ≤ 2k . Suppose that Xk,1, ..., Xk,2k are already defined satisfying those properties.
We define Xk+1,1, ..., Xk+1,2k+1 as follows. As |Xk,i | > ck

0n/(log n)k > n/(log n)s if n is
sufficiently large, there exist Xk+1,2i−1, Xk+1,2i ⊂ Xk,i such that

|Xk+1,2i−1| = |Xk+1,2i | >
c0|Xk,i |

log |Xk,i | >
ck+1

0 n

(log n)k+1
,

and Xk+1,2i−1 ⊥ Xk+1,2i . Then Xk+1,1, ..., Xk+1,2k+1 also satisfy the properties. Set Ai =
Xs,i for i = 1, ..., h. Then (i) holds.

Proof of Theorem 8. We shall prove part (ii) of the theorem. Let (P,<) be a partially
ordered set on n elements such that

e(G(P,<)) <

(
1

18(h − 1)
− ε

)
n2.

Let k = �2ε−1�. Let <′ be any linear extension of <, and let x1 <′ ... <′ xn be the
enumeration of the elements of P by <′. Partition P into k equal <′ intervals P1, ..., Pk .
Namely, for i = 1, ..., k, let Pi = {x(i−1)n/k+1, ..., xin/k}.

Let c0 = c(h) be the constant defined in Proposition 9, and set c(h, ε) = c0ε/k. Also,
let z = c(h, ε)n/(log n)s . Suppose that P does not contain A1, ..., Ah disjoint sets such that

|A1| = ... = |Ah| > z,

and Ai ⊥ Aj for 1 ≤ i < j ≤ h. By Proposition 9, every subset of P of size at least εn/k

contains three sets B1, B2, B3 of size z such that B1 < B2 < B3. Let

m = (1 − ε)n

3kz
. (1)

Picking greedily, for i = 1, ..., k, we can find 3m disjoint sets

{Bi,j,t }j=1,...,m;t=1,2,3

in Pi , such that |Bi,j,t | = z and Bi,j,1 < Bi,j,2 < Bi,j,3.
Define a new graph H = ([k] × [m], E) as follows: join (i, j) and (i′, j ′) by an edge if

i = i′ or there is an edge in G(P,<) between Bi,j,2 and Bi′,j ′,2.
Suppose H has d edges. If (i, j) and (i′, j ′) are joined by an edge, where i < i′, then

G(P,<) contains every edge between Bi,j,1 and Bi′,j ′,3. This is true as there exists x ∈
Bi,j,2 and y ∈ Bi′,j ′,2 with x < y, so for any x′ ∈ Bi,j,1 and y′ ∈ Bi′,j ′,3, we have
x′ < x < y < y′. The number of edges of H of the form {(i, j), (i, j ′)} is k

(
m
2

)
. Hence, the

number of edges {(i, j), (i′, j ′)} of H with i �= i′ correspond to at least(
d − k

(
m

2

))
z2

edges in G(P,<). But G(P,<) has at most (1/18(h − 1) − ε)n2 edges, so

dz2 − kz2
(

m

2

)
<

(
1

18(h − 1)
− ε

)
n2.
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Here, kz2
(
m
2

)
< n2/18k < εn2/2. Hence, we have

dz2 <

(
1

18(h − 1)
− ε

2

)
n2.

Thus, using Eq. 1, we get

d < 9k2m2
(

1

18h
− ε

2

)
n2(1 − ε)−2 <

(
1

2(h − 1)
− ε

)
(km)2.

Applying Turán’s theorem [13] to H there is a complete graph on h vertices in the com-
plement of H . Let the vertices of this Kh be (i1, j1), ..., (ih, jh). For l = 1, ..., h, let
Al = Bil,jl ,2. Then |A1| = ... = |Ah| = c(h, ε)n/(log n)s , and Al ⊥ Al′ for 1 ≤ l < l′ ≤ h,
which is a contradiction.

Slightly modifying the proof above, one can show that we can replace 1/2−1/18(h−1)

in (ii) with 1/2 − 1/8(h − 1). However, we conjecture that 1/2 − 1/2(h − 1) is the sharp
threshold.

Conjecture 10 Let h be a positive integer, ε > 0. There exists c(h, ε) > 0 such that

f

(
n,

(
1

2
− 1

2(h − 1)
+ ε

)
n2

)
>

c(h, ε)n

(log n)s

holds.

4 Balanced Complete Bipartite Graph in the 2-Incomparability Graph

In this section, we investigate the size of the largest balanced complete bipartite graph in
the 2-incomparability graph of (P,<1, <2).

Fix a positive integer h. By our previous results, if the edge density of the incomparability
graph of (P,<) exceeds some threshold strictly less than 1, we have a complete balanced
h-partite graph of size n1−o(1) in the incomparability graph. However, as we shall see, this
is no longer true for the 2-incomparability graph, or in general, for the r-incomparability
graph, where r ≥ 2.

However, we show that if the incomparability graph of (P,<1,<2) has edge density
(1−ε+o(1)), there is a complete balanced bipartite graph of size nβ(ε), where β(ε) → 1 as
ε → 0. This is still much larger than the size of the largest balanced complete bipartite graph
of a random graph, whose edges are chosen with probability 1 − ε. With high probability,
such a graph has edge density (1 − ε + o(1)), and its largest balanced bipartite graph has
size O(ε−1 log n).

We prove the following result.

Theorem 11 (i) For every 0 < ε < 1 and positive integer k ≥ 2, we have

f I
2,2

(
n,

(
1

2
− 1

2k
− ε

)
n2

)
< 2ε−1kn1−1/(k−1) log n.

(ii) For every δ > 0, if n is a sufficiently large positive integer, there exists γ (δ) > 0 such
that

f I
2,2

(
n,

(
1

2
− γ (δ)

)
n2

)
> n1−δ.
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The proof of part (i) is a probabilistic construction. We shall only briefly sketch the idea,
the reader can find more about random graphs in [1].

Proof of (i). Our task is to construct partial orders <1,<2 on an n element set P , such that
the complement of G(P,<1, <2) does not contain a large complete bipartite graph.

For any positive integer N , let GN = (XN, YN, EN) be a bipartite graph with the
following properties:

(1) |XN | = |YN | = N ;
(2) for every x ∈ XN ∪ YN we have deg(x) < εN1/(k−1);
(3) the complement of G does not contain a Kt,t with

t > 2ε−1N1−1/(k−1) log n;
(4) GN has a complete matching MN .

If the edges of G are chosen independently with probability εN1/(k−1)−1/2, then with
positive probability G satisfies conditions (2),(3) and (4).

Let A1, ..., Ak be disjoint sets of size n/k, and let P = A1 ∪ ... ∪ Ak . Let <1 be any
partial order such that A1, ..., Ak are <1-chains, and Ai ⊥1 Aj for 1 ≤ i < j ≤ k.

Now define <2 as follows: for i = 1, ..., k, let fi : Ai → Xn/k and gi : Ai → Yn/k be
arbitrary bijections. Define the relation <∗

2 such that for any a ∈ Ai and b ∈ Ai+1, where
1 ≤ i ≤ k − 1, we have a <∗

2 b if fi(a)gi+1(b) ∈ En/k . Let <2 be the partial order induced
by the relation <∗

2.
First of all, we shall bound the number of edges of G(P,<1,<2) from above. Note that

e(G(P,<1)) = k

(
n/k

2

)
<

n2

2k
.

Also, e(G(P,<2)) < εn2. This is true as for every 1 ≤ i < j ≤ k and x ∈ Ai , y ∈ Aj , we
have x < y iff there exists a sequence x0, ..., xj−i such that x0 = a, xj−i = y, xl ∈ Xi+l

for l = 1, ..., j − i − 1, and fi+l′(xl′)gi+l′+1(xl′+1) ∈ E(Gn/k) for l′ = 0, ..., j − i − 1.
As every vertex in Gn/k has degree less than εN1/(k−1), the number of such sequences with
given x0 is at most

ε|i−j | (n

k

)|i−j |/(k−1)

<
εn

k
.

Hence, for every x ∈ P there are at most εn elements y ∈ P such that x <2 y. Thus,

e(G(P,<2)) < εn2.

We deduce that e(G(P,<1,<2)) < (1/2k + ε)n2.
Also, let X, Y ⊂ P be disjoint sets such that X ⊥ Y and |X| = |Y |. Then, there exist

positive integers t and u such that 1 ≤ t, u ≤ k, |X ∩ At | ≥ |X|/k and |Y ∩ Au| ≥ |Y |/k.
We cannot have t = u, otherwise, there exist x ∈ X ∩ At and y ∈ Y ∩ At with x <1 y or
y <1 x, contradicting X ⊥ Y . Hence, t �= u. Without loss of generality, suppose that t < u.

Let H be the bipartite subgraph of G(P,<2) induced on At ∪ Au. We show that H

contains a subgraph isomorphic to Gn/k . Let x ∈ At arbitrary, and let a0(x), ..., au−t−1(x)

be the unique sequence such that a0(x) = x, al(x) ∈ At+l for l = 1, ..., u − t − 1, and
ft+l′(al′(x))gt+l′+1(al′+1(x)) ∈ Mn/k . As Mn/k is a complete matching, every al : At →
At+l is a bijection. Also, the subgraph of G(P,<2) induced on Au−1 ∪Au is isomorphic to
Gn/k . If x′ ∈ Au−1 and x′′ ∈ Au with x′ <2 x′′, then a−1

u−1(x
′) <2 x′′. Hence, the subgraph

of G(P,<2) induced on At ∪ Au contains a subgraph isomorphic to Gn/k .
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Thus, the complement of H does not contain Kt,t with

t > 2ε−1N1−1/(k−1) log n,

so
|X| = |Y | < 2kN1−1/(k−1) log n < 2ε−1kn1−1/(k−1) log n.

Our next aim is to prepare the proof of part (ii) of Theorem 11. It turns out, our proof
would be simpler if <1 and <2 had a common linear extension, which is not the case in
general. However, the next lemma shows that we can find a constant number of large subsets
in our poset such that between these subsets <1 and <2 behave as if they had a common
linear extension.

Lemma 12 Let r, h ≥ 2 be positive integers. There exists c(r, h) > 0 with the following
property. Let<0

1, ..., <
0
r be partial orders on the n element set P , and for s = 1, ..., r , let<1

s

be the dual of <0
s . There exist A1, ..., Ah ⊂ P pairwise disjoint sets and α1, ..., αr ∈ {0, 1}

such that

(i) |A1| = ... = |Ah| > c(r, h)n;
(ii) if x ∈ Ai and y ∈ Aj with 1 ≤ i < j ≤ h, and x and y are comparable in <s , then

x <
αs
s y.

Proof For s = 1, ..., r , let <′
s be a linear extension of <0

s . It is enough to prove our lemma
for <′

1, ..., <
′
r instead of <0

1, ..., <0
r . We shall deduce Lemma 12 from the following claim.

Claim 13 Let p and r be positive integers. There exists c′(p, r) > 0 with the following
property. Let <1, ..., <r be total orders on the n element set P . There exist B1, ..., Bp ⊂ P

pairwise disjoint subsets such that

(i) |B1| = ... = |Bp| > c′(p, r)n;
(ii) for s = 1, ..., r and 1 ≤ i < j ≤ r , we have either Bi <s Bj or Bj <s Bi .

Proof We shall proceed by induction on r . In case r = 1, the statement is trivial with
c′(p, 1) = 1/p. Let r ≥ 2 and suppose the statement holds for r − 1 instead of r . Let
C1, ..., Cp ⊂ P be disjoint sets such that

|C1| = ... = |Cp| > c′(p, r − 1)n,

and for every 1 ≤ i < j ≤ p and s = 1, ..., r − 1, we have Ci <s Cj or Cj <s Ci .

Let P ′ =
p⋃

i=1

Ci , and for x ∈ P ′, let τ(x) be the position of x in the order <r in P ′. For

i = 1, ..., p, let

Dj =
{
x ∈ P : (j − 1)|P ′|

p
< τ(x) ≤ j |P ′|

p

}
.

We have Di <r Dj for any 1 ≤ i < j ≤ p. Our B1, ..., Bp are going to be suitable subsets
of C1, ..., Cp and D1, ..., Dp .
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Let S, T be two disjoint copies of [p], and define the bipartite graph G = (S, T , E) as
follows: for i ∈ S and j ∈ T , let ij ∈ E if

|Ci ∩ Dj | >
|P ′|

p2(p + 1)
.

We show that G has a complete matching. By Hall’s theorem [7], we only need to check if
Hall’s condition holds. Let X ⊂ [p] be arbitrary and let �(X) denote the set of neighbours
of X in G. Let U =

⋃
i∈X

Di , then

|U | = |X||P ′|
p

.

Also, the elements of �(X) cover at most |�(X)||P ′|/p elements in U , while the elements
not in �(X) cover at most p|X|(|P ′|/p2(p+1)) = |P ′||X|/p(p+1) elements in U . Hence,

|X||P ′|
p

≤ |�(X)||P ′|
p

+ |P ′||X|
p(p + 1)

.

Thus, we have

|X|
(

1 − 1

(p + 1)

)
≤ |�(X)|.

But |X| and |�(X)| are integers not larger than p. Hence, |X| ≤ |�(X)| also holds. So,
Hall’s condition is satisfied and there exists a a complete matching in G. Let the edge set of
such a matching be {ixi : i ∈ S}. Setting Bi = Ci ∩Dxi

and c′(p, r) = c′(p, r −1)/p2(p+
1), we have both (i) and (ii) satisfied.

Let p = (h − 1)2r−1 + 1 and let B1, ..., Bp ⊂ P be disjoint sets such that |B1| = ... =
|Bp| > c′(p, r)n, and for 1 ≤ i < j ≤ p and 1 ≤ s ≤ r , we have either Bi <s Bj or
Bj <s Bi . Define the partial orders {≺v}v∈{0,1}r−1 on [p] as follows: for i, j ∈ [p] and v ∈
{0, 1}r−1, let i ≺v j if Bi <r Bj , and for s = 1, ..., r −1, we have Bi <s Bj in case vs = 0,
and Bj <s Bi in case vs = 1. Then any two different elements of [p] are comparable in at
least one of the partial orders {≺v}v∈{0,1}r−1 . Hence, by repeated applications of Dilworth’s
theorem, there exist w ∈ {0, 1}r−1 and C ⊂ [p] such that

|C| ≥ �p1/2r−1� = h,

and C is a ≺w chain. Let i1 ≺w ... ≺w ih be h elements of this chain, and for j = 1, ..., h,
let Aj = Bij . Also, for s = 1, ..., r , let αi = wi . Finally, let c(r, h) = c′(r, p). Then the
conditions of the theorem are satisfied. �

Before we start the proof of part (ii) of Theorem 11, we still need the following two
lemmas.

Lemma 14 Let A0, .., Ak be pairwise disjoint sets of size m, and let

P =
k⋃

i=1

Ai.

Let < be a partial order on P such that whenever x < y for some x ∈ Ai and y ∈ Aj , then
i < j . Suppose that G(P,<)[A0, Ak] has less than m2/4 edges. There exist 0 ≤ l ≤ k − 1
and X ⊂ Al , Y ⊂ Al+1 such that |X|, |Y | > m1−1/k , and X ⊥ Y .
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Proof For any X ⊂ P and i = 1, ..., k, let

Ui(X) = {y ∈ Ai : ∃x ∈ X, x < y}.
Let B = {x ∈ A0 : |Uk({x})| < m/2}. Then |B| > m/2, otherwise G(P,<)[A0, Ak] has
more than m2/4 edges. Suppose that there is no l ∈ {0, ..., k − 1} and subsets X ⊂ Al ,
Y ⊂ Al+1 such that |X| = |Y | > m1−1/k , and X ⊥ Y .

We show that we can find a decreasing sequence of sets B ⊇ B1 ⊇ .... ⊇ Bk with the fol-
lowing properties: |Bi | = 2k−im1−i/k , and |Ui(Bi)| > m/2. Note that Bk is a one element
set. Hence, writing x for that one element, we have

|Uk({x})| >
m

2
,

contradicting x ∈ B, finishing our proof.
We shall define our sets B1, ..., Bk recursively. Let B1 be any subset of B of size

2k−1m1−1/k . If |U1(B1)| ≤ m/2, then choosing X = B1 and Y = A1 \ U1(B1), we have
X ⊥ Y and |X|, |Y | > m1−1/k . Hence, we have |U1(B1)| ≤ m/2.

Suppose that Bi is already defined satisfying |Bi | = 2k−im1−i/k and |Ui(Bi)| > m/2.

Claim 15 For any positive integer t ≤ |Bi |, we can choose a set C ⊂ Bi such that |C| = t

and |Ui(C)| ≥ |Ui(B)|t/|Bi |.

Proof Let x1, ..., xp be the elements of Bi . Let S1, ..., Sp be a partition of U(Bi) such that
Sj ⊂ Ui({xj }) for j = 1, ..., p. Without the loss of generality, |S1| ≥ ... ≥ |Sp|. Set
C = {x1, ..., xt }, then

|Ui(C)| ≥ |S1| + ... + |St | ≥ |Ui(C)|t
|Bi | .

Setting t = 2k−i−1m1−(i+1)/k , we get a set C such that

|C| = 2k−i−1m1−(i+1)/k,

and |Ui(C)| ≥ m1−1/k . If |Ui+1(C)| ≤ m/2, then set X = C and Y = Ai+1 \ Ui+1(C).
Then, we have X ⊥ Y and |X|, |Y | > m1−1/k , which is a contradiction. Hence,
|Ui+1(C)| > m/2, and Bi+1 = C satisfies our conditions. �

We also need the following easy corollary of Theorem 2, which we shall state without
proof.

Proposition 16 Let <1,<2 be partial orders on the n element set P . At least one of the
following holds:

(i) there exist A1, A2 ⊂ P such that |A1| = |A2| > n1−o(1), and A1 ⊥ A2;
(ii) there exist B1, B2, B3 ⊂ P such that |B1| = |B2| = |B3| > n1−o(1), and B1 <1

B2 <1 B3 or B1 <2 B2 <2 B3

Proof of Theorem 11, (ii). We have to prove that there exists a constant γ (δ) such that if P

is a set with n elements, and <1,<2 are partial orders on P satisfying e(G(P,<1,<2)) <

γ (δ)n2, then P contains two disjoint subsets A,B of size at least n1−γ such that A ⊥ B.
For simplicity, let G1 = G(P,<1) and G2 = G(P,<2).
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Suppose that P does not contain two disjoint subsets A, B of size at least n1−δ such
that A ⊥ B. Let k = �2/δ� and h = 128k, and let c1 = c(2, h), where c(r, h) is the
constant defined in Lemma 12. Then there exist L1, ..., Lh ⊂ P pairwise disjoint sets with
the following properties: |L1| = ... = |Lh| = c1n; replacing <2 with its dual if necessary,
if x ∈ Li and y ∈ Lj for some 1 ≤ i < j ≤ h, and x, y are comparable in <1 or <2, then
x <1 y or x <2 y, respectively.

Let m = n1−δ/2. By Proposition 16, if n is sufficiently large, every subset of P of size at
least c1n/2 contains three disjoint subsets B1, B2, B3 of size m such that B1 <1 B2 <1 B3
or B1 <2 B2 <2 B3. Hence, we can cover at least half of Li with disjoint triples of subsets
such that each set has size m and each triple spans a balanced complete 3-partite graph in
G1 or in G2.

More precisely, let s = c1n/2m. Then, for i = 1, ..., h, there is a system of disjoint sets
{Bi,j,l}j=1,...,s;l=1,2,3 such that Bi,j,l ⊂ Li , |Bi,j,l | = m, and Bi,j,1 <1 Bi,j,2 <1 Bi,j,3 or
Bi,j,1 <2 Bi,j,2 <2 Bi,j,3. Call the pair (i, j) ∈ [h] × [s] type 1, if Bi,j,1 <1 Bi,j,2 <1
Bi,j,3, and call it type 2 otherwise. Without the loss of generality, we can suppose that there
are at least sh/2 type 1 pairs in [h] × [s], and let S be the set of such pairs.

Let H = (S,E) be the complete graph on S, and let w be a weight function defined on E

as follows. Let (i, j), (i ′, j ′) ∈ S, and let f be the edge joining (i, j) and (i′, j ′). If i = i′,
or there exist x ∈ Bi,j,2 and y ∈ Bi′,j ′,2 such that x <1 y or y <1 x, then let w(f ) = 1;
otherwise, let

w(f ) = e(G2[Bi,j,2, Bi′,j ′,2])
m2

.

Note that if there exist x ∈ Bi,j,2 and y ∈ Bi′,j ′,2 such that x <1 y, then Bi,j,1 <1

Bi′,j ′,3. Hence, there are at least m2 edges between Bi,j,1 ∪ Bi,j,2 ∪ Bi,j,3 and Bi′,j ′,1 ∪
Bi′,j ′,2 ∪ Bi′,j ′,3 in G1. Thus, if i �= i′, there are at least w(f )m2 edges between Bi,j,1 ∪
Bi,j,2 ∪ Bi,j,3 and Bi′,j ′,1 ∪ Bi′,j ′,2 ∪ Bi′,j ′,3. Also, the number of edges {(i, j), (i ′, j ′)} in
H , where i = i′, is at most

h

(
s

2

)
< hs2.

Let w(E) =
∑
f ∈E

w(f ). Then the number of edges of G(P,<1,<2) is at least

(w(E) − hs2)m2. (2)

Let t be the number of edges f ∈ E such that w(f ) ≤ 1/4. We show that

t ≤ |S|2
(

1

2
− 1

2k

)
.

Suppose that t > |S|2(1/2 − 1/2k). Consider the graph H ′ with vertex set S, and edge
set E′ = {f ∈ E : w(f ) ≤ 1/4}. By Turán’s theorem [13], there exists T ⊂ S of size
k + 1 such that H ′[T ] is a complete graph. Let (i0, j0), ..., (ik, jk) be the elements of T and
suppose that i0 < ... < ik . First, note that Ail,jl ,2 ⊥1 Ail′ ,jl′ ,2 for all 0 ≤ l < l′ ≤ k, as the
weight of the edge {(il, jl), (il′ , jl′)} is less than 1.

Set Al = Bil,jl ,2 for l = 0, ..., k. Then e(G2[A0, Ak]) < m2/4. Hence, by Lemma 14,
there exist 0 ≤ l ≤ k − 1 and X ∈ Al , Y ∈ Al+1 such that |X| = |Y | = m1−1/k , and
X ⊥2 Y . But then X ⊥ Y , and

m1−1/k > n(1−δ/2)2
> n1−δ,
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contradiction. Thus, we must have

t ≤ |S|2
(

1

2
− 1

2k

)
.

Then

w(E) =
∑
f ∈E

w(f ) >
|E| − t

4
>

>
1

4

((|S|
2

)
− |S|2

(
1

2
− 1

2k

))
= |S|2

8k
− |S|

8
>

|S|2
16k

,

where the last inequality holds if n is sufficiently large. Plugging this result in Eq. 2, we get
the following lower bound on the number of edges of G(P,<1, <2):

e(G(P,<1,<2)) > (w(E) − hs2)m2 >

(
|S|2
16k

− hs2

)
m2 >

(
h2s2

64k
− hs2

)
m2 = h2s2m2

128k
> 256c2

1n
2δ−1.

Thus, setting γ (δ) = 256c2
1δ

−1 finishes the proof of the theorem.

We remark that if <1 and <2 have a common linear extension, which is often the case in
applications, then we do not need to use Lemma 12 in the previous proof and we can simply
write 1/h instead of c1. Then we get the bound γ (δ) = δ/256, which almost matches the
constant of part (i) in Theorem 11. However, we conjecture that an even stronger bound
holds in general.

Conjecture 17 Let k be a positive integer. If 1 − 1/k ≤ α < 1 − 1/(k + 1), we have

f I
2,2(n, αn2/2) = n1−1/k+oα(1),

where oα(1) is some function of n satisfying oα(1) → 0 as n → ∞, with α fixed.

We also conjecture that f I
r,h(n,m) has a similar growth as f2,2(n, m) for r ≥ 3 or r = 2

and h ≥ 3, but we cannot even quantify a precise conjecture for these cases.

5 Applications

Partial orders naturally arise in some geometric problems. The intersection graph of a set
system C is the graph G = G(C, E), where A,B ∈ C forms an edge if A ∩ B �= ∅. The
intersection graph of convex sets in the plane was investigated in a series of paper. Larman
et. al. [8], and Pach and Törőcsik [10] showed that the intersection graph of convex sets
is a 4-incomparability graph. Hence, by an immediate application of Dilworth’s theorem
yields that amongst n convex sets there are always at least n1/5 such that they are pairwise
disjoint, or any two of them intersects. Also, as it was noted in [5], Theorem 2 implies a
bipartite version of this theorem, namely that if C is a family of n convex sets, then there
are A,B ⊂ C of size n1−o(1) such that for any A ∈ A and B ∈ B, we have A ∩ B = ∅, or
for any A ∈ A and B ∈ B, we have A ∩ B �= ∅. In [6], this result was improved, showing
that we can find two linear sized families A,B ⊂ C with the same property.

Call a set in R
2 vertically convex, if every vertical line intersects the set in an interval. The

intersection graph of connected, vertically convex sets is also a 4-incomparability graph.



Order

Hence, Theorem 2 also implies the existence of a complete bipartite graph of size n1−o(1)

either in the intersection graph or its complement. However, we can no longer guarantee a
linear sized complete bipartite graph in the intersection graph or in its complement. In [9],
it is shown that for any ε > 0, there is a collection of n continuous functions on [0, 1] such
that the largest bipartite graph in the intersection graph has size O(n/ log n), and the largest
complete bipartite graph in its complement has size O(nε).

Nevertheless, Theorem 4 immediately implies that if the intersection graph of vertically
convex sets is sparse enough, then we have a linear sized complete bipartite graph in its
complement.

Theorem 18 Let ε > 0 and let C be a collection of n connected, vertically convex sets in
the plane. If the number of unordered pairs {A,B} ∈ C(2) with A ∩ B �= ∅ is less than
n2(1/32 − ε), then there are A,B ⊂ C such that

|A| = |B| >
εn

128
,

and for every A ∈ A, B ∈ B we have A ∩ B = ∅.

Proof As we aim for the self-containment of the paper, we shall define the 4-partial orders
on C, whose incomparability graph is the intersection graph. For any C ∈ C, let

l(C) = inf{x ∈ R : ∃y : (x, y) ∈ C}
and let

r(C) = sup{x ∈ R : ∃y : (x, y) ∈ C}.
Define the relations ≺1,≺2, ≺3 on C as follows:
C ≺1 D, if l(C) ≤ l(D) and r(C) ≤ l(D);
C ≺2 D, if l(C) ≤ l(D) and r(D) ≤ r(C);
C ≺3 D, if for every vertical line l which intersects both C and D, the interval l ∩ C is
below l ∩ D.

Note that ≺1,≺2, ≺3 are not partial orders, as it is possible that C ≺i D and D ≺i C

both hold.
However, define the relations <1,<2, <3, <4 on C as follows:

C <1 D, if C ≺1 D and C ≺3 D;
C <2 D, if C ≺1 D and D ≺3 C;
C <3 D, if C ≺2 D and C ≺3 D;
C <4 D, if C ≺2 D and D ≺3 C.

One can easily check that <1, <2,<3,<4 are partial orders on C, and C and D are
comparable in some <i if and only if C and D are disjoint.

Now, if there are less than (1/32 − ε)n2 unordered pairs {A,B} ∈ C(2) such that A and
B intersect, then G(P,<1,<2,<3,<4) has more than(

1

2
− 1

32
+ ε

)
n2

edges. Hence, by Theorem 4, there exists i ∈ [4] and A,B ⊂ C such that |A| = |B| >

εn/128 and A <i B. But then for every A ∈ A and B ∈ B, we have A ∩ B = 0.

We note that these results have no analogue in higher dimensions: Tietze [11] proved that
any graph can be realized as the intersection graph of 3-dimensional convex sets.
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We also show an application of Theorem 4 for a variant of a classical problem of Erdős:
let α < π be a positive real. Let gd(α) be the smallest integer m such that in any config-
uration of m points in the d-dimensional space there is an angle larger than α. Erdős and
Szekeres [3] proved that

g2

(
π − π

r
+ ε

)
= 2r + 1,

if r ≥ 2 is an integer and ε > 0 is sufficiently small. They also proved that

2(1/β)d−1
< gd(π − β) < 2(4/β)d−1

for any 0 < β < π .
The author of this paper [12] considered the following generalization of this problem:

given 0 < α < π and positive integers m and d, what is the maximal s such that any
configuration of m points in the d-dimensional space contains s points, where every triangle
has an angle larger than α. It was proved that any configuration of t r + 1 points in the plane
contains t + 1 points, where every triangle has an angle larger than π − π/r .

We prove a tripartite version of this result.

Theorem 19 Let 0 < α < π and let d be a positive integer. There exists a constant
c(α, d) > 0 with the following property. Suppose that n is a sufficiently large positive
integer and S is a configuration of n points in the d-dimensional space. There exist three
pairwise disjoint sets A, B,C ⊂ S such that

|A| = |B| = |C| > c(α, d)n,

and for every X ∈ A, Y ∈ B, Z ∈ C, the angle XYZ∠ is larger than α.

Proof Let s = �1/(π−α)�, and let V be a finite set of unit vectors with the property that for
any w ∈ R

d , there exists v ∈ V such that the angle of v and w is less than (π − α)/2. Such
V trivially exists. For each v ∈ V , define the relation <v on R

d as follows: if X, Y ∈ R
d ,

then X <v Y if the angle of v and
−→
XY is less than (π − α)/2. Then <v is a partial order:

X <v Y is equivalent to the inequality

〈v,
−→
XY 〉 > |−→XY | sin(α/2).

Hence, if X <v Y and Y <v Z, then

〈v,
−→
XZ〉 = 〈v,

−→
XY 〉 + 〈v,

−→
YZ〉 >

> (|−→XY | + |−→YZ|) sin(α/2) ≥ |−→XZ| sin(α/2),

so X <v Z.
Also, if X <v Y <v Z holds for some X, Y,Z ∈ R

d , then by elementary geometry, the
angle XYZ∠ is larger than α.

Let S ⊂ R
d , |S| = n. Then G(S, {<v}v∈V ) is the complete graph on n vertices, because

we choose V such that for any X, Y ∈ R
d , there exists v ∈ V with X <v Y . Let

c(α, d) = c(|V |, 3, 2−2|V |−2),

where c(r, h, ε) is the constant defined in Theorem 4. If n is sufficiently large, then(
n

2

)
>

(
1

2
− 1

22|V |+2

)
n2.
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Hence, by Theorem 4, there exist v ∈ V and A,B,C ⊂ S such that A,B, C are pairwise
disjoint, |A| = |B| = |C| > c(α, d)n, and A <v B <v C. But then, for any X ∈ A, Y ∈ B

and Z ∈ C, we also have XYZ∠ > α.

Consider the case d = 2 and α < π − π/r . In the proof above, we can choose V to
be a 2r element set, so using the bound in the remark after Theorem 6, we can show that
c(α, 2) > e−cr with some constant c > 0. However, we conjecture that an even stronger
bound holds.

Conjecture 20 Let 0 < α < π−π/r and let n be a positive integer. Let S be a set of n points
in the plane. There existA,B, C ⊂ S disjoint subsets such that |A| = |B| = |C| = �(n/r),
and for every X ∈ A, Y ∈ B, Z ∈ C, we have XYZ∠ > α.

Taking S to be the [√n]× [√n] square grid, one can easily show that the dependence on
r in the conjecture cannot be improved.

Acknowledgments The author wishes to thank Béla Bollobás and the anonymous referee for their helpful
comments and suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bollobás, B. Random Graphs, 2nd edn. Cambridge University Press (2001)
2. Dilworth, R.P.: A Decomposition Theorem for Partially Ordered Sets. Ann. Math. 51(1), 161–166 (1950)
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