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We consider a coarse-graining of high-dimensional potential energy landscapes based

upon persistences, which correspond to lowest barrier heights to lower-energy min-

ima. Persistences can be calculated efficiently for local minima in kinetic transition

networks that are based on stationary points of the prevailing energy landscape. The

networks studied here represent peptides, proteins, nucleic acids, an atomic cluster,

and a glassy system. Minima with high persistence values are likely to represent

some form of alternative structural morphology, which, if appreciably populated at

the prevailing temperature, could compete with the global minimum (defined as in-

finitely persistent). Threshold values on persistences (and in some cases equilibrium

occupation probabilities) have therefore been used in this work to select subsets of

minima, which were then analysed to see how well they can represent features of

the full network. Simplified disconnectivity graphs showing only the selected minima

can convey the funnelling (including any multiple-funnel) characteristics of the corre-

sponding full graphs. The effect of the choice of persistence threshold on the reduced

disconnectivity graphs was considered for a system with a hierarchical, glassy land-

scape. Sets of persistent minima were also found to be useful in comparing networks

for the same system sampled under different conditions, using minimum oriented

spanning forests.
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I. INTRODUCTION

Visualisation often plays a key role in our ability to understand physical phenomena.

Unfortunately, the high dimensionality of a potential energy landscape, which is a function

of 3N coordinates for N atoms, makes visualisation problematic for most systems of inter-

est. Projections onto low-dimensional surfaces can be highly misleading. For example, even

relatively good order parameters are unlikely to distinguish the two sides of every barrier

in configuration space between all pairs of local minima. This projection error generally

leads to underestimation of free energy barriers in reduced dimensionality,1–8 as highlighted

recently for the 38-atom cluster considered again in the present contribution.9 In fact, since

the number of transition states (saddles with Hessian index one) connected to each min-

imum is expected to scale linearly with N ,10 any three-dimensional representation of the

landscape for a many-body system is likely to be misleading. Low-dimensional embeddings

are typically based on some dimensionality-reduction method, such as principal component

analysis, multi-dimensional scaling, isomap, or diffusion maps. In all such methods, the

low-dimensional embedding is tightly coupled to the spectral properties of a matrix.11 If the

eigenspectrum of that matrix does not exhibit a clear gap (e.g. two or three large eigenvalues,

the remaining ones being small), no low-dimensional embedding can accurately represent the

corresponding landscape.

Although the true complexity of a many-dimensional potential energy landscape cannot

be represented by a three-dimensional surface, there are useful alternatives. In particular,

disconnectivity graphs can be constructed that provide a faithful account of the potential

or free energy barriers between local minima.12–15 Such graphs can be constructed auto-

matically from databases of local minima and the transition states that connect them, and

provide a useful picture of the underlying kinetic transition network.6,8,16 Quantitative anal-

ysis of thermodynamic properties and kinetics requires additional data, such as normal mode

frequencies, associated with entries in the database. Nevertheless, certain emergent proper-

ties can be inferred from the appearance of the disconnectivity graph itself. For example,

competition of morphologies corresponding to low energy structures separated by a high bar-

rier is likely to result in multiple relaxation time scales, and associated features in the heat

capacity.17–24 Such landscapes can be considered “frustrated”,25,26 and quantitative measures

are being actively developed to describe the corresponding topography. Recent work on an
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intrinsically disordered protein suggests that landscapes with multiple competing potential

energy funnels might be associated with multi-functional systems.27

Since the number of local minima is expected to grow exponentially with the number

of atoms10,28 it can be useful to consider further coarse-graining of the landscape and the

corresponding disconnectivity graph. In the present contribution we consider the notion of

“persistence”, defined from the viewpoint of computational topology, and how it can be used

to pick out subsets of minima from a kinetic transition network. The selected minima are

analysed to see how well they can represent features of the full network, and also used as

“indicators” when comparing two or more networks sampled under different conditions for

the same molecule. Lumping local potential energy minima together to define free energy

minima is another, intuitive, way to achieve a coarse-graining. Here, we also combine a self-

consistent grouping scheme defined on the basis of a free energy barrier threshold29 with the

persistence analysis. We find that selection of local minima using persistence can provide

an efficient, consistent, and complementary coarse-graining approach for high-dimensional

landscapes.

II. METHODS

Following Cazals et al.,30 we analyse a number of kinetic transition networks (KTNs) using

concepts from topography and computational topology. The KTNs were obtained in previous

work19,31–35 using pathway based approaches, including discrete path sampling,19,20,36 and

consist of databases of stationary points on the prevailing potential energy landscape: local

minima and the transition states37 (TSs) that connect them.

A. Persistence diagrams

The persistence of each local minimum (apart from the global minimum) is defined here as

the lowest barrier height to a lower-energy minimum,38 i.e. the absolute value of the energy

difference between the minimum itself and the highest transition state on the lowest-energy

path that connects a minimum of lower energy. Using terminology from topography, this

particular TS is referred to as the key saddle for the original minimum. The persistence of

the global minimum is infinite, since this particular minimum does not possess a key saddle.
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Persistences can alternatively be referred to as prominences.38

In the current work, persistences are obtained via a superbasin analysis,12 which may

be seen as a flooding process to find the mergers between basins of attraction39 associated

with local minima, since these events occur at key saddles. A superbasin analysis is also

employed in the construction of disconnectivity graphs12,13 (DGs) but in that case, the

analysis is usually performed at an appropriately chosen series of equally spaced energies,

rather than at the energies of the transition states themselves, in order not to obscure the

overall structure of the landscape.

More formally, the sub-level set associated with an energy value is the portion of the

landscape found below that threshold. Imagine sweeping the landscape with a horizontal

hyper-plane, by increasing the energy. Whenever the hyper-plane hits a new local minimum,

say m1, a connected component (CC) of the corresponding sub-level set is born; while

initially restricted to the local minimum m1 itself, upon raising the threshold, this CC

expands to the basin of attraction of m1. Moreover, once the hyper-plane reaches the energy

of the key saddle linking m1 and another local minimum, say m2, the CC of m1 merges with

that of m2. Computing persistences in the current context therefore requires the energies

at which CCs associated with local minima are born and merge with those of lower-energy

minima. Equivalently, one needs to maintain the connected components of a graph whose

nodes are the local minima, and whose edges correspond to the transition states. To do so,

one processes stationary points (local minima and transition states) in order of increasing

energy. Upon processing a local minimum, one adds a vertex to the graph, since a CC

is born. Upon processing a transition state, if the two directly-linked local minima are

not already in the same CC, then their CCs are merged and this transition state becomes

the key saddle for whichever is the higher in energy of the lowest-energy minima from the

two CCs before merging. The maintenance of the CCs of this evolving graph is optimally

accomplished via a Union-Find algorithm,40 which essentially scales linearly as a function

of the number of nodes and edges in the graph, or by resorting to a more general (Morse)

homology calculation.41,42 The Union-Find approach is sufficient to compute the persistence

of local minima, but not stationary points of other indices.

A persistence diagram38 can then be plotted with the energy of the minimum on the

x axis and the energy of the key saddle on the y axis, so that all points lie above the

diagonal y = x. The most persistent metastable minima correspond to the points that lie

4



furthest from the diagonal. Normalised cumulative histograms can be used to illustrate the

distribution of persistences.

B. Selection of minima using persistence

To identify particularly significant stationary points, we select minima whose persistence

and equilibrium occupation probability (at a chosen temperature) exceed given thresholds,

and add the global minimum to this selection. The aim of the condition on the occupation

probability is to ensure that the chosen persistent minima are thermodynamically relevant

at the prevailing temperature. For computational speed, the equilibrium occupation prob-

abilities (Peq) are estimated here using the harmonic approximation to the local density of

vibrational states.43,44

Once the most significant minima have been selected, a reduced DG visualisation of the

landscape can be employed: the relevant connected component of the original network is

used in the superbasin analysis, but only the selected minima may be displayed in the graph.

One of the principal objectives of the present contribution is to compare these reduced graphs

with the originals, to see if they provide a helpful visualisation. This aim is similar in spirit to

a coarse-graining based upon minima that lie at the bottom of basins defined by monotonic

sequences,45 which has previously been considered for atomic clusters.46 Disconnectivity

graphs based upon both persistent minima and monotonic sequence basins can be obtained

using our disconnectionDPS program.47

Persistence can also be incorporated in our recursive scheme29 to define free energy min-

ima (and associated free energy transition states) as groups of minima in potential energy

that can interconvert without encountering a barrier higher than a chosen threshold value.

In an extension to the original method, minima selected using the criteria described above

can be required to belong to separate groups, i.e. no two persistent minima can belong to

the same group.

These analyses only include the stationary points in the single connected component of the

network that addresses conformations of interest (usually defined by the global minimum).

The KTNs may contain other separate “islands” as a consequence of the targeted sampling

approaches used, or by exclusion of unphysical connecting TSs, but these are not considered

here, precisely because they are disconnected and likely to be under-sampled. Stationary

5



points may also be excluded on the basis of thresholds for a maximum energy, a minimum

number of direct connections, or (for TSs) a maximum barrier height.

C. Comparing sets of minima via minimum oriented spanning forests

Two sets of structures, for example the minima from two KTNs constructed for the same

molecule using different potential energy functions, may be compared using a minimum

oriented spanning forest30 (MSF), as described in Figure 1. Two values are then obtained:

the average of the nearest-neighbour least root-mean-square distance (lRMSD) values from

set 1 to set 2 (wMSF
1→2 ) and the average from set 2 to set 1 (wMSF

2→1 ). The sets can also be

simplified prior to the MSF analysis using a threshold on the persistence. In the current work,

we again only include minima in the single connected component of the prevailing network

that contains the global minimum, as persistences for local minima in other components are

likely to be unreliable due to under-sampling of their connections.

III. RESULTS AND DISCUSSION

In the present contribution, the methods described in Section II are applied to KTNs

for peptides, proteins, nucleic acids, an atomic cluster, and a glassy system, for illustration.

In the results presented below, energies are in kcalmol−1 and kBT in the calculation of

equilibrium occupation probabilities was set to 0.592 (corresponding to a temperature of

298K) for the atomistic molecular mechanics force fields. Reduced units are employed

for the Lennard-Jones potential48 and the BLN protein bead model.49–52 As a general rule

(unless otherwise stated), the threshold on the persistence was chosen as the 90th percentile

from the corresponding cumulative histogram, and the threshold on Peq was set to 0.0001.

In the case of dialanine, since a clear gap is visible in both of the persistence diagrams, only

the large values were retained.

A. Alanine Peptides

It was previously found35 that for both dialanine and tetraalanine in vacuo, KTNs rep-

resenting the CHARMM2753 and AMBER99SB54 landscapes exhibit significant differences:

the global minima differ structurally, the heat capacity curves vary, and there are many
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more local minima supported on the CHARMM27 landscapes than for AMBER99SB. In

the present work, the four KTNs are analysed further using topological persistence. The

aim is to see whether subsets of minima from one network provide a good representation of

minima from the other force field, in terms of structural measures (lRMSD) and thermody-

namic quantities (heat capacities).

For each molecule, the two sets of local minima are referred to as A (AMBER99SB) and

C (CHARMM27). A set of minima obtained by simplifying A by selecting minima using a

persistence threshold pa is denoted A ց; the CHARMM27 equivalents are C, pc and C ց.

The correlation between A and persistent CHARMM27 minima was studied via two

comparisons:

• (1) A → C ց. The average nearest-neighbour lRMSD from AMBER99SB minima to

CHARMM27 minima was obtained, upon selecting a subset of CHARMM27 minima

using persistence thresholds. On varying pc, a subset of CHARMM27 minima that

provides a good representation of AMBER99SB minima is evidenced by a plateau in

the curve wMSF
A→C

(pc). That is, the minima corresponding to the persistence range defin-

ing such a plateau suffice to maintain the approximation quality of the AMBER99SB

minima. This comparison is repeated for several thresholds pa for AMBER99SB.

• (2) C ց → A. Here the average nearest-neighbour lRMSD from CHARMM27 minima

to AMBER99SB minima was obtained, upon selecting CHARMM27 minima based on

their persistence. The aim is to discover whether selected persistent CHARMM27

minima have a preferential location with respect to AMBER99SB minima. Upon

varying pc, such a set is characterised by a plateau or a decreasing section in the

curve wMSF
C→A

(pc). This comparison was also repeated for several thresholds pa for

AMBER99SB.

We sought the presence of the features described above at common values of pc for (1)

and (2), to position AMBER99SB minima with respect to persistent CHARMM27 minima

and vice versa. Similarly, the correlation between C and persistent AMBER99SB minima

was studied via two comparisons: (3) A ց → C, the complementary situation to (2); and

(4) C → A ց, the complementary situation to (1).
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1. Dialanine

Figure 2 presents the persistence diagrams (top) and the normalised cumulative his-

tograms of persistences (bottom) for AMBER99SB (left) and CHARMM27 (right). Thresh-

olds of 1.8 for AMBER99SB and 4.1 for CHARMM27 clearly separate around 10 persistent

minima in the main connected component for each of the force fields.

From the MSF analysis, average lRMSD values were obtained as a function of pa and pc

(Figure 3):

• (1) A → C ց (top-left). By construction the average distance wMSF
A→C

increases: the

nearest neighbour of each local minimum from AMBER99SB moves away upon select-

ing persistent minima from C.

Persistent AMBER99SB minima (curve for pa = 1.8, 10 minima) are better represented

by CHARMM27 minima than all AMBER99SB minima (curve for pa = 0, 23 minima).

In varying pc, four regions of interest are identified. For low values of pc, a steep

increase is observed in moving from pc = 0 (181 minima) to pc = 0.2 (71 minima),

showing that the 110 CHARMM27 minima removed are important to represent the

AMBER99SB minima properly, despite their low persistence. Similarly, five other such

CHARMM27 minima are singled out in moving from pc = 0.6 (27 minima) to pc = 0.8

(22 minima). From pc = 0.8 (22 minima) to pc = 1.6 (14 minima), the quality of the

coverage of AMBER99SB minima by CHARMM27 minima hardly changes, showing

that the 14 minima suffice to represent the AMBER99SB minima. From pc = 1.6 (14

minima) to pc = 2.6 (9 minima), the curves rise again, showing that the 5 CHARMM27

minima removed are significant in representing the AMBER99SB minima.

• (2) C ց → A (top-right). Three regions may be distinguished in the plot, i.e. pc ≤ 0.3,

0.3 < pc ≤ 1.6, and 1.6 < pc. The thresholds 0.3 and 1.6 correspond to 55 minima

and 14 minima, respectively.

To assist this analysis, consider the Voronoi diagram of the AMBER99SB minima

for the lRMSD, that is, the partition of the conformational space with one cell per

AMBER99SB local minimum, such that all conformations nearest to this minimum

are assigned to its cell. The first region, which corresponds to a rapid decrease of

the number of CHARMM27 minima, shows that these non-persistent minima do not
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have any clear location in the Voronoi cells. In the second region, the decreasing

trend means that upon selecting persistent minima from CHARMM27, one preferably

removes peripheral nodes from the Voronoi cells. In the third region, the increasing

trend means that the top nine most persistent CHARMM27 minima are not repre-

sented well, relative to less persistent minima, by AMBER99SB minima. More pre-

cisely, all CHARMM27 minima and the most persistent CHARMM27 minima exhibit

a comparable average distance to their respective AMBER99SB nearest neighbours

(circa 1.09 Å).

• (3) A ց → C (bottom-left). On selecting persistent AMBER99SB minima and assign-

ing them nearest neighbours in CHARMM27 sets (all minima i.e. pc = 0, or persistent

minima i.e. pc = 4.1), no clear trend is observed. This result shows that the AM-

BER99SB minima do not have a clear preference for being either close to or far from

the CHARMM27 minima.

• (4) C → A ց (bottom-right). Similarly to (1), persistent CHARMM27 minima

(pc = 4.1, black curve) are better represented by AMBER99SB minima, than all

CHARMM27 minima (pc = 0, purple curve). Furthermore, while the curve for all

minima rises regularly, the curve for persistent minima exhibits two regions, namely

up to pa = 1.4 (11 minima), and beyond. In the first part, the moderate rise shows

that the 11 AMBER99SB minima provide a good approximation of the persistent

CHARMM27 minima and, to a lesser extent, all CHARMM27 minima. In the second

part, upon moving from pa = 1.4 (11 minima) to pa = 1.8 (10 minima), the sharp rise

shows that the AMBER99SB minimum removed plays a key role in representing two

persistent CHARMM27 minima.

From comparisons (1) and (2), the plateau ending at pc ∼ 1.6 in (1) and the minimum

observed in the second plot at pc ∼ 1.6 in (2) show that a subset of CHARMM27 minima

providing a good representation of AMBER99SB minima can be obtained for persistences in

the range pc ∈ (0.8, 1.6). Comparisons (3) and (4) show that a core set of 11 AMBER99SB

minima provides a good approximation to the persistent CHARMM27 minima.

Heat capacities, within the harmonic superposition approximation,43,44 for the CHARMM27

landscape are presented in the top left panel of Figure 4 and those for the AMBER99SB

landscape in the top right panel. The full lines were calculated using all the minima in the
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single component connected to the prevailing global minimum, and the dashed lines were

obtained using only the most persistent minima in this component (pc ≥ 4.1 or pa ≥ 1.8, see

Figure 2). To compare heat capacity curves for the same potential as the number of minima

included is reduced (i.e. the persistence threshold is increased), the function is integrated

between fixed temperatures that bracket the peak for the largest set of minima. Differences

between the resulting internal energy change (∆U) for a given persistence threshold and

the reference for the largest set of minima, are presented for both potentials in the lower

panel of Figure 4. These results suggest that subsets of persistent minima for CHARMM27

are insufficient to represent the full component, in terms of heat capacities, but sets of AM-

BER99SB minima identifiable by their relatively high persistence can provide a reasonable

representation.

2. Tetraalanine

The persistence diagrams for AMBER99SB and CHARMM27 (Figure 5, top) exhibit

significant differences, in terms of the number of minima, the range of persistences and the

clustering in energy of the minima themselves. The corresponding normalised cumulative

histograms of persistences are given in Figure 5 (bottom). In the absence of a meaningful

separation of scales in these persistence diagrams, in studying the relative positions of the

minima of the two force fields using MSFs, we vary the persistence thresholds as follows:

pa ∈ [0, 12], and pc ∈ [0, 20].

From the MSF analysis (Figure 6):

• (1) A → C ց (top-left). On selecting CHARMM27 minima, no plateaux are ob-

served, suggesting that these subsets of CHARMM27 minima do not provide a good

approximation of AMBER99SB minima (or any subset).

• (2) C ց → A (top-right). The flatness of the curves shows that no subsets of

CHARMM27 minima have a preferential location with respect to the AMBER99SB

minima.

• (3) A ց → C (bottom-left). A situation analogous to (2).

• (4) C → A ց (bottom-right). A situation analogous to (1).
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Therefore, these two landscapes for tetraalanine in vacuum appear to be relatively uncorre-

lated in terms of the structures of local minima. These results are in line with our previous

analysis of the corresponding landscapes.35

Heat capacities, within the harmonic superposition approximation, for the CHARMM27

landscape are presented in the top left panel of Figure 7 and those for the AMBER99SB

landscape in the top right panel. The full lines were calculated using all the minima in

the single component that includes the global potential energy minimum, and the dashed

lines were obtained using only a set of persistent minima in this component (pc, pa ≥ 1.0).

Differences between the resulting internal energy change for a given persistence threshold

and the reference for the largest set of minima, for the two highest-temperature peaks, are

presented for both potentials in the lower panels of Figure 7. The results suggest that subsets

of AMBER99SB minima can provide a reasonable representation of the full set for the low

and high temperature peaks, but capture the middle peak less well; for CHARMM27, there

is more variation in the quality of the representation as the persistence threshold changes.

B. The LJ38 Cluster

Here we consider a network19 for a cluster of 38 Lennard-Jones particles48 (LJ38) contain-

ing 5310 minima and 7610 valid transition states in the connected component of interest.

The persistence diagram and the distribution of persistences are plotted in Figure 8. Dis-

connectivity graphs (original and reduced) are presented in Figure 9 for the region of the

landscape below an energy threshold of −169, in order to avoid clutter from insignificant

higher-lying minima. Minima were selected using a threshold of 1.64 on the persistences,

and kBT = 0.12 was used to calculate the Peq, since this corresponds to the solid-solid tran-

sition temperature.17,55 Application of the selection criteria picks out five out of the seven

lowest-energy minima (excluding the global minimum). The two minima lower in energy but

not selected lie higher up the individual “funnel” that has structure c (labelled in Figure 9)

at the bottom, and therefore have persistences below the threshold. The global minimum

is a face-centred-cubic truncated octahedron,56 and the other selected minima are based on

incomplete icosahedra, with the five-fold symmetry being somewhat distorted in structures

a and b (labelled in Figure 9), according to the geometric Common Neighbour Analysis.57–59

Thus, the persistence analysis has highlighted minima from the two competing structural
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morphologies of this archetypal double-funnel landscape.17

The recursive grouping scheme including persistence (Section II) was tested on this KTN;

for a persistence threshold of 1.64, and for barrier thresholds where both methods are suc-

cessful, the results are identical to those for the original algorithm (data not shown). That

is to say, the minima identified by other means as both persistent and thermodynamically

relevant are also distinguished from one another via the recursive grouping algorithm.29 The

recursive grouping scheme is appropriate when local equilibration occurs more rapidly within

groups than between them, i.e. there is a separation of timescales and free energy barrier

heights. Persistent minima are therefore likely to belong to different groups when the ef-

fects of vibrational and configurational entropy on free energy at the prevailing temperature

either enhance or do not detract significantly from the high potential energy barriers.

C. BLJ60

Next we consider a system with a glassy landscape: a 60-atom binary Lennard-Jones

mixture of 48 type A and 12 type B particles (BLJ60) at number density 1.3 (in reduced

units) and kBT = 0.71, with periodic boundary conditions.31 There are 11474 minima and

13051 transition states in the connected component of interest. The persistence diagram

and the distribution of persistences are plotted in Figure 10. The distribution here has a

long tail from a relatively small number of minima with very high persistences, different

from the LJ38 cluster, which also has a smaller range of persistences. Original and reduced

disconnectivity graphs are presented in Figure 11 (top and middle). The Peq were calculated

at kBT = 0.71 and a threshold of 2.868 was applied on the persistences. Here the hierarchical

nature of the landscape, arising from a range of barrier heights, is preserved in the reduced

disconnectivity graph, but with the simplification that many of the local minima higher up

in individual “funnels” are not selected.

In previous work,31 features referred to as metabasins60–63 were visualised via a disconnec-

tivity graph in which only minima connected by particular mechanisms (non-cage-breaking

transitions or cage-breaking transitions that include reversals of previous cage-breaking

events) were plotted. Removing the high-barrier productive cage-breaking transitions causes

the graph to fragment, as emphasised by the use of colour. Figure 11 from Ref. 31 is recre-

ated here in Figure 11 (bottom), with a slightly different colour scheme, and the minima
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also selected according to persistence and Peq identified. As one might expect, most of the

selected minima lie at or near the bottoms of metabasins. Five of the 74 selected minima

are not plotted in Figure 11 because they are connected by productive cage-breaks. Some

significant metabasins do not contain any of the selected minima. For example, the local

minimum marked with an asterisk in Figure 11 (top and bottom) lies in a metabasin that

is not represented in the reduced DG, Figure 11 (middle), due to a sufficiently high persis-

tence but low Peq, arising from a relatively high geometric mean normal mode (vibrational)

frequency.

D. BLN69

The largest network33 we consider here is for a bead model of a protein. BLN69 is a 69-

bead protein where the beads are either hydrophobic (B), hydrophilic (L) or neutral (N).49–52

The particular sequence was designed to fold into a six-strand β-barrel with a frustrated

landscape.64 There are 163871 minima and 221319 valid transition states in the connected

component of interest. The persistence diagram and the distribution of persistences are

plotted in Figure 12; the distribution shows a long tail with a few minima at high values.

Disconnectivity graphs (original and reduced) are presented in Figure 13 for the region of

the landscape below an energy threshold of −80, in order to avoid clutter from insignificant

higher-lying minima. Persistent minima were selected using a threshold of 4.05 on the

persistence, and kBT = 0.6 was used to calculate the Peq. The reduced disconnectivity graph

clearly shows the distinct funnels leading to structures that differ from the global minimum

in the arrangement of the β-strands, reflecting the frustration present at the bottom of the

original landscape. Minima that are higher in energy are also selected.

E. Binding modes for influenza virus

This network32 describes interconversion pathways between two binding modes of α 2, 6

sialic acid to hemagglutinin glycoprotein of human H1N1 influenza virus, modelled using the

AMBERff99SB molecular mechanics force field54,65 and a generalised Born implicit solvent

model.66 It is the smallest KTN considered here, with 1200 minima and 1995 valid transition

states in the connected component of interest, and it also exhibits a small range of persis-
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tences (see Figure 14). Dead-end minima (i.e. minima with fewer than two connections

via valid TSs to valid minima) were removed from the analyses. Disconnectivity graphs

(original and reduced) are presented in Figure 15 for the region of the landscape below an

energy threshold of −6598, in order to avoid clutter from insignificant higher-lying minima.

Persistent minima were selected using a threshold of 2.17 on the persistence. The selected

minima are spread throughout the lower half of this funnelling landscape, with many of the

longer dangling branches picked out; the funnelling nature is simplified and preserved in the

reduced DG.

F. UUCG RNA tetraloop

This KTN is for a UUCG tetraloop,34 a 10-nucleotide RNA hairpin modelled using an

all-atom molecular mechanics force field (AMBER99/bsc0,67 employing the latest torsional

corrections68) and a generalised Born implicit solvent model.66 There are 58291 minima

and 72459 valid transition states in the connected component of interest. The persistence

diagram and the distribution of persistences are plotted in Figure 16. Disconnectivity graphs

(original and reduced) are presented in Figure 17 for the region of the landscape below an

energy threshold of −2426. The selection criterion on the persistence was chosen as the

80th percentile from the cumulative histogram, rather than the 90th, because in this case

the criterion on Peq deselects many minima with high persistences. The chosen value is

3.12. The landscape here is steeply funnelled, but with a significant side-funnel, which

constitutes a kinetic trap and includes structures with different loop conformations, but

the same Watson–Crick base pairing as the global minimum. The persistence analysis has

picked out the side funnel (though not via its lowest minimum, which has a larger geometric

mean normal mode frequency and hence a smaller Peq) and a set of structures at relatively

low energy in the funnel leading to the global minimum.

G. Effect of varying the persistence threshold

The BLJ60 landscape is used to illustrate the effects of changing the threshold on the

persistence used, along with the usual threshold on the occupation probability, to select

minima. A set of disconnectivity graphs is presented in Figure 18 as the threshold is increased
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from zero. These graphs show, as expected, an increasingly coarse-grained picture due to

the progressive loss of internal structure within the funnels of this hierarchical landscape.

IV. CONCLUSIONS

Persistences, or lowest barrier heights to lower-energy minima, were calculated for lo-

cal minima in various kinetic transition networks that are based on stationary points of

the potential energy landscape. The calculation is a computationally inexpensive post-

processing analysis once the more time-consuming step, sampling the landscape, has been

performed. Minima with high persistence values are likely to represent some form of alter-

native structural morphology which, if appreciably populated at the prevailing temperature,

could compete with the global minimum (defined with infinite persistence). Threshold val-

ues on persistences and, in some cases, equilibrium occupation probabilities (within the

harmonic approximation) have therefore been used in this work to select subsets of minima,

which were then analysed to see how well they can represent the full network.

Disconnectivity graphs showing only the selected minima were simplified yet still convey

the funnelling (including multiple-funnel) characteristics of the corresponding full graphs,

though not necessarily via the structure of lowest potential energy in the funnel, due to

the thermodynamic criterion. The effect of the choice of persistence threshold on the re-

duced disconnectivity graphs was analysed for a system with a hierarchical, glassy landscape

(BLJ60). Sets of selected minima were also used to compare different KTNs, representing

energy landscapes for two molecular mechanics force fields, AMBER99SB and CHARMM27,

for the same molecule in vacuum, which were found in previous work35 to exhibit significant

global differences. Using minimum oriented spanning forests, sets of persistent minima were

found to be well correlated between the two landscapes for dialanine, but not for tetraala-

nine. Features of heat capacity curves were captured reasonably well using only a selected

subset of minima for the dialanine and tetraalanine AMBER99SB landscapes, but less well

for both of the CHARMM27 landscapes. In future work, it will be interesting to assess the

degree of correlation between energy landscapes for more complex biochemical systems in

solution.

The comparison of minima using spanning forests and selection of persistent minima

might be useful in developing coarse-grained potentials based upon atomistic force fields.
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Since the spanning-forests analysis only exploits local minima and distances between them,

more elaborate comparisons can also be used, in particular those based on earth mover

distances30, which also employ occupation probabilities of local minima and possibly tran-

sition paths.

The reduction in complexity afforded by the selection of local minima on the basis of

their persistence and equilibrium occupation probability could equally be achieved using

free energies at the prevailing temperature, for groups of rapidly interconverting minima and

ensembles of transition states that connect minima in different groups.15,29 Hence, disconnec-

tivity graphs plotted on the basis of free energy14,15 could also be reduced as demonstrated

here for potential energy.
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E: landscape two
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FIG. 1. Comparing sets of minima using a minimum oriented spanning forest (MSF). Given two

sets of local minima, associated with two landscapes, each local minimum chooses its nearest

neighbor in the other set. The resulting distance (e.g. the least root mean square deviation)

defines the weight of the corresponding oriented edge connecting the two minima. In this fictitious

example, every minimum from the second landscape has a close neighbor amongst minima from

the first landscape, but the converse is false: minimum a3 is (relatively) isolated. Due to this lack

of symmetry, comparisons are performed both ways. The average weight of edges from the first

landscape to the second one is denoted wMSF
1→2 , and the average weight in the reverse direction is

denoted wMSF
2→1 .
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FIG. 2. Dialanine: persistence diagram and normalised cumulative histogram of persistences for

AMBER99SB (left column) and CHARMM27 (right column).
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are average MSF weights.
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FIG. 4. Dialanine: heat capacity curves from the harmonic superposition approximation using

CHARMM27 (top left) and AMBER99SB (top right). The full lines were calculated using all

the minima in the single component connected to the prevailing global minimum, and the dashed

lines, using only the minima in this component whose persistence exceeds 4.1 for CHARMM27 or

1.8 for AMBER99SB. Lower panel: internal energy changes (∆U), plotted as the difference from

the reference energy change using all the minima in the relevant connected component, as the

persistence threshold is increased. The bracketing temperatures are [0.1,2.0] for CHARMM27 and

[0.1,1.5] for AMBER99SB, in units of kBT .
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FIG. 5. Tetraalanine: persistence diagram and normalised cumulative histogram of persistences

for AMBER99SB (left column) and CHARMM27 (right column).
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FIG. 7. Tetraalanine: heat capacity curves from the harmonic superposition approximation using

CHARMM27 (top left) and AMBER99SB (top right). The full lines were calculated using all

the minima in the single component connected to the prevailing global minimum, and the dashed

lines, using only the minima in this component whose persistence exceeds 1.0. Lower panels:

internal energy changes (∆U) for the two highest-temperature peaks, plotted as the difference

from the reference energy change using all the minima in the relevant connected component, as

the persistence threshold is increased. In units of kBT , the bracketing temperatures are peak 2

(left): [0.16,0.66] for CHARMM27 and [0.2,0.63] for AMBER99SB; peak 3 (right): [0.66,2.5] for

CHARMM27 and [0.63,2.0] for AMBER99SB.
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FIG. 8. LJ38: persistence diagram (left). The dashed lines mark the persistences corresponding

to the 50th, 70th and 90th percentiles. Normalised cumulative histogram of persistences, with the

90th percentile marked (right).
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FIG. 9. LJ38: disconnectivity graphs. The vertical scale, denoted by the scale bar, is potential

energy. Left: original graph. The red circles mark the minima that meet the selection criteria

described in the text. Right: reduced graph, showing only those minima that meet the selection

criteria. The lines are coloured according to the persistence of the corresponding local minimum;

the line to the global minimum, defined to have infinite persistence, is black.
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FIG. 10. BLJ60: persistence diagram (left). The dashed lines mark the persistences corresponding

to the 50th, 70th and 90th percentiles. Normalised cumulative histogram of persistences, with the

90th percentile marked (right).
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FIG. 11. BLJ60: disconnectivity graphs. The vertical axes are potential energy. Top: original

graph. The red circles mark the minima that meet the selection criteria described in the text.

The red asterisk marks a metabasin that is not represented in the reduced graph. Middle: reduced

graph, showing only those minima that meet the selection criteria. The lines are coloured according

to the persistence of the corresponding local minimum; the line to the global minimum, defined to

have infinite persistence, is black. Bottom: fragmented graph, showing only the minima connected

by particular types of mechanism. This graph employs a different colouring scheme: here, changes

in colour show isolated subsets of minima. The black circles and asterisk have the same meaning

as the red versions in the top panel.
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FIG. 12. BLN69: persistence diagram (left). The dashed lines mark the persistences corresponding

to the 50th, 70th and 90th percentiles. Normalised cumulative histogram of persistences, with the

90th percentile marked (right).
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FIG. 13. BLN69: disconnectivity graphs. The vertical scale, denoted by the scale bar, is potential

energy. Left: original graph. The red circles mark the minima that meet the selection criteria

described in the text. Right: reduced graph, showing only those minima that meet the selection

criteria. The lines are coloured according to the persistence of the corresponding local minimum;

the line to the global minimum, defined to have infinite persistence, is black.
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FIG. 14. Influenza virus binding: persistence diagram (left). The dashed lines mark the persis-

tences corresponding to the 50th, 70th and 90th percentiles. Normalised cumulative histogram of

persistences, with the 90th percentile marked (right).
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FIG. 15. Influenza virus binding: disconnectivity graphs. The vertical scale, denoted by the

scale bar, is potential energy. Left: original graph. The red circles mark the minima that meet

the selection criteria described in the text. Right: reduced graph, showing only those minima that

meet the selection criteria. The lines are coloured according to the persistence of the corresponding

local minimum; the line to the global minimum, defined to have infinite persistence, is black.
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FIG. 16. UUCG RNA tetraloop: persistence diagram (left). The dashed lines mark the persis-

tences corresponding to the 70th, 80th and 90th percentiles. Normalised cumulative histogram of

persistences, with the 80th percentile marked (right).
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FIG. 17. UUCG RNA tetraloop: disconnectivity graphs. The vertical scale, denoted by the

scale bar, is potential energy. Left: original graph. The red circles mark the minima that meet

the selection criteria described in the text. Right: reduced graph, showing only those minima that

meet the selection criteria. The lines are coloured according to the persistence of the corresponding

local minimum; the line to the global minimum, defined to have infinite persistence, is black.
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FIG. 18. Reduced disconnectivity graphs for BLJ60 as the persistence threshold is varied as follows

(from top to bottom): 0, 1, 3, 5, 7, 9, 11, 15. Lines are coloured according to the persistence of the

corresponding local minimum. In the full graph (no persistence cutoff; top panel), lines to minima

that do not feature in the lower graphs are black. In all cases, the line to the global minimum is

black. The vertical axes are potential energy.
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