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The large-scale coherent motions in a realistic swirl fuel injector geometry are analysed
by direct numerical simulations (DNS), proper orthogonal decomposition (POD), and
linear global modes. The aim is to identify the origin of instability in this turbulent flow
in a complex internal geometry.

The flow field in the nonlinear simulation is highly turbulent, but with a distinguishable
coherent structure: the precessing vortex core (a spiraling mode).The most energetic POD
mode pair is identified as the precessing vortex core. By analysing the FFT of the time
coefficients of the POD modes, we conclude that the first four POD modes contain the
coherent fluctuations. The remaining POD modes (incoherent fluctuations) are used to
form a turbulent viscosity field, using the Newtonian eddy model.

The turbulence sets in from convective shear layer instabilities even before the nonlin-
ear flow reaches the other end of the domain, indicating that equilibrium solutions of the
Navier–Stokes are never observed. Linear global modes are computed around the mean
flow from DNS, applying the turbulent viscosity extracted from POD modes. A slightly
stable discrete m = 1 eigenmode is found, well separated from the continuous spectrum,
in very good agreement with the POD mode shape and frequency. The structural sensi-
tivity of the precessing vortex core is located upstream of the central recirculation zone,
identifying it as a spiral vortex breakdown instability in the nozzle. Furthermore, the
structural sensitivity indicates that the dominant instability mechanism is the Kelvin-
Helmholtz instability at the inflection point forming near vortex breakdown. Adjoint
modes are strong in the shear layer along the whole extent of the nozzle, showing that
the optimal initial condition for the global mode is localized in the shear layer.

We analyse the qualitative influence of turbulent dissipation in the stability problem
(eddy viscosity) on the eigenmodes by comparing them to eigenmodes computed without
eddy viscosity. The results show that the eddy viscosity improves the complex frequency
and shape of global modes around the fuel injector mean flow, while a qualitative wave-
maker position can be obtained with or without turbulent dissipation, in agreement with
previous studies.

This study shows how sensitivity analysis can identify which parts of the flow in a
complex geometry need to be altered in order to change its hydrodynamic stability char-
acteristics.
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Figure 1: Illustration of the flow geometry. A cross-section in the axial-radial plane (con-
stant azimuthal angle), showing the inflow (swirler inlet) and the outflow. The nondimen-
sional scales are shown: swirler outer diameter (D), and the exit velocity from the swirler
(UE). The coordinate system is also defined: the origin is at the centerline at the swirler
exit location. The relative dimensions of the geometry are the same as in the numerical
simulation, except that the numerical domain is longer in the downstream direction.

1. Introduction

In this numerical and theoretical study, we examine the oscillatory flow in a swirling
fuel injector. We choose this flow for three reasons. Firstly, this flow exhibits self-sustained
oscillations, whose control is of both fundamental and industrial interest (Lieuwen 2012).
Our aim is to identify the wavemaker region of this flow and to devise strategies for its
control. The flow is turbulent, so this information would be difficult, if not impossible, to
obtain using either nonlinear CFD or stability methods based on equilibrium solutions of
the Navier–Stokes equations. Secondly, we want to examine whether this global stability
analysis can handle complex mean flows with several potential instability mechanisms,
specifically whether it can identify the primary instability seen in nonlinear DNS. Thirdly,
this is the first time to the authors’ knowledge that adjoint-based sensitivity analysis is
applied on self-sustained oscillations in an internal turbulent flow.

The chosen flow (figure 1) is from the Datum air swirl fuel injector for a helicopter
engine made by Turbomeca. The geometry is axisymmetric. The nozzle consists of an
inner non-swirling stream and a coaxial swirling convergent outer flow (Midgley et al.
2005). Both streams flow from this nozzle into a larger diameter chamber, with an annular
outlet downstream. This models the flow in fuel injectors of gas turbine engines. The
control of hydrodynamic oscillations in fuel injectors is important for two reasons. Firstly,
hydrodynamic oscillations improve mixing of the air/fuel mixture and help to reduce hot
spots, which lead to increased nitrous oxide (NOx) formation. Secondly, hydrodynamic
oscillations can couple with acoustic perturbations to enhance or alter thermoacoustic
oscillations (Manoharan et al. 2015; Hansford et al. 2015), which can cause structural
damage. At low to moderate Reynolds numbers, similar flows and nozzle geometries are
found in the production of carbon nanotubes (Conroy et al. 2010).

The time-dependent flow is three-dimensional, while the mean flow is axisymmetric.
The mean flow has two large recirculation zones — a conical region around the centerline
and an annular region close to the outer wall (the streamlines of the present case will be
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shown in § 5, figure 4). The inner recirculation zone is formed through an axisymmetric
vortex breakdown when the swirl increases in the contracting nozzle, due to conservation
of angular momentum (Syred 2006; Leibovich 1978). The outer annular recirculation zone
is formed due to confinement. Similar recirculation zones are found in other confined
swirling flows such as swirling pipe flows with sudden expansion (Revuelta 2004), and
confined swirling jet experiments (Billant et al. 1998). The flow in the present injector
has been previously studied in the incompressible regime by experiments and Large-
Eddy Simulations (LES) (Dunham et al. 2008) at relatively high Reynolds numbers
(Re = O(104) − O(105) based on the average inflow velocity and radius of the outer
nozzle outlet). The observed large-scale oscillations were independent of the Reynolds
number within this regime. With zero flow rate in the inner pipe, as in the present study,
both LES and experiments showed two peaks in the spectrum. By monitoring the profile
at the inlet to the combustion chamber, it was shown that the first peak corresponds to
a spiraling mode, and the second peak a double-helical mode.

Vortex breakdown, which appears in this injector, is a phenomenon appearing in a
wide class of highly swirling flows, with a rotating core and free vortex-like outer region
(Leibovich 1978). Examples are swirling jets and tip vortices around airplane wings.
When the swirl is increased from zero, the steady axisymmetric breakdown appears as
a separation zone near the centerline. With further increases of swirl, typically first
the unsteady spiral vortex breakdown (azimuthal wavenumber of unity) appears, and
secondly a succession of other modes with increasing wave numbers. (In exceptional
cases, a spiral vortex breakdown has been reported without axisymmetric breakdown
Beran 1994).

A few computations of linear temporal global modes in swirling flows can be found
in the literature, and these focus on unconfined vortex breakdown bubbles and swirling
jets. The vortex breakdown bubble of the Grabowski vortex (Grabowski & Berger 1976)
has been studied by DNS (Ruith et al. 2003), by weakly nonlinear analysis (Meliga et al.
2012a) and by global temporal stability and sensitivity analyses (Gallaire et al. 2006;
Qadri et al. 2013). The base flow for the Grabowski vortex is axisymmetric and swirling,
with a uniform inflow profile for the axial velocity, and a potential vortex for the swirl
velocity. After axisymmetric breakdown, one or several recirculation bubbles appear at
the centerline. When the swirl or Reynolds number is increased from zero, first a steady
recirculation bubble is formed, and secondly the bubble becomes unstable to a spiraling
global mode at a value of the swirl parameter of Sw > 0.915. The structural sensitivity
of the spiraling mode is found to be strongest at the upstream edge of the recirculation
bubble (Qadri et al. 2013).

Global modes in swirling flows have also been successfully studied by local spatio-
temporal and spatial stability analyses making the weakly non-parallel flow approxima-
tion. In the experiments of Oberleithner et al. (2011), the swirling jet flow was found
to develop self-sustained oscillations when Sw > 0.88 (at a very similar swirl to that of
the Grabowski vortex). The frequency and shape of the oscillations was reconstructed
through local analysis techniques, in excellent agreement with POD modes of the exper-
imental data, and more recently the same was done for subcritical (Oberleithner et al.
2014a) and forced swirling jets (Oberleithner et al. 2014b). The stability analyses in
the above studies were performed around mean flows from experiments. The mean flow
stability was observed to produce good results in all regions where harmonics had low
amplitudes, and less good results in the regions where harmonics had large amplitudes
(Oberleithner et al. 2014b). Finally, the effect of eddy viscosity models was considered
in Oberleithner et al. (2015). While eddy viscosity models did not change the absolute
frequencies, they influenced the absolute growth rates, and by doing this, could alter the
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streamwise location where the global mode frequency was selected. The Newtonian eddy
model, as in the present study, was seen to provide the best agreement with experiments
regarding both frequency and growth rate.

In the present study, we have chosen to perform a global mode analysis around a mean
flow, instead of an equilibrium solution to the Navier–Stokes equations. Equilibrium
solutions are very difficult to obtain for this flow at Reynolds numbers above Re = 250,
due to axisymmetric convective shear layer instabilities, which appear as soon as the
flow exits the nozzle. At higher Reynolds numbers, the convective instabilities develop
into turbulence before the mean flow reaches the exit of the domain, and before the
self-sustained oscillation (global instability) dominates.

Stability analysis around a turbulent mean flow is controversial but has been widely
discussed, particularly in the reduced order modeling community. The mean field theory
introduced by Noack et al. (2003) states that a stability analysis around a mean flow
will produce the limit cycle as a neutrally stable global mode, which was later confirmed
by Barkley (2006) for the cylinder flow. The result for the cylinder flow is not universal;
criteria for its validity and the effect of nonlinear harmonics has been discussed e.g.
Sipp & Lebedev (2007) and Mezic (2013). The need to include turbulent dissipation
(eddy viscosity) models in reduced order models, independently of harmonics, has been
discussed by e.g. Luchtenburg et al. (2009); Östh et al. (2014); Protas et al. (2015). Mean
flow stability has been used for many studies of convective instability (including the
seminal works of Gaster et al. 1985, Weisbrot & Wygnanski 1988, Cohen & Wygnanski
1987) and transient growth (Hoyas & Jimenez 2006; Pujals et al. 2009). Here, we will
focus on the oscillator behaviour and, in particular, its adjoint-based sensitivity.

After Barkley (2006), global mode analysis has been applied to identify large-scale
structures in turbulent flows in a number of studies, and these can be can be divided
into three categories following Mettot et al. (2014b). In the quasi-laminar approach, the
Navier–Stokes equations, using molecular viscosity for the viscous term, are linearized
around the mean flow derived from nonlinear simulations. In the base flow approach,
a turbulence model equation such as URANS is considered, and the equation and the
turbulence model are both linearized around a fixed point of the model. A special case
in between the two is a frozen eddy viscosity approach, where a turbulent eddy viscosity
is determined from nonlinear data, and applied as a spatially-varying viscosity in the
stability analysis, while the turbulent Reynolds stresses themselves are not linearized.

Here, we are especially interested in the sensitivity of the eigenvalue to changes in the
system. Several sensitivity studies of turbulent flows have been performed recently. The
base flow approach was used by for example Meliga et al. (2012b) to compute the sen-
sitivity of a turbulent (Re = 13000) flow around a D-shaped bluff body, using URANS
equations combined with a linearized Spalart-Allmaras model. The most sensitive region
for passive control was successfully matched against experiments. Other successful studies
include Mettot et al. (2014a); Crouch et al. (2007). The base flow approach is mathe-
matically fully consistent. However, an accurate representation of the physics requires a
model which can reproduce both the mean flow and the perturbation field accurately. For
swirling flows, URANS models generally struggle to predict the mean flow swirl profile
accurately (Wallin & Johansson 2000; Dunham et al. 2008), whereas the mean swirl pro-
file is crucial for vortex breakdown instabilities as seen above. Hence, we need to adopt
an approach which ensures correct mean flow scales. Algebraic Reynolds stress models
might be appropriate (Wallin & Johansson 2000), but are very complicated to linearize
even in one dimension (Gupta 2014), while our mean flow is two-dimensional.

The frozen eddy viscosity performed almost as well as the fully linearized turbulent
viscosity for a cavity flow (Crouch et al. 2007). It has also performed well in swirling
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flow studies using local spatio-temporal techniques in injector flows (Oberleithner et al.
2015). Finally, Camarri et al. (2013) obtained a good agreement with the experimental
structural sensitivity region for a porous cylinder flow using only molecular viscosity (the
quasi-laminar approach), and similarly Mettot et al. (2014b) for a D-shaped cylinder.

In the present study, we start by characterizing the nonlinear dynamics of the swirl
injector in DNS, and extracting the dominant mode shapes and frequencies by POD.
We then construct a Newtonian eddy viscosity model (Reynolds & Hussain 1972) from
nonlinear simulation data in the manner suggested but not implemented in Mettot et al.
(2014b), and apply this in the global mode and sensitivity computation in the form
of a frozen eddy viscosity. We investigate the instability mechanism for the dominant
spiralling mode in terms of the location of the structural sensitivity and the relative
magnitudes of structural sensitivity tensor components. Finally, we discuss the observed
similarities and differences between the results with frozen eddy viscosity and molecular
viscosity, and between this flow and the D-shaped cylinder.

2. Interpretation of stability analysis around a turbulent mean flow

Mathematical interpretation of the stability analysis around the mean flow is not as
straight-forward as the stability analysis around a steady solution of the Navier–Stokes
equations. Neverthless, a qualitative mathematical and physical interpretation of mean
flow stability results and qualitative criteria for their validity can be found. The argument
below follows the main lines presented in Turton et al. (2015). In the present study, a
triple decomposition of the flow field is introduced following Reynolds & Hussain (1972):

u = u + ũ + u′, (2.1)

where ¯ is the time-average operator, ( ˜ + ¯ ) is the phase-average operator, and
u′ = u−u− ũ is the fluctuation with zero phase average. The three terms are the mean
flow (u), the organized wave containing all coherent time-periodic large-scale motions (ũ),
and the stochastic part containing the remaining incoherent turbulent motions (u′). The
equation for the mean flow is obtained by taking the time-average of the Navier–Stokes
equations:

U · ∇U = −∇P +∇ ·
(
Re−1S + ũũ + u′u′

)
(2.2)

while the organized wave satisfies the phase-averaged Navier–Stokes equations, with (2.2)
subtracted:

∂ũ

∂t
+ U · ∇ũ + ũ · ∇U = −∇p̃+∇ ·

(
Re−1s̃ + ˜̃uũ + ũ′u′

)
, (2.3)

In the above, S = ∇U+∇UT is the mean flow shear stress tensor, and s̃ the stress tensor
of the organized wave. We will proceed by assuming that the coherent motions consist
of discrete fundamental limit cycles and their harmonics, and can hence be Fourier-
decomposed as : ũ ≈

∑
m>0

∑
n 6=0 um,n exp (inωmt).

For simplicity, let us first consider the case where limit cycles with different m, and
their products, are harmonically unrelated to each other (at the end of the section, we will
return to the case where they are harmonically related). When substituting the Fourier
decomposition of the coherent part into (2.2), we obtain:

U · ∇U = −∇P +∇ ·

(
Re−1S +

∑
m>0

∑
n>0

um,num,−n + u′u′

)
(2.4)

This shows that the mean flow is influenced by the coherent motions, through the
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interaction of each fundamental mode with its conjugate, and the interaction of each
harmonic with its conjugate. The mean flow is also influenced by the Reynolds stresses
arising from the incoherent motions.

Similarly, when substituting the Fourier decomposition into (2.3), we obtain for n = 1
(the limit cycle fundamental):

−iωum,1 + U · ∇um,1 + um,1 · ∇U

= −∇pm,1 +∇ ·

Re−1sm,1 +
∑
n 6=0,1

um,num,1−n +
(
ũ′u′

)
m

 .

(2.5)

Hence, the limit cycle m may be influenced by the coherent motions, through the in-
teraction of the first harmonic um,2 with the conjugate of the fundamental um,−1, and
the interaction of each higher harmonic with the conjugate of its preceding harmonic. It

may also be influenced by
(
ũ′u′

)
m

, which is the oscillation of the incoherent Reynolds

stresses at frequency ω = ωm.
Let us now introduce the linearised Navier–Stokes operator, where the linearisation is

performed around the mean flow, acting on any velocity field u:

LU (u) = U · ∇u + u · ∇U +∇p−∇ ·
(
Re−1u

)
(2.6)

Equation (2.5) can be formally written as:

L(um,1) = iωmum,1 +N1 + ũ′u′ . (2.7)

Here, N1 is a nonlinear harmonic interaction term given by:

N1 = ∇ · (um,2um,−1 + um,−1um,2 + um,3um,−2 + um,−2um,3 + ...) (2.8)

No assumptions have been introduced so far, apart from the coherent motions being
discrete (and this assumption could be relaxed by writing the coherent motions as an
integral instead of a sum). It can be seen that equation (2.5) forms a linear eigenvalue
problem for the fundamental mode um,1 if and only if either of the two options is true:

(a) N1 + ũ′u′ = 0.
As noted by Turton et al. (2015), we observe that the fundamental mode m is then an
exact eigenmode of the Navier–Stokes operator linearised around the mean flow:

LU (um,1) = iωum,1,

with the eigenvalue ω which has zero growth rate and the frequency of the fundamental
limit cycle.

(b) N1 + ũ′u′ = Aum,1
where A is a linear operator. Then, the fundamental mode m is then an exact eigenmode
of the modified Navier–Stokes operator (LU −A):

(L −A) {um,1} = iωum,1

Again, the fundamental mode m will then have zero growth rate, and the same frequency
as the limit cycle. (The first option is actually a special case of the second one, obtained
where A = 0.)

To relate the above constraints into qualitative properties of a flow model, we proceed
similarly to Turton et al. (2015), who pointed out that if the amplitude of the fundamental
mode is ||um,1|| = ε, the harmonics often decay as um,n ∝ O(εn). If this is the case, then
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N1 = O(ε3) (where the first term of N1 is the largest: ∇ · (um,2um,−1) = O(ε3)), and if

Aum,1 = ũ′u′ , then:

(L −A) {um,1} − iωum,1 = O(ε3) (2.9)

Since the right hand side terms are O(ε3), the fundamental limit cycle is still approxi-
mately an eigenmode of (L −A). In particular, this assumption approximately implies
that the second harmonic needs to be an order of magnitude weaker than the funda-
mental. A similar argument based on the relative amplitude of the second harmonic has
been emphasized by several authors, for example Sipp & Lebedev (2007). In the present
study, we have verified a posteriori that the second harmonic is invisible among the
broadband turbulent spectrum, and hence we conclude similarly to Turton et al. (2015)
that N1 6 O(ε2) in this flow.

Now, for mean flow stability to reproduce the fundamental limit cycle, the broadband

turbulent motions still need to satisfy Aum,1 = ũ′u′ . In this study, we will assume the

eddy viscosity hypothesis for the incoherent motions, such that: µt(s
?
m,1) = ∇ ·

(
ũ?′u?′

)
,

where µt denotes turbulent viscosity and the stars denote dimensional variables.
Finally, in the case that the frequencies of other limit cycles are harmonically related

to the limit cycle under study, their amplitudes also need to be an order of magnitude
smaller than that of the dominant limit cycle under investigation (and their harmonics
need to decay as rapidly as for the dominant mode). If a product of two fundamental
limit cycles (m = i and m = j) has a frequency equal to the dominant mode (m = 1),
i.e. if ω1 = ωi±ωj , then they may contribute to (2.5) but are by definition 6 O(ε2). The
sum of such modes needs to converge rapidly enough to remain O(ε2).

2.1. Summary of main assumptions.

Summarising the main points from the above, the approach of mean flow stability as
applied here relies on the following three assumptions:
• the harmonics have a much smaller amplitude than the fundamental mode(s) under

investigation;
• no other modes or their products are harmonically related to the dominant mode(s)

under investigation (or, if they are harmonically related, the total amplitude of such
modes remains an order of magnitude weaker than the dominant mode(s));
• the eddy viscosity hypothesis is appropriate for modelling of the remaining turbulent

fluctuations.
Strictly speaking, all the above criteria can only be verified a posteriori from a fully
nonlinear simulation. However, if the shape and frequency of the linear global mode ap-
proximates well the leading POD mode, and if its growth rate is approximately neutrally
stable, this can serve as a check of consistency of the model.

An important distinction needs to be made here to avoid misunderstanding. The mean
flow stability analysis does not assume that nonlinear interactions between different eigen-
modes and their harmonics have never happened in this flow; in our case, such interac-
tions, between some eigenmodes, have created the turbulent flow field in the first place.
What we do assume is that the amplitudes of such nonlinear interactions are weak in
the final flow field; they are of much lower amplitude than the dominant eigenmode and
the chaotic turbulent fluctuations. If this holds true for the dominant limit cycle(s), then
mean flow stability will approximate the frequency and mode shape of that limit cycle(s).

2.2. Structural sensitivity around mean flows

Finally, the structural sensitivity of the dominant eigenmode is considered in the present
study. Structural sensitivity has the same meaning when computed around the mean
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flow, as around the base flow. The structural sensitivity describes the response of the
eigenvalue to generic feedback from the perturbation variables into the perturbation
governing equations. It does not have any influence through changes to the mean flow.
Therefore it makes the same assumptions as the perturbation governing equations and
therefore is valid if they are valid. On the other hand, if responses to specific perturbations
(such as suction on the boundary) are considered, the sensitivity operator may need to
incorporate a model of changes to the mean flow and Reynolds stresses, but this is not
the case for structural sensitivity.

2.3. Relation to mean-field theory and weakly nonlinear stability approaches

The above approach can be related to the mean-field theory by Stuart (1958, 1971), used
and developed in a long line of studies for model reduction. A Galerkin projection of the
Navier–Stokes equations formally written as:

d

dt
ai =

1

Re

N+1∑
j=0

lijaj +

N+1∑
j=0

qijkajak (2.10)

where i > 0, lij is the linear operator part of Navier–Stokes, and qijk the nonlinear
operator part originating from the advection term. Here, the mean flow is the 0th mode:

u0 = U.

The mode number N + 1 is the zero-frequency shift mode, representing the effect of
coherent Reynolds stresses on the mean flow †. The minimal Galerkin system for a simple
limit cycle is obtained with N = 2:

u = u0 +

2∑
i=1

aiui + a∆u∆ (2.11)

where the modes 1-2 are the real and imaginary parts of the limit cycle (obtained in
Noack et al. (2003) from the leading mode pair in a POD decomposition of the saturated
state), and u∆ is the shift mode. The system is further simplified (Noack et al. 2003) by
a Kryloff-Bogoliubov ansatz to yield the amplitudes:

a1 = A(εt) cos (ωt) (2.12)

a2 = A(εt) sin (ωt) (2.13)

a∆ = B(εt) (2.14)

where ε is a slow time scale much longer than the limit cycle oscillation period. This
minimal Galerkin system for a simple limit cycle reproduces the qualitative behaviour of
the cylinder wake, such as saturation to the limit cycle from steady state, and influence
of stabilizing control (Noack et al. 2003). Relating this to Eq. (2.4), we can interpret
the shift mode as a change of the mean flow due to a change in the amplitude of the
coherent fluctuation, through the term: ∇ · (u1,1u1,−1). The assumptions behind the
minimal system are essentially the same as in the present study. The energy transfer
from higher harmonics to the fundamental mode is ignored, while the energy transfer
from the fundamental mode to the mean flow is taken into account. Similarly to the

† In the special case of a flow saturating towards a limit cycle starting from a steady base flow,
the shift mode can be described as the difference between the period-averaged mean flow and
the base flow: U = Us+u∆. where U is the mean flow, Us the steady solution to Navier–Stokes
equations.
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shift mode, a one-way effect of high-frequency actuation on Reynolds stresses has also
been incorporated (Luchtenburg et al. 2009), and as in the present study the effect of
turbulence using different eddy-viscosity models (Östh et al. 2014; Protas et al. 2015).
In some cases, a priori criteria for validity of the model may be found. (Sipp & Lebedev
2007) formulated a weakly nonlinear analysis of flows near the critical Reynolds number
for bifurcation, and formulated criteria for validity of mean flow stability analysis based
on Landau coefficients µ and ν. Of these, µ represents the magnitude of the interaction
between the fundamental eigenmode and the zeroth harmonic (i.e. the mean flow change
induced by the eigenmode, which can be compared to the shift mode), while ν was the
magnitude of the interaction between the eigenmode and its first harmonic. Consistently
with the other models, ν << µ (small relative amplitude of the harmonic) indicated good
behaviour of the mean flow stability. However, the criteria for frequency and growth rate
were not the same. The mean flow stability would return a marginally stable mode if the
ratio of imaginary parts (µi/λi) was small, while the frequency of the limit cycle would
be well approximated if the ratio of the real parts (µr/λr) was small. This explains the
observation that in many mean flow analyses the frequency and shape of the limit cycle
is well reproduced, while the growth rate may remain strictly positive (especially when
eddy viscosity models are not used).

3. Problem definition

The geometry consists of an inner pipe (without flow), and an outer coaxial inlet called
“the swirler” in this manuscript. Two non-dimensional parameters define the character-
istics of the flow: the Reynolds number Re and the swirl ratio Sw. The Reynolds number
is defined as

Re =
UeD

ν
, (3.1)

where Ue is the mean velocity at the swirler exit (Ue = Q/A, where Q is the flow rate
and A the swirler exit area), and D is the outer diameter of the swirler at the exit (these
scales are illustrated in figure 1). The swirl ratio is defined as:

Sw =
We

Ue
, (3.2)

where We is the mean azimuthal velocity at the swirler exit. By these definitions, the
nondimensional parameters become Re = 4800 and Sw = 1.1. The coordinate system is
defined in figure 1.

3.1. Eddy viscosity model

To proceed from Eq. (2.5) to create an eddy viscosity model for the incoherent fluctu-

ations, we need to set ˜̃uũ ≈ 0 and ũũ = 0. We can now define an eddy viscosity field
for both the mean flow and the organized wave by the use of the following Boussinesq
relations between Reynolds stresses and the turbulent viscosity:

u′u′ =
2

3
kI− 2νtS (3.3)

ũ′u′ =
2

3
k̃I− 2νts̃− 2ν̃tS, (3.4)

where k = u · u is the kinetic energy of the organized wave, and I is the identity tensor.
We now assume that the eddy viscosity field itself is not oscillated by the perturbation,
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ν̃t = 0, and similarly for the turbulent kinetic energy: k̃ = 0, to obtain:

u′u′ =
2

3
kI− 2νtS (3.5)

ũ′u′ = −2νts̃ (3.6)

This means that the eddy viscosity νt can be determined from the averages using Eq.
(3.5), and used as is for the oscillating Reynolds stresses (Eq. 3.6). This is called the New-
tonian eddy model. Looking carefully, the Newtonian eddy model is slightly inconsistent
in that the mean flow averages will always contain the coherent fluctuations. Hence,

it is strictly valid only when ˜̃uũ ≈ 0 and ũũ = 0 are both very small. This model was
pointed out by Reynolds & Hussain (1972) to work best for “relatively low frequency weak
oscillations with wavelength considerably larger than the dominant scales of turbulence”.

To determine νt, we take the Frobenius product between Eq. (3.5) and S, yielding:

νt = −u′u′ : S

2S : S
(3.7)

where : is the Frobenius product, defined in Cartesian tensor notation by A : B = AijBij .
Finally, we obtain the modified linear stability equation:

σu + U · ∇u + u · ∇U = −∇p+∇ ·
[
Re−1

eff

(
∇u +∇uT

)]
, (3.8)

where

Reeff =
ν

(ν + νt)
Re (3.9)

We note that a different approach could have been applied here, by performing the
whole analysis around a turbulence model equation (‘base flow approach’), such as Un-
steady RANS with the Spalart-Allmaras model as in Meliga et al. (2012b). In that case,
the base flow would be a fixed point of the URANS equations, which approximates the
mean flow within the limit of validity of the turbulence model. The turbulence model
(e.g. Spalart-Allmaras) would need to be linearized around the fixed point. This approach
is mathematically fully consistent, and could be interesting to attempt in a future study.
There is, however, a reason to believe that in swirling flow like the present one, the results
from URANS might not be accurate due to a bad estimation of the mean flow swirl pro-
file. A mathematically and physically fully consistent approach would be to linearize an
algebraic Reynolds stress model (Wallin & Johansson 2000), which is very complicated
even in 1D (Gupta 2014), and was therefore considered to be out of the scope of the
present study.

3.2. Linear global modes

Exploiting the homogeneity of the mean flow in the azimuthal direction, the perturbation
q takes the form:

u(z, r, θ, t) = û(z, r) exp(σt+ imθ), p(z, r, θ, t) = p̂(z, r) exp(σt+ iβz). (3.10)

Given an azimuthal wavenumber m, Eq. (3.8) constitutes a linearized eigenvalue problem
with the complex eigenvalue σ. The imaginary part of the eigenvalue, σi, is the angular
oscillation frequency of the global mode, and the real part, σr, gives the growth rate
(usually called amplification rate in mean flow analysis). The Strouhal number is obtained
from St = σi/2π. The growth rate does not have a straight-forward physical meaning
when computing the modes around a mean flow. Because an oscillatory instability leads
to a constant amplitude limit cycle around the mean, a close to neutral (zero) growth
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rate is expected for an oscillator in a mean flow analysis (Noack et al. 2003). For the
stability analysis, we set a zero Dirichlet velocity boundary condition for all boundaries.

The governing equations for the corresponding adjoint eigenmodes (u+, p+) can be
derived for example by using the Lagrange identity (Giannetti & Luchini 2007). In this
study, the continuous adjoint equations of Eq. (3.8) with varying Reeff and (3.10) have
not been explicitly derived. Instead, a so-called discrete adjoint approach is utilized
(Schmid & Henningson 2001), where the adjoint equations are numerically derived from
the discretized matrix form of (3.8). Hence no separate boundary conditions are set for
the adjoint. For the molecular viscosity cases, a continuous adjoint formulation with zero
Dirichlet boundary conditions is used, and verified against existing adjoint formulation
in Nek5000 ( §A). In both cases, the adjoint is normalized to satisfy:

∫
V

u+∗ ·u dV = 1,
where ∗ denotes the complex conjugate and V the volume of the computational domain.
Finally, the structural sensitivity is defined as the region where a local perturbation of
the equation system results in the largest drift of the eigenvalue, and is given by |u||u+|.
Here, the structural sensitivity is interpreted as the core of the instability or wavemaker
(Giannetti & Luchini 2007).

4. Numerical methods

Two numerical codes have been used in this study. The Nek5000 code (Paul F. Fis-
cher & Kerkemeier 2008; Fischer 1997) was used for time-integration of the nonlinear
Navier–Stokes equations, which generated the DNS results and the POD modes pre-
sented in § 5.1. The global mode results without eddy viscosity included in §A were also
obtained using Nek5000. The global mode results in the bulk of the manuscript were
obtained by using the finite element package FreeFem++(Pironneau et al. 2013; Hecht
2012). The variational formulation of the direct global mode equations including variable
viscosity was derived and implemented in this work.

4.1. Nonlinear simulations and POD

Nek5000 is based on a spectral element method (SEM) (Maday & Patera 1989), which
combines the accuracy of spectral methods with the flexibility of finite element methods
(FEM). For details about the code implementation see Maday & Patera (1989). The
same implementation including the Arnoldi method for modes in §A was used also in
Lashgari et al. (2014).

In the DNS, the nonlinear Navier–Stokes equations were integrated forward in time
for 481 nondimensional time units, corresponding to around 40 flow through times from
the nozzle inlet to the chamber exit. This simulation was run on high-performance com-
puting clusters using between 256 and 1024 cores in parallel, and required over 100,000
CPU hours to complete. The time integration was performed by an explicit second-
order extrapolation for the nonlinear terms, and an implicit second-order backwards-
differentiation for the viscous terms, as in previous turbulent diffuser studies in Nek5000
(Ohlsson et al. 2010). The nondimensional time step was kept at ∆t = 1e− 4 to satisfy
the CFL condition. Our accuracy in time integration should compare well with other
turbulent flow studies with spectral element methods, for example Ohlsson et al. (2010).

The computational grid used for the DNS had 58720 spectral elements of order p = 6,
giving 12.7 million grid points. The grid nearest the centerline contains a cylindrical
region with a stretched Cartesian grid, similar to the grid used for a DNS of pipe flow in
Nek5000 (El-Khoury et al. 2013). In the present grid, this region contains 128 elements
over the axial cross-section, and extends from r = 0 to the outer radius of the inner
pipe at r = 0.14, where it attaches to an outer cylindrical grid. For r > 0.14, the grid is
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(b)(a)

(c)

Figure 2: Vorticity (helicity) from DNS at different axial cross-sections. The mesh is
shown in red on top. This shows that the vorticity is continuous across the element
boundaries, which is a sign of adequate resolution in SEM simulations of turbulent flows.
(a) Typical contour upstream in the chamber (z = 0.2). (b) Typical contour downstream
in the chamber (z = 4). (c) Contours at z = 4 in a different colourscale (see colourbar),
emphasizing regions of weak helicity.

fully cylindrical with 32 elements over the circumference, which leads to a denser element
distribution closer to the centerline where most of the interesting dynamics occur, and a
coarser element distribution near the outer wall of the combustion chamber.

This study focuses on the large-scale structures, especially the precessing vortex core,
so detailed turbulence statistics such as wavenumber spectra (which would require storing
a huge number of snapshots) have not been computed. To ensure that the resolution is
sufficient for the task at hand, the following checks have been made on the nonlinear
simulation results. Firstly, we investigated the sensitivity of the precessing vortex core
to the mesh resolution by decreasing the polynomial order inside each element. Going
from p = 6 to p = 5 (42% less degrees of freedom), the frequency from PSD signals of
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the precessing vortex core remained unaltered at St = 0.67. Only when going from p = 6
to p = 4 (70% less degrees of freedom), the frequency changed slightly to St = 0.70. The
frequency obtained with p = 6 is also exactly the same as in experiments of Midgley
et al. (2005) at much higher Reynolds number, confirming that the same physics is
present. Furthermore, instantaneous velocity contours (showing the precessing vortex
core) were confirmed to remain qualitatively the same with the coarser mesh. Finally,
we investigated to what extent the turbulent motions are captured. In spectral element
methods, the derivatives are not continuous across the spectral element boundaries, but
become very close to continuous with increasing resolution. Therefore, in DNS using
spectral element methods, a good indicator of adequate resolution of the turbulence is
whether or not the vorticity or helicity fields look continuous across element boundaries
(e.g. El-Khoury et al. (2013)). Figure 2 shows typical contours of the helicity in the
same mesh used in the DNS in this paper. No discontinuities are seen across the element
boundaries. Furthermore, the vorticity shows the expected physical trends. Upstream in
the chamber (figure 2 a), we observe fine-scale vorticity, particularly in the vortex core,
surrounded by a thin ring of vorticity originating at the inlet wall (r = 0.5). Near the
downstream wall of the chamber (2 b), the vorticity has larger scales and is smoothly
distributed along the whole radial extent, although it is still strongest near the centre.

The mean flows in the present study were computed by continuously time-averaging
the velocity fields at every 10th time step over a time period of 150 nondimensional units.
The mean flow was also averaged over the azimuthal direction, by interpolating the values
at every grid point (zn, rn, θn) into (zn, rn, k2π/32), k = 1, ..., 32, and taking the average
over all k.

The POD modes were computed based on two different series of snapshots from DNS as
follows. First, a series of 153 snapshots over a long time interval, T = 153, was saved and
used to obtain the spatial shapes. A long time interval between the snapshots, ∆t = 0.5,
was chosen to make them statistically independent. Second, a shorter series of frequently
spaced snapshots, ∆t = 0.03 apart, was used to obtain the mode frequencies. In both
cases the procedure was as follows. First, the mean velocity field U (obtained earlier)
was subtracted from every snapshot. Subtracting the mean flow before performing the
POD removes the mean flow mode, which otherwise would be the highest energy mode.
A similar zero-frequency mode will however be obtained at a lower energy, representing
the difference between the mean flow averaged over all time steps, and the average over
a finite number of snapshots. The snapshots with mean flow subtracted were then saved
only on the part of the grid extending from z = −1 to z = 4 in the axial direction, and
with a lower polynomial order p = 4. This was done in order to save memory so that
postprocessing in Matlab became possible, and in order to focus on the region where the
coherent structures were visible. Next, the snapshots were uploaded into Matlab and a
matrix formed with these columns:

XX =
[
U(t0)−U,U(t0 + δt)−U, ...,U(t0 + T )−U

]
The POD modes were obtained from the singular value decomposition of the snapshot
matrix: XX = USVT , where U contains the POD modes, the energies are obtained
using S, and the time coefficients are a = SVT .

4.2. Extraction of the eddy viscosity from POD

To compute the turbulent Reynolds stresses in DNS, we used the already computed POD
modes from the long time series. First, the snapshot matrix XX was reconstructed while
setting to zero the time coefficients for the first 4 POD modes, which represent coherent
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structures, and the 5th POD mode, which represents the mean flow:

XXnew =

N∑
k=6

U(:, k)a(k, :) (4.1)

Now, every column of XXnew is a snapshot of the original time series excluding the
coherent structures, which we label a ‘reduced snapshot’. Second, the Reynolds stresses
were computed and an average taken over all reduced snapshots. Third, the stresses
were transformed to cylindrical coordinates and averaged over the azimuthal direction
in the same way as the mean flow. Finally, they were interpolated back to Cartesian
coordinates, and combined with mean flow stresses to form the product shown in Eq.
(3.7). It was observed that the ratio between the Reynolds stresses and mean flow stresses
can become ill-conditioned in regions where both of them are extremely small. Hence, a
cut-off of 1e − 4 was employed on both stresses, and a cut-off of 100 was employed on
the turbulent viscosity.

4.3. Linear global modes

We implemented the global cylindrical linear stability equations with an azimuthal wavenum-
ber m and a variable viscosity using the discretization and coding environment provided
by FreeFem++ in combination with ARPACK, in the same way as Tammisola et al.
(2014) for a planar Cartesian geometry. The adjoint stability equations were also derived
and implemented (continuous adjoint approach) in the case of molecular viscosity. For
the variable viscosity case, the adjoint equations were not derived explicitly, but the
adjoint modes were obtained using the conjugate transpose of the direct system matrix
(discrete adjoint approach).

The spatial domain was discretized by a triangular finite elements mesh using a
Delaunay-Voronoi algorithm, leading to a mesh with 213620 triangles and 108486 vertices.
We employed the pair P2−P1, consisting of piece-wise quadratic velocities and piece-wise
linear pressure (Taylor-Hood elements), leading to 106 degrees of freedom. The Nek5000
code was also used to compute modes without eddy viscosity in §A. The eigenmodes in
Nek5000 were computed directly from the ansatz u(x, y, z, t) = û(x, y, z) exp(σt), with-
out setting an azimuthal wavenumber. This means that the obtained eigenspectrum from
Nek5000 was a combination of all azimuthal wavenumbers. The two codes were cross-
validated against each other, and the resolution independence of the eigenvalues tested,
using molecular viscosity. The eigenvalues are documented in table 1 in §A.

5. Results

5.1. Nonlinear simulation

Here, we consider the nonlinear dynamics of the flow in the fuel injector at Re = 4800.
We start from the mean flow, i.e. the time-averaged velocity field from DNS, shown in
figure 3 (velocity components) and 4 (streamlines). The flow develops two large recir-
culation zones inside the combustion chamber, which is characteristic of swirl injectors
(Syred 2006). The inner wall separation develops into a central zone that starts near
the centreline and expands radially covering the whole back wall. This zone is in turn
divided into two recirculation bubbles: one closer to the inlet and one closer to the back
wall. Another large coaxial recirculation zone develops near the upstream wall of the
combustion chamber through separation at the outer edge of the coaxial inlet and con-
finement by the upper wall. The reason for the formation of the central recirculation
zone is analogous to the formation of an axisymmetric vortex breakdown bubble in a
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Figure 3: Mean flow from DNS at Re = 4800: (a) axial velocity, (b) radial velocity, (c)
azimuthal velocity.
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Figure 4: Mean flow from DNS at Re = 4800, contours of the axial-radial velocity stream-
function.

swirling jet, explained by Syred (2006) in the case of a straight combustor. For a swirling
jet, the radial expansion of the potential vortex core, with its associated normal pressure
gradient, creates an adverse pressure gradient along the centerline, and the flow separates
forming a vortex breakdown bubble. For the Turbomeca coaxial fuel injector, the flow
separates inside the nozzle for two reasons. The first reason is that axisymmetric vortex
breakdown occurs when the combination of swirl (tangential velocity) and the Reynolds
number are high enough (Ruith et al. 2003). In the upstream, contracting part of the
inlet, the flow contracts in the radial direction (the radial velocity is shown in figure 3 b),
creating a high magnitude of swirl (3 c) near the inner wall of the outer channel due to
the conservation of angular momentum, and the swirl profile there resembles a potential
vortex. The axial flow velocity (3 c) is increased in the contraction by mass conservation,
and hence the local Reynolds number increases. The second reason for vortex breakdown
to occur inside the nozzle is that the area of the nozzle increases again with the straight
outer wall at z > −0.5, strengthening the expansion of the vortex core (3 c).

The smooth mean flow is very different from the instantaneous flow structures that
are shown in figure 5 (a–b). Snapshots of the axial velocity are shown at two different
time instants, over an azimuthal cross-section of the domain (θ = π/2). The flow starts
as laminar through the coaxial inlet, but when it separates at its inner wall near the
combustion chamber, the separation point oscillates back and forth towards the centre-
line in a violent spiralling motion. This large-scale motion is visible in (b), where the
axial velocity field is clearly asymmetric with respect to the centerline. The same region
in (a) displays a Kelvin-Helmholtz-like wavy pattern which is symmetric with respect
to the centerline over the cross-section, indicating an oscillation with an even azimuthal
wavenumber. Apart from the large scales, both subfigures show a continuous range of
smaller spatial scales. The flow at the separation zone near the central inlet, and down-
stream in the combustion chamber, becomes turbulent.

To give an idea of the temporal scales, the temporal probe signal data from different
parts of the domain is shown next. The power spectral density (PSD) of the instantaneous
azimuthal velocity is shown in figure 6. The probe in 6 (a) at the centreline near the
chamber inlet (z = 0.5, r = 0) shows a clear peak at Strouhal number St = 0.67 from the
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(a)

(b)

Figure 5: Instantaneous velocity from DNS at Re = 4800, axial velocity at a cross-
section of the injector, at two different time instants (a and b). Light colours indicate
high velocity positive in the streamwise direction, and dark colours negative velocity in
the streamwise direction. Contours of (half of) the injector are also visible.

oscillating separation point. This value is exactly the same as in experiments of Midgley
et al. (2005) at higher Re. The probe at in 6 (b) shows two peaks: a large sharp peak
St = 0.67 and a small bump at St = 1.45 (St = 1.39 in experiments of Midgley et al.
(2005)). The probe in 6 (c) shows no visible peaks but only broadband turbulence.

To characterise the coherent structures behind the spectral peak and the bump, we have
performed proper orthogonal decomposition (POD) on two different series of snapshots
as explained in § 4.2, the first to obtain the spatial structures and the second to resolve
the temporal frequencies. The two most energetic structures from POD are contained
in two mode pairs: the first mode pair (POD modes 1 and 2) accounts for 17.9% of the
total energy, and the second mode pair (modes 3 and 4) for 5.4%. The following two
POD mode pairs (6-9) have a spiraling structure (m = 1), and each contribute 2% of
the energy. The POD mode 5 is the remnant of the zero frequency mean flow mode, as
explained in §4.1.

As is typical for POD modes of oscillating flows, the two modes in each pair represent
the same oscillation but with an azimuthal phase shift between them. This indicates
that each mode pair represents one azimuthally traveling wave (where the group speed
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Figure 6: (a) Illustration showing the location of the probe signals A, B and C in the z-r
plane (8 other probes were also recorded). (b) PSD spectrum of probe A at z = 0.25,
r = 0, (c) PSD spectrum of probe B at z = 0.05,r = 0.35 (θ = π/4) (d) PSD spectrum
of probe C at z = 1, r = 1.5 (θ = π).

may be zero or finite). Mode 1 is shown in figure 7, left column (a,c,e), and mode 3 in
the right column (b,d,e). In (a–b), 3D contours of the axial velocity are shown, as seen
from the front of the injector. This clearly shows that the first mode pair (a) depicts the
precessing vortex core (m = 1), and the second mode pair (b) reveals a double-helical
mode (m = 2). Both of these structures were seen in previous experiments (Midgley
et al. 2005) and LES (Dunham et al. 2008), where both modes had equal magnitudes
in the PSD spectrum of the inlet probe signal. At Re = 4800 however, the precessing
vortex core dominates over the double-helical mode in both the PSD spectrum of the
probe signals, and in the POD energies.

Despite the structures still being noisy due to the limited number of snapshots, the
azimuthal cross-sections shown in 7 (c–d) give a picture of the mode shapes. First, both
modes are efficiently contained in the region z = −1 to z = 3, diffusing into the tur-
bulence downstream. Second, the wavelength of the precessing vortex core (c) seems to
be longer (λ ≈ 2 near the chamber inlet) than the double-helical mode (d, λ ≈ 1.5).
The wavelengths were extracted from these figures manually as the distance between two
consecutive negative peaks (dark colour) in the wave propagation direction.

To improve the spatial resolution of the POD modes, for comparisons with global modes
later on, we have used the knowledge of their azimuthal wavenumber and filtered them by
a Fourier decomposition in the azimuthal direction, where only the m = 1 component was
kept for modes 1-2, and the m = 2 component for modes 3-4. This approach increases
the amount of available data as many azimuthal cross-sections are used to determine
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Figure 7: POD mode 1 and mode 3 from the two leading mode pairs (mode 2 is the same
as mode 1 with π/2 phase difference, and mode 4 is the same as mode 3 with π/4 phase
difference): (a) mode 1, 3D contour of axial velocity, (b) the same for mode 3, (c) mode
1, axial velocity at the azimuthal cross-section at θ = π/2, (d) the same for mode 3, (e)
mode 1, the same as (c) but filtered by FFT in the azimuthal direction, (f) the same for
mode 3.

each mode shape, rather than only one cross-section. In addition, it acts as an azimuthal
low-pass filter. The effect of this procedure is similar to taking the azimuthal average of
DNS mean flows to improve their quality. The mode shape after the azimuthal filtering
becomes substantially smoother and more well-defined, while retaining all the large-scale
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Figure 8: The leading Fourier component only (m = 1) for the first POD mode pair:
Mode 1 (left column) and mode 2 (right column). From top to bottom: axial, radial and
azimuthal velocity.
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Figure 9: The leading Fourier component only (m = 2) for the second POD mode pair:
Mode 3 (left column) and mode 4 (right column). From top to bottom: axial, radial and
azimuthal velocity.
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Figure 10: (a) The FFT coefficients of the chronos (time-domain) part of the first 11 POD
modes, multiplied by their respective energies (see legend for lines/markers). The figure
illustrates that POD mode pair 1-2 (blue online) is relatively mono-frequent, and also is
the by far most energetic coherent structure in the flow. A weaker coherent structure is
seen in POD mode pair 3-4 (red online). (b) The same but shown in a logarithmic scale
on both axes.

features, as can be seen in figure 7 (e–f). All velocity components of the azimuthally
filtered POD modes are shown for reference in figures 8 (modes 1 and 2), and 9 (modes
3 and 4). From these figures, the detailed structure of the two POD mode pairs can be
seen.

The above long-time snapshot series has a long time interval between consecutive
snapshots (∆T = 1), which prevents us from extracting frequency information from it.
To obtain the frequency content of the most energetic structures, a second POD was
performed with 864 frequently spaced snapshots, and a Fast Fourier Transform (FFT)
taken on their time coefficients. The spatial shapes of modes 1-4 were nearly identical to
the long time series. The peak amplitudes of the modes gave the frequency 0.70±0.06 for
the precessing vortex core mode (POD mode 1-2), and 1.37± 0.06 for the double-helical
mode (POD mode 3-4).

By normalizing the FFT coefficients of POD mode n with the energy of POD mode
n, it is also possible to compare the relative amplitudes from different POD modes at
each frequency. The FFT coefficients for the first 11 POD modes normalized by their
energies are shown in figure 10. The mode pair 1-2 has a clear high peak at St = 0.70,
showing that this POD mode represents an efficiently monofrequent coherent structure.
The mode pair 3-4 contains a broader distribution of frequencies, indicating that this
mode may be a convectively unstable mode. The peak amplitude of mode 3-4 is an
order of magnitude lower than that of mode 1-2. Any other modes have still an order
of magnitude lower peak amplitudes (figure 10 b shows them in a double-logarithmic
scale), and still broader FFT distributions. Based on this data, we draw the following
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two conclusions. Firstly, the precessing vortex core (mode 1-2) is a monofrequent POD
mode, and can be compared with temporal linear global modes later on. Secondly, the
precessing vortex core is unlikely to have significant nonlinear interactions with any
other coherent structure (including harmonics). However, the precessing vortex core is
very likely to interact with the broadband random turbulent fluctuations, which when all
added together will contain a significant amount of energy. To take the extra dissipation
caused by these random fluctuations into account, we next create an eddy viscosity model
based on the bulk of (incoherent) POD modes.

6. Turbulent viscosity from DNS

To approximate the effect of turbulent dissipation and its modeling on the linear global
modes in the next section, we have extracted an approximate eddy viscosity distribution
from our DNS data using the simple Newtonian eddy model, as very recently used by
Oberleithner et al. (2015), and also suggested by Mettot et al. (2014b). The idea is based
on a triple decomposition of the turbulent flow field:

utot = U + ũ + u′, (6.1)

where U is the mean flow, ũ are the large-scale coherent structures, and u′ the small-scale
turbulent fluctuations which we assume can be modeled by an eddy-viscosity (§ 3.1). To
extract the latter from the DNS data, we first estimated that the large-scale coherent
structures ũ would be represented by the first 4 POD modes (the m = 1 and m = 2
modes analysed in § 5.1). We then reconstructed the flow field using all the other POD
modes while setting the time coefficients for the first four to zero, to obtain u′. Further,
we extracted an isotropic turbulent viscosity as detailed in§̃ 4.2. Contours of the turbulent
viscosity (normalized by the molecular viscosity) are shown in figure 11. The turbulent
viscosity is seen to be negligible in the upstream part of the nozzle and near the walls,
while it is very high (µt/µ > 10) in most parts of the combustion chamber, where
turbulence kinetic energy is high and mean flow stresses comparably low due to the
expansion.

7. Precessing vortex core as a global mode

We now seek to identify the precessing vortex core (PVC) as a global mode, with the
aim of quantifying its structural sensitivity. Structural sensitivity can indicate where in
the flow the PVC originates, and where the PVC may be influenced by changes in the
flow and geometry.

The linear global modes were computed in FreeFem++ around the mean flow obtained
from DNS. The whole eigenvalue spectra were first computed with different azimuthal
wavenumbers on the coarser mesh with 5.5×105 degrees of freedom. The computation was
then repeated using a shift around the dominant mode, on a finer mesh with 1.23× 106

degrees of freedom, and the finer mesh was used to obtain results for eigenmode shapes
and wavemakers. To include the effect of turbulent dissipation on the eigenmodes, the
turbulent viscosity (figure 11) was used to generate a spatially varying Reynolds number
Reeff (z, r, θ). The effective Reynolds number was subsequently used in the stability
computations. This is the approach in which the Reynolds stresses themselves are not
linearized, named the ‘frozen eddy viscosity’ approach in § 1.

The global eigenvalue spectra computed this way are shown in figure 12 for azimuthal
wavenumbers m = 1 (a) and m = 2 (b). To find oscillators, we turn our attention
to the discrete global modes, separated from the continuous branch (which represents
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Figure 11: Contours of µt/µ, where µt is the turbulent viscosity extracted from the POD
modes excluding the coherent structures (1-4). µt is used to form the effective Reynolds
number (Eq. 3.9 and 3.7). Observe that the contours are logarithmically spaced.
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Figure 12: The global linear eigenvalue spectrum around the DNS mean flow (figure 3)
at Re = 4800: (a) modes with m = 1 (b) modes with m = 2.

convective instabilities). Precisely one oscillator candidate is found: a m = 1 mode with
close to neutral growth rate. All other modes have very low growth rates. Modes at higher
wavenumbers (m = 3, m = 4) have also been computed, and have an even lower growth
rate.

To confirm that the selected global mode captures the correct physics, we compare the
nearly neutral m = 1 global mode with the most energetic POD mode pair, which was
seen to be very close to monofrequent (figure 10). The frequency of the linear global mode
is St = 0.74, which compares very well with the POD mode frequency: St = 0.7. The
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Figure 13: m = 1 mode. Left column: Global mode: (a) axial, (c) radial, (e) azimuthal
velocity. Right column: POD mode 1 from DNS: (b) axial, (d) radial and (f) azimuthal
velocity.
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Figure 14: (a) Magnitude of the adjoint velocity of the global mode representing the
precessing vortex core (the direct mode shown in figure 13 a,c,e). (b) Structural sensitivity
of the same precessing vortex core mode.

resulting direct global instability eigenmode with m = 1 is shown in figure 13. The global
mode is shown in the left column (a,c,e), and the corresponding POD mode from DNS
in the right column (b,d,e) for comparison. The agreement with the POD mode shapes
is excellent: the wavelength matches throughout the whole domain, and the shape and
amplitude distribution also agree well.

With the goal of finding the wavemaker of the precessing vortex core more, its corre-
sponding adjoint eigenmode has also been computed. The adjoint mode represents the
optimal initial condition to excite the global mode (Chomaz 2005). The magnitude of the
adjoint velocity eigenmode is shown in figure 14 (a). The adjoint mode is strongest inside
the nozzle, along the whole extent of a shear/vorticity layer which starts at the inlet and
includes the vortex breakdown location. This shows that any velocity perturbation that
is on the streamline that impinges on the wavemaker region (discussed next) will have
the strongest influence.

For oscillators such as the precessing vortex core, an optimal initial condition is not
enough to alter the system dynamics. The eigenvalue needs to change, so the receptivity
(adjoint mode) needs to overlap with a high amplitude of the direct mode. We will now
overlap the direct and adjoint modes to obtain the structural sensitivity, given by the
2-norm of the structural sensitivity tensor. The structural sensitivity of the precessing
vortex core is shown in figure 14 (b). Knowing that the adjoint mode is strong upstream
of the separation point, and the direct mode is strong downstream of the separation point,
it is not surprising a posteriori that the wavemaker (structural sensitivity) resides near
the separation point, which is the upstream point of the inner vortex breakdown bub-
ble. Without prior knowledge, however, one might not have guessed that the structural
sensitivity is so localized. The complicated mean flow with multiple recirculation zones
(figure 4) might be expected to give rise to a range of different instability mechanisms.
The sensitivity, however, points out a very specific region as the origin of the dominant
instability: the vorticity layer and high-swirl region prior to the separation region near
the nozzle exit.



Coherent structures and global modes of the flow in a fuel-injector 27

0 1 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

r

||S||

(b)

Figure 15: Profiles in the axial location of the maximum structural sensitivity inside the
nozzle (z = −0.24): (a) Mean flow velocity profile, axial (Uz) and swirl (Uθ) components.
Structural sensitivity magnitude is shown by the grayscale on top. (b) Profile of the
structural sensitivity magnitude in the same axial location.

8. Instability mechanism

We will now use the structural sensitivity to investigate which instability mechanisms
are active in the precessing vortex core instability.

The axial location of the maximum structural sensitivity is inside the nozzle, at
z = −0.24. Mean flow velocity profiles in the axial location of the maximum sensi-
tivity are shown in figure 15 (a). Spiral vortex breakdown is an oscillatory motion which
may occur in swirling flows that have a potential core and decaying swirl in the outer
region (Leibovich 1978), as in the mean swirl profile shown here. Spiral vortex breakdown
occurs at swirl values slightly higher than that of the steady axisymmetric breakdown.
Axisymmetric breakdown is the cause of flow separation inside a nozzle in swirl injec-
tors (Leibovich 1978; Syred 2006). This flow (figure 3) separates in the nozzle and spiral
vortex breakdown is possible.

The swirl number for spiral vortex breakdown is similar in different swirling flows:
S = 0.915 for a vortex breakdown bubble (Ruith et al. 2003; Meliga et al. 2012a) and
S = 0.88 for a swirling jet (Oberleithner et al. 2011). In the position of the wavemaker
in this flow, the swirl number based on the average velocities is Sw = 1.13. We suggest
that the precessing vortex core is a spiral vortex breakdown instability, which takes place
inside the nozzle in this injector flow mainly for two reasons: (a) the contraction leads to
an increase of swirl through conservation of angular momentum until the swirl number
reaches a critical value, and (b) the favorable pressure gradient (which otherwise may
suppress vortex breakdown, Leibovich (1978)), is less strong near the nozzle outlet where
the flow starts to expand radially.

The structural sensitivity of the spiral vortex breakdown around an axisymmetric
vortex breakdown bubble was studied by Qadri et al. (2013). The structural sensitivity
magnitude was high at the upstream end of the recirculation zone, with maximum ampli-
tude at the centreline just upstream of the recirculation bubble. By considering different
components of the structural sensitivity tensor, the instability mechanism was proposed
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colourscale goes from 0 (dark) to 17.2 (light).

to be due to the conservation of angular momentum upstream of the bubble, amplified
by Kelvin-Helmholtz instability waves in the shear layer around the bubble.

In our flow, the structural sensitivity is also high just upstream of the separation point.
The peak of the structural sensitivity in the vertical direction however (light colours in
figure 15) is in the shear layer. More tellingly, the peak of the structural sensitivity
coincides with the inflection point in the shear layer. The whole profile of structural
sensitivity magnitude as a function of vertical coordinate is shown in figure 15 (b). The
structural sensitivity of a parallel wake, shown in (Qadri et al. 2013), has a very similar
appearance. This suggests that Kelvin-Helmholtz mechanism may be more influential for
the injector flow than it is for the axisymmetric vortex breakdown bubble.

In Qadri et al. (2013), the relative importance of angular momentum conservation
and Kelvin-Helmholtz instability was investigated based on the relative magnitudes of
individual components of the structural sensitivity tensor Sij = uiu

+
j , where the index

represents axial, radial or azimuthal velocity component of the eigenmode u or its adjoint
u+. For example, the component Szr represents a physical feedback mechanism where
the radial momentum equation is perturbed by a force proportional to uz (for example,
axial drag). The magnitude ||Szr|| represents the maximal eigenvalue change caused
by such a mechanism. The magnitudes of the nine components of Sij are shown in
figure 16 (a-i). The Szz component dominates, as was shown to be the case for the
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Figure 17: Global mode derived by including eddy viscosity (left column) compared to
the same global mode derived without eddy viscosity (right column): (a) m = 1 axial
velocity, with eddy viscosity, (b) m = 1, axial velocity, molecular viscosity, (c) structural
sensitivity, eddy viscosity, (d) structural sensitivity, molecular viscosity.

Kelvin-Helmholtz instability of a parallel wake in Qadri et al. (2013). In contrast to
the axisymmetric vortex breakdown, the feedback from angular momentum is weaker in
comparison (components Srθ, Srr, Sθr, Sθθ). This further confirms that the frequency of
the global mode is selected at the shear layer inflection point by a pure Kelvin-Helmholtz
mechanism. The shear layer inflection point in turn is caused by the axisymmetric vortex
breakdown, and appears upstream of the breakdown (separation). This also appears to
be the frequency selection of the final oscillation in the system where nonlinearities and
turbulence are fully developed.

9. Effects of excluding the turbulent dissipation on the eigenmodes

In figure 17, the axial velocity of the global mode with eddy viscosity (a) is shown
alongside the leading global mode computed around the mean flow, but with only molec-
ular viscosity (b). The latter is the quasi-laminar approach used in Mettot et al. (2014b).
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In the mode shape with molecular viscosity, we can see the boundary of the central re-
circulation zone, showing that the mode shape and inclination is sensitive to the local
shear. In contrast, the mode shape with eddy viscosity (17 a) contains vertically aligned
smooth structures extending inside and outside of the recirculation zone, exactly like the
POD mode. We also see that the wavelength of the global mode with molecular viscosity
shortens downstream, and the mode has still a visible amplitude at z = 4, while the
wavelength of the mode with eddy viscosity does not shorten and the mode disappears
around z = 3, in agreement with the POD mode.

There is little doubt that eddy viscosity improves the agreement of the global mode
shapes with the POD, and the same seems to apply to the frequencies. The mode with
eddy viscosity has St = 0.74, compared to St = 0.70 ± 0.06 from DNS, and St = 0.87
for the mode with molecular viscosity. Hence, eddy viscosity also notably improves the
frequency agreement. The only drawback of the eddy viscosity is noted when looking at
the mode growth rates: the stabilizing influence of turbulent dissipation is overestimated
by making all eigenmodes stable. The m = 1 mode is slightly stable with amplification
rate σr = −0.17. This highlights the issue known from previous studies that it may be
difficult to obtain neutral growth rates in a mean flow analysis, and this might be a
problem in cases where the growth rate is used as an indicator to identify the dominant
eigenmodes. It should be mentioned that the mean flow stresses used to determine the
eddy viscosity distribution include the effects from both the turbulent fluctuations and
the coherent structures. To be fully consistent, the base flow for a stability computation
with eddy viscosity should include the effect of turbulent dissipation but not dissipation
by coherent structures (termed base flow approach in Mettot et al. (2014b)). A new base
flow forced only by the turbulent Reynolds stresses could be computed, and this would
lead to a somewhat smaller eddy viscosity, and possibly closer to neutral mode growth
rates.

Finally, as the eddy viscosity influences the mode shapes, and the mode shapes are used
to construct the structural sensitivity, the eddy viscosity also has some influence on the
structural sensitivity (wavemaker). The wavemakers with and without eddy viscosity are
compared in figure (17 c-d). By comparing the wavemaker with eddy viscosity (c) and that
with molecular viscosity (d), we see that the eddy viscosity has two effects: it makes the
wavemaker more dispersed, and lifts it up slightly from the wall. Hence, the wavemaker
with eddy viscosity has the same amplitude over a region starting just upstream of the
separation point and ending just beyond the injector lip, while the wavemaker without
eddy viscosity is more focused in the immediate vicinity of the separation point. Although
the amplitude of the structural sensitivity is strongly influenced by the viscosity model
used, the location of its maximum (the wavemaker region) does not change. It is inside
the nozzle in the upstream part of the central recirculation zone.

The structural sensitivity gives the influence of a local perturbation of the system
matrix on the eigenvalue, whether the perturbation comes from a physical or a numerical
origin. Hence, apart from estimating the physical origin of the instability, the structural
sensitivity also has a numerical interpretation. We can observe that eddy viscosity reduces
the maximum amplitude of the structural sensitivity of the m = 1 mode by an order of
magnitude, from ≈ 20.5 to ≈ 2.5, showing that the wavemaker with molecular viscosity
is more sensitive to perturbations. From the numerical solution point of view, this means
that the modes without eddy viscosity, and the underlying mean flow, need to be highly
resolved near the nozzle, and in particular in the region near the separation point. This
makes sense based on what is known about high Reynolds number flows. However, the
modes with eddy viscosity have a lower effective Reynolds number, and hence a more
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even and weaker structural sensitivity. Therefore, the use of eddy viscosity makes the
global mode problem better conditioned numerically.

10. Discussion

10.1. Nonlinear interaction with harmonics and other oscillators

The role of nonlinear interaction with harmonics, and its implications for the mean flow
stability results, have been investigated in the global instability community. For example,
Sipp & Lebedev (2007) considered criteria based on the coefficients of a weakly nonlinear
expansion (the Landau coefficients). These criteria indicated the relative strength of the
mean flow harmonic, and the second harmonic. If the nonlinearities acted more strongly
to modify the mean flow, and less strongly to amplify the harmonic, then mean flow
stability could give meaningful results. Criteria based on the presence of subharmonics
were expressed by Mezic (2013).

For the swirl injector flow in the present study, harmonics are observed neither in the
PSD spectra nor in the FFT coefficients of the leading 11 POD modes. We therefore
conclude that any harmonics of the precessing vortex core are unobservable compared
to the mode itself. The mode is likely to interact more with the mean flow than with
its second harmonic. We therefore conclude that the criteria of Sipp & Lebedev (2007)
are highly likely to be satisfied. Furthermore, the strength of the next highest spectral
peak (the double-helical mode, POD mode 3-4) is an order of magnitude lower than that
of the precessing vortex core. Hence, any nonlinear interactions with other oscillators or
coherent structures (such as for the swirling flow in Meliga et al. (2012a)) are also likely
to be weak and can be ignored.

However, neither of the above studies considers the interactions between the eigenmode
and the bulk of the incoherent fluctuations. The random incoherent fluctuations contain
a significant part of the total energy for the swirl injector flow, and hence the precessing
vortex core is highly likely to be influenced by them. This is the stochastic interaction
we aim to model with the eddy viscosity.

10.2. Effect of turbulent dissipation - eddy viscosity vs. molecular viscosity

Firstly, we note that different eddy viscosity models extracted from experimental data
were tried in a local absolute instability analysis of a similar injector flow (Oberleithner
et al. 2015). All eddy viscosity models resulted in a nearly neutral growth rate. The
differences between different models were less than the qualitative difference between
eddy viscosity and molecular viscosity. However, the Newtonian eddy model, which is
that used in the present study, provided the best match with the experiments. These
findings support the hypothesis that the choice of the model for turbulent dissipation is
less crucial than the choice of including it. A possible reason for this is discussed below.

The findings of the present study can be related to what is known about global stabil-
ity analysis around turbulent mean flows, particularly in bluff-body flows. The effect of
mean flow and dissipation has been discussed extensively in the context of reduced-order
models, which is a closely related topic. The mean field theory introduced by Noack et al.
(2003) stated that a stability analysis around a mean flow will produce the limit cycle as a
neutrally stable global mode, which was later confirmed byBarkley (2006). Both authors
investigated the saturation to a limit cycle oscillation of a cylinder wake at a supercriti-
cal but laminar Reynolds number. Subsequent studies have addressed the effect of small
scales in a high-lift configuration Luchtenburg et al. (2009) and turbulent fluctuations in
a complex bluff-body wake(Östh et al. 2014; Protas et al. 2015). These studies concluded



32 O. Tammisola and M. P. Juniper

that unresolved incoherent fluctuations dissipate energy from larger scales, and this dis-
sipation must be included in the reduced order model in order not to over-estimate the
growth rates of the large scales, and even for the Galerkin approximation to converge to
a finite value.

The reduced order POD models are used to reconstruct the time-evolution of the sys-
tem. The above findings suggest that a time-evolution around a turbulent mean can only
be reproduced by including an effect of dissipation on the modes themselves. This is in
line with the results of the present study. The global modes with extracted eddy viscosity
gave a better agreement with DNS than the global modes with molecular viscosity. The
eddy viscosity also brought the growth rate closer to neutral. Neutral growth rates would
be expected according to the mean-field theory (Noack et al. 2003). The mode shapes
provide further evidence of the role of dissipation. The global modes with molecular vis-
cosity are more localized in the shear layers, while the modes with eddy viscosity are
more spread out in the vertical direction (in a better agreement with DNS). This can be
compared to the instability in parallel flows such as channel flows and shear layers: the
instability modes at higher Reynolds numbers have narrower and more localized shapes
than those at lower Reynolds numbers. To support this hypothesis, we show instability
modes at different instability and base flow Reynolds numbers in §B.

10.3. Structural sensitivity in turbulent external flows

The main aim of this study was to locate the structural sensitivity of the precessing
vortex core. Structural sensitivity has been computed in a few earlier studies in external,
non-swirling turbulent flows. Very recently, it was shown (Mettot et al. 2014b) that
for the flow around a D-shaped cylinder, the most sensitive region remains effectively
the same, and agrees with experimental results, irrespective of whether or not an eddy
viscosity model is applied in the stability analysis around a mean flow. Furthermore, the
frequency is relatively well captured whether or not eddy viscosity is used — the Strouhal
number was St = 0.26 in the stability analysis without eddy viscosity, and St = 0.23 in a
nonlinear simulation, giving a discrepancy of 15%. Similar agreement with experimental
sensitivity regions has been obtained for other cylinder wakes, e.g. in Camarri et al.
(2013).

On the other hand, in the present study of a swirling flow in a complex geometry,
the precessing vortex core (m = 1) mode seems to be affected by turbulent dissipation.
When the effect of turbulent dissipation on the eigenmodes is taken into account in the
form of the extracted eddy viscosity, the frequency comes out as St = 0.74, with 6%
accuracy. If the effect of extra dissipation is not taken into account (molecular viscosity),
the frequency comes out as St = 0.87, compared to St = 0.7 in DNS, giving a discrepancy
of 25%. Furthermore, the eddy viscosity approach distinguishes the m = 1 mode from
the rest of the spectrum, in agreement with DNS, while with molecular viscosity, the
m = 2 mode is predicted to have a similar growth to the m = 1 mode, in contrast with
DNS.

Hence, one might ask why the frequency selection for the cylinder flow is somewhat
more robust. We believe that the main reason is that the injector mean flow varies rapidly
in the region around the structural sensitivity. The difference between 17 (c) with eddy
viscosity and (d) with molecular viscosity is small, so the streamwise location of the
structural sensitivity is quite robust. However, the swirl varies rapidly in space. Hence,
small changes in the location of the wavemaker will result in non-negligible changes of
the swirl velocity in the wavemaker location.

We also hypothesize that eddy viscosity is less important for the cylinder flows because
the laminar and turbulent regions are separated in space. The structural sensitivity is
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contained in a relatively laminar region, and therefore is relatively unaffected by dissipa-
tion. From the figures in Mettot et al. (2014b), the main part of the wavemaker is located
close to the wall at the top and the bottom of the cylinder. The Reynolds stresses shown
in Parezanovic & Cadot (2012) on the other hand have their maximum in the wake region
downstream of the cylinder, where the von Kármán vortices are fully developed. For the
fuel injector flow, the wavemaker without eddy viscosity is localized at the upstream part
of the central recirculation zone, around the same region at which the global mode and
the Reynolds stresses (not shown) both have their maxima. From figure 5 (a–b) and from
the probe signals, we see that turbulent small-scale motions are present in this location,
moving back and forth together with the organized wave (cmp. Eq. 3.6). Hence the effect
of a (structural) perturbation may not travel straight from point A to point B along the
mean flow streamlines, as a fully laminar analysis assumes, but be dissipated around a
larger region by the turbulent motions, spreading out the structural sensitivity.

10.4. Relation to local stability analyses in swirling jets and injector flows

These results can also be related to previous results obtained by local stability analysis.
Similar injector flows (Juniper 2012; Oberleithner et al. 2015) have been studied by local
stability analysis in the combustion chamber region, excluding the nozzle region. For the
precessing vortex core, a region of absolute instability was identified very close to the
chamber inlet. In the present study, we find that the wavemaker of the precessing vortex
core has its maximum inside the nozzle.

It has been observed in laminar flows (Tammisola 2012; Qadri et al. 2013) that the
maximum magnitude of structural sensitivity coincides with the wavemaker location in
local stability analysis. A formal link between the two concepts was established in Juniper
& Pier (2014). Here, we have shown that the global mode wavemaker of the Turbomeca
flow lies inside the nozzle.

The frequency selection in local stability analyses of injector flows seems somewhat
more robust than in global stability analyses, in that local analysis around the mean
flow with molecular viscosity gives quite accurate predictions of the frequency (Juniper
2012; Oberleithner et al. 2015). This could be due to the nature of local analysis, which
resolves the absolute frequency in each streamwise point independently, based on the
instability of the local profile, and without taking into account other streamwise locations.
In global analysis, the whole domain is coupled for each eigenmode, and hence the global
dissipation information (or the stochasticity introduced by turbulent motions) might
become more important.

11. Conclusions

The dynamics of a swirling flow in a realistic fuel injector geometry has been studied
at relatively high Reynolds number: Re = 4800 based on the mean velocity and the
diameter at entry to the combustion chamber. To the authors’ knowledge, this is the
first global stability and sensitivity analysis for either a turbulent flow in an internal
complex geometry or a turbulent swirling flow.

POD modes extracted from the DNS snapshots were compared with linear global
modes computed around the mean flow, modelling turbulent dissipation by a frozen
eddy viscosity model extracted from the nonlinear data. The global modes accurately
reproduce the shape and frequency of the dominant coherent structure (the leading POD
mode pair), which is the precessing vortex core. The structural sensitivity (wavemaker)
of the mode resides in the upstream part of the central recirculation zone in and around
the nozzle, showing that despite the complicated mean flow structure, only this region is
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Code DoF m St σr

FreeFem++ 5.5× 105 1 0.8926 0.6402
FreeFem++ 8.5× 105 1 0.8953 0.6017
FreeFem++ 1.23× 106 1 0.8973 0.5995
Nek5000 8.8× 106 1 0.8973 0.6143
FreeFem++ 5.5× 105 2 1.6288 0.9080
FreeFem++ 1.23× 106 2 1.6379 0.9120
Nek5000 8.8× 106 2 1.6323 0.9416

Table 1: Influence of the grid resolution on the growth rate of the leading linear global
mode eigenvalues around the DNS mean flow, molecular viscosity.

dynamically important for the self-sustained oscillation. This result is similar to that of
Qadri et al. (2013) for a laminar vortex breakdown bubble.

The wavemaker can be relatively well captured with molecular viscosity only, in agree-
ment with previous studies. However, eddy viscosity significantly improves the agreement
of the direct mode shapes with POD, and hence the wavemaker with eddy viscosity is
likely to be more accurate. In addition, the structural sensitivity becomes more spread
out when eddy viscosity is used, indicating that the modes are less sensitive to numerical
resolution, with will be advantageous when moving to higher Reynolds numbers.

Future studies can include refined, dynamic, eddy viscosity models which should be
linearized around a fixed point of the equations including a turbulence model. The model
should be selected carefully in order not to lose the correct scales of the mean flow swirl
profile.

This study as a whole shows that sensitivity analysis can be applied to industrially-
relevant problems in which the flow is turbulent and the geometry is relatively complex.
These results show designers which part of the flow has most influence on the spiralling
mode often seen in fuel injectors. With further developments, this will show how the
geometry should be changed in order to enhance or remove this motion.

This work was supported by the European Research Council through Project ALORS
2590620. This work was performed on the computational facilities provided by the Hector
UK National Supercomputing Resource, and the Darwin cluster of the University of
Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/).

Appendix A. Global mode results with molecular viscosity using
Nek5000

In this Appendix, we show the linear global modes computed around the mean flow
in Nek5000, when using a molecular viscosity in the global mode computation. These
modes are computed in a 3D Cartesian framework, with the linearized Nek5000 time-
stepper as the only tool (already validated in several previous studies). This serves as
a basic validation of the FreeFem++ axisymmetric code, and also a direct validation of
the results computed with molecular viscosity. Results from TriGlobal linear global mode
analysis in Nek5000 with molecular viscosity are summarized in figures 18 (spectrum)
and 18 (direct and adjoint eigenmodes), and can be compared to the ones obtained in
FreeFem++ in the bulk of the manuscript. Grid convergence data is given in 1.
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Figure 18: Nek5000 leading eigenvalues, computed with a TriGlobal ansatz, resulting in
a combination of all azimuthal wavenumbers. The m = 2 eigenvalue (σ = 10.25 + 0.94i
→ St = 1.6) is shown by a blue star, and the m = 1 eigenvalue (σ = 5.64 + 0.61i →
St = 0.90) by a red star. Only the leading five eigenvalues shown are converged.
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Figure 19: The two most unstable eigenmodes (red and blue in figure 18) derived with
molecular viscosity using Nek5000: (a) m = 1, direct mode, axial velocity, (b) m = 2
mode, direct mode, axial velocity.

Appendix B. Effect of stability problem Reynolds number

Here, a small test is shown in which the Reynolds number is artificially changed to
another value in the stability problem for (1) a high Reynolds number mean flow (figure
20, left column), and (2) a low Reynolds number base flow - equilibrium solution to
Navier–Stokes (figure 20, right column). In both cases, when the Reynolds number in
the stability problem is high, the structures are finer and localized in the shear layer,
and when the Reynolds number in the stability problem is low, they are broader. This
can be seen by comparing the mode in the upper row to the mode in the lower row.
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Figure 20: Global modes calculated at different Reynolds numbers for the stability anal-
ysis, Rest, and for the mean flow, Rem, or base flow, Reb. Top-left: Rem = 1250,
Rest = 1250. Top-right: Reb = 100, Rest = 1500. Bottom-left: Rem = 1250, Rest = 50.
Bottom-right: Reb = 100,Rest = 100.

This simple example illustrates how changing the effective Reynolds number changes the
mode shapes, and that this feature is common for base flows and mean flows.
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