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A large genome-wide association study of age-related macular degeneration 

highlights contributions of rare and common variants. 
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ABSTRACT 

Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the 

elderly with limited therapeutic options. Here, we report on a study of >12 million variants 

including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 

patients and 17,832 controls, we identify 52 independently associated common and rare 

variants (P < 5x10-8) distributed across 34 loci. While wet and dry AMD subtypes exhibit 

predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 

(difference-P = 4.1x10-10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and 

TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our 

results support the hypothesis that rare coding variants can pinpoint causal genes within 

known genetic loci and illustrate that applying the approach systematically to detect new loci 

requires extremely large sample sizes. 
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Advanced age-related macular degeneration (AMD) is an ocular neurodegenerative disease 

and the leading cause of vision loss among the elderly with prevalence estimated at 5% for 

those above 75 years of age1,2. The disease is characterized by reduced function of the 

retinal pigment epithelium (RPE) and loss of photoreceptors in the macula. Advanced AMD is 

classified as wet (choroidal neovascularization, CNV, when accompanied by angiogenesis) 

or dry AMD (geographic atrophy, GA, when angiogenesis is absent). These advanced stages 

of disease are typically preceded by a gradual accumulation of acellular debris in the form of 

drusen and by pigmentary abnormalities in the macula3. Advanced AMD is estimated to 

affect 9.6 million patients currently worldwide and early AMD stages more than 154.6 

million4. At present, our understanding of disease biology and therapies remains limited5.  

Genetic variants, whether associated with small or large changes in disease risk, can 

help uncover disease mechanisms and provide entry points into therapy. Analysis of 

common variation have uncovered numerous risk loci for a multitude of complex diseases 

(see Web Resources) including 21 loci for AMD6-12. However, for most disease loci, 

translation into biological insights remains a major challenge, since the functional 

consequences of associated common variants are typically subtle13 and therefore open to 

inconsistent interpretations.  

With advances in sequencing technology, it is expected that genetic analyses will 

gradually extend to rare variation, which often has more obvious functional consequences14,15 

and thus can accelerate translation of genetic findings into biological understanding14,16. For 

example, identifying multiple disease-associated coding variants in the same gene would 

provide strong evidence that disrupting gene function leads to disease17 particularly when 

these are naturally occurring knock-out alleles. Studies that implicate specific rare variants in 

complex diseases are few and  limited in their generalizability, as they either rely on special 

populations8,18,19, on targeted examinations of a few genes7,9-11,20,21, or on genome-wide 

assessments of relatively modest numbers of individuals22-25. In contrast, systematic 

analyses of common variation are now available in hundreds of thousands of phenotyped 

individuals26,27. Thus, there remains considerable uncertainty about the relative role of rare 

variants in complex disease and the best strategies to identify highly informative rare 

variants. Importantly, the optimal sample sizes and study designs for such studies remain 

poorly understood16. 

Here, we set out to systematically examine common and rare variation of AMD in the 

International AMD Genomics Consortium (IAMDGC) incorporating both a genome-wide 

approach as well as enrichment from a targeted approach. The preceding largest study of 

AMD examined ~2.4 million variants including ~18,000 imputed or genotyped protein-altering 

variants using meta-analysis6. Customizing a chip for de novo centralized genotyping, we 

analyze >12 million variants including 163,714 directly typed protein-altering variants in 
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43,566 unrelated subjects of predominantly European ancestry. Our study thus constitutes a 

detailed simultaneous assessment of common and rare variation in a complex disease and a 

large sample, setting expectations for other well-powered studies combining common and 

rare variant information.  

 

RESULTS 

The study data and genomic heritability 

We gathered advanced AMD cases with GA and/or CNV, intermediate AMD cases, and 

control subjects across 26 studies (Supplementary Table 1). While recruitment and 

ascertainment strategies varied (Supplementary Table 2), DNA samples were collected and 

genotyped centrally. Making maximal use of genotyping technologies, we utilized a chip with 

(i) the usual genome-wide variant content, (ii) exome content comparable to the exome chip 

(adding protein-altering variants from across all exons), and a specific customization to add 

(iii) protein-altering variants detected by our prior sequencing of known AMD loci (see 

Methods) and (iv) previously observed and predicted variation in TIMP3 and ABCA4, two 

genes implicated in monogenic retinal dystrophies. After quality control, we retained 439,350 

directly typed variants including a grid of 264,655 common variants (frequency among 

controls >1%) distributed across autosomes, sex chromosomes, and mitochondria, primarily 

(93%) non-coding, and 163,714 directly genotyped protein-altering variants (including 8,290 

from known AMD loci), mostly rare (88% with frequency among controls ≤1%). Imputation to 

the 1000 Genomes reference panel enabled examining a total of 12,023,830 variants 

(Supplementary Table 3A). Our final data set included a total of 43,566 subjects consisting 

of 16,144 advanced AMD patients and 17,832 control subjects of European ancestry for our 

primary analysis, as well as 6,657 Europeans with intermediate disease and 2,933 subjects 

with Non-European ancestry (Supplementary Table 3B, Supplementary Figure 1).  

Altogether, our genotyped markers accounted for 46.7%28 of variability in advanced 

AMD risk in the European ancestry subjects (95% confidence interval [CI] 44.5% to 48.8%). 

Regarding AMD subtypes, estimates for CNV (h2 = 44.3%, CI 42.2% to 46.5%) and GA (h2 = 

52.3%, CI 47.2% to 57.4%) were similar; a bivariate analysis29 showed a high genetic 

correlation of 0.85 (CI 0.78 to 0.92) between disease subtypes.  

 

Thirty-Four Susceptibility Loci for AMD 

We first conducted a genome-wide single variant analysis of the >12 million genotyped or 

imputed variants (applying genomic control correction, =1.13) comparing the 16,144 

advanced AMD patients and 17,832 control subjects of European ancestry (full results 

online; see Web resources). We obtained >7000 genome-wide significant variants (P ≤ 

5x10-8, Supplementary Figure 2). To identify independently associated variants, we 



10 

 

adopted sequential forward selection (Supplementary Figure 3), resulting in 52 

independently associated variants that reach genome-wide significance (Supplementary 

Table 4, Supplementary File 1). These are distributed across 34 locus regions (Figure 1A), 

each extending across the identified and correlated variants, r²≥0.5, ±500kb (Supplementary 

Table 5). While each of these 52 variants points to a genomic element contributing to AMD 

biology, variants in the 34 different loci reside relatively far from each other and likely 

contribute to disease by regulating or modifying the function of different genes. The 34 loci 

include 16 loci that reached genome-wide significance for the first time (novel loci, Table 1) 

and include genes with compelling biology like extra-cellular matrix genes (COL4A3, MMP19, 

MMP9), an ABC transporter linked to HDL cholesterol (ABCA1), and a key activator in 

immune function (PILRB). Also included are 18 of the 21 AMD loci that reached genome-

wide significance previously6,9 (known loci, Table 1),  between-study heterogeneity was low, 

particularly for the new loci (Supplementary Note 1).  

Most associated variants are common (45 out of 52) with fully conditioned odds ratios 

(OR) from 1.1 to 2.9 (Figure 1B, Supplementary Table 4) with two interacting variants 

(Supplementary Note 2). We also observed seven rare variants with frequencies between 

0.01% and 1% and ORs between 1.5 and 47.6 (Figure 1B, Supplementary Table 4). All of 

these variants were also rare in Non-European ancestries (Supplementary Table 6, 

extended association results on Non-European in Supplementary File 2). All seven rare 

variants are located in/near complement genes: four non-synonymous (CFH:R1210C, 

CFI:G119R, C9:P167S, C3:K155Q) and previously found in targeted analyses of 

complement genes7-11; three others (CFH: rs148553336, rs191281603, rs35292876) 

described here for the first time, including two with the rare allele decreasing disease risk by 

~2.5 to ~3.3-fold and one increasing risk 1.6 fold. To ensure validity of our results, we verified 

associations of lead variants in sensitivity analyses that relied on alternate association tests, 

adjusted for age, gender, or ten ancestry principal components, or were restricted to 

population-based controls or controls ≥ 50 years of age (data not shown). Altogether, our 

genome-wide single variant analysis nearly doubled the number of AMD loci and has 

identified several novel rare variants in CFH. 

 

Prioritizing variants within 52 association signals 

It is often challenging to translate common variant association signals into mechanistic 

understanding of biology; two key challenges are (i) a large number of variants with similar 

signals because of linkage disequilibrium and (ii) their often subtle functional consequences. 

Without narrowing down the lists of candidate variants, follow-up functional experiments are 

complicated. In our large data set, we were able to prioritize among nearby variants: we 

computed each variant’s ability to explain the observed signal and derived, for each of the 52 
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signals, the smallest set of variants that included the causal variant with 95% probability 30,31. 

The 52 credible sets each included from 1 to >100 variants (total of 1,345 variants, 

Supplementary File 3). For 27 out of the 52 sets, the sets were small with ≤10 variants (19 

signals with ≤5 variants, Supplementary Table 7); seven sets included only one variant -- – 

demonstrating the potential for fine-mapping association signals when dense genotype data 

is systematically analyzed in large samples. Among the 205 variants with >5% probability of 

causing the statistical signal, we observe 11 protein-altering (all non-synonymous) variants 

(versus 2 expected assuming 1% protein-altering variants overall, P for enrichment  

= 8.7x10-6, Supplementary Table 8). These variants provide a focused starting point for 

future functional analyses, although we recognize that the analysis has limitations [for 

example, when causal variants are not genotyped nor well-imputed, or when the signal is 

due to a combination of multiple variants, see Supplementary Figure 4 for a counter 

example]. We also note that other variants in each locus (potentially including variants in 

linkage disequilibrium with lead variants and/or other variants nearby) could also contribute 

to disease risk.  

 

Rare Variant Association Signals  

Analysis of rare variants that potentially alter peptide sequences (non-synonymous), truncate 

proteins (premature stop), or affect RNA splicing (splice site) can help to identify causal 

mechanisms – particularly when multiple such associated variants reside in the same 

gene16,32. We examined the cumulative effect of these protein-altering variants with a 

frequency ≤1% in each of our ancestry groups. Genome-wide, no signal was detected with P 

≤ 0.05/17,044 = 2.9x10-6 outside the 34 AMD loci (Figure 1C). Within the 34 loci, we found 

14 genes with significant disease burden (P < 0.05/703 genes = 7.1x10-5, Supplementary 

Table 9). To eliminate settings where a rare variant burden finding is a linkage disequilibrium 

shadow of a nearby stronger common variant, we evaluated each burden signal upon its 

independence from already identified variants in the locus (from Supplementary Table 4). 

Four of the 14 genes preserved a significant (P < 0.05/703 = 7.1x10-5) rare variant burden 

when conditioning on already identified variants in the locus (CFH, CFI, TIMP3, SLC16A8; 

conditioned P = 1.2x10-6, 1.0x10-8, 9.0x10-8, or 3.1x10-6, respectively, Table 2). Sensitivity 

analyses provide similar (excluding previously sequenced subjects) and extended results 

(prioritizing variants with high predicted functionality, Supplementary Note 3). Several 

interesting patterns emerge, many of which we owe to our chip design. 

 First, three of the four rare variant burden signals (CFH, CFI, TIMP3) are due to very 

rare variants, each with frequency <0.1%, all genotyped (Supplementary File 4). Many 

human genetic studies have used frequency thresholds of 1% to 5% as a working definition 

of “rare”, but our data suggests that trait associated variants with clear function may often be 
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much rarer – likely necessitating very large sample sizes for analysis. In two genes (CFH, 

CFI), the rare burden was detected because we enriched arrays with variants from previous 

sequencing of known AMD loci in cases and controls10 (54 of 80 variants). The burden 

findings in CFH (new, Supplementary Note 4) and CFI9 together with variants CFH:R1210C 

and CFI:G119R7,9, corroborate a causal role for these genes in AMD etiology.  

The third signal (TIMP3) was in a gene previously associated with Sorsby’s fundus 

dystrophy, a rare disease with early onset at <45 years of age but with clinical presentation 

strikingly similar to AMD33,34. Because the majority of Sorsby’s alleles disrupt cysteine-

cysteine bonds in TIMP3, we arrayed all possible cysteine disrupting sites together with other 

previously described Sorsby’s risk alleles 33,34. The nine rarest TIMP3 variants were 

cumulatively associated with >30-fold increased risk of disease. TIMP3 resides in an 

established AMD locus5,35 targeted in previous sequencing efforts32,35, that were too small to 

demonstrate an excess of rare variation on this scale (1 variant in 17,832 controls versus 29 

variants in 16,144 cases). Interestingly, although Sorsby-associated TIMP3 variants typically 

occur in exon 5, four of the unpaired cysteine residues we observed map to other exons – 

perhaps because unpaired cysteines in different locations impair protein folding in different 

ways, contributing to variation in disease severity or age of onset: disease onset for our 29 

cases with TIMP3 variants was ≥50 years of age (average 64.5 years). AMD cases with 

these rare TIMP3 risk alleles still exhibited much higher counts of AMD risk alleles across the 

genome than controls, suggesting that TIMP3 is not a monogenic cause of AMD but 

contributes to disease together with alleles at the other risk loci. Our finding illustrates a locus 

where complex and monogenic disorders arise from variation in the same gene, similar to 

MC4R and POMC in obesity36 or UMOD in kidney function37. In a similar approach, we 

analyzed 146 rare protein-altering variants in ABCA4, a gene underlying Stargardt disease38, 

but found no association (P=0.97).  

The rare variant burden signal in SLC16A8 was primarily driven by a putative splice 

variant (c.214+1G>C, rs77968014, minor allele frequency among controls, CAF = 0.81%, OR 

= 1.5, imputed with R²=0.87, Supplementary File 4). This is thus not a true burden from 

multiple rare variants, but a single variant emerging as significant due to the reduced multiple 

testing from gene-wide testing (single variant association P = 9.1x10-6, conditioned on 

rs8135665 P = 1.3 x 10-6). This variant is interesting as it is predicted to disrupt processing of 

the encoded transcript (as +1 G variant, Human Splicing Finder 3.0); however, functional 

analyses in relevant tissue would be required to substantiate the direct implication for gene 

function and AMD. SLC16A8 encodes a cell membrane transporter, involved in transport of 

pyruvate, lactate and related compounds across cell membranes39. This class of proteins 

mediates the acidity level in the outer retinal segments, and SLC16A8 gene knock-out 

animals have changes in visual function and scotopic electroretinograms, but not overt retinal 
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pathology 40. Interestingly, a progressive loss of SLC16A8 expression in eyes affected with 

GA was reported with increasing severity of disease41. In summary, our chip design and our 

large data set enabled us not only to detect interesting features of AMD genetics, but also to 

provide guidance for future investigations on rare variants.  

 

From Disease Loci to Biological Insights 

In addition to fine-mapping and searches for protein-altering rare variants, many analyses 

can further narrow the list of candidate genes in our identified loci. We annotated the 368 

genes closest to our 52 association signals (index variant and proxies, r² ≥0.5, ±100kb, 

Supplementary File 5), noting among these the genes those that contained associated 

credible set variants (Supplementary File 3) or a rare variant burden (Table 2) – these are 

the highest priority candidates, consistent with previous analysis of putative cis-regulatory 

variants42. We further checked whether genes were expressed in retina (82.6% of genes) or 

RPE/choroid (86.4%, Supplementary File 6). We sought relevant eye phenotypes in 

genetically modified mice (observed in 32 of the 368 queried genes, Supplementary File 7). 

We tagged genes in biological pathways enriched across loci, such as the alternative 

complement pathway, HDL transport, and extracellular matrix organization and assembly 

(Supplementary Table 10) – highlighting genes that connect multiple pathways 

(COL4A3/COL4A4, ABCA1, MMP9, and VTN). We also highlighted genes that were 

approved or experimental drug targets (31 of the 368 queried, Supplementary File 8). 

Finally, we prioritized genes where at least one of the credible set variants (Supplementary 

File 3) was protein-altering or located in a putative functional region (promoter, 3’/5’ UTR). 

All this information is summarized in the gene priority score table (Supplementary 

File 9, Supplementary Note 5), which uses a simple customizable scoring scheme to assign 

priority: the scheme using equal weights for each column assigns highest scores per novel 

locus (Figure 2A, Supplementary Table 11) to genes such as master regulators of immune 

function (PILRB), matrix metalloproteinase genes (MMP9, MMP19), a gene involved in lipid 

transport (ABCA1), a gene playing a role in lipid peroxidation and inflammation (GPX4), an 

inhibitor of the complement cascade (VTN), another collagen gene known to cause Alport’s 

syndrome (COL4A3), a gene causing a developmental monogenic disorder, the Noonan 

syndrome (PTPN11), and a retinol dehydrogenase involved in the regeneration of cone and 

rod photoreceptor segments previously associated with autosomal recessive night-blindness 

(RDH5). All of these are expressed in relevant tissues, several of these show relevant mouse 

phenotypes (MMP9, MMP19, COL4A3, PTPN11, GPX4, and RDH5), and six of these are 

current drug targets (ABCA1, MMP19, RDH5, PTPN11, VTN, GPX4). In the known AMD loci, 

the highest scores per locus included the usual suspects (CFH, CFI, CFB, C3, and APOE) as 

well as TIMP3 and SLC16A8 (Figure 2B). This summary of evidence may help prioritize 



14 

 

genes for follow-up functional experiments. It should be noted that much of the information 

was collected specifically for the genes in the identified loci (for example, by reviewing 

literature for animal models for each respective gene), rather than systematically annotating 

all genes genome-wide, so that this summary of evidence is not amenable to formal 

statistical enrichment analysis. 

 

Commonalities and differences between advanced AMD subtypes  

Previously identified risk variants all contribute to the two advanced AMD subtypes, CNV and 

GA. We compared association signals between our 10,749 cases with CNV and 3,235 cases 

with GA. Four of the 34 lead variants show significant difference (Pdiff < 0.05/34 = 0.00147) 

between disease subtypes (in the loci ARMS2/HTRA1, CETP, MMP9, SYN3/TIMP3, Figure 

3A, Supplementary Table 12). Variant rs42450006 upstream of MMP9 was the only one 

that was specific to one subtype, being exclusively associated with CNV (frequency in 

controls = 14.1%; ORCNV = 0.78 vs. ORGA = 1.04; Pdiff = 4.1x10-10), but not with GA 

(PGA=0.39). The signal was markedly stronger in an analysis restricted to CNV 

(Supplementary Note 6). The MMP9 signal for neovascular disease fits well with prior 

evidence: upregulation of MMP9 appears to induce neovascularization43; a feedback loop 

between VEGF signaling and MMP9 has been proposed in the RPE44. VEGF currently 

provides an effective therapy for patients with neovascular AMD, but the struggle to keep 

vision continues. Beyond confirming a shared genetic predisposition of the two subtypes, our 

data identifies – for the first time – one variant that is specific to one subtype.  

 

Commonalities and differences between advanced AMD and earlier disease stages  

We evaluated our association signals in 6,657 individuals with intermediate AMD, defined as 

having more than five macular drusen greater than 63µm and/or pigmentary changes in the 

RPE. Examining all genotyped variants28, we found a correlation of rho = 0.78, indicating 

substantial overlap between genetic determinants of advanced effects and and intermediate 

AMD (95% CI 0.69 to 0.87). Among our 34 index variants, 24 showed nominally significant 

association (Pintermediate ≤ 0.05) with intermediate AMD (2 expected, Pbinomial = 4.8x10-24); all 

had ORs in the same direction but smaller in magnitude (Figure 3B, Supplementary Table 

13). The other 10 variants showed no association with intermediate AMD (Pintermediate > 0.05), 

despite sufficient power (Supplementary Table  14). Interestingly, these 10 variants point to 

7 extra-cellular matrix genes (COL15A1, COL8A1, MMP9, PCOLCE, MMP19, CTRB1/2, 

ITGA7, Supplementary Table 15), based on which one may hypothesize that the extra-

cellular matrix points to a disease subtype without early stage manifestation or with 

extremely rapid progression. If confirmed, a group of rapidly progressing patients or without 
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early symptoms might eventually derive maximum benefit from genetic diagnosis and future 

preventive therapies. 

 

An Accounting of AMD Genetics 

To account for progress made here in understanding AMD genetics, we estimated the 

proportion of disease risk explained by our 52 independent variants and compared it to our 

initial estimates of heritability obtained by examining all genotyped variants. We computed a 

weighted risk score of the 52 variants45 and modeled a realistic genetic risk score distribution 

(see Materials and Methods). Individuals in the highest decile of genetic risk have a 44-fold 

increased risk of developing advanced AMD compared to the lowest decile; of these, 22.7% 

are predicted to have AMD in an elderly general population above 75 years of age with ~5% 

disease prevalence (Figure 4A, Supplementary Table 16). Altogether, the 52 variants 

explain 27.2% of disease variability (Figure 4B, also highlighting results based on other 

prevalence assumptions), including a 1.4% contribution from rare variants. The 52 identified 

variants thus explain more than half of the genomic heritability (estimated as 46.7%, see first 

results chapter). The balance might be attributed to additional variation not studied here, or 

to genetic interaction with environmental factors such as smoking, diet or sunlight exposure, 

or to chance. 

 

DISCUSSION 

We set out to improve our understanding of rare and common genetic variation for 

macular degeneration biology, so as to guide the development of therapeutic interventions 

and facilitate early diagnosis, monitoring and prevention of disease. AMD is an ideal role 

model to study complex disease genetics: it was the focus of the first successful genome-

wide study of common variants 46, and a total of 21 disease susceptibility loci with a broad 

range of effect sizes have been identified altogether 6-12. Here, we systematically examine 

rare variation (through direct genotyping) and common variation (through genotyping and 

imputation) for AMD in a study designed to discover >80% of associated protein-altering 

variants with an allele frequency of >0.1% and >3-fold increased disease risk (or >0.5% 

frequency and >1.8-fold increased disease risk). Our study provides a comprehensive 

simultaneous assessment of common and rare variation enabling us to understand the 

relative roles of rare and common variants and the scientific insights to be gained from rare 

variation.  

Rare protein-altering variants are an especially attractive target for genetic studies 

because most of these variants are expected to damage gene function. Furthermore, 

observing that many rare variants in a gene are, together, associated with a change in 

disease risk strongly suggests that the gene is causally implicated in disease biology and – 
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further – suggests the consequences of mimicking or blocking gene action using a drug. Our 

study demonstrates that when rare variants are systematically assessed in genome-wide 

assessments of large numbers of cases and controls, significant signals can be assigned to 

single rare variants as well as to rare variant burden in specific genes.  

Our study also demonstrates the challenges of these analyses. For three of the genes 

where we identified a rare variant burden, the accumulated evidence was spread across very 

rare variants with frequencies <0.1% in controls. Most of these variants derived from our 

enrichment of the chip with protein-altering variants in known AMD loci based on our own 

sequencing including AMD patients. This emphasizes the value of a hybrid approach with 

direct targeted sequencing in large sample sizes including patients to detect very rare 

variants and genotyping these variants in even larger sample sizes for association analysis. 

Another conclusion is about required sample sizes: although such rare variants are expected 

to exist in nearly all genes, no rare variant burden was observed in most of the 34 loci we 

studied. For these loci, identifying causal mechanisms through the study of rare protein-

altering variants will require even larger sample sizes to identify variants missed by our 

customized exome arrays. While our findings of rare variant burden are predominantly from 

targeted enrichment, the knowledge about effect sizes and frequencies of contributing 

variants illustrates that applying the approach genome-wide to detect new loci requires 

extremely large sample sizes. In our view, a recent estimate that sequencing of 25,000 cases 

will be needed to identify genes where rare variants have a substantial impact on disease 

risk is likely to be a starting point for rare variant analysis, rather than an ultimate target, 

particularly given the fact that effect sizes for AMD risk alleles appear to be larger than for 

many other complex traits 16.  

In addition to corroborating previous reports of rare variants that disrupt genes in the 

complement pathway and lead to large increases in disease risk, our study also includes two 

unexpected rare variant findings. First, we show that a putative splice variant in SLC16A8 

can greatly increase the risk of age-related macular degeneration – providing strong 

evidence that the gene is directly involved in disease biology. SLC16A8 is a lactate 

transporter expressed39 specifically by the RPE, and a deficit of lactate transport toward the 

choroid vasculature results in acidification of the retina and photoreceptor dysfunction as 

reported for SLC16A8 knock-out mice40. Second, we show a >30-fold excess of rare TIMP3 

mutations among putative cases of macular degeneration. TIMP3 is an especially attractive 

candidate that has been the subject of previous, underpowered, genetic association studies.  

While it has been hypothesized that studies of rare and low frequency genetic 

variants will greatly increase the proportion of genetic risk that can be explained, our results 

don’t support this. Our study and others successfully identify many low frequency disease 

risk alleles, and these provide clues about disease biology, but our results also show that 
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common variants make a much larger contribution to variability in disease risk. Common 

variants suggest a large number of interesting leads and pathways for future analysis 

(Supplementary Table 11, Figure 2A), including attractive candidates such as immune 

regulators (PILRB), genes implicated in mouse ocular phenotypes (MMP9, MMP19, 

COL4A3, PTPN11, GPX4, and RDH5), and proven drug targets (ABCA1, MMP19, RDH5, 

PTPN11, VTN, GPX4). In a literature search, we identified no previous candidate gene 

association studies targeting our novel loci, although several model organism, cellular, and 

functional studies evaluated potential links between genes in these loci and AMD (highlights 

of this search in Supplementary Table 11) and a few loci were nominally associated and 

proposed as candidates in prior genome-wide searches 47,48. As richer functional annotations 

of the genome49 become available in diverse cell types, systematic assessment of overlap 

between these and our loci should clarify disease biology.   

Our study also suggests additional important observations. While our results show 

that the majority of genetic risk is shared between GA and CNV, we also identify – for the 

first time – a variant that is specific to one advanced AMD subtype: a genetic variant near 

MMP9 is specific to CNV, a candidate gene also supported by prior gene expression 

analyses in the Bruch’s membrane of patients with neovascular disease50. Future efforts 

extending to longitudinal data might help improve the dissection of pure CNV and pure GA 

and their genetic make-up even further, but longitudinal data has still to be extended to yield 

sufficient sample sizes. If substantiated, the fact that nearly all disease associated variants 

modulate risk of both CNV and GA has potentially significant therapeutic consequences. It 

implies that individuals at high risk of CNV are also at high risk of GA. This suggests that 

therapeutic strategies which mitigate CNV but not GA will only provide temporary relief to 

patients – who are likely to remain at high risk of developing GA and may still require future 

interventions to prevent it.  

Therefore, our findings have several important implications for future studies of rare 

variation in human complex traits. First, they clearly emphasize the need for very large 

sample sizes in population studies: the functionally most interesting variants we identify have 

frequencies in the range of 0.01 – 1.0% and, despite their strong impact on disease risk, 

could only be implicated using 10,000s of individuals. Second, they illustrate the value of 

hybrid approaches, where sequencing is used to detect interesting variants and custom 

arrays and imputation are used to examine these variants in very large samples. Since all the 

large effect rare variants we identify reside in or near GWAS loci, as with most complex trait 

associated rare variants 7-11,20,21,23,51, focused studies around GWAS loci may continue to be 

a cost-effective compromise. Third, our analysis of cysteine variants in TIMP3 illustrates not 

only the potential for targeted variant discovery but the critical need to understand the 

consequences of rare variants when analyzing them together. While very large samples will 
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be needed, our results also show that the effort to extend genetic studies to rare variants is 

worthwhile as these variants can pinpoint causal genes and advance our understanding of 

disease biology.  
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Figure legends 

Figure 1. Genome-wide search reveals 34 loci and genes with rare variant burden for 

AMD. (a) We conducted a genome-wide single variant association analysis for >12 million 

variants in 16,144 advanced AMD patients versus 17,832 controls. Shown is the Manhattan 

Plot exhibiting P-values for association highlighting novel (P < 5x10-8 for the first time, green) 

and known (blue) AMD loci (see Table 1). (b) We computed independent effect size (log 

Odds Ratios) of each of the 52 identified variants (Supplementary Table 4). Shown are 

these effect sizes versus the frequency of the AMD risk increasing allele and a 80% power 

curve. (c) We conducted a genome-wide gene-based test for disease burden based on the 

protein-altering variants testing 17,044 RefSeq genes by the variable threshold test52. Shown 

is the Manhattan Plot with P-values, the red horizontal line indicating genome-wide 

significance (P ≤ 0.05/17,044 = 2.9x10-6) and the yellow line indicating AMD-locus-wide 

significance (given 703 genes in the 34 AMD loci, P ≤ 0.05/703 = 7.1x10-5). No gene outside 

the 34 loci is genome-wide significant; 14 genes are AMD-locus-wide significant (blue), four 

remain significant after locus-wide conditioning (bold letters, Supplementary Table 9). 

 

Figure 2. Genes with top priority based on biological and statistical evidence 

combined. We queried 368 genes in the 34 narrow AMD regions (index and proxies, r² ≥0.5, 

±100kb) for biological (red; expression in retina/RPE/choroid, Supplementary File 6; ocular 

mouse phenotype, Supplementary File 7), statistical, (blue; ≥1 credible set variant in gene 

±50 kb, Supplementary File 3; rare variant burden, Table 2), putative functional (green; ≥ 1 

credible set variant in gene ±50 kb being protein-altering, 5’/3’ UTR, other exonic, or putative 

promoter, Supplementary File 3), and molecular (magenta; enriched molecular pathway, 

drug target) evidence. We here focus on the gene(s) with the highest gene priority score 

(GPS) per locus (full list of genes in Supplementary File 9). Shown are (a) the 16 genes 

with highest GPS in the 15 novel AMD loci (one novel locus without any gene), and (b) the 

25 genes with highest GPS in the 18 known AMD loci. Colored fields indicate yes and GPS 

counts number of colored fields per row. 

 

Figure 3. Comparison of advanced AMD subtypes and intermediate versus advanced 

AMD. We compared associations of the 34 lead variants across different AMD phenotypes. 

Shown are effect sizes (log Odds Ratio) per minor allele in controls as well as 95% 

confidence intervals (widths and heights of diamonds). (a) Comparison of neovascular 

disease (10,749 CNV cases vs. 17,832 controls) and GA (3,235 GA cases vs. 17,832 

controls) identified four variants (in loci MMP9, ARMS2/HTRA1, CETP, and SYN3/TIMP3) 

with significantly different association comparing CNV with GA (Pdiff < 0.05/34, marked in red, 
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see also Supplementary Table 12). (b) Comparison of intermediate AMD (6,657 cases vs. 

17,832 controls) with advanced AMD (16,144 cases vs. 17,832 controls) identifies 24 

variants with nominally significant (P < 0.05, marked in red) association with intermediate 

AMD (Pbinomial = 4.8 x 10 -24), all of which have the same effect direction and less extreme 

effect sizes compared to advanced AMD (Supplementary Table 13). 

 

Figure 4. Variance explained and absolute risk of disease based on the 52 identified 

variants. (a) Absolute disease risk (=proportion of affected) by genetic risk score intervals 

(deciles and top 10 percentiles in embedded bar plot) based on our cases-control-data 

weighted to model a general population with 5% disease prevalence (see also 

Supplementary Table 16). (b) Shown is disease liability explained by the 52 identified 

variants (bars) compared to the genomic heritability based on all genotyped variants (red 

lines) assuming disease prevalence of 1%, 5%, or 10%, respectively. 

 



26 

 

Table 1. Thirty-four loci for age-related macular degeneration. Our genome-wide single-

variant association analysis identified 34 loci for advanced AMD with genome-wide 

significance (P < 5 x 10-8) based on logistic regression in 16,144 cases and 17,832 controls of 

European ancestry. Shown are P-values and effect sizes (Odds Ratios, OR) for the variant 

with the smallest P-value per locus (lead variant) and the number of independent signals per 

locus (see Supplementary Table 4) 

Lead Variant 
C
hr 

Position
a
 

Major/ 
minor 
allele 

Locus name
b
 

# 
Sig-
nals

c
 

MAF Association 

Cases Controls OR P 

KNOWN (previously reported with genome-wide significance, P < 5 x 10
-8

) 

rs10922109 1 196,704,632 C/A CFH 8 0.223 0.426 0.38 9.6 x 10
-618

 
rs62247658 3 64,715,155 T/C ADAMTS9-AS2 1 0.466 0.433 1.14 1.8 x 10

-14
 

rs140647181 3 99,180,668 T/C COL8A1 2 0.023 0.016 1.59 1.4 x 10
-11

 
rs10033900 4 110,659,067 C/T CFI 2 0.511 0.477 1.15 5.4 x 10

-17
 

rs62358361 5 39,327,888 G/T C9 1 0.016 0.009 1.80 1.3 x 10
-14

 
rs116503776 6 31,930,462 G/A C2/CFB/SKIV2L 4 0.090 0.148 0.57 1.2 x 10

-103
 

rs943080 6 43,826,627 T/C VEGFA 1 0.465 0.497 0.88 1.1 x 10
-14

 
rs79037040 8 23,082,971 T/G TNFRSF10A 1 0.451 0.479 0.90 4.5 x 10

-11
 

rs1626340 9 101,923,372 G/A TGFBR1 1 0.189 0.209 0.88 3.8 x 10
-10

 
rs3750846 10 124,215,565 T/C ARMS2/HTRA1 1 0.436 0.208 2.81 6.5 x 10

-735
 

rs9564692 13 31,821,240 C/T B3GALTL 1 0.277 0.299 0.89 3.3 x 10
-10

 
rs61985136 14 68,769,199 T/C RAD51B 2 0.360 0.384 0.90 1.6 x 10

-10
 

rs2043085 15 58,680,954 T/C LIPC 2 0.350 0.381 0.87 4.3 x 10
-15

 
rs5817082 16 56,997,349 C/CA CETP 2 0.232 0.264 0.84 3.6 x 10

-19
 

rs2230199 19 6,718,387 C/G C3 3 0.266 0.208 1.43 3.8 x 10
-69

 
rs429358 19 45,411,941 T/C APOE 2 0.099 0.135 0.70 2.4 x 10

-42
 

rs5754227 22 33,105,817 T/C SYN3/TIMP3 1 0.109 0.137 0.77 1.1 x 10
-24

 
rs8135665 22 38,476,276 C/T SLC16A8 1 0.217 0.195 1.14 5.5 x 10

-11
 

NOVEL (reported with genome-wide significance, P < 5 x 10
-8

, for the first time) 

rs11884770 2 228,086,920 C/T COL4A3 1 0.258 0.278 0.90 2.9 x 10
-8

 
rs114092250 5 35,494,448 G/A PRLR/SPEF2 1 0.016 0.022 0.70 2.1 x 10

-8
 

rs7803454 7 99,991,548 C/T PILRB/PILRA 1 0.209 0.190 1.13 4.8 x 10
-9

 
rs1142 7 104,756,326 C/T KMT2E/SRPK2 1 0.370 0.346 1.11 1.4 x 10

-9
 

rs71507014 9 73,438,605 GC/G TRPM3 1 0.427 0.405 1.10 3.0 x 10
-8

 
rs10781182 9 76,617,720 G/T MIR6130/RORB 1 0.328 0.306 1.11 2.6 x 10

-9
 

rs2740488 9 107,661,742 A/C ABCA1 1 0.255 0.275 0.90 1.2 x 10
-8

 
rs12357257 10 24,999,593 G/A ARHGAP21 1 0.243 0.223 1.11 4.4 x 10

-8
 

rs3138141 12 56,115,778 C/A RDH5/CD63 1 0.222 0.207 1.16 4.3 x 10
-9

 
rs61941274 12 112,132,610 G/A ACAD10 1 0.024 0.018 1.51 1.1 x 10

-9
 

rs72802342 16 75,234,872 C/A CTRB2/CTRB1 1 0.067 0.080 0.79 5.0 x 10
-12

 
rs11080055 17 26,649,724 C/A TMEM97/VTN 1 0.463 0.486 0.91 1.0 x 10

-8
 

rs6565597 17 79,526,821 C/T NPLOC4/TSPAN10 1 0.400 0.381 1.13 1.5 x 10
-11

 
rs67538026 19 1,031,438 C/T CNN2 1 0.460 0.498 0.90 2.6 x 10

-8
 

rs142450006 20 44,614,991 TTTTC/T MMP9 1 0.124 0.141 0.85 2.4 x 10
-10

 

rs201459901 20 56,653,724 T/TA C20orf85 1 0.054 0.070 0.76 3.1 x 10
-16

 

Chr = Chromosome; MAF = minor allele frequency; OR = Odds Ratio a Chromosomal position 
is given based on NCBI RefSeq hg19; b The locus name is a label of the region using the 
nearest gene(s), but does not necessarily state the responsible gene; c number of independent 
variants in this locus; hg19 = human genome reference assembly (version 19) 
  



27 

 

Table 2. Four genes with a significant rare variant burden within the 34 AMD loci 

independent from other identified variants. We computed a gene-based burden test of rare 

protein-altering variants comparing 16,144 advanced AMD cases and 17,832 controls. Shown 

are P-values from the variable threshold test (up to 100 million permutations) and Odds Ratios 

from the collapsed burden test, both adjusted for the other identified variants in the respective 

locus (locus-wide conditioning). Four genes (among the 703 genes in the 34 AMD locus 

regions) showed a significant (P < 0.05/703 = 7.1 x 10-5) burden. Details about the 

corresponding rare variants underlying the observed burden can be found in Supplementary 

File 4. Results for the 14 genes that show significant burden within the 34 AMD loci without 

locus-wide conditioning are shown in Supplementary Table 9. Rare variants were defined 

here as variants with minor allele frequency in cases and controls < 1% in each of the 

ancestries, European, Asian, and African. 

Gene 

Optimal 
Threshold for  

Rare 
Variants 

 
Count (%) 

Number of 
Variants below 
Optimal RAC 

 

Summed 
Rare Allele Count 
(Frequency [%]) 

Pa 
Odds 
Ratio Total  

(Exome Chip Base + 
Custom) 

Cases 
N = 16,144 

Controls 
N = 17,832 

CFH 10 (0.015%) 37 (9+28)  88 (0.273%) 38 (0.107%) 1.2 x 10-6 2.94 

CFI 46 (0.068%) 43 (17+26)  213 (0.660%) 82 (0.230%) 1.0 x 10-8 2.95 

TIMP3 14 (0.021%) 9 (1+8)  29 (0.0898%) 1 (0.00280%) 9.0 x 10-8 31.21 

SLC16A8 648 (0.954%) 9 (7+2)  487 (1.51%) 392 (1.10%) 3.1 x 10-6 1.40 

RAC = rare allele count; a P-values are from the variable threshold test conditioned on other 

identified variants in the locus (locus-wide conditioned).  
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ONLINE METHODS 

Study data and phenotype. In the International AMD Genomics Consortium (IAMDGC), we 

gathered 26 studies with each including (i) advanced AMD cases with GA and/or CNV in at 

least one eye and age at first diagnosis ≥ 50 years, (ii) intermediate AMD cases with 

pigmentary changes in the RPE or more than five macular drusen greater than 63m and 

age at first diagnosis ≥ 50 years, or (iii) controls without known advanced or intermediate 

AMD. Recruitment and ascertainment strategies varied by study (Supplementary Tables 1 

and 2): Advanced and intermediate AMD cases were mostly recruited from ophthalmology 

clinics (61.6% of cases), but also in spouses and friends of cases (2.1%), from general 

population (18.5%), or via mixed approaches (17.8%); controls were recruited among elderly 

individuals at ophthalmology clinics (53.0% of controls), among spouses and friends of cases 

(2.6%), from general population (26.4%), or via mixed approaches (18.0%). Of all subjects, 

94.5% ascertained disease status via fundus photography or fundus exam; one study (5.5% 

of subjects) validated interview information through the patients’ ophthalmologist. Of the 26 

studies, 18 studies used Fluorescein Angiography or Optic Coherence Tomography for 

differentiating GA from neovascular disease. Grading scales, used to ascertain intermediate 

AMD, differed – as usual – across studies. All groups collected data according to the 

Declaration of Helsinki principles. Study participants provided informed consent and 

protocols were reviewed and approved by local ethics committees.  

 

DNA and chip design. We gathered DNA samples of more than 50,000 individuals. Groups 

with very limited amounts of available DNA contributed aliquots after whole-genome 

amplification (8% of subjects).  

We utilized a custom-modified HumanCoreExome array by Illumina, Inc., which 

includes (i) tagging variants across the genome (genome chip content) and (ii) a catalogue of 

protein-altering variants (exome chip content). Our customization of the array included three 

additional tiers to enrich for variants from 22 AMD loci implicated by our previous genome-

wide association analysis6 based on 19 index variants with genome-wide significance, 3 with 

consistent effect direction in the replication stage and 4x10-7 ≤ P ≤ 2x10-6) by selecting (iii) 

tagging variants (pair-wise tagging r² < 0.8) from Phase I 1000G/HapMap53,54 common 

variants (minor allele frequency, MAF, ≥ 1 % in European or East Asian individuals) using 

Tagger implemented in Haploview55 within ±100kb of the 22 index variants expanded to 

cover all correlated variants (r² [EUR] > 0.5) and the complete gene (transcript ±1 kb), (iv) 

protein-altering variants within 500 kb of the 22 index variants as identified from public 

general population data bases (dbSNP56, the NHLBI Exome Sequencing Project57, the Phase 

I 1000 Genomes Project, see Web Resources), and (v) protein-altering variants within the 

500 kb of the 22 index variants identified by re-sequencing AMD case-control study data 
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(targeted re-sequencing of 2,335 AMD cases and 789 controls10,58 and whole-genome 

sequencing 60 AMD cases and 60 controls; G. Abecasis and A. Swaroop). The 

customization further included (vi) the 1,000 top independent (> 2 Mb distant) variants from 

the previous analysis and additional 100 top variants from each the previous CNV only and 

the previous GA only analysis, (vii) and 375 variants in ABCA4, including known variants 

causing Stargardt disease59, benign variants, and those of unknown significance, as well as 

10 known and 44 predicted cysteine mutations in TIMP3, motivated by the known variants 

causing Sorsby's fundus dystrophy33,34 (also B. Weber, personal communication). 

 

Annotation. Variant identifiers were based on NCBI dbSNP v137. Chromosomal position 

and functional annotation of the variant was based on the NCBI Reference Sequence Human 

Genome Build 19 (RefSeq hg19)60 and SeattleSeq Annotation 13861 (see Web Resources). 

We particularly focus on protein-altering variants including non-synonymous coding variants 

(missense, stop loss, in-frame insertion/deletion, frameshift, premature stop codon) and 

splice sites. We converted the description of splice site variants to HGVS nomenclature using 

Mutalyzer version 2.0.beta-3362 (see Web Resources). 

 

Genotypes. We genotyped all subjects centrally at the Center for Inherited Diseases 

Research (CIDR), Johns Hopkins University School of Medicine, Baltimore, MD, USA. From 

the 569,645 genotyped variants, our stringent quality control procedure excluded poorly 

genotyped variants as evidenced by genotype call rates < 98.5% (5.8%), deviations from 

Hardy-Weinberg equilibrium with P < 10-6 (0.34%), variants that mapped at multiple genome 

locations (0.25%) or variants failing other criteria, resulting in 521,950 (91.6%) variants 

passing all quality criteria. After excluding monomorphic variants (15.8%), we yielded 

264,655 common variants distributed across autosomes, sex chromosomes, and the 

mitochondria, as well as 163,714 directly genotyped protein-altering variants including 8,290 

from previously implicated AMD loci (Supplementary Table 3A). For these variants, 

genotype call rates averaged 99.9% (99.1% for subjects with amplified DNA). 

We phased the autosomal and X-chromosomal genotype data using SHAPEIT (200 

states, 2.5 Mb windows)63, then imputed genotypes based on the 1000 Genomes Project64 

reference panel (1000G Phase I, version 3, SHAPEIT2 Reference) using MINIMAC65 

(reference-based 2.5 Mb chunks, 500 kb buffer regions). We then merged study variants that 

were excluded during imputation (not found in the reference panel) back into the final data 

set. We excluded common variants (CAF ≥ 1%) with bad imputation quality, R2 < 0.3, and 

adopted a more stringent exclusion criterion for rare variants (CAF < 1%), R2 < 0.8, for the 

initial identification of lead variants. This yielded a total of 12,023,830 genotyped (439,350) or 

imputed (11,584,480) quality-controlled variants (Supplementary Table 3A).  
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Analyzed subjects. Using the genomic information for subject-level quality control, we 

excluded duplicated and related individuals (kinship coefficient  ≥ 0.0884, i.e. 3rd degree 

relatives or closer)66, subjects with discrepancies between reported gender and sex 

chromosomal information or with atypical sex chromosome configurations67, or subjects with 

genotyping call rates < 98.5%; we derived  ancestry based on the first two principal 

components using autosomal genotyped variants together with genotype information of the 

samples from the Human Genome Diversity Project (HGDP)68. Our final data set contained 

43,566 successfully genotyped unrelated subjects including 16,144 advanced AMD cases 

and 17,832 controls of European ancestry, 6,657 intermediate AMD cases of European 

ancestry, and 2,933 subjects (advanced AMD or controls) of Asian or African ancestries 

(Supplementary Table 3B). 

 

Genomic heritability and genomic correlation. Combined contribution of genotyped 

variants to disease was evaluated using a variance-component based heritability analysis69. 

This analysis used genotypes to build a similarity matrix, summarizing the overall genetic 

kinship between each pair of individuals, and then examined the correspondence between 

genetic and phenotypic similarity. We estimated the explained variance on all genotyped, 

autosomal variants using restricted maximum likelihood (REML) analysis implemented in 

GCTA28 (see Web Resources). We jointly estimated the contributions of rare (MAF in 

controls < 1 %) and common (MAF in controls ≥ 1%) genotyped variants by first separately 

calculating their genetic relationship matrices before adding both to the model. Obtained 

estimates of variance explained were transformed from the observed scale to the liability 

scale assuming various levels of disease prevalence69. 

We estimated the genomic correlation between different disease sub-phenotypes 

using bivariate REML analyses implemented in GCTA and only included common (MAF in 

controls ≥ 1%) genotyped variants 29. We compared 10,749 cases with CNV versus 3,325 

cases with GA (excluding the 2,070 cases with mixed CNV and GA) and we compared 6,657 

intermediate AMD cases with 16,144 advanced AMD cases. For both analyses, we used the 

control subjects as reference and avoided shared controls between traits by randomly 

splitting the 17,832 unrelated European control individuals into two sub-samples of 8,916 

individuals.  

 

Genome-wide single variant association analysis. Single-variant association tests 

analyzing the 16,144 advanced AMD cases and 17,832 controls of European ancestry were 

based on the Firth bias-corrected likelihood ratio test70, which is recommended for genetic 

association studies that include rare variants71, as implemented in EPACTS (see Web 
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Resources). Analyses were adjusted for two principal components and source of DNA 

(whole-blood or whole-genome amplified DNA). Allele dosages of the imputed data were 

utilized, Sensitivity analyses were conducted to evaluate the influence of alternative 

association tests, alternative covariate adjustment including age or sex, or up to 10 principal 

components instead of two, as well as the influence of restricting to population-based 

controls, or to controls aged 50 years or older. Genomic control correction72 was used to 

account for potential population stratification using all genotyped variants with minor allele 

count ≥ 20 outside of 20 previously described AMD loci6,9. As usual for genome-wide 

association studies, we considered P-values ≤ 5 x 10-8 as genome-wide significant. 

To identify independently associated variants, we adopted a sequential forward selection 

approach: We first computed single variant association for each of the > 12 million variants. 

Then we selected the variant with the smallest P-value and its flanking ±5 Mb region, 

repeating the process until no genome-wide significant variant (P ≤ 5 x 10-8) was left yielding 

a number of 10 Mb regions. Within each of these large regions, we re-analyzed each variant 

conditioning on the top variant, and repeated this process by adding the previously identified 

genome-wide significant variant(s) within the respective 10 Mb region. This yielded one or 

more independently associated genome-wide significant variant(s) per 10 Mb region. 

A locus region was defined by a genome-wide significant variant and its correlated 

variants (r²≥ 0.5) ± 500kb; overlapping locus regions were merged to one locus, so some loci 

contained more than one index variant (details in Supplementary Figure 3).  

In order to derive independent effect sizes (log odds ratios) for all identified variants, 

we computed a fully conditioned logistic regression model including all identified variants.  

 

Bayesian approach to prioritize variants. In order to summarize the statistical evidence of 

a variant for its association strength, we computed the Bayes factor for each variant, which is 

a measure of the strength of the association that is comparable irrespective of variant 

frequency or study sample size. It provides the probability of the genotype configuration at a 

variant (in cases and controls) under the alternative hypothesis (association) divided by the 

probability of the genotype configuration under the null hypothesis (no association). It is 

computed using the association results per variant 73. The posterior probability of each 

variant is then computed as the Bayes factor relative to the sum of all variants’ Bayes factors 

across one locus region and can be thought of as the relative strength of evidence in favor of 

each SNP studied in the respective region. This assumes that there is one causal variant per 

region and that the causal variant is in the analyzed data set. 

Expanding to loci with multiple association signals and thus a single alleged causal 

variant per signal, we used the association results per SNP obtained by conditioning on the 

other independent variants at that locus for computing the Bayes factor. 
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We derived 95% credible sets of variants per signal, which is the minimal set of 

variants, for which the sum of the posterior probabilities accumulates beyond 95%. This 

approach was recommended for fine-mapping of association signals and for prioritizing 

variants74. Assuming that there is only one causal variant in an association signal and that 

the causal variant is contained among the analyzed variants, such a credible set of variants 

contains the causal variant with 95% probability. 

We annotated functionality of the variants in each of the 95% credible sets (see 

above).  

 

Gene-based burden analysis. Single variant analyses have limited power to depict rare 

variants with association. Gene-based burden tests evaluating accumulated association from 

multiple rare variants per gene have been shown to complement such analyses and improve 

power to detect a burden of disease. We computed the burden of disease using the variable 

threshold test52 as implemented in EPACTS. These analysis assume that all variants in a 

gene either increase or decrease disease risk. When variants with opposite directions of 

effect reside in the same gene, power will be reduced. An analysis with SKAT and SKAT-O, 

which both allow for variants with opposite directions of effect to reside in the same gene, did 

not identify additional signals (data not shown). 

We focused this analysis on protein-altering variants, since we assumed that the 

other (not protein-altering) variants would outnumber these predicted deleterious variants by 

far and would thus dilute a disease burden from the deleterious variants. Assuming a 

negative selection against such deleterious variants that cause their frequency to be low 

across ancestries, we restricted our rare variant definition to variants with MAF < 1% (cases 

and controls combined) in each of our ancestry groups (African, Asian, and European). We 

utilized the genotypes of these rare protein-altering variants if genotyped directly, or rounded 

imputed allele dosages to the next best genotype if imputed; imputed variants were restricted 

to those of highest imputation quality (RSQ >= 0.8).  

We assessed statistical significance by adaptive permutation testing with variable 

thresholds (up to 100 million permutations; minimal P-value = 1 x 10-8)52. When rare variants 

appear on a haplotype associated with disease through a common variant allele already 

identified for AMD, the rare variant burden would depict a mere shadow of the already 

identified variant. Therefore, we repeated the variable threshold test conditioned on the 

variant(s) identified in the respective locus by single variant analysis (locus-wide 

conditioning), to unravel a gene-based burden of rare variants independent of risk variants 

identified in single variants tests.  

First, we searched for rare variant disease burden genome-wide applying a genome-

wide Bonferroni-corrected significance threshold of 0.05 / 17,044 = 2.9 x 10-6 (17,044 genes 
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genome-wide with at least 1 variant included in the analysis, i.e. with ≥ 1 rare protein-altering 

variant). In a second view on this, we focused on our 34 identified AMD loci and here applied 

a significance threshold based on the 703 genes overlapping with the locus regions (P < 0.05 

/ 703 = 7.1 x 10-5). Odds ratio estimates of the burden were derived by logistic regression 

using the Wald test on the collapsed burden.  

There was an overlap of the sequenced subjects with the chip data subjects: of the 

3264 subjects in the overlap, 3084 had passed our quality control including 2959 unrelated 

subjects of European ancestry with either late AMD (858), early AMD (1451), or no AMD 

(650). We conducted a sensitivity analysis for the burden test excluding the 858 advanced 

AMD subjects and the 650 control subjects (thus comparing15,286 advanced AMD subjects 

to 17,182 control subjects).  

 

Follow-up queries for genes underneath the association signals. In order to derive 

information for all genes underneath our 52 identified association signals (spread across the 

34 AMD loci), we built a gene list containing all genes that overlapped with a more narrow 

definition of locus regions: We have been using a particularly comprehensive definition of the 

locus region during the signal identification step (index variants and proxies, r² ≥ 0.5, 

±500kb), to avoid far-reaching linkage disequilibrium that may generate shadow signals 

(particularly in the light of strong associations in the CFH, C3, C2/CFI, and ARMS2/HTRA1 

loci) and to optimally differentiate independent signals within a locus. We have also used this 

wide locus region definition for the rare variant burden test again to fully correct for 

independent signals in the respective wider locus regions and to be conservative in the 

multiple testing corrections for the AMD-locus-wide burden test search. However, this wide 

definition is less adequate when prioritizing genes around the identified signals under the 

assumption that most protein-altering or regulating variants exert their effects in cis42. We 

thus focused the gene list for further queries to a more narrow locus region definition (index 

variants and proxies, r² ≥ 0.5, ± 100kb) and yield 368 overlapping RefSeq genes 

(Supplementary File 5). 

 

Gene expression. For the 368 genes in our gene list (see above), we sought to obtain gene 

expression in relevant tissues, retina, RPE, and choroid, in two independent data sets.  

In the first laboratory (Dwight Stambolian Lab; University of Pennsylvania), we used 

RNA-Seq to characterize the chorioretinal transcriptomes in a discovery set of eight normal 

human eyes (two eyes from each of four persons)75. For each eye, we sequenced four RNA-

Seq samples and generated close to 100 million 101-bp paired-end reads per sample. We 

mapped the sequence reads to the reference human genome (hg19) using GSNAP76. Our 

data are of high quality with 76–94% of the reads mapped to the human genome and 60–
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81% retained after stringent quality control filtering, among which 86–93% mapped to genes 

defined by RefSeq. We considered the overall gene expression in each sample. Using 

filtered mapped reads, we estimated the expression levels of 23,569 RefSeq protein-coding 

genes using the fragments per kilobase of gene per million mapped fragment (FPKM) 

metric77. With coverage depth ranging from 66 to 133 million paired-end reads per sample, 

we detected expression of the majority of known protein-coding genes75. We considered 

genes and transcripts to be expressed, if FPKM > 0. Among the 23,569 genes with available 

expression for retina tissue or RPE/choroid/sclera, respectively, 290 genes for retina and 300 

for RPE/choroid/sclera tissue overlapped with the 368 genes in the gene list.  

In the second independent laboratory (Weber lab; University of Regensburg), we 

used RNA-Seq to estimate the relative abundance of known and novel transcripts in human 

retina, RPE and RPE-related cell types. Each tissue/cell line was sequenced as biological 

replicate, e.g. RNA was retrieved from cells of two individuals. The NextFlex Directional 

RNASeq library preparation kit (UDP based) from Bioo was used and between 30 and 60 

million 75bp paired-end reads for each library were generated. The Tuxedo Tools pipeline 

(BowTie, TopHat, and Cufflinks) was used to map the reads to the genome and 

transcriptome and to quantify the abundance of transcripts measured as fragments per 

kilobase of gene per million mapped fragments (FPKM)77. We considered genes and 

transcripts to be expressed, if the respective FPKM value of the gene/transcript was greater 

than the first quartile of all FPKM values obtained from the tissues. Among the 20,590 with 

available expression available in retina tissue or RPE/choroid, respectively, 316 genes for 

retina and for REP/choroid overlapped with the 368 genes in gene list.  

A consensus rating of gene expression observed in the two labs was derived as 

follows: Expression of a gene in one set of tissues (retina or RPE/choroid) was inferred, if 

both labs detected expression in the respective set of tissues; if at least one of the labs did 

not observe expression, the gene was considered as not expressed; gene expression of all 

other genes (one lab observing expression and the other with missing, or both labs with 

missing data) was regarded as missing. 

 

Mouse model phenotypes. For the 368 genes in our gene list, we queried the Mouse 

Genome Informatics (MGI)78 and the International Mouse Phenotyping Consortium (IPMC)79 

data bases (see Web Resources), and manually curated results by information from 

published literature. We determined whether a gene exhibited a relevant eye-phenotype (i.e. 

retina, RPE, or choroid phenotypes) in established genetic mouse models (knock-out, knock-

in, or trans-genic mice).  
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Enrichment for molecular pathways. For the 368 overlapping genes, we performed 

functional enrichment analysis using INRICH80 with default settings unless stated otherwise. 

Target intervals of this analysis were the narrow AMD locus regions (index variants and 

proxies, r² ≥ 0.5, ± 100kb, Supplementary Table 5). Since there is no consensus approach 

to pathway analysis, we queried multiple data bases: (i) Kyoto Encyclopedia of Genes and 

Genomes (KEGG)81, (ii) Reactome82, and (iii) Gene Ontology (GO) Consortium83 (see Web 

Resources). For example, while KEGG is a manually curated database on metabolic 

pathways, GO also includes automatic annotations and more comprehensive set of cellular 

processes and molecular functions. To reduce the multiple testing burden, we used gene 

sets with 5 to 200 genes that overlapped at least three overlapping target intervals. All our 

imputed/genotyped common (MAF in cases and controls combined ≥ 1%) variants genome-

wide in these target regions were used to inform this analysis regarding variant density; no P-

value threshold was used. We carried out the analysis with 1,000,000 replicates and 50,000 

bootstrap rounds to yield corrected P-values, matching selected target regions in terms of 

gene count, variant density (80-120%) and total number of variants. 

 

Drug pathways and targets. In order to derive information on whether the product of a gene 

among the 368 genes in our gene list was a direct drug target, we searched the DrugBank 

database (Version 4.1) which contains 4,207 drug targets (= genes) and 7,740 drugs 84(see 

Web Resources).  

 

Explained variability in disease liability. Based on the 52 identified AMD variants, we 

estimated the explained proportion of disease liability explained by these variants (see Web 

Resources)85 using the log Odds Ratio estimates from the model including all 52 identified 

variants (fully conditioned) to derive independent effect sizes. We compared this proportion 

explained by the 52 variants with the earlier derived genomic heritability based on all 

genotyped variants (see above).  

 

Genetic risk score and relative and absolute genetic risk of AMD. For each individual, 

we computed a genetic risk score (GRS) as the effect size weighted sum of the AMD risk 

increasing alleles for all 52 independent variants divided by the sum of all effect sizes. For 

the weighting, the log Odds Ratios for each of the 52 variants were derived from the fully 

adjusted model (including all 52 variants), to assure independence of effect sizes.  

In order to also derive a realistic genetic risk score distribution, we modeled a general 

population based on our case-control data by weighing each case individual using  

wcase = Prevalence / (Ncases / (Ncases + Ncontrols)) 

and each control individual using  
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wcontrol = (1 - Prevalence) / (Ncontrols / (Ncases + Ncontrols)), 

with Prevalence being an assumed prevalence of advanced AMD in the general population. 

We computed several scenarios using prevalence estimates of 1%, 5%, or 10% reflecting 

approximate prevalence of advanced AMD in the general population above the age of 50, 75, 

or 85 years of age, respectively. For this modeled general population, we derived the GRS 

distribution and its deciles.  

We derived relative risk estimates (as Odds Ratios) for each GRS decile with the first 

decile as reference. This relative risk estimate per se is independent of the prevalence 

except that the decile to form the genetic risk groups used the GRS distribution as expected 

in a general population (which requires a prevalence assumption). We also computed 

absolute risk estimates per GRS decile, which is given by the proportion of advanced AMD 

cases applying the weights, again, as described above. This estimate depends on the 

prevalence. 
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Web Resources: 

Full GWAS results: http://csg.sph.umich.edu/abecasis/public/amd2015/ 

 

The following Web Resources have been utilized:  

GWAS catalog http://www.ebi.ac.uk/gwas/home), 

Exome Variant Server, NHLBI GO Exome Sequencing Project:  

http://evs.gs.washington.edu/EVS/ 

EPACTS: http://www.sph.umich.edu/csg/kang/epacts/index.html 

SHAPEIT: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html 

MINIMAC: http://genome.sph.umich.edu/wiki/Minimac 

1000 Genomes Reference Panel: 

http://www.sph.umich.edu/csg/abecasis/MACH/download/1000G.2013-09.html 

The Human Genome Diversity Project data:  

http://genome.sph.umich.edu/wiki/LASER and http://www.hagsc.org/hgdp 

SeattleSeq: http://snp.gs.washington.edu/SeattleSeqAnnotation138/index.jsp 

Mutalyzer: https://mutalyzer.nl 

NCBI Reference Sequence (RefSeq, downloaded December, 2012): 

http://www.ncbi.nlm.nih.gov/refseq/ 

Human Splicing Finder 3.0: http://www.umd.be/HSF3/index.html 

PubMed (retrieved November 11, 2014): http://www.pubmed.org 

Mouse Genome Informatics (MGI) databases: http://www.informatics.jax.org 

International Mouse Phenotyping Consortium Database: https://www.mousephenotype.org 

INRICH: http://atgu.mgh.harvard.edu/inrich/ 

KEGG: Kyoto Encyclopedia of Genes and Genomes (KEGG): http://www.genome.jp/kegg/ 

MSigDB database v4.0: http://www.broadinstitute.org/gsea/index.jsp 

Reactome (downloaded January 12th, 2015): http://www.reactome.org 

Gene Ontology (GO) Consortium (downloaded January 12th, 2015): http://geneontology.org 

DrugBank (downloaded June 4, 2014): http://www.drugbank.ca 

GCTA: http://www.complextraitgenomics.com/software/gcta/ 

Variance explained by genetic variants: 

https://sites.google.com/site/honcheongso/software/varexp 
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