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We consider the effect of evaporation on the aggregation of a number of elastic objects due
to a liquid’s surface tension. In particular, we consider an array of spring–block elements
in which the gaps between blocks are filled by thin liquid films that evaporate during the
course of an experiment. Using lubrication theory to account for the fluid flow within the
gaps, we study the dynamics of aggregation. We find that a non-zero evaporation rate
causes the elements to aggregate more quickly and, indeed, to contact within finite time.
However, we also show that the number of elements within each cluster decreases as the
evaporation rate increases. We explain these results quantitatively by comparison with
the corresponding two-body problem and discuss their relevance for controlling pattern
formation in elastocapillary systems.

1. Introduction

The aggregation of many wet hairs into a series of clumps is familiar from everyday
examples including wet paint brushes or eyelashes wetted by tears (see Bico et al. 2004;
Kim & Mahadevan 2006, for example). In these scenarios, the surface tension of a liquid
acts to minimize the liquid surface area but is resisted by the bending stiffness of the
hairs involved. The result is elastocapillary aggregation with a number of clumps of hairs,
separated by larger gaps. At a microscopic scale, a similar phenomenon is observed in
the manufacture of microelectromechanical systems (MEMS) where long thin elements
are etched (using photolithography) and then rinsed (Tanaka, Morigami & Atoda 1993).
In the rinse step, the elastic elements are vulnerable to the formation of clumps that can,
if the clumps are large enough, lead to fracture (see figure 1a).
While, in many applications, elastocapillary aggregation is an undesirable feature of the

process and is best avoided, in other situations it is exploited to form controlled patterns
(see Chakrapani et al. 2004; Pokroy et al. 2009, for example). Indeed, the clumps of carbon
nanotubes that form when a nanotube ‘forest’ is wetted and the liquid evaporated (see
figure 1b) have sparked considerable interest as a design strategy at microscopic scales
(see de Volder & Hart 2013; de Volder et al. 2013, for reviews). Despite the importance
of other forces (including van der Waals and electrostatic forces) at these small scales, it
is clear that capillary forces from the liquid play a vital role: aggregation only happens
if the forest has been wetted, and varying the surface tension coefficient changes the
properties of the pattern (de Volder & Hart 2013; Tanaka et al. 1993).
Most previous theoretical approaches aim to understand the pattern formation in these
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Figure 1. Elastocapillary aggregation driven by evaporation of a volatile liquid. (a) Scanning
electron micrograph of a pattern created to be part of a MEMS device but damaged by surface
tension forces in the rinse step. (Image reproduced from Tanaka et al. 1993, Copyright (1993)
The Japan Society of Applied Physics.) (b) The formation of cellular foams from the elastocap-
illary collapse of a forest of carbon nanotubes. (Image reproduced from Chakrapani et al. 2004,
Copyright (2004) the National Academy of Sciences). (c) The simplified model considered here
in which rigid blocks, connected to their initial position by linear springs, replace flexible beams.
Lubrication theory in the intervening liquid gaps leads to a second order differential equation
for the pressure within each gap, pj(x, t), which is solved subject to a no-flux condition at x = 0
and imposed capillary pressure at the meniscus, x = xj(t), (see Appendix A).

systems by focussing on energy minimization arguments (see Bico et al. 2004; Py et al.

2007; Duprat et al. 2012; de Volder et al. 2011; Jung et al. 2014, for example). This
approach neglects the dynamic manner in which the pattern forms and so does not
address any features of the pattern that might be controlled dynamically. Boudaoud
et al. (2007) developed a toy ballistic aggregation model that gives predictions for the
distribution of cluster sizes. However, only recently have detailed dynamic models been
developed to capture the interaction between fluid flow and elasticity that occurs in this
problem. Several early authors developed models that couple the elastic deflection with
the fluid flow between a pair of elastic beams (Aristoff et al. 2011; Duprat et al. 2011;
Taroni & Vella 2012). In particular, Taroni & Vella (2012) showed via their detailed model
that even the simple system consisting of a fixed volume of liquid confined between two
elastic beams generally exhibits multiple stable equilibria. Taroni & Vella (2012) found
that which of these equilibria is attained dynamically depends on which is ‘closer’ to
the initial condition, rather than which configuration has the lower energy. From this
observation, one might expect the final state exhibited by the many-body problem to
also be sensitive to the history of deformation, including the initial condition.
Recently, there has been a focus on understanding dynamic aggregation in many-body

systems, though to make progress it has been necessary to simplify the elastic problem.
Gat & Gharib (2013) and Singh, Lister & Vella (2014) did this by considering arrays of
spring–block elements while Wei & Mahadevan (2014) and Wei et al. (2015) considered
rigid rods that rotate, resisted by a torsional spring. These models are sufficiently simple
that they allow for the development of analytical understanding of the underlying prob-
lem while also being able to replicate some of the more complicated behaviour observed
in experiments and numerical simulations. For example, Singh et al. (2014) showed that
multiple equilibria exist, as in the full problem (Taroni & Vella 2012), and that the dis-
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tribution of cluster size predicted numerically is similar to that observed experimentally
by Boudaoud et al. (2007). Similarly, Munro (2014) demonstrated novel scaling laws for
meniscus motion in elastocapillary rise that resemble those found experimentally (Duprat
et al. 2011).

Linear stability analysis of the simplified models of dynamic aggregation have all re-
vealed that pairwise aggregation is the mode of aggregation with the largest growth rate
(Gat & Gharib 2013; Singh et al. 2014; Wei et al. 2015). However, simulations and ex-
periments show that larger clusters form. This apparent discrepancy is believed to be
resolved either as the result of iterated clustering (in which quadruples form from a pair
of pairs etc., as suggested by Gat & Gharib 2013; Wei et al. 2015) or by the propaga-
tion of a disturbance from a localized perturbation, which leaves behind clusters with a
well-defined size (as suggested by Singh et al. 2014).

The models of elastocapillary aggregation discussed above have common features, most
notably that the amount of liquid is conserved or is decreased quasi-statically. However,
in many applications the liquid is volatile and therefore only wets the elastic elements
transiently. Once the liquid has evaporated, elements can only ‘stick’ together if they
were brought sufficiently close together while wet that dry adhesive forces (e.g. van der
Waals forces) come into play. A key question is then: how close to each other do the
elastic objects come during evaporation? In this paper we study a reduced model of this
dynamic aggregation accounting for the effect of evaporation.

The fluid mechanics of evaporation has seen a great deal of interest in recent years,
with particular emphasis being placed on the evaporation of droplets (Cazabat & Guena
2010). Much of this work was motivated by the observation that the dark ring left when
a drop of coffee evaporates, the so-called “coffee-ring effect”, is caused by the pinning
of the contact line and a singularity in the evaporative flux close to the contact line
(Deegan et al. 1997; Popov 2005). In other cases, the contact line is not pinned so that
the evolution of both the radius and contact angle of the droplet need to be determined
dynamically (McHale et al. 2005; Stauber et al. 2014). A variety of different evaporation
models are available depending on, among other factors, whether the rate of evaporation
is limited by diffusion in the vapour phase (Murisic & Kondic 2011), conduction of heat
from a solid boundary (Dunn et al. 2009) or convection above the drop (Kelly-Zion
et al. 2013). However, even very simple models of evaporation give rise to extremely
intricate fluid mechanical problems whose solution can be difficult to distinguish from
experimental observations (Oliver et al. 2015).

The coffee-ring effect itself may be viewed as the relatively dilute limit of the drying of a
colloidal suspension (Routh 2013). However, at higher concentrations, the densely packed
layer of particles left after evaporation cracks just as mud cracks when it dries (Lecocq &
Vandewalle 2002; Dufresne et al. 2006). Cracks may only propagate in these systems when
the elastic energy that is released by fracture is sufficient to pay the associated surface
energy penalty, much like a crack in a more classical elastic medium (Dufresne et al.

2006). This problem therefore contains similar ingredients to elastocapillary aggregation,
namely elasticity, capillary-induced flow and evaporation.

In this paper, we consider the elastocapillary aggregation problem accounting for the
motion of individual elastic elements within the system, their displacement relative to
their initial position, and the fluid flow between elements that controls the dynamics of
the process. We shall focus on the effect that the rate of evaporation has on the pattern
that is ultimately formed.
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2. Governing equations

To mimic the elasticity of the beams typical in many-body elastocapillary aggregation,
we consider an array of rigid blocks, each connected to their initial position by a linear
spring of stiffness k (see figure 1c). The gap between the blocks is considered to be filled
with liquid of initial volume V0 (per unit depth into the page); the initial thickness of
each gap is w.
The surface tension of the liquid, γ, causes a capillary suction beneath each menis-

cus, which acts to bring the blocks together. This aggregation is resisted by the springs,
mimicking the balance between capillarity and elasticity common to elastocapillary ag-
gregation in many systems.
To model the dynamics of aggregation, we assume that the gap is relatively thin,

V0/w
2 ≫ 1. In this case, lubrication theory can be used to determine the pressure profile

pj(x) within each gap, subject to the boundary conditions that there be no flux through
the base (x = 0) and that the pressure is equal to the capillary suction at the meniscus,
x = xj . More details of this calculation are given in Appendix A; the key result is that
the pressure profile within each gap, pj(x), is determined in terms of the values of xj , hj

and the rate at which the gap is growing/shrinking, dhj/dt. The pressure profile pj(x)
can then be integrated along the wetted length of each side of the gap to give the force
on the two neighbouring blocks exerted by the liquid in the jth gap:

Fj =
x3
j

h3
j

dhj

dt
+

xj

hj
. (2.1)

Here the gap thickness and position of the meniscus have been non-dimensionalized by
w and V0/w respectively, force has been non-dimensionalized by 2γV0/w

2 and time by
the capillary–viscous time

tcv =
2µV 2

0

w3γ
. (2.2)

In (2.1) the first term represents the lubrication force provided by the liquid in the
gap (which resists the motion if dhj/dt < 0) while the second term represents the net
attractive force that results from capillary suction.
Now, each block has two forces acting on it (from the liquid gaps on either side) and

the difference of these must be balanced by the net spring force on the block. Subtracting
these net forces for the jth and (j − 1)st gaps, we find that

2K(hj − 1) = Fj+1 − 2Fj + Fj−1. (2.3)

Here the dimensionless spring stiffness

K =
kw3

4γV0

. (2.4)

To close the problem we must also give an equation for the evolution of the position of
the meniscus, xj , within the jth gap. Previous models have assumed that the total amount
of liquid within each gap is conserved, that is d(xjhj)/dt = 0 (Gat & Gharib 2013; Singh
et al. 2014). The dynamics of evaporation are, in general, complicated depending on the
presence of convection in the atmosphere, the curvature of the meniscus and evaporation-
induced Marangoni effects among others. Furthermore, in the two-dimensional geometry
of interest here, the classic approach of considering evaporation limited by steady-state
diffusion is ill-posed (essentially because of the logarithmic term in the solution of the
two-dimensional Laplace equation). For simplicity, therefore, we assume that evaporation
occurs at a (constant) dimensional rate e per unit surface area. It follows that the volume
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of liquid within each liquid-filled gap evolves according to

d

dt
(xjhj) = −Ehj , (2.5)

where the dimensionless evaporation rate E is defined by

E =
ewtcv
V0

. (2.6)

Our non-dimensionalization of the problem ensures that a uniform initial condition may
be written as xj(0) = hj(0) = 1 for each liquid gap, i.e. for each j. The problem therefore
has only two dimensionless parameters: the spring stiffness, K, and the evaporation rate,
E. Ultimately, we shall be interested in how the final pattern, particularly the maximum
number of blocks in any cluster, depends on these two parameters for systems consisting
of a large number of spring–block elements. However, to gain some understanding of the
behaviour of the system in different regions of (E,K) parameter space, we first consider
the simpler problem of a pair of spring–block elements with a single fluid-filled gap
between them.

3. An isolated pair: The two-body problem

For a pair of spring–block elements, there is only a single liquid gap, j = 1, to consider.
In this case F0 = F2 = 0 so that (2.3) simplifies considerably. Denoting the (only) gap
thickness by h(t) and the meniscus position by x(t) we find that

x3

h3

dh

dt
= −x

h
+K(1− h), (3.1)

dx

dt
= −E − dh

dt

x

h
(3.2)

with initial conditions x(0) = h(0) = 1.

3.1. Phase-plane analysis

The system of equations (3.1)–(3.2) is autonomous so it is natural to examine the be-
haviour of its phase plane. To facilitate this, we introduce a rescaled gap aspect ratio,
ξ(t) = x(t)/[Kh(t)] and a time-like coordinate s such that d/ds = K2hξ3d/dt with
s(t = 0) = 0. The system (3.1)–(3.2) can then be written

dh

ds
= h(1− h− ξ), (3.3)

dξ

ds
= −ξ

[

KEξ2 + 2(1− h− ξ)
]

. (3.4)

From (3.3)–(3.4) we see that this (slightly opaque) transformation has eliminated indi-
vidual occurrences of the dimensionless parameters K and E; instead only their product
KE appears. The dynamics does still depend on the separate values ofK and E, however,
since the initial conditions are now ξ(0) = 1/K, h(0) = 1. Nevertheless, to understand
the phase plane, this rescaling, and the associated reduction of the number of effective
parameters, is extremely useful.
It is clear from (3.3)–(3.4) that the (non-trivial) nullclines in the (ξ, h) plane are

h = 1−ξ and h = 1−ξ+KEξ2/2. Combining these with the trivial nullclines ξ = 0, h = 0,
we find that if KE < 1/2 then the dynamical system (3.3)–(3.4) has two stable fixed
points: ξ = 0, h = 1 (corresponding to two dry blocks in their undeformed, separated
configuration) and ξ = ξ∗ ≡ [1 + (1 − 2KE)1/2]/KE, h = 0 (corresponding to the two
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Figure 2. Phase planes and numerically computed trajectories showing the behaviour of the
system (3.3)–(3.4) for KE = 0.49 (a and b) and KE = 1 (c and d). In (a) and (c) the phase
planes show various trajectories (solid curves), corresponding to changing the value of K with
KE fixed, with arrows indicating the direction of increasing time-like coordinate s (defined such
that d/ds = K2hξ3d/dt). The nullclines h = 1 − ξ and h = 1 − ξ +KEξ2/2 are shown by the
dotted straight line and dashed curve, respectively. For KE 6 1/2 there are stable equilibria at
(0, 1) (separated blocks, indicated by an open circle) and (ξ∗, 0) (stuck blocks, indicated by a
filled circle), and two saddle points at (0, 0) (indicated by +) and (ξs, 0) (indicated by ×). For
KE > 1/2 there is only the equilibrium point at (0, 1) (open circle) and the saddle at (0, 0)
(+). (b) Trajectories of x(t) (solid curves) and h(t) (dashed curves) for K = 5 (labelled A) and
K = 0.5 (labelled B); in each case KE = 0.49 and we observe sticking only for sufficiently small
K. (d) Trajectories of x(t) (solid curves) and h(t) (dashed curves) for K = 5 (labelled C) and
K = 0.5 (labelled D); in each case KE = 1 and sticking is never observed.

blocks coming into contact as the liquid between them evaporates). We refer to the fixed
point (ξ∗, 0) as the ‘stuck’ configuration since we expect short-ranged forces to maintain
contact even after all of the liquid has evaporated. There are also two saddle points for
KE < 1/2: one at (ξs, 0) with ξs = [1 − (1− 2KE)1/2]/KE and another at (0, 0).

A typical phase plane for KE < 1/2 is shown in figure 2(a) (with KE = 0.49);
the evolution of the physical variables for two example trajectories are shown in figure
2(b). The phase plane, figure 2(a), shows that for ξ(0) = 1/K sufficiently small, i.e. for
sufficiently stiff springs, the system ultimately tends to the separated fixed point, (0, 1).
However, for ξ(0) = 1/K larger than some threshold, i.e. for sufficiently weak springs, the
system instead tends to the stuck fixed point, (ξ∗, 0). This is illustrated by the evolution of
the physical variables shown in figure 2(b). The critical value of K at which the transition
from separated to sticking occurs, Kcrit(KE), can be determined numerically from the
stable manifold of the saddle point at (ξs, 0) (see Appendix B). For the case KE = 1/2
we find that the system tends to the stuck fixed point if K < 3.30 (i.e. E > 0.15) but
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Figure 3. Regime diagrams showing the behaviour of the system as functions of the spring
stiffness K and evaporation rate E. (a) The regime diagram for the two-body problem in which
only stuck and separated states exist. The solid curve shows the numerically determined bound-
ary between stuck and separated while the results with E = 0, Kcrit = 27/4 (dotted vertical
line), and Kcrit = 1/2E (dashed line), are also shown. (For K . 3.30, the boundary between
stuck and separated states is KE = 1/2, see text.) (b) Results of numerical simulations with
N = 2000 blocks with randomized initial perturbations showing the largest number of blocks
in a cluster, Nmax, at various (K,E). Here green shows situations in which no blocks aggregate
ultimately while red and blue are used to distinguish results at neighbouring points of (K,E)
space. The dashed line again shows the result Kcrit = 1/2E as a hint that the two-body problem
is relevant to understanding the many-body problem.

otherwise becomes separated. In the limit KE ≪ 1 we find that Kcrit =
27

4
− O(E2/3),

which agrees with the result of Singh et al. (2014) in the absence of evaporation.
For KE > 1/2, ξ∗ is complex so that the only stable fixed point is at ξ = 0, h = 1;

there is also a single saddle point at (0, 0). Physically, we deduce that, for sufficiently fast
evaporation or sufficiently strong springs, the system must always end up with the blocks
separated and all of the liquid evaporated — the blocks are ‘unstuck’. An example of the
trajectories of the system, plotted in (ξ, h) space, is shown in figure 2(c); as expected,
this shows that all trajectories (i.e. regardless of the value of K) ultimately reach the
unstuck state. This is confirmed by the physical evolution along two example trajectories,
as shown in figure 2(d). Note from the case K = 0.5, E = 2 (labelled ‘D’ in figure 2(d))
that once the blocks start to separate they may do so very rapidly: both evaporation
and the widening gap reduce the hydraulic resistance to motion while the total capillary
suction in the gap is also dramatically decreased by a decrease in x.
In summary, our analysis of the phase plane shows that for KE > 1/2 the blocks

must ultimately tend to the separated state, while for KE 6 1/2 the blocks stick if
K 6 Kcrit(KE) and otherwise separate. This behaviour is summarized in figure 3(a),
which shows the regions of (K,E) parameter space for which the blocks are ultimately
stuck or separated. However, we note that in either case the system tends to a state in
which all of the liquid has evaporated, x = 0, whether that be with h = 1 (the separated
state) or with h = 0, x/h = Kξ∗ (the stuck state).

3.2. Contact occurs in finite time or not at all

In the limit of no evaporation, E = 0, Singh et al. (2014) showed that if the springs
are sufficiently weak for a pair to stick, then the gap thickness h decreases with time
according to h ∼ (3t)−1/3 for t ≫ 1. In this idealized system, therefore, the blocks do not
actually contact one another (though in reality van der Waals attraction or the roughness
of the blocks would ensure that contact does eventually occur).
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The situation with even a small amount of evaporation, E > 0, is qualitatively different
in that contact occurs within a finite time. To see this we let h ≪ 1, x/h ≈ Kξ∗ in (3.1),
yielding

dh

dt
≈ 1− ξ∗

K2ξ3
∗

= − E

2Kξ∗
. (3.5)

Crucially, this is constant so that the gap thickness decreases at a constant rate and,
hence, the gap must close and the blocks touch.
Note that in the limit of small evaporation, E ≪ 1, and with 0 < K < Kcrit(KE) so

that sticking occurs, we have ξ∗ ≈ 2/KE leading to

dh

dt
≈ −E2

4
. (3.6)

We therefore expect the time at which contact occurs to diverge as E → 0, consistent
with the previous observation that contact does not occur in the absence of evaporation
(Singh et al. 2014). This expectation may also be confirmed for the case of no springs,
K = 0, where a simple calculation shows that contact occurs at t = t∗ with

t∗ =
1

E
+

2

E3/2(2− E)1/2
tan−1

[

(

2

E
− 1

)1/2
]

∼ π√
2
E−3/2 asE → 0. (3.7)

4. The many-body problem

4.1. Numerical results

Our primary interest is in the dynamics of aggregation for a large number of spring–block
elements. To gain some insight into the behaviour of these systems, we solved the system
of differential equations (2.3)–(2.5) with up to NT = 2000 elements. We used symmetry
boundary conditions at the edge of the system, i.e. F−1 = F1 and FNT+1 = FNT−1 (Singh
et al. 2014), though similar results were obtained with free edges, F0 = FNT

= 0. Using
symmetry boundary conditions has the advantage that the uniform state hj = 1 is an
equilibrium. The initial condition was then taken to be a small random perturbation to
this state, i.e.

hj(0) = 1 + ǫRj (4.1)

with Rj a random number drawn from N(0, 1). For the results presented here, we took
ǫ = 10−2. The initial meniscus position was xj(0) = 1/hj(0) so that each gap contained
the same volume of liquid initially.
Two adjustments to the codes used by Singh et al. (2014) were made to account for

the ultimate disappearance of liquid inherent in evaporation. Firstly, the liquid level
xj(t) was prevented from becoming negative by enforcing xj(t) > 10−10 for all times.
Secondly, a short range van-der-Waals interaction was introduced to ensure that once
elements come sufficiently close to contact they remain close, but do not pass through
one another; this mimics the sticking upon contact that is observed in MEMS devices.
Simulations were run until

∑

j |ḣj | < 10−10, so that each gap has reached an equilibrium
to within numerical error.
Figure 4 shows space-time diagrams for the evolution of around 100 block positions

during aggregation. Results are shown for a range of values of the dimensionless evapora-
tion rate E but withK = 0.1 fixed. Figure 4(a) (in the absence of evaporation) shows that
clusters first form and then shrink down as time increases. Introducing a small amount of
evaporation (figure 4b), we see that the typical size of clusters is broadly similar but that
the clusters seem to shrink to contact within a finite time. We also observe that there
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Figure 4. Space-time diagrams showing the position of ≈ 100 blocks within a larger simulation
of the elastocapillary aggregation of NT = 500 blocks. The spring stiffness K = 0.1 in each case
and the evaporation rate E is varied: (a) E = 0, (b) E = 0.1, (c) E = 1, (d) E = 3.

seem to be more scenarios in which clusters start to form but ultimately split — what we
term a ‘cluster bifurcation’. (These cluster bifurcations are also associated with a ‘kink’
in the space-time diagram because the force balance is radically altered as the cluster
splits: the new sub-clusters shift to positions where all of the spring forces are reduced.)
Increasing the evaporation rate still further (figures 4c,d), we see, unsurprisingly, that
the clusters that form shrink to contact more quickly than with lower evaporation rates.
We also see that there are many more cluster bifurcations and that the final clusters tend
to be smaller than those observed with smaller evaporation rates.
Another perspective on the effect of evaporation is provided by examining the statistics

of the cluster size N as E varies with K fixed. The inset of figure 5 shows that the mean
cluster size 〈N〉 is a decreasing function of the evaporation rate, as should be expected
from the earlier observations of figure 4. Figure 5 itself shows the probability distribution
function for a range of evaporation rates, 0 6 E 6 30, calculated by averaging the results
of thirty runs at each evaporation rate. To allow for a comparison of the shape of the
distribution as the evaporation rate varies, we have normalized the x-axis in figure 5 by
〈N〉. In these normalized coordinates, the typical (normalized) width of the distribution
does not change noticeably as the evaporation rate increases (i.e. the width of the true
distribution scales with the mean 〈N〉 and hence does become narrower as E increases
and 〈N〉 decreases). Surprisingly the behaviour in the tails of the distribution seems to
follow quite closely that found in the absence of evaporation (this is true even at E = 30
where only pairs of blocks or single blocks are observed). However, we note that the peak
around N/〈N〉 ≈ 0.8 appears to become more pronounced as the evaporation rate E
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Figure 5. The statistical properties of the cluster size N for a range of evaporation rates E,
with K = 0.0137 fixed. Inset: The mean final cluster size, 〈N〉, as estimated, for each value of
E, from 30 numerical experiments with initial conditions hj = 1+ ǫRj , where ǫ = 10−2 and Rj

are random numbers drawn from N(0, 1). The vertical error bars represent the standard error.
The mean cluster size with no evaporation (E = 0) is shown by the horizontal dashed line.
Main figure: The probability distribution function for the cluster size as found in the numerical
experiments. Different evaporation rates are indicated as follows: E = 0 (◮), E = 10−2 (◭),
E = 0.5 (N), E = 1 (H), E = 5 (�) and E = 30 (•). Horizontal error bars show (for large
E and small N) the discrete nature of the data, while vertical error bars show the standard
error. The solid curve shows a normal distribution with mean 1 and standard deviation 0.3,
as suggested previously (Singh et al. 2014); the dashed curve shows the distribution found by
Boudaoud et al. (2007) from a mean-field aggregation model with a single parameter fitted to
match experiments.

increases up to E = 1; at the largest values of E the discrete nature of the distribution
and the decrease in 〈N〉 blunts the peak.
In summary, the simulation results shown in figures 4 and 5 suggest that the presence

of evaporation modifies the dynamics of aggregation in three important ways: (i) any
clusters that form shrink down more quickly than would be the case without evaporation,
(ii) clusters are more prone to split up, or bifurcate, when evaporation is included, and
(iii) the final state generally consists of smaller clusters. The first of these observations
recalls what was seen in the two-body problem where contact occurs in finite time with
individual blocks moving at a constant speed, see (3.6). We shall see that the second and
third observations are intimately related.
To better understand the third observation, numerical simulations with a range of val-

ues of K and E were performed and the maximum number of blocks in any cluster noted,
see figure 3(b). This plot confirms the trend observed in (iii) above. In particular, we note
that for sufficiently large evaporation rates E, no clusters are formed (the green points in
figure 3b). Comparing the transition between no clustering and clustering observed with
many blocks (figure 3b) to the transition between separated and stuck states observed in
the two-body problem (figure 3a) we observe a strong similarity; in particular, the line
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KE = 1/2 seems to be important in both transitions. Away from this line, the maximum
number of elements in a cluster varies as the evaporation rate E varies (at fixed K). To
try to understand these results, we begin by considering what happens in the limit of no
springs.

4.2. No springs: K = 0

With no springs, K = 0, the problem simplifies considerably. To see this, we note that
(2.1) then gives

Fj+1 − 2Fj + Fj−1 = 0. (4.2)

If the system is unforced at its edges, F0 = FN+1 = 0, then this may be inverted to give

Fj =
x3
j

h3
j

dhj

dt
+

xj

hj
= 0 (4.3)

for j = 1, ..., N . The motion within each gap therefore decouples from that in every other
gap and we recover the two-block problem (3.1)–(3.2) with K = 0. We conclude that in
this case all of the blocks will aggregate with contact occurring at t = t∗ with t∗ given
by (3.7).

4.3. Finite strength springs K > 0

Analytical progress is possible in the limit of no springs because the evolution of the
liquid within each gap becomes decoupled from that in every other gap. However, with
non-zero spring stiffness, the force balance (2.3) must hold; this couples the evolution
within the gaps to one another.

4.3.1. Analytical results close to contact

To make analytical progress, we consider the limit of small gap thickness, hj ≪ 1, so
that a cluster of blocks are already close to contact. In this limit additional displacements
are small and the force arising from the springs is approximately constant, simplifying
the problem considerably. In particular, when the blocks are close to contact, hj ≪ 1,
the force-balance equation (2.3) may be approximated by

−2K = Fj+1 − 2Fj + Fj−1. (4.4)

Physically, this equation expresses the fact that in the small-gap limit, the net hydro-
dynamic force on a block, Fj+1 − Fj , exceeds that on its neighbour by 2K since it is
approximately one unit further from its equilibrium position.
Given two particular Fj somewhere within the system, (4.4) may readily be inverted

to give an expression for general Fj . Motivated by the repeated cluster-bifurcation events
seen in figures 4(c,d), we consider whether a cluster ofN spring–block elements (enclosing
N − 1 liquid-filled gaps) that is close to complete collapse will bifurcate. Labelling the
liquid gaps from one side of the cluster, we can approximate the hydrodynamic force at
its edges by zero, i.e. F0 = FN = 0, since the cluster will be comparatively well separated
from any neighbouring elements. Inverting (4.4) subject to these edge conditions, we find
that

Fj = Kj(N − j) (4.5)

Thus the hydrodynamic force Fj in a gap is given by a constant value K(j;N) ≡ Kj(N−
j) that depends only on the label j of that gap within a particular cluster, and the
number of blocks N in the cluster. (The detailed gap thicknesses do not appear because
the displacements of blocks from their equilibrium positions, and the consequent spring
forces, are nearly constant when the blocks are close to contact.)
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Now, recalling from (2.1) that the hydrodynamic force Fj is the sum of lubrication
and capillary components, we can write (4.5) together with the equation describing mass
conservation as the system

x3
j

h3
j

dhj

dt
= −xj

hj
+K(j;N) (4.6)

dxj

dt
= −E − dhj

dt

xj

hj
. (4.7)

These equations are equivalent to those describing the evolution of a single gap, (3.1)–
(3.2), in the limit of h ≪ 1, but with an effective spring stiffness K(j;N). Hence the
many-body nature of the cluster problem enters only through the effective spring stiffness
K(j;N), which varies through the cluster from relatively soft springs at the edge to
relatively stiff springs in the centre. Within the cluster the presence of nearby elements
increases the spring force acting to open an individual gap. This is reminiscent of the
‘collaborative stiffening’ that occurs when elastic plates are stuck together by surface
tension: clusters interact just as individual elements do, albeit with a larger effective
stiffness that comes from having to bend many plates (Bico et al. 2004). Collaborative
stiffening here corresponds to a multi-block cluster whose springs have total stiffness
∼ NK and typical displacement proportional to N . Hence the typical force in the cluster
∼ N2K. In the two-body problem the displacement close to contact is unity and so, to
achieve the same force, the effective stiffness satisfies K ∼ N2K, as seen in (4.5) and
(4.6).
In §3.1 we showed for the two-body problem that if K < Kcrit(E) the gap thickness

will shrink to zero, and the blocks stick; otherwise the blocks will separate and return
to their original positions. From the similarity of (4.6)–(4.7) to (3.1)–(3.2) at small gap
thicknesses, it seems reasonable to expect that, for a cluster containing N blocks to
collapse completely to a final stuck cluster, the effective stiffness K(j;N) must be less
than Kcrit(E) for each of the gaps within that cluster, i.e.

max
j

{K(j;N)} < Kcrit(E). (4.8)

(We assume that any differences between the systems at large gap thicknesses have no
significant effect on Kcrit(E).)
Noting that maxj{K(j;N)} = KN2/4, we can then restate the criterion in (4.8) as

collapse of an N -block cluster (for N > 2) can only occur if

N < Nmax =

(

4Kcrit(E)

K

)1/2

. (4.9)

Thus if Nmax < 2, which occurs at sufficiently large spring stiffnesses, all blocks end
up separate (in a trivial N = 1 cluster). More generally, (4.9) is a prediction for the
maximum number of blocks in a cluster as a function of the evaporation rate E and
spring stiffness K. The only assumption used in its derivation was that whether a cluster
collapses, and the blocks stick, or splits up should be determined by the behaviour of the
system with small gap thicknesses, hj ≪ 1.

4.3.2. Reassessment of numerical results

Figure 6 replots data for the maximum number of blocks in any cluster from figure
3(b), at seven different evaporation rates E and with a variety of spring stiffnesses K
(i.e. the values of Nmax along seven different horizontal lines in figure 3b). In figure 6, this
data has been rescaled based on the analytical prediction (4.9): figure 6(a) highlights how
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Figure 6. Rescaling of the data in figure 3(b) to test the theoretical prediction (4.9) for the
maximum number of blocks in a cluster. (a) The maximum number of blocks in any cluster,
Nmax, as a function of Kcrit(E)/K (points); equation (4.9) suggests that, provided Nmax > 1,

this should follow the behaviour y = 2x1/2 (solid line). (b) An alternative rescaling showing the
dependence on the evaporation rate, E, directly for data with Nmax > 2. Here, the solid curve
shows 2Kcrit(E)1/2, the dashed horizontal line shows NmaxK

1/2 = 27/2π/9 ≈ 3.95 (predicted

by Singh et al. 2014, in the limit E = 0) and the dotted line shows NmaxK
1/2 = (2/E)1/2, valid

for E & 0.15. In both panels, colours and symbols correspond to results obtained at different
evaporation rates: E = 10−3 (red squares), E ≈ 10−2 (green triangles), E ≈ 0.1 (blue circles),
E ≈ 1 (black inverted triangles), E = 5 (magenta ‘×’), E = 10 (cyan ‘+’) and E = 102 (yellow
side triangles).

the raw values of Nmax vary with Kcrit(E)/K while figure 6(b) highlights the dependence
on E.
We note first that both rescalings in figure 6 lead to reasonable collapses of the data

from a two-dimensional parameter space (figure 3b) onto a single master curve. Since both
of these rescalings follow naturally from (4.9), we conclude that the reduction from the
many-body problem to the two-body problem yields useful insight. However, we also note
that for small evaporation rates, E ≪ 1, the maximum cluster size Nmax lies somewhat
below that predicted on the basis of (4.9). Instead, it seems that for E ≪ 1 the results
are closer to the prediction from the no-evaporation problem, E = 0, (Singh et al. 2014)
where

NmaxK
1/2 =

27/2π

9
≈ 3.95. (4.10)

Equation (4.10) was obtained from an analysis of front propagation in an unstable
medium, which was found to leave behind clusters of this well-defined size. Though larger
clusters would, in principle, be able to collapse and not bifurcate, they are apparently
not formed by the initial front-propagation mechanism. For all values of E, we find that
clusters do not reach the maximum size predicted by the linear instability of a nearly
uniform state without evaporation, which in this notation reads NmaxK

1/2 = 2π (Singh
et al. 2014).

5. Discussion

We have studied the effect of evaporation on a simple model of elastocapillary aggre-
gation, which revealed two important differences from the same model in the absence of
evaporation. Firstly, evaporation acts to bring the elements together more quickly and
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leads to contact within a finite time. Secondly, the maximum number of elements in a
final cluster decreases with increasing evaporation rate.
The first of these observations is important for applications since it suggests that

evaporation can drive objects together more quickly than would be the case without
evaporation, thereby increasing the risk of, for example, MEMS stiction (Tanaka et al.

1993). However, the practical consequences may be (partially) mitigated by the second
observation: if high evaporation rates cause fewer elements to come into contact, then
those elements that do come into contact are less likely to be deformed enough to fracture
(which is one of the main manufacturing concerns, see figure 1a).
Our analysis of the mathematical model allowed us to reduce the problem of a cluster

that is close to collapsed (i.e. small gap thicknesses) to a two-body problem with an
effective spring stiffness. If a cluster starts to form then this effective stiffness is smallest
at the edges and largest at the centre of the cluster; thus, if the cluster breaks up (because
it is too large) then we expect a void to form in the centre. This is similar to observations
of microscopic pillars made up of many carbon nanotubes: if the diameter of the initial
pillar (cluster) is small enough then the entire pillar will collapse during evaporation; if
not, then voids form in the centre (de Volder & Hart 2013).
We have shown that the number of elements in a cluster is controlled by the dynamics

of evaporation. As such, the final pattern observed depends on the dynamics of pattern
formation and not simply which pattern is the global energy minimizer, as is often as-
sumed. However, we have also seen that the effect of evaporation only becomes significant
once E & 0.1, i.e. when the evaporation dynamics occur on a time scale comparable to,
or faster than, that of the lubrication-type dynamics itself. From (2.6) the dimensionless
evaporation rate E = 2Cae(x0/w), where Cae = µe/γ is an evaporative capillary number.
Written in this way, we see that E is the product of a property of the liquid filling the
gaps (Cae) and the initial aspect ratio of the liquid gaps (x0/w). For the evaporation of
pure, still water at room temperature and ambient humidity, e ≈ 60 nm/s (Li et al. 2012;
Routh 2013), µ = 10−3 Pa s, γ = 72 mN/m so that Cae ≈ 10−9. Other liquids evaporate
more quickly and hence may have a larger value of Cae. For example, HFE-7100 (3M)
has an evaporation rate e ≈ 20 µm/s (see Lyulin & Kabov 2013; Machrafi et al. 2013,
for example), γ = 13.6 mN/m and µ = 6.1× 10−4 Pa s so that Cae ≈ 10−5. Such small
values of the evaporative capillary number mean that to obtain E & 0.1 would require
x0/w & 104. While this is at least consistent with the requirement x0/w ≫ 1 for lubri-
cation theory to be valid, it is unlikely ever to be the case for the micron-scale plates
and pillars often considered experimentally (see Wei et al. 2015, for example). However,
such large aspect ratios are possible for nanotube forests where the typical length of a
nanotube is on the order of 100 µm but the radius, and hence the typical separation, is
O(10 nm) (Chakrapani et al. 2004).
The geometrical enhancement of the evaporation rate suggests that our prediction

that clusters typically contain fewer elements as the evaporation rate increases may be
observable in sufficiently dense ‘forests’. Indeed, from their experiments on the formation
of cells in carbon nanotube forests (see figure 1b), Chakrapani et al. (2004) report that
“[a faster rate of evaporation] favors crack growth and results in a decrease in the average
cell width” (i.e. fewer elements form in the clusters between cracks). However, they do
not present quantitative data to support this comment.
We hope that the theoretical results presented here may motivate experimental efforts

to better understand how evaporation rate influences pattern formation in these systems.
At the same time, there are a number of improvements that should be made to the model
developed here. For example, experiments are bound to take place in a three-dimensional
setting where the force from surface tension will require a more detailed calculation (Wei
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et al. 2015) and the resistive forces from the lubricating flow may be reduced since liquid
can flow horizontally, as well as vertically.
Even in situations where the delicate balance between evaporation and lubrication

dynamics discussed here is not appropriate, other, slower timescales exist with which
evaporation can more readily compete. For example the viscoelastic relaxation time of the
elements themselves may be important (Wei et al. 2015). We expect that the techniques
developed in this paper may be applied, with suitable modifications, to understand the
interplay between evaporation and dynamics in such systems.
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Appendix A. Derivation of model

In this Appendix, we outline the derivation of the expression for the force exerted
by the j-th liquid gap on each of its neighbouring blocks, (2.1). More details are given
by Singh et al. (2014). The well-known lubrication equation, together with the local
conservation of mass leads to a relationship between the pressure profile within the gap,
pj(x), and the rate at which the gap thickness, hj , is changing with time. In particular,

dhj

dt
=

h3
j

12µ

∂2pj
∂x2

. (A 1)

This equation for pj is to be solved subject to the boundary conditions of no flux through
the base, i.e. ∂pj/∂x|x=0 = 0, and that the pressure just beneath the meniscus is equal
to the capillary pressure, i.e. pj(x

−

m) = −2γ/hj. We find that

pj(x) =
6µ

h3
j

dhj

dt
(x2 − x2

j )−
2γ

hj
. (A 2)

The force on each of the blocks that bound the j-th gap is then given by

Fj = −
∫ xj

0

pj dx =
4µx3

j

h3
j

dhj

dt
+

2γxj

hj
, (A 3)

which is the dimensional version of (2.1).

Appendix B. Phase-plane analysis to determine Kcrit(E)

For 0 < KE < 1

2
the phase plane of (3.3)–(3.4) is topologically equivalent to figure 2(a):

trajectories generically tend either to the stable node (0, 1) (separated blocks) or to the
stable node (ξ∗, 0) (stuck blocks). The dividing trajectory between these outcomes is the
stable manifold of the saddle point (ξs, 0), which is given by ξ ∼ ξs+2hξs/(ξs−3)+O(h2)
as h → 0. Starting with this limit, we can integrate back along the stable manifold to
h = 1, which defines a point (K−1

crit, 1). Then if K 6 Kcrit an initial condition (K−1, 1)
leads to a stuck state.
As KE ր 1

2
the points (ξs, 0) and (ξ∗, 0) merge into a saddle-node at (2, 0) and

Kcrit = 3.30 +O(1 − 2KE)1/2. For KE > 1

2
all trajectories lead to the separated state.

At KE = 0 the (nontrivial) nullclines of (3.3)–(3.4) coincide as a line of fixed points
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h + ξ = 1, corresponding to a mechanical equilibrium K(1 − h) = x/h between the
spring and capillary forces in the absence of evaporation. Away from this equilibrium,
the trajectories satisfy h2ξ = const., corresponding to mass conservation hx = const..
To consider the useful limit of slow but non-zero evaporation, we let ǫ = KE ≪ 1 and

note that the stable manifold of the saddle point, ξ = 1+ ǫ/2− h(1 + 3ǫ/4) +O(ǫ2, h2),
starts almost parallel to the two nearly coincident nullclines. This motivates setting
η = (h+ ξ − 1)/ǫ so that (3.3)–(3.4) become

dξ

ds
= ǫξ

[

2η − ξ2
]

,
dη

ds
= (3ξ − 1)η − ξ3 − ǫη2. (B 1)

Since ǫ ≪ 1, we expect the evolution of ξ to be slow and hence, integrating backwards,
η collapses onto a ‘slow’ manifold given by dη/ds = O(ǫ), or

η ∼ ξ3

3ξ − 1
, (B 2)

over the range 1/3 < ξ 6 1. As ξ approaches 1/3, η diverges and we need to rescale
the equations to understand how the stable manifold leaves the O(ǫ) neighbourhood of
h+ ξ = 1.
A suitable rescaling is to set x = 3(3ξ − 1)/2ǫ1/3, y = 9ηǫ1/3 = 9(ξ + h− 1)/ǫ2/3. At

leading order (B 1) becomes

3

ǫ1/3
dx

ds
= y,

3

ǫ1/3
dy

ds
= 2xy − 1, and thus

dy

dx
= 2x− 1

y
. (B 3)

For the solution to (B 3) to match onto (B 2), we require y ∼ 1/2x as x → ∞. This
condition specifies a unique solution to (B 3), given implicitly by x = −Ai′(z)/Ai(z),
where Ai denotes the Airy function and z = x2 − y. As x → −∞, y ∼ x2 − z0, where
z0 = −2.338 is the first zero of Ai(z). This asymptotic behaviour matches onto the
trajectory h2ξ = (4/27)(1−ǫ2/3z0/3)+O(ǫ), which continues to (K−1

crit
, 1) . Hence Kcrit ∼

(27/4)(1+ ǫ2/3z0/3) ∼ (27/4)− 18.8E2/3. The limiting value Kcrit = 27/4 for E = 0 was
obtained by Singh et al. (2014).
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