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Abstract: An instrumental variable can be used to test the causal null hypothesis that an exposure has no
causal effect on the outcome, by assessing the association between the instrumental variable and the
outcome. Under additional assumptions, an instrumental variable can be used to estimate the magnitude of
causal effect of the exposure on the outcome. In this paper, we investigate whether these additional
assumptions are necessary in order to predict the direction of the causal effect, based on the direction of
association between the instrumental variable and the outcome, or equivalently based on the standard
(Wald) instrumental variable estimate. We demonstrate by counterexample that if these additional assump-
tions (such as monotonicity of the instrument–exposure association) are not satisfied, then the instrumental
variable–outcome association can be in the opposite direction to the causal effect for all individuals in the
population. Although such scenarios are unlikely, in most cases, a definite conclusion about the direction
of causal effect requires similar assumptions to those required to estimate a causal effect.
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1 Introduction

Instrumental variable analysis is a technique for obtaining causal inferences about the relationship between
a putative causal risk factor (referred to as an exposure) and an outcome. An advantage of instrumental
variable analysis is that it does not require the specification of a parametric model in order to make a causal
claim: an association between an instrumental variable and the outcome implies a causal effect of the
exposure on the outcome [1, 2]. However, in order to estimate a causal effect of the exposure on the
outcome, further assumptions are required depending on the causal parameter that is targeted. In this
paper, we ask the question: if one does not want to estimate a causal effect parameter, but only to conclude
the direction of the causal effect (that is, does increasing the exposure lead to increases or decreases in the
outcome?), what assumptions are required? In particular, can the directions of association between the
instrumental variable and the exposure, and between the instrumental variable and the outcome, be used
to predict the direction of causal effect of the exposure on the outcome?

This question is particularly relevant for Mendelian randomization, the use of genetic variants are
instrumental variables [3, 4]. Several authors have advocated reporting the presence or absence of an
association between the genetic variant(s) and the outcome as the primary analysis result, rather than a
causal effect estimate [5, 6]. This is analogous to performing an intention-to-treat analysis in a randomized
trial [7]. The motivation for this is that the claim of a causal effect requires fewer assumptions than the
estimation of a causal effect [8, 9], and the magnitude of the causal estimate is of secondary importance, as
the quantitative effect of intervening on the exposure in practice is likely to differ from the causal estimand of
the instrumental variable analysis [10]. For example, the effect of reducing low-density lipoprotein cholesterol
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(LDL-c) on coronary heart disease (CHD) risk by taking statin drugs depends on the choice of statin, the
dosage (amount and frequency), the duration of treatment, the patient group, and so on [11]. The quantitative
estimate from a meta-analysis of the effect of statin treatment for five years or more duration in a primary
prevention context is that a 30% reduction in LDL-c leads to a 27% (95% confidence interval, 23 to 30%)
relative reduction in CHD risk [12]. In contrast, the Mendelian randomization estimates based on one of five
genetic variants scaled to a 30% reduction in LDL-c range from a 55% to a 73% relative reduction in CHD risk
[10], with the corresponding estimate based on all five genetic variants being a 67% (95% confidence
interval, 54 to 76%) relative reduction in CHD risk [13]. There are several reasons for differences between
the estimates: the Mendelian randomization estimates rely on between eight- and twenty-fold extrapolations
of the genetic associations with disease risk, and the Mendelian randomization estimate represents a life-long
reduction in LDL-c concentrations. As CHD often results from a long-term build-up of fatty deposits in the
coronary arteries, it is not surprising that an estimate corresponding to life-long intervention in LDL-c
concentrations is greater than an estimate corresponding to a more limited intervention.

The direction of the causal effect is informative as to whether interventions to increase or decrease the
exposure should be prioritized; for a pharmaceutical intervention on an exposure that is a gene product (as
if often the case in Mendelian randomization), this determines whether an inhibitor or a promoter of the
genetic pathway is needed [14]. It would be valuable if the direction of the instrumental variable–outcome
association was not only a test of the causal null hypothesis, but also predictive of the direction of the
causal effect. However, as we demonstrate here, this is not always the case. In this paper, we outline
scenarios in which the instrumental variable–outcome association (and equivalently the standard instru-
mental variable estimate) is in the opposite direction to the causal effect of the exposure on the outcome.

2 Definition of an instrumental variable

Two sets of assumptions have been proposed for defining an instrumental variable. We refer to these as the
graphical assumptions and the counterfactual assumptions. We denote the instrumental variable as Z, the
exposure as X, the outcome as Y, and confounders of the exposure–outcome relationship as U.

2.1 Graphical assumptions

The graphical assumptions (for example, see [15, 16]) require an instrumental variable to be:
(i) associated with the exposure: Z??= X;
(ii) independent of the confounders: Z??U;
(iii) independent of the outcome conditional on the exposure and confounders: Z??Y jX, U.

A directed acyclic graph illustrating these assumptions is given as Figure 1. These assumptions imply that
the joint distribution of Y, X, U, Z factorizes as:

pðy, x, u, zÞ= pðyju, xÞpðxju, zÞpðuÞpðzÞ. (1)

Z X

U

Y
Figure 1: Directed acyclic graph of graphical instrumental variable assumptions.
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In order to relate the observational distribution of these variables to the distribution under intervention in
the exposure, the additional structural assumption has been proposed:

pðy, u, z, xjdoðX = x0ÞÞ= pðyju, x0Þ1ðX = x0ÞpðuÞpðzÞ (2)

where 1ð.Þ is the indicator function and the doðX = x0Þ function represents intervention to set the value of
the exposure to x0. This assumption ensures that intervening on the exposure does not affect the distribu-
tions of any other variables except the conditional distribution of the outcome [17].

2.2 Counterfactual assumptions

Counterfactual values of the exposure and outcome are denoted as follows: XðzÞ is the exposure when Z = z,
and Yðx, zÞ is the outcome when X = x and Z = z. The counterfactual assumptions (see [2]) require an
instrumental variable to be:
(i) associated with the exposure: XðzÞ is a non-trivial function of z for at least some of the population;
(ii) independent from potential values of the exposure and outcome: Z?? X zð Þ, Z??Y x, zð Þ;
(iii) and to only influence the outcome via the exposure (the exclusion restriction assumption

Y x, zð Þ=Y xð Þ;

where Y(x) is the outcome when X = x. These assumptions imply that an instrumental variable cannot have
a direct effect on the outcome, but instead any effect is mediated via the exposure [18].

2.3 Comparison of assumptions

The graphical assumptions require the explicit specification of the confounders, which is not required by
the counterfactual assumptions. The graphical assumptions are expressed in terms of the observational
distribution of the variables, meaning that an additional structural assumption is required to express a
causal effect. The counter-factual assumptions are expressed in terms of counterfactual variables, and so
there is a natural connection to causal effects under the consistency assumption that each variable takes its
relevant counterfactual value under the observational regime.

An instrumental variable can satisfy the graphical assumptions without satisfying the counterfactual
assumptions (for example, see [19] or Section 3.6). However, if an instrumental variable satisfies the
counterfactual assumptions then it must satisfy the graphical assumptions. This can be seen by considering
the contrapositive – if the graphical assumptions are violated, then the counterfactual assumptions are
violated (if graphical assumption 2 is violated, then counterfactual assumption 2 is violated; and the same
for assumptions 1 and 3).

A hypothetical (but realistic) example of a genetic variant that satisfies the graphical instrumental variable
assumptions but not the counterfactual assumptions is as follows: the genetic variant affects the exposure,
and additionally is partially correlated with another variant that also affects the exposure. Hence, there is no
causal pathway from the original genetic variant (the proposed instrument) to the outcome other than that via
the exposure. However, the genetic variant is correlated with the counterfactual values of the exposure on
setting the value of the genetic variant (as this would not affect the value of the correlated variant).

2.4 Additional assumptions for the estimation of a causal effect

We assume throughout this paper that the instrumental variable Z is binary, taking values 0 and 1. This
restriction is purely for clarity of presentation; the findings of this paper hold equally for non-binary
instrumental variables. We assume that the exposure X is either binary (as is common in the use of
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instrumental variables in randomized trials), or continuous (as is common in Mendelian randomization).
The outcome Y is assumed to be continuous.

We define three further properties relevant to the estimation of a causal effect: the stable unit treatment
value assumption (SUTVA), monotonicity, and homogeneity. The SUTVA is necessary to define a causal
effect in a consistent way. Monotonicity and homogeneity are two additional assumptions; each of these
enables the identification of a causal effect using an instrumental variable.

SUTVA: The stable unit treatment value assumption states that the potential outcomes for each
individual should be unaffected by how the exposure was assigned, and unaffected by variables in the
model relating to other individuals [20]. It is informally referred to as “no multiple versions of treatment,”
meaning that the effect on the outcome will be the same for all changes in the exposure no matter how the
exposure is intervened on [21].

The individual causal effect of the exposure on the outcome for a binary exposure is Y (1) − Y (0), where
Y (x) is the potential outcome when X = x. For a continuous exposure, the causal effect is Y (x1) − Y (x0).
The causal effect is linear if Y (x + 1) − Y (x) is constant for all values of x, and monotone is Y (x1) − Y (x0) is
always positive (or always negative) for all x1 > x0. The SUTVA is a necessary assumption whenever a causal
effect is estimated; without it, the causal effect is not well defined.

Monotonicity: Monotonicity is the property that the potential values of the exposure (these are counter-
factual values, as for each individual only one value of the exposure can be observed) form an increasing
function of the instrumental variable for all individuals in the population (or equivalently, a decreasing
function for all individuals). If the exposure (X) and instrumental variable (Z) are both binary, then the
population can be divided into four categories, known as principal strata [22]. These categories are called
always-takers (X= 1 for both values of Z), never-takers (X=0 for both values of Z), compliers (X = 0 when
Z=0 and X= 1 when Z= 1), and defiers (X= 1 when Z=0 and X=0 when Z= 1). In a randomized trial, the
instrumental variable is typically random allocation to treatment, and the exposure is treatment received.
Compliers are so-called as they “comply” with treatment assignment, in that exposure is present (X= 1) if they
are randomized to exposure (Z= 1), and absent (X=0) if they are randomized to no exposure (Z=0). Defiers do
exactly the opposite. The monotonicity assumption in this case is that there are no defiers in the population.

Homogeneity: Homogeneity refers to the similarity of the individual causal effect for different units in
the population. A strong version of the homogeneity assumption is that the causal effect of the exposure on
the outcome has the same magnitude in all individuals [8]. A weaker version is that there is no additive
effect modification by the instrumental variable at different values of the exposure [23].

2.5 Instrumental variable estimate

The standard instrumental variable estimate with a binary instrumental variable (often called the Wald
estimate [24]) is:

bE½Y jðZ = 1Þ�− bE½Y jðZ =0Þ�
bE½XjðZ = 1Þ�− bE½XjðZ =0Þ�

.

where Ê½.� represents an estimate of the expectation of the random variable. The numerator in the ratio
estimate is the estimated association of the instrumental variable with the outcome; the denominator is the
estimated association of the instrumental variable with the exposure.

Under the assumption of monotonicity (in the context of a randomized trial, if there are no defiers),
then the instrumental variable estimate targets the average causal effect in the complier population (also
known as the complier-averaged causal effect, or the local average treatment effect) [25]. For a binary
exposure, this is the causal effect:

E½Yð1Þ−Yð0Þ j complier �, (3)

where the expectation is taken across compliers.

52 S. Burgess and D. S. Small: Predicting the Direction of Causal Effect

 - 10.1515/jci-2015-0024
Downloaded from PubFactory at 08/16/2016 12:30:12PM

via Cambridge University Library and University of Cambridge



Alternatively, under the assumption of homogeneity, the instrumental variable estimate targets an
average causal effect in the population. In this case, the monotonicity assumption is not required. For a
continuous exposure, if the effect of the exposure on the outcome is linear (that is, the marginal structural
model for the outcome as a function of the exposure is linear), then the causal effect is the same at all
levels of the exposure. The instrumental variable estimate targets then targets the average causal effect
E½Yðx + 1Þ−YðxÞ�.

3 Predicting the direction of the causal effect

We recall that the objective of this paper was to consider under what conditions the instrumental variable–
exposure and instrumental variable–outcome associations predict the direction of the causal effect of the
exposure on the outcome. We proceed to consider situations in which the instrumental variable estimate
has the same or a different sign to that of the causal effect.

3.1 Non-monotone causal effect

If the causal effect of the the exposure on the outcome is non-monotone (for instance, it is positive for some
individuals in the population, but negative for others; or else it is positive at some values of the exposure,
but negative at other values), then there is no single `direction of causal effect’. The sign of the instrumental
variable estimate will depend on the sample population, and may differ, for example, in a healthy
population versus in a hospital-derived cohort. Hence, researchers should be cautious when extrapolating
the results of their study to an external population. This issue is not unique or specific to instrumental
variable analysis. One way of addressing this problem is to restrict the analysis to a subset of the population
for which the causal effect would be expected to be monotone; however, this cannot be done by condition-
ing on the value of the exposure or outcome, as that may induce violations of the instrumental variable
assumptions in the ascertained population.

Several exposures potentially have non-linear effects on outcomes. An example is the effect of body
mass index on mortality – extreme low and high body mass index are both associated with increased
mortality – although it is unclear to what extent the U-shaped relationship between body mass index and
mortality is predicated by a causal effect of low body mass index on mortality, and how much this is reverse
causation [26]. An exposure may have different directions of effect for different individuals in the popula-
tion if there is an interaction with another variable. A plausible example is the effect of blood sugar levels
on mortality: moderate to low blood sugar is likely to be beneficial for health outcomes for most of the
population, but it may be harmful for diabetics.

For the remainder of the paper, we only consider monotone exposure–outcome relationships, so that the
direction of causal effect is the same for all individuals in the population, and the objective of the paper is well-
defined. We use the word “monotonicity” with respect to the instrumental variable–exposure relationship.

3.2 Homogeneous linear causal effect

If the causal effect of the exposure on the outcome is homogeneous in the population, as well as linear in
the exposure (this is automatically satisfied if the exposure is binary), then the association of the instru-
mental variable with the outcome will always be a linear multiple of the association of the instrumental
variable with the exposure. The ratio of the two associations (the instrumental variable estimate) will be the
causal effect. Hence, if the causal effect is linear and homogeneous, then the instrumental variable estimate
will always have the same sign (and magnitude) as the causal effect.
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3.3 Monotonicity and the counterfactual instrumental variable assumptions

Under the monotonicity assumption and with a binary exposure, the instrumental variable estimate has
been demonstrated to be an average of the individual causal effects in the compliers [2, 25]. With a
continuous exposure, the instrumental variable estimate is a weighted average of complier-averaged causal
effects for different values of the exposure [27]. This means that, under the monotonicity assumption and
assuming that the causal effect of the exposure on the outcome is monotone, the instrumental variable
estimate will always have the same sign as the causal effect (the average effect in the compliers). However,
the cited papers used the counterfactual assumptions to define an instrumental variable. We proceed to
demonstrate by counterexample that either if the monotonicity assumption is violated (Sections 3.4 and 3.5)
or else if the instrumental variable only satisfies the graphical assumptions and not the counterfactual
assumptions (Section 3.6), then the instrumental variable estimate and the causal effect may have different
signs. Plausibility of the monotonicity assumption is discussed in Section 4.2.

3.4 Effect heterogeneity and non-monotonicity

Effect heterogeneity means that the individual causal effects differ between individuals in the population.
A simple mechanism by which the direction of the instrumental variable–exposure association may not
reflect the direction of the causal effect is non-monotonicity combined with effect heterogeneity.

If the population consists of 60% compliers and 40% defiers, and if the causal effect is 5 units in the
compliers and 10 units in the defiers, then the estimated association of the exposure with the instrumental
variable (in a large sample, hence the hats to denote estimates are dropped) will be
E½XjðZ = 1Þ−XjðZ =0Þ�=0.6−0.4 = 0.2, and the estimated association of the outcome with the instrumental
variable will be E½Y jðZ = 1Þ−Y jðZ =0Þ�=0.6 × 5 + 0.4 × − 10 = 3− 4 = − 1. These calculations are illustrated
further in Table 1. Hence both the association between the instrumental variable and the outcome and
the instrumental variable estimate are negative, but the causal effect for all individuals is positive [2].

3.5 Non-linearity and non-monotonicity

A similar phenomenon can be induced if the exposure–outcome relationship is non-linear. For instance, we
consider YðxÞ = log x, and XjðZ = zÞ= 10 + αz for z =0, 1, with α= 1 for 90% of the population and α= − 8 for
the remaining 10% of the population. It is noted that there is no confounding or effect modification in the
exposure–outcome relationship, and the causal effect of the exposure on the outcome is positive for all
values of the exposure (X > 0). The association of the instrumental variable with the exposure is positive:

Table 1: Example 1: effect heterogeneity and non-monotonicity. Instrumental variable estimate
is 3−4

0.6−0.4 = − 5, despite positive causal effect for all individuals.

Stratum Expected value of exposure Expected value of outcome

Z = 1 Compliers  

Defiers  

Overall 0.6 × 1 + 0.4 × 0=0.6 0.6 × 5 + 0.4 ×0=3

Z =0 Compliers  

Defiers  

Overall 0.6 × 0+0.4 × 1 =4 0.6 ×0+0.4 × 10=4
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E½XjðZ = 1Þ−XjðZ =0Þ�=0.9 × 1 + 0.1 × − 8 =0.1. However, the association of the instrumental variable with the
outcome is negative: E½Y jðZ = 1Þ−Y jðZ =0Þ�= ð0.9 log 11 + 0.1 log 2Þ− ð1 log 10Þ= 2.227− 2.302 = −0.075 < 0.
These calculations are illustrated further in Table 2.

3.6 Non-linearity and monotonicity: Simpson’s paradox

Finally, we give an example in which the direction of the instrumental variable–outcome association,
causal effect, and instrumental variable estimate have different signs despite the monotonicity assumption
being satisfied. We assume that the population divides into two groups M =0 and M = 1, such that
PðZ =0,M =0Þ=0.1, PðZ =0,M = 1Þ=0.4, PðZ = 1,M =0Þ=0.4, and PðZ = 1,M = 1Þ=0.1. We assume
XjðM =m, Z = zÞ= 2M +Z + 1, and YðxÞ= f ðxÞ, where initially f ðxÞ= exp x.

Note that although Z satisfies the graphical criteria for an instrumental variable (as given in Ref. [15]), it
fails the counterfactual criteria for an instrumental variable (as given in Ref. [28], Theorem 4.4.1) as it is
associated with the counterfactuals XðzÞ for z =0, 1.

Now we have that the association of the instrumental variable with the outcome is positive:
E½Y jðZ = 1Þ −Y jðZ =0Þ�= ð0.2 × exp 4+ 0.8 × exp 2Þ− ð0.8 × exp 3 + 0.2 × exp 1Þ = 16.83− 16.61 = 0.22, but the
association of the instrumental variable with the exposure is negative: E½XjðZ = 1Þ−XjðZ =0Þ�=
ð0.2 × 4 +0.8 × 2Þ− ð0.8 × 3 +0.2 × 1Þ= 2.4− 2.6 = −0.2. Hence the instrumental variable estimate is negative.
This is an example of Simpson’s paradox: the direction of association between two variables does not
necessarily reflect the direction of the causal effect (even in the absence of confounding, as is the case
here) [29]. These calculations are illustrated further in Table 3.

An example where there is Simpson’s paradox in the instrumental variable–outcome association but not the
instrumental variable–exposure association is harder to find; it requires the derivative of the exposure–
outcome function to be concave. If we take YðxÞ= x log x − x, an increasing function in x for x ≥ 1, and
change the probabilities to PðZ =0,M =0Þ=0.13, PðZ =0,M = 1Þ=0.37, PðZ = 1,M =0Þ=0.37, and

Table 2: Example 2: non-linearity and non-monotonicity. Instrumental variable estimate is 2.227− 2.302
10.1− 10 < 0, despite positive causal

effect for all individuals (the outcome is an increasing function of the exposure).

Stratum Expected value of exposure Expected value of outcome

Z = 1 α = 1  log 11
α = −8  log 2
Overall 0.9 × 11 +0.1 × 2= 10.1 0.9 × log 11 + 0.1 × log 2=2.227

Z =0 α = 1  log 10
α = −8  log 10
Overall 0.9 × 10 +0.1 × 10= 10 0.9 × log 10 +0.1 × log 10=2.302

Table 3: Example 3: non-linearity and monotonicity. Instrumental variable estimate is 16.83− 16.61
2.4− 2.6 < 0, despite positive causal

effect for all individuals (the outcome is an increasing function of the exposure).

Stratum Expected value of exposure Expected value of outcome

Z = 1 M= 1  exp4
M=0  exp 2
Overall 0.2 × 4+0.8 × 2=2.4 0.2 × exp4+0.8 × exp 2= 16.83

Z =0 M= 1  exp 3
M=0  exp 1
Overall 0.8 × 4+0.2 × 2=2.6 0.8 × exp 3 +0.2 × exp 1 = 16.61
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PðZ = 1,M = 1Þ=0.13, then the association of the instrumental variable with the exposure is positive:
E½XjðZ = 1Þ−XjðZ =0Þ�= ð0.26 × 4 + 0.74 × 2Þ − ð0.74 × 3 +0.26 × 1Þ= 2.52− 2.48 = 0.04; but the association of
the instrumental variable with the outcome is negative: E½Y jðZ = 1Þ−Y jðZ =0Þ� = −0.052 − ð−0.041Þ
= −0.011. These calculations are illustrated further in Table 4.

Box 1: Summary of results

Sufficient conditions under which the instrumental variable and causal estimates have the same sign:
– Monotonicity of the instrumental variable–exposure association and the counterfactual instrumental variable assumptions
– Linearity and homogeneity of the exposure–outcome relationship and the graphical instrumental variable assumptions
– Homogeneity of the exposure–outcome relationship and the counterfactual instrumental variable assumptions

Scenarios under which the instrumental variable and causal estimates may have different signs:
– Effect heterogeneity and non-monotonicity
– Non-linearity and non-monotonicity
– Non-linearity and monotonicity (under the graphical instrumental assumptions)

4 Discussion

The findings of this paper are summarized in Box 1. For scenarios where the causal effect is monotone in the
population, we have demonstrated that the instrumental variable estimate has the same sign as the causal
effect if the causal effect is homogeneous and linear, or if the instrumental variable satisfies both the
counterfactual instrumental variable assumptions and the monotonicity assumption. The first condition
(homogeneity and linearity) is sufficient to estimate an average causal effect, while the second condition
(monotonicity) is sufficient to estimate a local average causal effect. If these assumptions are weakened,
then the instrumental variable estimate may differ in sign from the causal effect. Hence, if a researcher is
willing to make the instrumental variable assumptions, but is unwilling to make additional assumptions
necessary for estimating a causal effect (such as monotonicity of the instrumental variable–exposure
association, or homogeneity and linearity of the exposure–outcome relationship), then they are able to
conclude that the exposure has a causal effect on the outcome, but they are almost never (see “bounds”
below) able to make any definite conclusion about the direction of such an effect.

4.1 Bounds for the causal effect

When the exposure is binary, the core instrumental variable assumptions only identify bounds for the
causal effect rather than a single causal estimate [30, 31]. It may in some cases that these bounds are able to

Table 4: Example 4: non-linearity and monotonicity. Instrumental variable estimate is −0.052− ð−0.041Þ
2.52−2.48 = −0.011

0.04 < 0, despite
positive causal effect for all individuals (the outcome is an increasing function of the exposure).

Stratum Expected value of exposure Expected value of outcome

Z = 1 M= 1  4 log 4−4
M=0  2 log 2− 2
Overall 0.26× 4 +0.74 × 2=2.52 0.26× ð4 log 4−4Þ+0.74 × ð2 log 2− 2Þ= −0.052

Z =0 M= 1  3 log 1− 3
M=0  1 log 1− 1
Overall 0.74 × 3 +0.26× 1= 2.48 0.74 × ð3 log 3− 3Þ+0.26× ð1 log 1− 1Þ= −0.041
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determine the direction of the causal effect. However, these bounds are often extremely imprecise, and even
in large samples are rarely informative. With a continuous exposure, even bounds for the causal effect
cannot be made without further assumptions.

4.2 Plausibility of the monotonicity assumption

Although the monotonicity assumption is reasonably plausible in the context of randomized trials, it
may be violated in other contexts, such as in Mendelian randomization. A genetic variant may have a
different direction of association with the exposure in substrata of the population. This has been
previously documented as “the flip-flop phenomenon” [32]. This may be due to a gene–environment
interaction (for instance, the direction of association is different in smokers and non-smokers). Or else it
may be due to varying genetic architectures in different ethnic groups (for instance, the variant may be
correlated with one functional mutation in one group, but with a different functional mutation in another
group).

Another situation where the monotonicity assumption may be violated is if the instrumental variable is
an allele score, particularly an unweighted allele score [33]. An allele score is a simple way of summarizing
multiple genetic variants into a univariable score by simply summing the number of exposure-increasing
alleles. A weighted score can be obtained by multiplying the number of exposure-increasing alleles for each
genetic variant by a weight, and then calculating the weighted sum. If the genetic variants are all
instrumental variables, then the score will be an instrumental variable. The use of allele scores is motivated
by the desire to avoid bias from weak instruments that can lead to misleading findings if the genetic
variants do not explain much variation in the exposure [34]. As genetic variants will generally have
different magnitudes of association with the exposure, the monotonicity assumption is likely to be violated
for an unweighted score as greater values of the score will not necessarily correspond to greater expected
values of the exposure. Even with a weighted score, violation of the monotonicity assumption is likely if the
weights are not precisely estimated. Additionally, even if the weights are precisely estimated, but the
associations of genetic variants vary between individuals, then the allele score may not satisfy the
monotonicity assumption even if all the constituent variants individually satisfy the monotonicity
assumption.

4.3 Relationship to other methodological areas

The Simpson’s paradox phenomenon observed in this paper for instrumental variable analysis has also
been observed for mediation analysis. Imai et al. demonstrated that it is possible for the association of an
exposure with a mediator to be positive, and for the association of the mediation with the outcome to be
positive, but for the average indirect effect of the exposure on the outcome to be negative [35].

4.4 Conclusion

Although situations in which the instrumental variable–outcome association has a different direction to the
causal effect of the exposure on the outcome are likely to be uncommon, they are possible, particularly if
the direction of effect of the instrumental variable on the exposure differs between individuals (non-
monotonicity). However, even if the monotonicity assumption is satisfied, it is possible that the instru-
mental variable estimate and causal effect have different signs when the exposure–outcome relationship is
non-linear. Hence, a definite conclusion that the exposure has (say) a positive direction of effect on the
outcome requires additional assumptions to the standard instrumental variable assumptions, assumptions
that are similar to those required to estimate a causal effect.
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In the context of Mendelian randomization, this means that not only should the magnitude of a causal
estimate not be overinterpreted [10, 36], but even the direction of the causal estimate may be a false guide
as to whether the exposure should be increased or decreased unless further assumptions are made.

Funding: Wellcome Trust, (100114) Directorate for Social, Behavioral and Economic Sciences.
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