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Free Groups and the Axiom of Choice

Philipp Kleppmann

Summary

The Nielsen–Schreier theorem states that subgroups of free groups are free. As all of its

proofs use the Axiom of Choice, it is natural to ask whether the theorem is equivalent

to the Axiom of Choice. Other questions arise in this context, such as whether the same

is true for free abelian groups, and whether free groups have a notion of dimension in

the absence of Choice.

In chapters 1 and 2 we define basic concepts and introduce Fraenkel–Mostowski models.

In chapter 3 the notion of dimension in free groups is investigated. We prove, without

using the full Axiom of Choice, that all bases of a free group have the same cardinality.

In contrast, a closely related statement is shown to be equivalent to the Axiom of Choice.

Schreier graphs are used to prove the Nielsen–Schreier theorem in chapter 4. For later

reference, we also classify Schreier graphs of (normal) subgroups of free groups.

Chapter 5 starts with an analysis of the use of the Axiom of Choice in the proof of

the Nielsen–Schreier theorem. Then we introduce representative functions – a tool for

constructing choice functions from bases. They are used to deduce the finite Axiom of

Choice from Nielsen–Schreier, and to prove the equivalence of a strong form of Nielsen–

Schreier and the Axiom of Choice. Using Fraenkel–Mostowski models, we show that

Nielsen–Schreier cannot be deduced from the Boolean Prime Ideal Theorem.

Chapter 6 explores properties of free abelian groups that are similar to those considered

in chapter 5. However, the commutative setting requires new ideas and different proofs.

Using representative functions, we deduce the Axiom of Choice for pairs from the abelian

version of the Nielsen–Schreier theorem. This implication is shown to be strict by proving

that it doesn’t follow from the Boolean Prime Ideal Theorem. We end with a section on

potential applications to vector spaces.

4



5

Contents

1 Preliminaries 7

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Free groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Free abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Choice principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Fraenkel–Mostowski models 16

2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Two models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 A transfer theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The size of bases 27

3.1 Bases of isomorphic free groups . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Bases of equipollent free groups . . . . . . . . . . . . . . . . . . . . . . . 31



6

4 Nielsen–Schreier 34

4.1 Schreier graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 A proof of the Nielsen–Schreier theorem . . . . . . . . . . . . . . . . . . 38

4.3 Classifying Schreier graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Nielsen–Schreier and the Axiom of Choice 46

5.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 The use of the Axiom of Choice . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Does Nielsen–Schreier imply the Axiom of Choice? . . . . . . . . . . . . 52

5.4 Nielsen–Schreier implies the finite Axiom of Choice . . . . . . . . . . . . 56

5.5 Nielsen–Schreier doesn’t follow from the Prime Ideal Theorem . . . . . . 63

5.6 Reduced Nielsen–Schreier implies the Axiom of Choice . . . . . . . . . . 66

6 Free abelian groups 74

6.1 Abelian Nielsen–Schreier implies AC2 . . . . . . . . . . . . . . . . . . . . 75

6.2 The implication is strict . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 More on representative functions . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 86



7

Chapter 1

Preliminaries

1.1 Introduction

The Axiom of Choice was formulated in 1904 by Zermelo [41] in order to prove the

well-ordering theorem. It is the only axiom of set theory that asserts the existence of a

set without also defining it. Although it was disputed in its early days, it is now a well

established axiom of set theory. In 1964, Mendelson [32] (p. 201) wrote:

The status of the Axiom of Choice has become less controversial in recent

years. To most mathematicians it seems quite plausible and it has so many

important applications in practically all branches of mathematics that not to

accept it would seem to be a wilful hobbling of the practicing mathematician.

The controversy has led to the Axiom of Choice occupying a distinguished position

among the axioms of Zermelo–Fraenkel set theory with Choice (ZFC). As many general

and powerful theorems are among its consequences, its use in proofs of such results has

been studied. Theorems of ZFC can be viewed as choice principles ordered by implication

over Zermelo–Fraenkel set theory (ZF), i.e. φ ≥ ψ iff ZF ` φ ⇒ ψ. This gives rise to

a hierarchy of statements which is the subject of several reference books – including
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Howard and Rubin [19], Herrlich [14], and Jech [22] – and the numerous papers cited in

them.

One choice principle that stands out is the Nielsen–Schreier theorem, which states that

subgroups of free groups are free. Although the theorem is elegant and simple to state,

little is known about its deductive strength. No progress has been made on this problem

since the 1980s (Howard [16], Howard [17]). This gap in our knowledge is the starting

point of this dissertation. We will improve the known results and prove some new

theorems about subgroups of free groups and the Axiom of Choice.

The relation between bases of vector spaces and the Axiom of Choice has been studied

in many articles. Vector spaces share some properties with free groups, and free abelian

groups act as a bridge between them. This allows an exchange of questions and solutions

to take place between free groups and vector spaces. We will analyse the notion of

dimension, which is important in linear algebra, in the new context of free groups.

In the last chapter, we also translate the technique of using representative functions,

originally developed for free groups, to the new context of free abelian groups.

In the remainder of this chapter we give definitions, fix conventions, and review some

basic results. Section 1.2 describes the set theories ZF and ZFA and introduces some

notation. In section 1.3 we define free groups and review some of their elementary

properties. Free abelian groups are defined in section 1.4. In this thesis we investigate

the relationship between free groups and the Axiom of Choice. A list of choice principles

considered in later chapters is given in section 1.5.

1.2 Sets

We shall be working with two different kinds of set theory: The usual Zermelo-Fraenkel

set theory with the Axiom of Choice (ZFC) or without it (ZF), and set theory with atoms

(ZFA). The following list of ZF-axioms is taken from chapter 1 of Jech’s textbook [21].

1. Axiom of Extensionality. If X and Y have the same elements, then X = Y .
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2. Axiom of Pairing. For any a and b there exists a set {a, b} that contains exactly

a and b.

3. Axiom Schema of Separation. If P is a property (with parameter p), then for any

X and p there exists a set Y = {u ∈ X : P (u, p)} that contains all those u ∈ X

that have property P .

4. Axiom of Union. For any X there exists a set Y =
⋃
X, the union of all elements

of X.

5. Axiom of Power Set. For any X there exists a set Y = P(X), the set of all subsets

of X.

6. Axiom of Infinity. There exists an infinite set.

7. Axiom Schema of Replacement. If a class F is a function, then for any X there

exists a set Y = F (X) = {F (x) : x ∈ X}.

8. Axiom of Regularity. Every nonempty set has an ∈-minimal element.

Adding the Axiom of Choice, we obtain ZFC:

Axiom of Choice. Every family of nonempty sets has a choice function.

ZFA is a close relative of ZF. It differs in that it allows for a set of atoms. In essence,

an atom is an empty object that is indistinguishable from other atoms. In addition to

the binary relation symbol ∈, ZFA has two constant symbols: A for the set of atoms,

and ∅ for the empty set. The axioms of ZFA are the same as those of ZF, except for the

following changes:

We say that x is a set if x 6∈ A, and that x is an atom if x ∈ A. The

ZF-axioms of Extensionality and Regularity are weakened to apply to sets

only:



10 Preliminaries

1. Axiom of Extensionality. If X and Y are two sets with the same ele-

ments, then X = Y .

8. Axiom of Regularity. Every nonempty set has an ε-minimal element.

And there are two new axioms:

9. ∅ has no members.

10. Atoms have no members.

Ordered pairs are written in angle brackets: 〈x, y〉. They are taken to be Kuratowski

ordered pairs, i.e. 〈x, y〉 = {{x}, {x, y}}. Ordered n-tuples are also written in angle

brackets: 〈x1, ..., xn〉. They are inductively defined by 〈x1, ..., xn〉 = 〈x1, 〈x2, ..., xn〉〉.

Functions f : X → Y are implemented as subsets of X × Y . Given the function f , we

may choose to apply it to subsets of X instead of elements of X: We define, for any

A ⊆ X,

f“A = {f(a) : a ∈ A}.

If A ⊆ X, then the restriction of f to A is f |A : A→ Y : a 7→ f(a).

Let X be a set. The cardinality of X is written |X|. An aleph is the cardinality of a well-

ordered set. The Hartogs aleph of X, written ℵ(X) is the least aleph with ℵ(X) 6≤ |X|.

The von Neumann hierarchy is defined by

V0 = ∅

Vα+1 = P(Vα)

Vλ =
⋃
α<λ

Vα for λ a non-zero limit ordinal

We can overload the Vα as an operation on sets. If X is a set, then we let

V0(X) = X

Vα+1(X) = P(Vα(X)) ∪ Vα(X)

Vλ(X) =
⋃
α<λ

Vα(X) for λ a non-zero limit ordinal
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1.3 Free groups

Let X be any set. Before defining the free group F(X) on X, we must introduce some

vocabulary.

Definition 1.1. X−1 = {x−1 : x ∈ X} is a set of formal inverses of members of X. X−1

is always assumed to be disjoint from X. For brevity, we write X± for X ∪X−1.

Elements of X± are X-letters.

X-words are products x1 · · ·xn, where n ≥ 0 and xi ∈ X± for i = 1, ..., n. Sometimes it

is more convenient to write them as xε11 · · ·xεnn , where n ≥ 0, and, for i = 1, ..., n, xi ∈ X

and εi ∈ {1,−1}. They are implemented as finite sequences 〈x1, ..., xn〉 of elements of

X±.

The process of removing a pair xεx−ε from the X-word xε11 · · ·xεx−ε · · ·xεnn is called

cancellation.

An X-word is X-reduced if no cancellation is possible.

The X-reduction of an X-word α is the result of performing all possible cancellations in

α. It is independent of the order in which the cancellations are performed.

Two X-words are equivalent if they have the same X-reductions.

The X-length of an X-word α, written `X(α) is the number of letters in the X-reduction

of α.

When there is no danger of confusion, we may omit references to X.

Definition 1.2. The free group F(X) consists of the set of all reduced X-words, together

with a binary operation ∗ defined to be concatenation followed by X-reduction. The

identity element of F(X) is the empty word, written 1.

This means that, if α = x1 · · · xn and β = y1 · · · ym are reducedX-words with xi, yi ∈ X±,

then α∗β is the X-reduction of x1 · · ·xny1 · · · ym. For notational simplicity we often don’t
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make a distinction between an X-word and its X-reduction, and we may colloquially take

F(X) to be the set of all X-words together with the binary operation of concatenation.

Definition 1.3. Let F be a group. F is a free group if there is X ⊆ F such that

F ∼= F(X). If this is the case, we say that F is free on X, and that X is a basis for F .

This means that a group F is free if there is X ⊆ F such that every element α ∈ F can

be written as a unique reduced product x1 · · · xn of X-letters.

Free groups are characterised by a universal property: Let F be a free group with basis

X. If G is a group and f : X → G is any function, then f has a unique extension to a

homomorphism φ : F → G, defined by:

φ : F → G : xε11 · · ·xεnn 7→ f(x1)ε1 · · · f(xn)εn .

Definition 1.4. If G is a group and X ⊆ G, then X is said to be free if there are no

non-trivial relations between members of X. This means that, if x1 · · ·xn is a reduced

product of X-letters, and x1 · · ·xn = 1, then n = 0.

Let F be a free group. It is straightforward to check that X ⊆ F is a basis (as defined

in definition 1.3) if and only if it is a free generating set of F .

A fundamental result in the theory of free groups is the Nielsen–Schreier theorem. It

states that subgroups of free groups are themselves free. The theorem was first proved

in the finitely generated case by Nielsen [34]. Schreier [39] later used a different method

to prove the general case. English versions of both proofs can be found in chapters 2

and 3 of Johnson’s book [25].

Theorem 1.5 (Nielsen–Schreier). If F is a free group and H is a subgroup of F , then

H is a free group.
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1.4 Free abelian groups

Definition 1.6. Let X be a set. The free abelian group on X, written FA(X), is the

quotient of the free group on X by its commutator subgroup. In other words,

FA(X) = F(X)/〈{αβα−1β−1 : α, β ∈ F(X)}〉.

The process of taking the quotient of a group by its commutator subgroup is called

abelianisation.

We use additive notation for abelian groups. So every α ∈ FA(X) may be written as a

finite sum

α = n1x1 + ...+ nkxk,

where k ≥ 0, the x1, ..., xk ∈ X are distinct, and n1, ..., nk ∈ Z \ {0}. This expression is

unique up to the ordering of its terms.

Definition 1.7. If F = FA(X) is a free abelian group and B ⊆ F , then B is a basis

of F if every α ∈ F can be uniquely written as a finite sum α = n1b1 + ... + nkbk with

k ≥ 0, b1, ..., bk ∈ B distinct, and n1, ..., nk ∈ Z \ {0}.

Free abelian groups enjoy a similar universal property to free groups. Let F = FA(X)

be a free abelian group, and let A be any abelian group. If f : X → A is any function,

then f has a unique extension to a group homomorphism

φ : F → A :
∑

nixi 7→
∑

nif(xi).

1.5 Choice principles

In the following chapters, we will investigate the relationship between the Axiom of

Choice, the Nielsen–Schreier theorem, and several related theorems. First, we list the

well-known set theoretic choice principles.
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AC (Axiom of Choice): For any family {Xi : i ∈ I} of non-empty sets there is a function

which assigns, to each i ∈ I, a single element of Xi.

BPIT (Boolean Prime Ideal Theorem): Every boolean algebra has a prime ideal.

ACfin (Axiom of Finite Choice): For any family {Xi : i ∈ I} of non-empty finite sets

there is a function which assigns, to each i ∈ I, a single element of Xi.

ACn (Axiom of Choice for n-element sets): For any family {Xi : i ∈ I} of n-element

sets there is a function which assigns, to each i ∈ I, a single element of Xi.

These statements have been studied in depth, and their relative strengths (in ZF) are

known – see figure 1.1 below. We will also meet the following algebraic choice principles.

Their deductive strengths are largely unexplored. Determining them is the subject of

this dissertation.

NS (Nielsen–Schreier): If F is any free group and K ≤ F is any subgroup, then K is a

free group.

NSnorm (Nielsen–Schreier for normal subgroups): If F is any free group and K ≤ F is a

normal subgroup, then K is a free group.

NSred (reduced Nielsen–Schreier): If F is the free group on a set X and K ≤ F is any

subgroup, then K has a basis that is reduced with respect to X. (For a definition of

reduced bases, see section 5.6.)

NSab (Nielsen–Schreier for abelian groups): If F is a free abelian group and K ≤ F is a

subgroup, then K is a free abelian group.

CB1 (Cardinality of bases, version 1): F(X) ∼= F(Y ) ⇒ |X| = |Y | for any sets X and

Y .

CB2 (Cardinality of bases, version 2): |F(X)| = |F(Y )| ⇒ |X| = |Y | for infinite sets X

and Y .

Figure 1.1 summarises the main results of this thesis. Double-headed arrows represent
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equivalences, and the remaining solid arrows stand for strict implications. Implications

that may be equivalences appear as dashed arrows. The unlabelled arrows are taken

from diagram 2.21 of Herrlich [14].

CB2 AC NSred

BPIT

NS

CB1 NSnorm

ACfin

AC2

NSab

thm 3.10

prop 3.1(ii)

cor 5.24

prop 5.19

thm 4.11

clear

prop 5.13

cor 5.17

thm 3.7

prop 6.2

prop 6.5

cor 6.11

Figure 1.1: Implications between Choice principles
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Chapter 2

Fraenkel–Mostowski models

We now turn to a procedure for proving independence results concerning the Axiom of

Choice, which was developed by A. Fraenkel and A. Mostowski. The purpose of the

method is to produce new models of set theory from old ones, and to control the be-

haviour of the new models by choosing suitable parameters. It later inspired P. Cohen’s

proof ([3], [4]) of the independence of the Axiom of Choice from ZF by constructing a

symmetric submodel of a generic extension of a given model of ZFC.

In section 2.1 we define Fraenkel–Mostowski models. After going through a sample

application of Fraenkel–Mostowski models in section 2.2, two new models are introduced

in section 2.3, and we explore some of their basic properties. Section 2.4 concludes the

chapter by introducing a theorem which allows us to easily transfer statements from ZFA

to ZF.

2.1 Setup

A Fraenkel–Mostowski model M is constructed as a substructure of a given model N of

set theory. M consists of those sets in N that are sufficiently symmetric under a specified

group of automorphisms of N. This automorphism group controls the properties of M.

Since there are no non-trivial ∈-automorphsims for ZF-models, the Fraenkel–Mostowski
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method uses models of ZFA instead.

So let N be a model of ZFA+AC with universe V and set A of atoms. ∈-automorphisms

of V are obtained by letting π be any permutation of A, and extending π to all of V by

setting

π(x) = π“x

for any x ∈ V . We will always identify permutations of A with their canonical extensions

to V . Let G ∈ N be any group of permutations of A, viewed as automorphisms of N.

Definition 2.1. If x ∈ V , then

orb(x) = {π(x) : π ∈ G} ⊆ V

is the orbit of x,

stab(x) = {π ∈ G : π(x) = x} ≤ G

is the (setwise) stabiliser of x, and

fix(x) = {π ∈ G : (∀y ∈ x)π(y) = y} ≤ G

is the (pointwise) stabiliser of x.

It is easily verified that fix(x) ≤ stab(x) for any set x. But equality needn’t hold, as

there might be elements of G which permute the members of x without moving x itself.

Before defining Fraenkel–Mostowski models, we need to introduce another parameter of

the construction:

Definition 2.2. A set F of subgroups of G is a normal filter if

1. G ∈ F ,

2. (∀H,K ≤ G) (H ∈ F ∧H ≤ K ⇒ K ∈ F),

3. (∀H,K ∈ F) H ∩K ∈ F ,

4. (∀π ∈ G) (∀H ∈ F) πHπ−1 ∈ F ,
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5. (∀a ∈ A) stab(a) ∈ F .

Definition 2.3. Let x ∈ V . x is F-symmetric if stab(x) ∈ F , and it is hereditarily

F-symmetric if x is F -symmetric and all members of the transitive closure of x are

F -symmetric. We will omit the reference to F if it is clear from the context.

As normal filters are upward closed, members of a normal filter F can be thought of

as ‘large’ subgroups of G. Hence the name symmetric: a set x is symmetric if it has a

‘large’ stabiliser, i.e. if it is left unchanged by ‘most’ permutations in G.

Definition 2.4. Given a set A of atoms, a group G of permutations of A, and a normal

filter F of subgroups of G, define the substructure M ≤ N to consist of all hereditarily

symmetric sets of V , with the ∈-relation restricted from N. M is called the Fraenkel–

Mostowski model with respect to A, G, and F .

The next theorem states that Fraenkel–Mostowski models are models of ZFA.

Theorem 2.5 (Jech [22], page 46). M |= ZFA.

We now introduce the notion of pure, or atomless, sets. As they don’t involve any

atoms, we expect them to behave like ZF-sets. And indeed, the collection of all pure

sets constitutes a model of ZF. Objects such as the ordinals or the real numbers, are

implemented as pure sets in ZFA.

Definition 2.6. A set x ∈ N is pure if it is not an atom and its transitive closure

contains no atoms. The collection of all pure sets is the kernel of N.

Notice that, as pure sets don’t involve atoms that could be moved by members of G,

each pure set is fixed by all permutations of the atoms. Hence stab(x) = G ∈ F for any

pure set x and any normal filter F . So the kernel of a Fraenkel–Mostowski model M is

always the same as the kernel of its parent model N.

It may not be entirely clear how to produce a normal filter F of subgroups of G. The

easiest way of doing this is to define a normal ideal I of subsets of A and to take F to

be the filter induced by I. This method is used for all models discussed in this thesis.
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Definition 2.7. A set I of subsets of A is a normal ideal if

1. ∅ ∈ I

2. (∀E,F ⊆ A) (E ∈ I ∧ F ⊆ E ⇒ F ∈ I)

3. (∀E,F ∈ I) E ∪ F ∈ I

4. (∀π ∈ G) (∀E ∈ I) π“E ∈ I

5. (∀a ∈ A) {a} ∈ I

Corresponding to the intuition that members of a normal filter F are ‘large’, we may

think of members of a normal ideal as ‘small’ sets of atoms.

Normal ideals of subsets of A are easy to find. The smallest possible normal ideal

is I = {E ⊆ A : E is finite}, the finite ideal. This is the most common choice for

Fraenkel–Mostowski models.

Definition 2.8. Every normal ideal I of subsets of A induces a filter F of subgroups

of G, defined by {H ≤ G : (∃E ∈ I) fix(E) ≤ H}.

It is easy to check that F is a normal filter. A description of the induced filter in terms

of supports is useful:

Definition 2.9. If E ⊆ A and x ∈M, then E is a support for x if fix(E) ≤ stab(x).

In other words, E is a support for x if every permutation π ∈ G fixing all points of

E satisfies π(x) = x. Supports capture information about the atoms in the transitive

closure of x which are responsible for the asymmetry of x. For example, pure sets –

which are fixed under all possible permutations of the atoms – have an empty support.

It is important to note that supports, if they exist, are in general not unique.
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Observe that

x is symmetric ⇔ stab(x) ∈ F

⇔ (∃E ∈ I) fix(E) ≤ stab(x)

⇔ x has a support in I.

This means that a set x ∈ N is in the Fraenkel–Mostowski model M if and only if x and

all members of the transitive closure of x have supports in I.

We are now ready to see an important Fraenkel–Mostowski model, and to prove a basic

independence result. A large catalogue of Fraenkel–Mostowski models and their prop-

erties is in Howard and Rubin [19].

2.2 An example

In this section, we review an example from H. Läuchli’s influential paper [31]. It illus-

trates how the Fraenkel–Mostowski method is used to obtain independence results in set

theory, and it foreshadows some proofs that we will encounter later in the text. First,

we introduce the model M, called Fraenkel’s basic model. It is the simplest non-trivial

Fraenkel–Mostowski model. The three parameters are

(a) a countably infinite set A of atoms,

(b) the full symmetry group G = Sym(A) of A, and

(c) the normal filter F of subgroups of G induced by the finite ideal on A.

We now present H. Läuchli’s proof that there is a free group in M with a subgroup that

is not free. In section 5.5 we give a more refined argument to show that the Nielsen-

Schreier theorem fails in a Fraenkel–Mostowski model satisfying the Boolean Prime Ideal

Theorem.

Theorem 2.10 (Läuchli [31]). M |= ¬NS.
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Proof. Let F = F(A) be the free group generated by A in M. We will show that the

commutator subgroup

K = 〈{αβα−1β−1 : α, β ∈ F}〉 ≤ F

is not free. If it is, then there is a basis B ∈M with a (necessarily finite) support E ⊆ A.

We will derive a contradiction.

Let u, v ∈ A \ E be distinct, and let α = uvu−1v−1 ∈ K. If φ ∈ G is the transposition

(uv), then φ(α) = φ(u)φ(v)φ(u)−1φ(v)−1 = vuv−1u−1 = α−1, and φ(B) = B because

u, v 6∈ E. Writing α = b1 · · · bn as a reduced product of elements of B±, we deduce that

φ(b1) · · ·φ(bn) = b−1
n · · · b−1

1 , i.e. that

φ(bn) = b−1
1 , φ(bn−1) = b−1

2 , ..., φ(b1) = b−1
n . (2.1)

As no bi ∈ B± is equal to its own inverse, n = 2k must be even. This allows us to define

β = b1 · · · bk as the ‘first half’ of α. Since β is a product of elements of B±, β ∈ K.

Write β = a1 · · · am as a reduced A-word, with a1, ..., am ∈ A±. Then

a1 · · · amφ(am)−1 · · ·φ(a1)−1 = βφ(β)−1

= b1 · · · bkφ(bk)
−1 · · ·φ(b1)−1

= b1 · · · bkbk+1 · · · bn (by (2.1))

= α

= uvu−1v−1.

We conclude that

a1 = u, a2 = v, φ(a3) = a3, ..., φ(am) = am.

As a3, ..., am are fixed by φ, none of them can be equal to u or v. Hence the sum of

the exponents of the letter u in β = a1 · · · am is 1, contradicting the choice of β as an

element of the commutator subgroup of F .

Hence every proof of the Nielsen–Schreier theorem in ZFA must use a fragment of the

Axiom of Choice. In section 2.4 we will see how this result can be transferred from ZFA

to the standard set theory ZF.
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The idea of splitting α and writing it as a product of its two halves is critical. It

will be a recurring theme in chapter 5, even in sections that have nothing to do with

Fraenkel–Mostowski models.

2.3 Two models

The Dawson–Howard model

The Dawson–Howard model is a close relative of the well studied cousin, Mostowski’s

ordered model (see Jech [22], section 4.5). It was introduced by Dawson and Howard

[6] and is called N 29 in Howard and Rubin [19]. The three parameters A, G, and F are

defined as follows:

(a) Let {〈Ai, <i〉 : i < ω} be a collection of pairwise disjoint linearly ordered sets, each

isomorphic to 〈Q, <〉. The set of atoms is A =
⋃
i<ω Ai.

(b) G consists of all permutations π of A such that π|Ai ∈ Aut(〈Ai, <i〉) for all i < ω.

(c) F is induced by the finite ideal.

Howard and Rubin [19] (p. 312 - 313) prove that

Theorem 2.11 (Howard and Rubin [19]). BPIT is true in the Dawson–Howard model.

We will see later that both NS and NSab fail in the Dawson–Howard model. Hence

neither of these choice principles is deducible in ZFA from BPIT. In particular, NS and

NSab are not theorems of ZFA. The transfer theorem described in section 2.4 will be

used to obtain the same results for ZF.
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Van Douwen’s model

Van Douwen’s model is the same as the Howard-Dawson model, except that the linear

ordering of the Ai is discrete. It was introduced by van Douwen [40], and it is denoted

by N 2(LO) in Howard and Rubin [19]. The three parameters are defined by:

(a) Let {〈Ai, <i〉 : i < ω} be a collection of pairwise disjoint linearly ordered sets, each

isomorphic to 〈Z, <〉. The set of atoms is A =
⋃
i<ω Ai.

(b) G consists of all permutations π of A such that π|Ai ∈ Aut(〈Ai, <i〉) for all i < ω.

(c) F is induced by the finite ideal.

We prove some elementary properties that will be useful later.

Lemma 2.12.

(i) A can be linearly ordered in van Douwen’s model.

(ii) The family {Ai : i < ω} doesn’t have a choice function.

Proof.

(i) Define a linear order < on A by

a < b⇔

a, b ∈ Ai and a <i b for some i < ω, or

a ∈ Ai and b ∈ Aj for some i < j < ω

All elements of G preserve <, so it has empty support.

(ii) As every π ∈ G fixes each Ai setwise, all of the Ai are sets in the model, with empty

support. Hence {Ai : i < ω} is a set of the model, also with empty support.

Now suppose C ⊆ A intersects each Ai in a single point and has a finite support

E ⊆ A. Let i < ω be such that Ai ∩ E = ∅, and let π ∈ fix(E) act non-trivially
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on Ai. Since π ∈ fix(E), it maps C to itself. If we let a be the single member of

C ∩ Ai, then we have

π(C) = C ⇒ π(a) ∈ C

⇒ π(a) = a,

because π maps Ai to itself. Hence a ∈ Ai is fixed by π, contrary to the assumption

that π acts non-trivially on Ai. Thus E isn’t a support for C, so C isn’t a set of

the model.

2.4 A transfer theorem

When proving properties of Fraenkel–Mostowski models, we obtain consistency and in-

dependence results for the set theory ZFA. However, as ZF (with or without AC) is the

most wide spread set theory, it would be desirable to prove such results for ZF. This mo-

tivates us to seek a class of statements that can be transferred from Fraenkel–Mostowski

models to ZF-models.

Definition 2.13 (Pincus [35]). A sentence Φ of set theory is transferable if there is a

metatheorem: If Φ is true in a Fraenkel–Mostowski model, then Φ is consistent with ZF

Not every sentence is transferable. For instance, the statement ‘there are at least two

empty objects’ is true in some Fraenkel–Mostowski models, whereas it fails in all ZF-

models.

A more subtle example is the Antichain Principle AP – every poset has a maximal

antichain. Halpern [12] constructed a Fraenkel–Mostowski model satisfying AP ∧ ¬AC,

showing that the Axiom of Choice is not equivalent to the Antichain Principle in ZFA.

However, AP is equivalent to the Axiom of Choice in ZF (see Herrlich [14], p. 11). More

examples of non-transferable statements can be found in Howard’s publication [15].
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Despite these obstructions, large classes of transferable statements have been found by

Jech and Sochor [24] and Pincus [35]. Theorem 2.17 at the end of this section lists some

of them.

Standard proofs of the independence of the Axiom of Choice from ZF – for example,

the proof given in Jech’s book [22] – extract a symmetric submodel from a generic

extension of a ZFC-model. The process is similar to constructing Fraenkel–Mostowski

models, which are symmetric submodels of a ZFA-model. This is more than a superficial

resemblance. Indeed, the approach taken by Jech and Sochor [24] embeds Fraenkel–

Mostowski models in symmetric submodels of generic extensions of ZFC-models.

It was observed that sets of sets of ordinals in a ZF-model have so little internal structure

that they can be used to approximate ZFA-atoms. Using this embedding technique, many

independence results in ZFA can be transferred directly to ZF, as was done by Jech and

Sochor [23] and Pincus [35].

Definition 2.14 (Pincus [35], simplified). Let x = 〈x1, ..., xn〉 be a tuple of variables.

A formula φ(x) is boundable if, for some absolutely definable ordinal α,

ZFA ` φ(x)⇔ φVα(
⋃

x)(x),

where
⋃

x stands for x1∪ ...∪xn. A sentence Φ is boundable if it is the existential closure

of a boundable formula.

Example 2.15. 〈F,1, ∗〉 is a free group on X can be written as

φ(F,1, ∗, X) = (∃f) (f : F → F(X) is an isomorphism).

We have F (X) ∈ Vω+1(X). In order to determine whether or not there is an isomorphism

F → F(X), it suffices to check, for each member of P3(F ∪ F(X)), if it is a bijection

and preserves the group operation ∗. Hence

ZFA ` φ(F,1, ∗, X)⇔ φVω+4(F∪1∪∗∪X)(F,1, ∗, X),

and φ is a boundable formula. Similarly, 〈F,1, ∗〉 is a free group, written as

ψ(F,1, ∗) = (∃X ∈ P(F ))φ(F,1, ∗, X)

is bounded by Vω+4(F ∪ 1 ∪ ∗).
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Example 2.16. ¬NS may be written as (∃〈F,1, ∗〉)(∃X)(∃K)χ(F,1, ∗, X,K), where

χ(F,1, ∗, X,K) =(X ∈ P(F ) ∧ 〈F,1, ∗〉 is a free group on X)

∧ (〈K,1, ∗|K〉 is a subgroup of 〈F,1, ∗〉)

∧ (〈K,1, ∗|K〉 is not a free group)

We saw in example 2.15 that X ∈ P(F ) ∧ 〈F,1, ∗〉 is a free group on X is bounded

by Vω+4(F ∪ 1 ∪ ∗ ∪X). Similarly, 〈K,1, ∗|K〉 is a subgroup of 〈F,1, ∗〉 is bounded by

V1(K ∪ F ∪ 1 ∪ ∗), and 〈K,1, ∗|K〉 is not a free group is bounded by Vω+4(K,1, ∗|K).

Hence ¬NS is bounded by Vω+4(F ∪ 1 ∪ ∗ ∪X ∪K).

Usually, the negation of a Choice Principle is boundable, because its failure is witnessed

by some set. For example, in order to show that AC fails, it suffices to find one family

of non-empty sets with no choice function, and to show that NS fails, we only need one

free group with a non-free subgroup. On the other hand, it is easy to see that choice

principles such as NS or AC are not boundable, as they make a statement about all sets

of a certain type, regardless of their size. In other words, they cannot be verified by

looking at an initial segment Vα(A) of the universe.

Pincus [36] gave a list of transferable statements, among which are all boundable sen-

tences. The introduction of Pincus’ article [37] states that – among other choice princi-

ples – BPIT can be added to this list. The following version of the theorem suffices for

our purposes.

Theorem 2.17 (Transfer Theorem, Pincus [36], Pincus [37]). If Φ is a conjunction of

any of the following types of sentences

1. boundable sentences,

2. BPIT,

then Φ is transferable.
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Chapter 3

The size of bases

The concept of the dimension of a vector space is based on the fact that any two bases

of a vector space have the same cardinality in ZFC. However, Halpern [11] showed that

this fact is not equivalent to the Axiom of Choice by deducing it from the Boolean Prime

Ideal Theorem. Howard [16] asked whether the same is true for free groups. We will

show that the answer is yes. In this section we shall investigate the following two choice

principles.

CB1 (Cardinality of bases, version 1): F(X) ∼= F(Y ) ⇒ |X| = |Y | for any sets X and

Y .

CB2 (Cardinality of bases, version 2): |F(X)| = |F(Y )| ⇒ |X| = |Y | for infinite sets X

and Y .

Proposition 3.1.

(i) ZFC ` CB1.

(ii) ZFC ` CB2.

Proof.

(i) A proof can be found on page 3 of Johnson’s book [25].
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(ii) By the Axiom of Choice |F(X)| = |X| for any infinite set X. The result follows

immediately.

We will show that the CB1 is not equivalent to the Axiom of Choice, whereas CB2

is equivalent to the Axiom of Choice. The results in sections 3.1 and 3.2 have been

published by Kleppmann [27].

First, let us see what is true in the absence of the Axiom of Choice.

Proposition 3.2. Let F1, F2 be free groups. Then F1
∼= F2 if and only if there is a basis

X1 of F1 and a basis X2 of F2 with |X1| = |X2|.

Proof.

⇒ Let φ : F1 → F2 be an isomorphism, and letX1 be any basis of F1. Then φ“X1 ⊆ F2

is a basis of F2 which has the same size as X1.

⇐ Let f : X1 → X2 be a bijection. This can be viewed as an injection X1 ↪→ F2, so it

has a unique extension to a homomorphism φ : F1 → F2 by the universal property

of free groups. It is easily verified that φ is an isomorphism.

3.1 Bases of isomorphic free groups

We show here that CB1 is not equivalent to the Axiom of Choice. This will be done

by deducing CB1 from the Boolean Prime Ideal Theorem. In order to prove our result,

we need to state two well known theorems. The first one is a direct consequence of the

Structure Theorem for finitely generated modules over a principal ideal domain.



3.1 Bases of isomorphic free groups 29

Theorem 3.3 (Cohn [5], page 316). If M is a finitely generated module of rank m over

a principal ideal domain R, and N ≤ M is an R-submodule of M , then N is finitely

generated of rank n ≤ m.

We only need a special case of this theorem. As every abelian group can be naturally

viewed as a Z-module, and Z is a principal ideal domain, we have:

Theorem 3.4. If F is a free abelian group of finite rank m, and K ≤ F is a subgroup,

then K has rank ≤ m.

The second theorem is an infinite version of P. Hall’s Marriage Theorem [10]:

Theorem 3.5 (M. Hall [9], page 45). Let F = {Si : i ∈ I} be a family of non-empty

finite sets. The following are equivalent:

1. There is an injection c : I →
⋃
F satisfying (∀i ∈ I) c(i) ∈ Si.

2. |
⋃k
j=1 Sij | ≥ k for any choice i1, ..., ik of finitely many indices in I.

Halpern [11] showed that Theorem 3.5 is a consequence of BPIT in ZF set theory.

Definition 3.6. Let X be a set, F = FA(X), and α ∈ F . Write α as n1x1 + ...+ nkxk,

where x1, ..., xk ∈ X are distinct and n1, ..., nk are non-zero integers. The set of X-

components of α is CX(α) = {x1, ..., xk}.

Theorem 3.7. ZF ` BPIT⇒ CB1.

Proof. Let

F(X) ∼= F(Y ) (3.1)

be isomorphic free groups. We want to show that |X| = |Y |. Abelianising both sides of

(3.1), we obtain

FA(X) ∼= FA(Y ).
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Without loss of generality we reduce to the notationally simpler case of one free abelian

group F with two bases X and Y . So each y ∈ Y may be written uniquely as

y = n1x1 + ...+ nkxk, (3.2)

where x1, ..., xk ∈ X are distinct and n1, ..., nk are non-zero integers.

Claim. The union of any k of the CX(y) has size ≥ k.

Let y1, ..., yk ∈ Y be distinct, and let K be the subgroup of F generated by

{y1, ..., yk}. Note that the rank of K is k because {y1, ..., yk} ⊆ Y is free.

Let C =
⋃k
i=1 CX(yi) ⊆ X, and let H be the subgroup of F generated by C.

As above, the rank of H is |C| because C ⊆ X is free. By definition, K ≤ H,

so k ≤ |C| using theorem 3.4.

Applying theorem 3.5, we conclude that there is an injection c : Y →
⋃
{CX(y) : y ∈ Y }

satisfying (∀y ∈ Y ) c(y) ∈ CX(y). As each CX(y) is a subset of X, this is an injection

Y → X.

An injection X → Y is obtained by swapping Xs and Y s in the proof. By the Schröder-

Bernstein theorem, |X| = |Y |.

Howard [18] asked the following question:

Question. Is CB1 provable without any form of the Axiom of Choice?

The answer is unknown. However, a construction by Läuchli [31] may be relevant here.

He defines a Fraenkel–Mostowski model with a vector space that has two bases of differ-

ent cardinalities. If a similar construction for free abelian groups can be made to work,

then the transfer theorem would imply that the answer to this question is no.
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3.2 Bases of equipollent free groups

In this section we will show that CB2 is equivalent to the Axiom of Choice. We have

already seen that CB2 follows from AC.

In order to prove ZF ` CB2 ⇒ AC, we will need two lemmas. The first one identifies a

condition for cardinals to be well-ordered, and the second is an estimate of the cardinality

of F(X) in terms of the cardinality of X.

Lemma 3.8 (Jech [22], page 157). If p is an infinite cardinal and ℵ is an aleph, and if

p + ℵ = p · ℵ, then either p ≥ ℵ or p ≤ ℵ. In particular, if p + ℵ(p) = p · ℵ(p), then p is

an aleph.

Lemma 3.9. Let X be any set. Then

∑
n<ω

|X|n ≤ |F(X)| ≤
∑
n<ω

(2|X|)n.

Proof. Define two injections as follows:

⋃
n<ω

Xn ↪→ F(X) : 〈x1, ..., xn〉 7→ x1 · · ·xn

F(X) ↪→
⋃
n<ω

(X±)n : xε11 · · ·xεnn 7→ 〈x
ε1
1 , ..., x

εn
n 〉,

Theorem 3.10. ZF ` CB2 ⇒ AC.

Proof. To simplify notation, we write F(c) for |F(X)| when X is a set with |X| = c.

Let p be any infinite cardinal. We will show that p is an aleph. Since p ≤ pℵ0 , it

suffices to prove that q = pℵ0 is an aleph. This will be done by showing that q+ ℵ(q) =

q · ℵ(q) and applying lemma 3.8. Since we are assuming CB2, it suffices to show that

F(q + ℵ(q)) = F(q · ℵ(q)).

Claim. F(q · ℵ(q)) = q · ℵ(q) = F(q + ℵ(q)).
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For the following calculations, we first note that, for any cardinals a and b

satisfying 0 < a ≤ ℵ0 and 0 < b < ℵ0,

(aqℵ(q))b = qb · (a · ℵ(q))b

= q · ℵ(q)b

= qℵ(q),

(3.3)

The first equality of the claim follows from:

qℵ(q) ≤ F(qℵ(q))

≤
∑
n<ω

(2qℵ(q))n (by lemma 3.9)

=
∑
n<ω

qℵ(q) (by (3.3))

≤ ℵ0 · qℵ(q)

= qℵ(q)

For the second equality of the claim, we have:

F(q + ℵ(q)) ≥
∑
n<ω

(q + ℵ(q))n (by lemma 3.9)

≥ (q + ℵ(q))2

= q2 + 2qℵ(q) + ℵ(q)2

≥ qℵ(q)
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and:

F(q + ℵ(q)) ≤
∑
n<ω

(2(q + ℵ(q)))n (by lemma 3.9)

=
∑
n<ω

2n
∑
k≤n

n
k

 qkℵ(q)n−k

=
∑
n<ω

∑
k≤n

2n

n
k

 qℵ(q)

=
∑
n<ω

qℵ(q)

≤ ℵ0 · qℵ(q)

= qℵ(q)

We conclude that:

Corollary 3.11. ZF ` CB2 ⇔ AC.
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Chapter 4

Nielsen–Schreier

In this chapter, we will prove the Nielsen–Schreier theorem. To the best of the author’s

knowledge, this proof doesn’t appear in the literature, although many of its parts are

inspired by various published proofs. The approach taken here uses spanning trees of

Schreier graphs, as in chapter VIII of Bollobás’ book [2]. The advantage of the given

proof is that the use of graphs make it intuitive and easy to picture, while demanding a

minimal amount of prerequisite knowledge.

Schreier graphs are defined in section 4.1, and some examples are given. This prepares

the reader for the proof of the Nielsen–Schreier theorem in section 4.2. Later, in section

4.3, we find easily verified classification criteria for Schreier graphs. These will be useful

when analysing the use of the Axiom of Choice in proofs of the Nielsen–Schreier theorem.

4.1 Schreier graphs

Schreier graphs are graphs that hold information about a free group F , a subgroup

K ≤ F , and the relation between them.

Definition 4.1. A directed graph (or digraph for short) is a pair G = 〈V,E〉 consisting

of a set V of vertices, a set E of edges, together with three functions α : E → V ,
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ω : E → V , and η : E → E satisfying

1. (∀e ∈ E) (η(e) 6= e ∧ η2(e) = e),

2. (∀e ∈ E) (α(η(e)) = ω(e) ∧ ω(η(e)) = α(e)).

α(e) is the inital vertex of e, ω(e) is the terminal vertex of e, and η(e) is the inverse of

e. We also write e−1 for η(e).

Notice that the initial and terminal vertices of an edge may be the same (such edges are

called loops), and that there may be more than one edge between any pair of vertices.

Definition 4.2. Let F = F(X) be a free group, and let K be a subgroup. The Schreier

graph of K ≤ F is a digraph G = 〈V,E〉 with edges labelled by elements of X±. The

vertices of G are the right cosets of K in F :

V = {Kξ : ξ ∈ F}.

Given any two vertices Kξ,Kζ and any letter x ∈ X±, there is an edge labelled x from

Kξ to Kζ if and only if Kξx = Kζ.

Every edge e ∈ E with label x ∈ X± is accompanied by its inverse edge e−1, which has

label x−1. When displaying Schreier graphs, we shall avoid unnecessary visual clutter

by only showing edges with label in X.

Definition 4.3. A digraph is a Schreier graph if it is the Schreier graph of a subgroup

of a free group.

Example 4.4. Let F = F({a, b}) be the free group on two generators, and let C be its

commutator subgroup. The Schreier graph of C ≤ F is shown in figure 4.1.

We now introduce some vocabulary for talking about directed graphs.

Definition 4.5. Let G = 〈V,E〉 be a digraph.
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Figure 4.1: The Schreier graph of the commutator subgroup C of F ({a, b})

A path is a finite sequence p = e1 · · · en of edges such that α(ei+1) = ω(ei) for i =

1, ..., n− 1.

The path p begins at α(p) = α(e1) and ends at ω(p) = ω(en).

If p = e1 · · · en and p′ = e′1 · · · e′m are paths with ω(p) = α(p′), then their composition is

pp′ = e1 · · · ene′1 · · · e′m.

p is a cycle if α(p) = ω(p).

p is reduced if ei+1 6= e−1
i for i = 1, ..., n− 1, i.e. if there is no back-tracking.

The inverse of p is p−1 = e−1
n · · · e−1

1 .

For later reference, we also need the following definitions:

Definition 4.6. A digraph G = 〈V,E〉 is connected if, for any v, w ∈ V , there is a path

in G beginning at v and ending at w.

Definition 4.7. Let G = 〈V,E〉 be a digraph. T = 〈VT , ET 〉 is a spanning tree of G if

VT = V , ET ⊆ E, (∀e ∈ ET ) e−1 ∈ ET , and any two vertices can be joined by a unique

reduced path in T .

For any vertex Kξ and any x ∈ X±, there is one edge labelled x terminating at Kξ
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(the edge coming from Kξx−1) and there is one edge labelled x starting at Kξ (the edge

going to Kξx).

Using this observation, there is a natural interpretation of words x1 · · ·xn with xi ∈ X±

as paths in the Schreier graph starting at the vertex K: For i = 1, ..., n, let ei be the

edge labelled xi starting at Kx1 · · ·xi−1 and ending at Kx1 · · ·xi. Then the path e1 · · · en
starts at K, ends at Kx1 · · ·xn, and the label of ei is xi for each i. To simplify notation,

we will often associate words x1 · · ·xn (xi ∈ X±) with their corresponding paths in the

Schreier graph.

Definition 4.8. Let G = 〈V,E〉 be a digraph, and let v ∈ V be a vertex. The set

of cycles in G based at v can be regarded as a group where the group operation is

concatenation.

We now prove a proposition which allows us translate algebraic statements about sub-

groups of free groups to easily visualised statements concerning cycles in graphs.

Proposition 4.9. Let K be a subgroup of a free group F , and let G be the Schreier

graph of K ≤ F .

(i) The group of cycles in G based at K (the vertex) is isomorphic to K (the group).

(ii) G is connected.

Proof.

(i) Let x1 · · ·xn be a word in F , with xi ∈ X± for all i. Then

x1 · · ·xn ∈ K ⇔ Kx1 · · · xn = K

⇔ the path x1 · · ·xn starting at K is a cycle.

Since composition of paths in the Schreier graph corresponds to composition of

words in the free group, K ≤ F is isomorphic to the group of cycles based at K.
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(ii) The observation before this proposition shows how to construct a path from K to

Kx1 · · ·xn for any x1 · · ·xn ∈ F . So if Kξ and Kζ are two cosets, let p1 be a path

from K to Kξ, and let p2 be a path from K to Kζ. Then p−1
1 p2 is a path from Kξ

to Kζ.

Example 4.10. Recall from example 4.4 the Schreier graph of the commutator subgroup

of F({a, b}). It is clear from figure 4.1 that any finite set of cycles based at C only covers

a bounded area of the Schreier graph. It follows immediately that the commutator

subgroup, unlike the surrounding free group F({a, b}), has no finite generating set.

4.2 A proof of the Nielsen–Schreier theorem

The crucial property of Schreier graphs is part (i) of proposition 4.9. Using this repre-

sentation, we only need to find a particular set B of cycles such that every cycle can be

written uniquely as a product of members of B. Then B is a basis for the subgroup K,

showing that K is free. A spanning tree of the Schreier graph allows us to find B.

Theorem 4.11 (Nielsen–Schreier). If F is a free group and K is a subgroup of F , then

K is a free group.

Proof. Let X be a set, let F = F(X) be the free group on X, and let K ≤ F be a

subgroup.

Using the Axiom of Choice, we find a spanning tree T = 〈VT , ET 〉 of the Schreier graph

G = 〈VG, EG〉 of K ≤ F .

Let e ∈ EG be any edge. Since T is a spanning tree of G, there is a unique reduced path

α(e) in T from K to α(e). Similarly, there is a unique reduced path ω(e) in T from K

to ω(e). We combine the two paths with the chosen edge to form a cycle in the Schreier

graph. This is done using the function λ defined by
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λ : EG → K : e 7→ α(e) · e · ω(e)−1

Note that

λ(e)−1 = ω(e)e−1α(e)−1

= α(e−1)e−1ω(e−1)−1

= λ(e−1)

(4.1)

For the second equality, we used the identities ω(e) = α(e−1) and α(e) = ω(e−1), as well

as the uniqueness of reduced paths in T .

From figure 4.2 we see that λ(e) is an X-reduced word when e ∈ EG \ET , and λ(e) = 1

when e ∈ ET . Now define

B = {λ(e) : e ∈ EG \ ET and e’s label is not in X−}.

We will show that B is a basis for K, implying that K is a free group. There are three

steps.

K

α(e)

e

ω(e)

K

α(e)

e

ω(e)

Figure 4.2: The left diagram shows λ(e) in the case e ∈ EG \ET , and the right diagram

shows λ(e) when e ∈ ET .

1. B ⊆ K:

All of the λ(e) correspond to cycles in the Schreier graph, so they are elements of

K by proposition 4.9(i).

2. 〈B〉 = K:

Choose any ξ ∈ K, and write it as a reduced X-word ξ = xε11 · · ·xεnn , where xi ∈ X

and εi ∈ {1,−1} for i = 1, ..., n. ξ corresponds to a cycle eε11 · · · eεnn based at K in

the Schreier graph, where the label of each edge ei is xi.
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λ(e1)ε1 · · ·λ(en)εn = λ(eε11 ) · · ·λ(eεnn ) (by (4.1))

= α(eε11 )eε11 ω(eε11 )−1α(eε22 ) · · ·ω(e
εn−1

n−1 )−1α(eεnn )eεnn ω(eεnn )−1

The path condition ω(eεii ) = α(e
εi+1

i+1 ) and the uniqueness of reduced paths in T

imply that ω(eεii ) = α(e
εi+1

i+1 ). Moreover, α(eε11 ) = 1 = ω(eεnn ), because α(eε11 ) =

K = ω(eεnn ). So

= 1eε11 1eε22 1 · · ·1eεnn 1

= ξ,

showing that ξ ∈ 〈B〉. See figure 4.3 for an illustration.

K

λ(e−1
3 )

λ(e2)

λ(e−1
4 )

λ(e1)

λ(e5)

e1

e2

e−1
3

e−1
4

e5

→

→←

→ ←

→
→

←←

←→

← →

Figure 4.3: e1e2e
−1
3 e−1

4 e5 = λ(e1)λ(e2)λ(e−1
3 )λ(e−1

4 )λ(e5).

3. B is free:

Each λ(e) ∈ B contains one edge, e, of the Schreier graph which doesn’t occur in

any other element of B. Hence, if ξ = λ(e1)ε1 · · ·λ(en)εn , where n > 0, λ(ei) ∈ B,

and εi ∈ {1,−1} for i = 1, ..., n, is B-reduced, then

`X(ξ) ≥ `B(ξ) = n > 0. (4.2)

In particular, ξ 6= 1.
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The only place in this proof where the Axiom of Choice was used is the assertion of

the existence of a spanning tree in the Schreier graph. As the next example shows, the

geometrically intuitive and constructive nature of this proof lets us find explicit bases of

some subgroups of free groups.

Example 4.12. We construct a basis for the commutator subgroup of the free group

F({a, b}) on two letters by exhibiting a spanning tree of the Schreier graph found in

example 4.4.

Identify right cosets Cξ with points of the grid Z× Z. Then

T = {〈〈m,n〉, 〈m+ 1, n〉〉 : m,n ∈ Z} ∪ {〈〈0, n〉, 〈0, n+ 1〉〉 : n ∈ Z}

is a spanning tree. It is highlighted in figure 4.4. Using the proof of theorem 4.11, we

deduce that

{bnamba−mb−(n+1) : m,n ∈ Z,m 6= 0}

is a basis for C.

...
...

...

· · · Ca−1b Cb Cab · · ·

· · · Ca−1 C Ca · · ·

· · · Ca−1b−1 Cb−1 Cab−1 · · ·

...
...

...

a a a a

a a a a

a a a a

b

b

b

b

b

b

b

b

b

b

b

b

Figure 4.4: The Schreier graph of the commutator subgroup C of F({a, b})
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4.3 Classifying Schreier graphs

In this section, we show that a digraph is the Schreier graph of a subgroup of a free

group if and only if it is connected and satisfies a regularity condition. Later, we show

that the subgroup is normal if and only if the corresponding Schreier graph also satisfies

a homogeneity condition. These classification results will allow us to determine how

much of the Axiom of Choice is used when asserting the existence of spanning trees in

Schreier graphs.

Recall from section 4.1 the following observation about Schreier graphs: For any vertex

Kξ and any x ∈ X±, there is one edge labelled x terminating at Kξ, and there is one

edge labelled x starting at Kξ. This property deserves a name:

Definition 4.13. If G = 〈V,E〉 is a digraph with edges labelled by elements of a set

X±, then G is X-regular if, for every x ∈ X± and v ∈ V , there is one edge labelled x

starting at v and there is one edge labelled x ending at v. G is regular if it is X-regular

for some X.

Before classifying Schreier graphs, we introduce a useful piece of notation.

Definition 4.14. Let F = F(X) be a free group, let K ≤ F be a subgroup, and let G

be the Schreier graph of K ≤ F . The expression Kξ
x−→ Kζ means there is an edge in

G which starts at Kξ, ends at Kζ, and has label x.

Proposition 4.15. Let G = 〈V,E〉 be a digraph. G is a Schreier graph if and only if it

is regular and connected.

Proof.

⇒ X-regularity was observed in section 4.1. Proposition 4.9(ii) shows that Schreier

graphs are connected.

⇐ Let X be a set such that G is X-regular, and fix any vertex v ∈ V for the rest of

this proof. As mentioned in section 4.1, X-regularity gives a natural interpretation
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of words x1 · · ·xn ∈ F , where xi ∈ X± for i = 1, ..., n, as paths in G beginning at

v.

Let K be the group of cycles in G based at v. By identifying the cycles in G with

words x1 · · ·xn, where xi ∈ X±, we may view K as a subgroup of the free group

F = F(X). We will show that G is the Schreier graph of K ≤ F .

Define a function L : V → F/K from vertices of G to right cosets of K in F as

follows: Let w ∈ V , and let α ∈ F represent a path in G from v to w (this exists,

as G is connected). Define L(w) = Kα. We must check that L(w) is independent

of the choice of α:

Suppose α, β are two paths in G from v to w. Then αβ−1 is a cycle in

G based at v, so that αβ−1 ∈ K. Hence Kα = Kβ.

So L is a well-defined labelling of the vertices. In fact, L is a bijection:

Injectivity : Suppose L(w1) = L(w2). In other words, if α, β are paths in

G starting at v and ending at w1, w2, respectively, then Kα = Kβ. It

follows that αβ−1 ∈ K, i.e. that αβ−1 is a cycle in G. Hence the paths

represented by α and β have the same end points, i.e. w1 = w2.

Surjectivity : If Kα is a coset, let w ∈ V be the end point of the path

represented by α and starting at v. Then L(w) = Kα.

From now on, we identify vertices of G and cosets of K ≤ F using the function

L. In particular, the vertex v that was fixed at the beginning of the proof is now

referred to as K.

It remains to check that, for each x ∈ X± and any Kξ,Kζ ∈ V , Kξ
x−→ Kζ if

and only if Kξx = Kζ; see also figure 4.5.
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K

Kξ Kζ

ζξ

x

Figure 4.5: The labelling in the Schreier graph of K ≤ F

Kξ
x−→ Kζ ⇔the two paths represented by ξx, ζ starting at K have the

same endpoint

⇔ξxζ−1 represents a cycle based at K

⇔ξxζ−1 ∈ K

⇔Kξx = Kζ,

as required.

Normal subgroups of free groups will play an important role in chapter 5. It will be

useful to know what the Schreier graphs of such groups look like. Here we find a simple

condition on Schreier graphs which characterises the normal subgroups.

Definition 4.16. Every α ∈ F may be viewed as a translation function on G, sending

the vertex Kξ to the vertex Kαξ. G is translation invariant if

Kξ
x−→ Kζ ⇔ Kαξ

x−→ Kαζ

for all words α ∈ F , all letters x ∈ X±, and all vertices Kξ,Kζ ∈ V . So G is translation

invariant if it ‘looks the same everywhere’.

We can now classify the Schreier graphs of normal subgroups of free groups:

Proposition 4.17. Let F = F(X) be a free group, and let K ≤ F be a subgroup. Then

K is normal if and only if the Schreier graph of K ≤ F is translation invariant.
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Proof.

⇒ Suppose K is a normal subgroup of F . Let α, ξ, ζ ∈ F and x ∈ X± be arbitrary.

Then

Kξ
x−→ Kζ ⇔ Kξx = Kζ

⇔ ξxζ−1 ∈ K

⇔ αξxζ−1α−1 ∈ K (as K is normal)

⇔ Kαζ = Kαξx

⇔ Kαξ
x−→ Kαζ

⇐ If K is not normal in F , then there are α ∈ F and β ∈ K with αβα−1 6∈ K. As β

can’t be the identity, we let x ∈ X± be the first X-letter of the X-reduction of β,

and we define ζ = β−1x. Then

xζ−1 = β ∈ K ⇒ Kx = Kζ

⇒ K
x−→ Kζ.

But, on the other hand,

αxζ−1α−1 = αβα−1 6∈ K ⇒ Kαx 6= Kαζ

⇒ ¬(Kα
x−→ Kαζ)

Combining this result with proposition 4.15, we obtain a full classification.

Corollary 4.18. The Schreier graphs of normal subgroups of free groups are precisely

the regular, connected, and translation invariant digraphs.
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Chapter 5

Nielsen–Schreier and the Axiom of

Choice

All proofs of the Nielsen–Schreier theorem use the Axiom of Choice, so it is natural to

ask whether it is equivalent to the Axiom of Choice. In this chapter we attempt to

answer this question.

Section 5.1 gives a short account of all results that have been published in this area. In

section 5.2 we analyse how the Axiom of Choice is used in the proof of theorem 4.11, as

well as several other proofs.

Many approaches are available to anyone who wants to deduce the Axiom of Choice from

the Nielsen–Schreier theorem. One approach that comes to mind is to reverse-engineer

the proof of the Nielsen–Schreier theorem given in chapter 4, i.e. to construct a spanning

tree of a Schreier graph of K ≤ F from a basis of K. In section 5.3, we show that this

is not possible.

Section 5.4 presents a new proof that the Nielsen–Schreier theorem implies the Axiom of

Finite Choice. For this proof we introduce counting homomorphisms and representative

functions. They are a tool for constructing choice functions from bases of algebraic

structures. The technique is sufficiently general, so that it can be used for free abelian
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groups in chapter 6.

The results in section 5.4 are strengthened in section 5.5. We show that the Nielsen–

Schreier theorem does not follow from the Boolean Prime Ideal Theorem. In particular,

it doesn’t follow from the Finite Axiom of Choice. So the implication proved in section

5.4 cannot be reversed.

The chapter is concluded by section 5.6, where we show, using the technology developed

in section 5.4, that a strong form of the Nielsen–Schreier theorem is equivalent to the

Axiom of Choice.

5.1 A brief history

The first result concerning the relationship between NS and the Axiom of Choice was

Läuchli’s theorem using Fraenkel-Mostowski models, which was presented in section 2.2:

Theorem 5.1 (Läuchli [31]). NS is not a theorem of ZFA.

This means that every proof of the Nielsen–Schreier theorem in set theory with atoms

must use the Axiom of Choice. We saw in example 2.16 that ¬NS is a boundable state-

ment. Hence the Transfer Theorem (theorem 2.17) immediately gives the corresponding

result for ZF:

Theorem 5.2. NS is not a theorem of ZF.

In 1985, Howard proved a more specific result. He showed that

Theorem 5.3 (Howard [16]). ZF ` NS⇒ ACfin.

This is the strongest known theorem about the deductive strength of the Nielsen–Schreier

theorem. However, two variations have been investigated, and both of them have turned

out to be equivalent to the Axiom of Choice. Before stating the theorems, we need some

definitions.
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Definition 5.4 (Howard [16]). Let F = F(X) and B ⊆ F . B is level (with respect to

X) if, for all β ∈ 〈B〉, β ∈ 〈{b ∈ B : `X(b) ≤ `X(β)}〉.

B has the Nielsen property (with respect to X) if

(i) B ∩B−1 = ∅,

(ii) if b1, b2 ∈ B± and `X(b1b2) < `X(b1), then b2 = b−1
1 ,

(iii) if b1, b2, b3 ∈ B± and `X(b1b2b3) ≤ `X(b1) − `X(b2) + `X(b3), then b2 = b−1
1 or

b3 = b−1
2 .

The Nielsen–Schreier theorem guarantees the existence of bases of subgroups of free

groups. We can strengthen it by placing restrictions on the kind of basis that it produces.

For example, requiring it to be level or to have the Nielsen property gives us two new

versions of the theorem, both of which are provable in ZFC. It turns out that they are

equivalent to the Axiom of Choice in the presence of the other axioms of set theory:

Theorem 5.5 (Howard [16], Howard [17]).

(i) The statement

If F = F(X) and K ≤ F is a subgroup, then there is a basis B of K

which has the Nielsen property with respect to X.

is equivalent to the Axiom of Choice.

(ii) The statement

If F = F(X) and K ≤ F is a subgroup, then there is a basis B of K

which is level with respect to X.

is equivalent to the Axiom of Choice

Federer and Jonsson [8] showed that every set with the Nielsen property is level. Hence

(ii) implies (i).
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No more papers in this area have been published since 1987. In the following sections

we will improve, extend, and complement the known results.

5.2 The use of the Axiom of Choice

When determining whether or not the Nielsen–Schreier theorem is equivalent to the

Axiom of Choice, the first question that must be answered is: How much Choice do the

known proofs use? If any of them doesn’t use the full Axiom of Choice, then there is no

point in trying to show that NS is equivalent to AC. We will see in this section that the

full Axiom of Choice is necessary for the standard proofs.

The only invocation of AC was in the assertion that every Schreier graph has a spanning

tree. It is well known that the existence of spanning trees in connected graphs is equiv-

alent to the Axiom of Choice; see for example the paper by Delhommé and Morillon

[7]. But not every graph is a Schreier graph. Is the class of Schreier graphs nevertheless

large enough, so that this assertion requires the full Axiom of Choice?

Proposition 5.6. The existence of spanning trees in regular connected graphs is equiv-

alent to the Axiom of Choice.

Proof. The Axiom of Choice implies that every connected regular graph has a spanning

tree by a standard application of Zorn’s Lemma.

For the converse, let S = {Xi : i ∈ I} be a family of non-empty sets. Without loss of

generality, the Xi are pairwise disjoint. Let X =
⋃
i∈I Xi. We will construct a connected

X-regular graph such that every spanning tree immediately gives a choice function for

S.

Let G′ = 〈V,E〉 be the graph defined as follows. V = I ∪ {∗}, where ∗ 6∈ I is arbitrary.

For every i ∈ I and x ∈ X±i , E contains an edge labelled x from ∗ to i and an edge

labelled x from i to ∗. The resulting graph is illustrated in figure 5.1.

Any spanning tree T of G′ yields a choice function for S: For every i ∈ I there is only
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∗

i1 i2 i3

X±i3X±i1 X±i2

I

Figure 5.1: The graph G′

one branch in T connecting the vertices ∗ and i. This branch corresponds to a single

element of Xi.

However, G′ is not regular. To fix this, we add to each vertex as many loops (with

suitable labels) as are necessary to make the graph X-regular, forming a new digraph G.

Every spanning tree of G is a spanning tree of G′, because trees do not contain loops.

Hence every spanning tree of G gives rise to a choice function for S.

Now the classification of Schreier graphs in proposition 4.15 immediately yields:

Theorem 5.7. The statement

Every Schreier graph has a spanning tree

is equivalent to the Axiom of Choice.

We briefly mention several other proofs, and state why all of them use the full Axiom

of Choice.

Nielsen’s proof

Nielsen’s proof [34] of the theorem for finitely generated free groups is generalised to

the infinitely generated case in chapter 3 of Johnson’s book [25]. His proof relies on a

well-ordering of the generating set of arbitrary free groups. Since any set can be used

as a generating set, this requires the Well-ordering Principle.
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Schreier’s proof

An English version of Schreier’s proof [39] is given in chapter 2 of Johnson’s textbook

[25]. The underlying strategy of the proof is exactly the same as in the proof given

in chapter 4, but it is written using exclusively algebraic language instead of trees in

digraphs. The Axiom of Choice is used to find a Schreier transversal (see chapter 2 of

Johnson [25] for the definition). However, Schreier transversals are just spanning trees

of Schreier graphs in an algebraic costume. So, by theorem 5.7, the full Axiom of Choice

is used.

A topological proof

A proof using covering spaces in algebraic topology is given in section 1.A of Hatcher

[13]. If F = F(X) is a free group, then it is isomorphic to the fundamental group of a

bouquet of circles indexed by elements of X. Every subgroup K ≤ F corresponds to a

covering space of this topological space. It turns out that covering spaces are precisely

the Schreier graphs of subgroups K ≤ F . A spanning tree of the graph is used to show

that its fundamental group, K, is a free group. Again, the full Axiom of Choice is used

to find a spanning tree of a Schreier graph.

A proof using wreath products

Ribes and Steinberg [38] used wreath products to prove the Nielsen–Schreier theorem.

Their approach also requires the existence of a Schreier transversal, so, as in Schreier’s

version, the full Axiom of Choice is used.

But what about the theorem?

Now we have seen that the standard proofs of the Nielsen–Schreier theorem all use the

full Axiom of Choice. But this doesn’t mean that there is no proof which uses less
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Choice.

Question. Is the Nielsen–Schreier theorem equivalent to the Axiom of Choice?

5.3 Does Nielsen–Schreier imply the Axiom of Choice?

If our aim is to deduce the Axiom of Choice from the Nielsen–Schreier theorem, one

possible approach is to reverse engineer the proof of NS – to start from the statement of

the theorem and to work backwards to the place in its proof where the Axiom of Choice

is used. So we would like to know if it is possible to construct a spanning tree of the

Schreier graph of K ≤ F = F(X) from a basis of K. In this section we show that this

is not possible in general.

The strategy is to find a Fraenkel-Mostowski model M containing a subgroup K of a free

group F where K has a basis in M, but the Schreier graph of K ≤ F has no spanning

tree in M. A suitable model is van Douwen’s model, described in section 2.3. It is

constructed from a collection {〈Ai, <i〉 : i < ω} of pairwise disjoint sets, each linearly

ordered like Z. The set of atoms is A =
⋃
i<ω Ai, the group G of permutations consists of

all π ∈ Sym(A) satisfying (∀i < ω) π|Ai ∈ Aut(Ai, <i), and the sets of M are precisely

those that are hereditarily of finite support.

The natural choice for the free group is F = F(A), the free group on the set of atoms in

M. The subgroup we shall consider is defined by

K = 〈{ab−1 : (∃i < ω) a, b ∈ Ai}〉.

We can easily prove that the Schreier graph of K ≤ F has no spanning tree:

Lemma 5.8.

(i) If the Schreier graph of K ≤ F has a spanning tree, then the family {Ai : i < ω}

has a choice function.

(ii) The Schreier graph of K ≤ F has no spanning tree in M.
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Proof.

(i) Let T be a spanning tree of the Schreier graph. For each i < ω, we write Ki = Ka,

where a ∈ Ai is arbitrary. We must check that this definition doesn’t depend on

the choice of a ∈ Ai. For any a1, a2 ∈ A we have

Ka1 = Ka2 ⇔ a1a
−1
2 ∈ K

⇔ (∃i < ω)a1, a2 ∈ Ai,

showing that Ki is well defined.

For every i < ω, T has precisely one edge from K to Ki – otherwise there would

be a cycle in T . Since the label of this edge is a member of A±i , it picks out one

element of Ai.

(ii) This follows from lemma 2.12(ii).

In general, the Schreier graph of K ≤ F is too complicated to draw, but figure 5.2

shows the central part of the Schreier graph when we only consider two sets Ai and Aj

(i, j < ω).

It remains to find a basis of K in M.

Lemma 5.9. K is a free group in M.

Proof. Let < be the linear ordering of A given by lemma 2.12(i). Define

B = {ab−1 : (∃i < ω)(a, b ∈ Ai) ∧ (a < b) ∧ (∀c ∈ A)(a < c⇒ b ≤ c)}.

Since < is a linear ordering in M, and B is defined from <, B ∈M.

As each of the Ai is ordered like Z by <i, it makes sense to talk about successors and

predecessors of atoms. If a ∈ A, write a + 1 for the least b ∈ A satisfying b > a, and
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K Kj

A \ Aj
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Ki

A \ Ai A
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A \ Aj

A \ Ai A

Aj

Ai

Aj
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Figure 5.2: The Schreier graph of K

write a− 1 for the greatest b ∈ A satisfying b < a. With this notation, the definition of

B becomes much simpler:

B = {a(a+ 1)−1 : a ∈ A}.

We will show that B is a basis for K.

(i) 〈B〉 = K.

Let i < ω, and let a, b ∈ Ai. If a < b, we can write

ab−1 = a(a+ 1)−1 · (a+ 1)(a+ 2)−1 · · · (b− 1)b−1.

If a > b, we have

ab−1 = (ba−1)−1 = (b(b+ 1)−1 · · · (a− 1)a−1)−1.

It follows that {ab−1 : (∃i < ω) a, b ∈ Ai} ⊆ 〈B〉, i.e. that 〈B〉 = K.

(ii) B is free.
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Associate each member a(a + 1)−1 ∈ B with an arrow from a to a + 1 and each

(a+ 1)a−1 ∈ B−1 with an arrow from a+ 1 to a. This turns A into a digraph with

connected components {Ai : i < ω}. Removing any b ∈ B and its inverse from

the digraph disconnects one of the Ai. In other words, b 6∈ 〈B \ {b}〉. This means

that no b ∈ B can be written as a product of other basis elements. Independence

follows immediately: Suppose b1 · · · bn = 1 is a reduced B-word with n > 0 and

b1, ..., bn ∈ B±. Then b1 = b−1
n · · · b−1

2 , giving a contradiction.

Combining lemmas 5.8 and 5.9 we get the following result:

Theorem 5.10. There is a Fraenkel-Mostowski model M with a free group F and a

subgroup K satisfying

1. The Schreier graph of K ≤ F has no spanning tree,

2. K has a basis B.

This result is translated to ZF using the Transfer Theorem.

Corollary 5.11. There is a model of ZF with a free group F and a subgroup K satisfying

conditions 1. and 2. above.

Proof. Write 〈F,1, ∗〉 for the free group F , and write

φ(F,1, ∗, X,K) = X is a basis of F and the Schreier graph of 〈K,1, ∗|K〉 ≤ 〈F,1, ∗〉

has no spanning tree

ψ(K,1, ∗, B) = B is a basis of 〈K,1, ∗|K〉

In example 2.15 we saw that ψ(K,1, ∗, B) is a boundable formula.

It remains to show that φ(F,1, ∗, X,K) is also boundable. Of course, X is a basis of

F is just ψ(F,1, ∗, X), which is boundable. Write G = 〈W,E〉 for the Schreier graph.
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The vertex set W is the set of right cosets of K, so W ⊆ P(F ). Every edge of G can

be written as a triple 〈w1, x, w2〉, where w1 ∈ W is the beginning, w2 ∈ W is the end,

and x ∈ X± is the label of the edge. So each edge is an element of V4(W ∪X). Hence

E ∈ V5(W ∪X), and G = 〈W,E〉 ∈ V7(W ∪X) ⊆ V8(F ∪X). In order to verify that G

has no spanning tree it suffices to check every element of V8(F ∪X). So φ is boundable,

as required.

The corollary follows from the Transfer Theorem 2.17.

This result shows that it is impossible to prove ZF ` NS⇒ AC by reducing the problem

to the construction of a spanning tree in a Schreier graph from a basis of a subgroup

K ≤ F .

We conclude this section with one final remark. Notice that all elements of K have even

A-length because the members of the generating set have length 2. Since all elements

of the basis B constructed in the proof of lemma 5.9 have A-length 2, B is level. This

is surprising in the light of theorem 5.5(ii), which says that the existence of level bases

implies the Axiom of Choice. What is more, the property of being level is boundable,

so it can be transferred to ZF.

5.4 Nielsen–Schreier implies the finite Axiom of Choice

As stated in section 5.1, Howard [16] showed that ZF ` NS ⇒ ACfin. Here we prove a

slightly stronger result with an entirely new proof. It is easier and shorter than Howard’s

proof, and it introduces some general ideas that will be applied in later sections. Most

of the material in this section also appears in Kleppmann’s article [29].

Representative functions

In this section we give a general description of representative functions and counting

functions which will also be used in several other sections. The details will vary, so it



5.4 Nielsen–Schreier implies the finite Axiom of Choice 57

doesn’t make sense to give precise definitions at this stage. But, as the fundamental

mechanisms are always the same, we introduce the ideas by going over a simplified

example.

We are given a non-empty set y, and we would like to pick an element from y without

making any choices. Let F = F(y) be the free group on y, and let

K = 〈{wx−1 : w, x ∈ y}〉 ≤ F.

Using NS, we may assume that K has a basis B, say. Notice that all members of K

have even y-length, so w 6∈ K for all w ∈ y. But we can use B to find representatives of

letters w ∈ y in the subgroup K. More precisely, we define a function f : y → K such

that f(w) behaves like w in a suitably defined sense. To define f , let w ∈ y be arbitrary,

and choose x ∈ y \ {w}. Since wx−1 ∈ K, we may write wx−1 = b1 · · · bn as a B-reduced

word with b1, ..., bn ∈ B±. If n = 2k is even, we define

f(w) = b1 · · · bk

to be the ‘first half’ of wx−1 in terms of the new basis B. Intuitively, the first half of

wx−1 should behave like w and the second half should behave like x−1. Under the right

circumstances, f is well defined and

wx−1 = f(w)f(x)−1. (5.1)

Of course, f will not be well defined in general, and it is far from obvious that it will

exhibit the correct behaviour. However, a careful choice of parameters does make it

work. If this is the case, we define a new function g : y → F by

g(w) = f(w)−1w.

If (5.1) holds for all w, x ∈ y, then g is a constant function. Let α ∈ F be the value of

g. It can be used to choose an element of y: As remarked earlier, w 6∈ K for all w ∈ y;

it follows that f(w) 6= w for all w ∈ y, and that α 6= 1. So we can take the first letter

of the y-reduction of α as the chosen element of y.
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Counting homomorphisms

Let Y be a family of non-empty pairwise disjoint sets, let X =
⋃
Y , and let F = F(X)

be the free group on X. It will be useful to count letters of words α ∈ F . To this end

we define, for each y ∈ Y , a counting function #y : F → Z. If α ∈ F , we may write

α = xε11 · · ·xεnn as an X-reduced word with x1, ..., xn ∈ X and ε1, ..., εn ∈ {1,−1}. Then

#y(α) is equal to the sum of exponents of y-letters in α:

#y(α) =
∑
i:xi∈y

εi.

It is easy to check that each #y is a group homomorphism from F to the additive group

of integers. We now have the tools necessary for the proof.

The proof

As we will be concerned with normal subgroups of free groups, we introduce a new choice

principle:

NSnorm (Nielsen–Schreier for normal subgroups): If F is any free group and K ≤ F is

any normal subgroup, then K is a free group.

This principle only makes a statement about normal subgroups of free groups, so it is

weaker than NS. Hence the implication NSnorm ⇒ ACfin proved here is at least as strong

as the already known implication NS⇒ ACfin. Before proving the full theorem, we must

handle a special case.

Lemma 5.12. ZF ` NSnorm ⇒ AC2.

Proof. Let Y be a family of pairwise disjoint 2-element sets. Let X =
⋃
Y , let F = F(X)

be the free group on X, and define the subgroup K ≤ F by

K =
⋂
{ker(#y) : y ∈ Y }.

K is non-trivial, because it contains, for example, wx−1 for each y = {w, x} ∈ Y .
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Moreover, as kernels of homomorphisms are normal, so is K. By NSnorm, there is a basis

B for K.

Let y ∈ Y be arbitrary but fixed. We shall show how to single out one element of y

without making any choices. Define the swapping function sy : y → y to transpose the

two elements of y. For any x ∈ y, we have y = {x, sy(x)}. To simplify notation, we

write xi = siy(x) for i ∈ Z, so that y = {x0, x1}. Since x0x
−1
1 , x1x

−1
0 ∈ K, we may write

x0x
−1
1 = b0,1 · · · b0,`0

x1x
−1
0 = b1,1 · · · b1,`1 ,

as reduced B-words, where the bi,j ∈ B±. From x0x
−1
1 = (x1x

−1
0 )−1 we deduce that

`0 = `1 = `, say, and that

b1,1 = b−1
0,` , ..., b1,` = b−1

0,1. (5.2)

There are two cases:

(1) ` is odd.

Set k = (`− 1)/2. The middle B-letter of x0x
−1
1 is b0,k+1, while the middle B-letter

of x1x
−1
0 is b1,k+1 = b−1

0,k+1. Just one of these two is an element of B. The chosen

element of y is the unique xi such that the middle B-letter of xix
−1
i+1 is in B (and

not in B−1).

(2) ` is even.

Let k = `/2. Define the representative function fy and its companion gy as follows:

fy : y → K : xi 7→ bi,1 · · · bi,k

gy : y → F : xi 7→ fy(xi)
−1xi.

Then

fy(x0)fy(x1)−1 = b0,1 · · · b0,kb
−1
1,k · · · b

−1
1,1

= b0,1 · · · b0,kb0,k+1 · · · b0,l (by (5.2))

= x0x
−1
1 ,
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so gy(x0) = gy(x1), and gy is a constant function taking just one value, αy, say. We

check that αy mentions letters from y:

#y(αy) = #y(fy(x0)−1x0)

= #y(x0)−#y(fy(x0))

= 1− 0 (as x0 ∈ y and fy(x0) ∈ K ≤ ker(#y).)

Since #y(αy) = 1, αy mentions at least one y-letter. So we choose an element of y

by picking the first y-letter appearing in αy.

This proof serves as an introduction to ideas used in the main proof. The general

case is more complicated and requires more structure to carry out the argument using

representative functions.

Proposition 5.13. ZF ` NSnorm ⇒ ACfin.

Proof. Let Z be a set of finite non-empty sets. We will find a choice function for Z by

induction on the size of its members. In order to do this, it will be useful to close Z

under non-empty subsets. So let

Y = {y : y 6= ∅ ∧ (∃z ∈ Z)y ⊆ z}.

As Z ⊆ Y , it suffices to find a choice function for Y . Replacing each y ∈ Y with y×{y},

we may assume that the members of y are pairwise disjoint.

Let X =
⋃
Y , let F = F(X) be the free group on X, and let K ≤ F be the subgroup

defined by

K =
⋂
{ker(#y) : y ∈ Y }.

As in lemma 5.12, K is a non-trivial normal subgroup of F . By NSnorm, K has a basis

B, say.

For each n such that 2 ≤ n < ω, write Y (n) = {y ∈ Y : |y| = n} and Y (≤n) = {y ∈ Y :

|y| ≤ n}. By induction on n, we will find nested choice functions cn on Y (≤n) for each

n < ω. Then
⋃
n<ω cn is a choice function for Y .
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By lemma 5.12 there is a choice function c2 on Y (≤2). So assume that n ≥ 3 and that

there is a choice function cn−1 on Y (≤n−1). For every y ∈ Y (n) we define a function sy as

follows:

sy : y → y : x 7→ cn−1(y \ {x}).

Note that y \ {x} ∈ Y (n−1), because Y is closed under taking non-empty subsets, so

cn−1(y \ {x}) is defined. There are four cases:

(i) sy is not a bijection.

In this case, |sy“y| ≤ n− 1, so defining

cn(y) = cn−1(sy“y)

gives a choice of element of y. Again, this is well-defined, because Y is closed under

taking non-empty subsets.

(ii) sy is a bijection with at least two orbits.1

As sy(x) 6= x for all x ∈ y, the number of orbits is ≤ n− 1. But, since there are at

least two orbits, the size of each orbit is also ≤ n − 1. So we can choose a single

element of y by picking a point from each orbit, and then picking one from among

them. More precisely, we define

cn(y) = cn−1({cn−1(orb(x)) : x ∈ y}),

where orb(x) is the orbit of x ∈ y under the action of sy.

(iii) sy is a bijection with one orbit, and n is even.

If n is even, s2
y is a bijection with two orbits. Remembering that we are assuming

n ≥ 3, this gives us ≤ n− 1 orbits of size ≤ n− 1 each. A choice is made as in the

previous case.

(iv) sy is a bijection with one orbit, and n is odd.

For any x ∈ y, y = {x, sy(x), s2
y(x), ..., sn−1

y (x)}. For simplicity, we write xi = siy(x)

for i ∈ Z, so that y = {x0, x1, ..., xn−1}.
1Thank you to Thomas Forster for suggesting a simplification to this part of the proof.
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Recall the basis B of K. We may write

x0x
−1
1 = b0,1 · · · b0,`0

x1x
−1
2 = b1,1 · · · b1,`1

...

xn−1x
−1
0 = bn−1,1 · · · bn−1,`n−1

as reduced B-words, with the bi,j ∈ B±. Before defining a representative function,

we must prepare the ground. This is done in two steps:

(1) If it is not the case that `0 = ... = `n−1, let ` = min{`i : i = 0, ..., n− 1}. Then

{xi : `i = `} is a proper non-empty subset of y, and we define

cn(y) = cn−1({xi : `i = `}).

From now on, we assume `0 = ... = `n−1 = `.

(2) Note that

(x0x
−1
1 )(x1x

−1
2 ) · · · (xn−1x

−1
0 ) = 1,

i.e.

(b0,1 · · · b0,`)(b1,1 · · · b1,`) · · · (bn−1,1 · · · bn−1,`) = 1. (5.3)

For i = 0, ..., n− 1, let ki be the number of B-cancellations in

(bi,1 · · · bi,`)(bi+1,1 · · · bi+1,`). (5.4)

If it is not the case that k0 = ... = kn−1, let k = min{ki : i = 0, ..., n − 1}.

Then {xi : ki = k} is a proper non-empty subset of y, and we define

cn(y) = cn−1({xi : ki = k}).

From now on, we assume k0 = ... = kn−1 = k.

As letters always cancel in pairs, (5.3) implies that n` is even.2 Since we are

assuming that n is odd, it follows that ` is even. Define m = `/2, and note that

2I would like to thank John Truss and Benedikt Löwe for finding an error in this proof and suggesting

a solution.
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k ≥ m: if not, then complete cancellation in (5.3) would not be possible. Now we

can define a representative function fy and its companion function gy:

fy : y → K : xi 7→ bi,1 · · · bi,m

gy : y → F : xi 7→ x−1
i fy(xi).

Since there are k ≥ m cancellations in (5.4), we have bi+1,1 = b−1
i,` , ..., bi+1,m =

b−1
i,`−m+1 = b−1

i,m+1. This implies that

fy(xi)fy(xi+1)−1 = xix
−1
i+1

for each i. Hence gy(xi) = gy(xi+1) for all i, and gy : y → F is again constant. If

we let αy be the constant value of gy, then #y(αy) = 1, so αy mentions at least

one element of y. As in lemma 5.12, we choose an element of y by picking the first

y-letter appearing in αy.

Finiteness was used in this proof to define the functions sy, giving a cyclic ordering

of each finite set. Using this structure, it was possible to define the representative

function. If we try to prove NS ⇒ AC, it seems likely that a similar structure could be

used to define representative functions. But, as this remains an unsolved problem, we

will employ the Fraenkel–Mostowski method to strengthen proposition 5.13 in the next

section.

5.5 Nielsen–Schreier doesn’t follow from the Prime

Ideal Theorem

We have seen that NSnorm implies the Axiom of Choice for families of non-empty finite

sets. So

AC⇒ NS⇒ NSnorm ⇒ ACfin.
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From what we have seen so far, it is possible that NS is equivalent to ACfin. However,

in this section we shall see that NSnorm does not follow from the Boolean Prime Ideal

Theorem (defined in chapter 1.5). As ZF ` BPIT ⇒ ACfin, it follows immediately that

NSnorm, and hence also NS, are strictly stronger than ACfin. The material in this section

is adapted from Kleppmann [28].

Our aim is to find a model of ZF set theory in which the Boolean Prime Ideal Theo-

rem holds and NSnorm fails. Using the Transfer Theorem, it suffices to find a Fraenkel–

Mostowski satisfying these properties. We can build on the work of Dawson and Howard,

who introduced the Dawson–Howard model (see section 2.3) and showed that the Boolean

Prime Ideal Theorem holds in it. It remains to be shown that NSnorm fails in this model.

For the rest of this section, we write M for the Dawson–Howard model. Recall that the

set A of atoms in M is constructed by taking a family {〈Ai, <i〉 : i < ω} of pairwise

disjoint sets Ai, linearly ordered like Q, and setting A =
⋃
i<ω Ai. The group G of

permutations of A consists of all π ∈ Sym(A) satisfying (∀i < ω) π|Ai ∈ Aut(Ai, <i).

The sets of M are precisely those that are hereditarily of finite support. Inside M there

is a free group F = F(A) generated by A. We will find a subgroup of F which has no

basis in M.

Definition 5.14. Recall from chapter 5.4 the counting homomorphisms #Ai : F → Z.

Define, for the rest of this section, the subgroup K of F by

K =
⋂
i<ω

ker(#Ai).

As usual, K is a non-trivial normal subgroup of F . We will now show that K has no

basis in M.

Theorem 5.15. M |= ¬NSnorm.

Proof. Suppose there is a basis B for K in M. We will derive a contradiction. Let E ⊆ A

be a support for B. Since E must be finite, we may fix i < ω satisfying Ai ∩ E = ∅.

We also fix three arbitrary points x < y < z ∈ Ai. Having chosen x, y, z, we define

β = xy−1. Note that β ∈ K. Let π ∈ G have the following properties:
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(i) (∀a ∈ E) π(a) = a,

(ii) (∀a ∈ A \ E) π(a) 6= a,

(iii) π(x) = y, π(y) = z.

(i) says that π ∈ fix(E), so that π(B) = B. By (iii), β · π(β) = xy−1 · yz−1 = xz−1. So

if we pick σ ∈ fix(E) satisfying σ(x) = x and σ(y) = z, then

β · π(β) = σ(β). (5.5)

Writing β = b1 · · · bm as a reduced B-word with b1, ..., bm ∈ B±, we get

π(β) = π(b1) · · · π(bm)

σ(β) = σ(b1) · · ·σ(bm),

which must also be reduced B-words. Substituting these into (5.5), we see that the

right-hand side of the equation is B-reduced and has m B-letters, while the left-hand

side has 2m letters. Hence m letters cancel out when reducing the left-hand side with

respect to B. As letters always cancel out in pairs, m = 2k is even. The letters that

cancel out on the left-hand side of (5.5) are

bk+1 · · · b2kπ(b1) · · · π(bk) = 1.

Since π(B) = B it follows that

π(bk)
−1 = bk+1, ..., π(b1)−1 = b2k.

Define

γ = b1 · · · bk ∈ K

to be the ‘first half’ of β, and note that

γ · π(γ−1) = b1 · · · bkπ(bk)
−1 · · · π(b1)−1

= b1 · · · bkbk+1 · · · b2k

= β.

(5.6)
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Since A is a basis for the free group F , γ can be written uniquely as a reduced A-word

a1 · · · a` with a1, ..., a` ∈ A±. From (5.6) it follows that

a1 · · · a`π(a`)
−1 · · · π(a1)−1 = xy−1,

where the right-hand side is already A-reduced. Thus

a1 = x, π(a2) = a2, ..., π(a`) = a`.

Now condition (ii) implies that a2, ..., al ∈ E.

But i was chosen so that Ai ∩E = ∅. Hence the only A-letter of γ = a1 · · · a` which lies

in Ai is a1 = x. So #Ai(γ) 6= 0, and hence γ 6∈ K, contradicting the definition of γ as a

member of K.

Recall that, by theorem 2.11, M |= BPIT. Hence:

Corollary 5.16. M |= BPIT ∧ ¬NSnorm.

We saw in example 2.16 that ¬NS is boundable. The same argument shows that ¬NSnorm

is boundable. By the Transfer Theorem 2.17 it follows that there is a ZF-model N

satisfying N |= BPIT ∧ ¬NSnorm. Hence:

Corollary 5.17. ZF 6` BPIT⇒ NSnorm.

Since ZF ` BPIT ⇒ ACfin, it follows that ZF 6` ACfin ⇒ NSnorm. In particular, neither

NSnorm nor NS is equivalent to ACfin. This strengthens theorem 5.3.

5.6 Reduced Nielsen–Schreier implies the Axiom of

Choice

In section 5.4 we saw how representative functions can be used to define a choice function

for a family of non-empty finite sets. We assumed that the members of the family are
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finite in order to inductively construct a cyclic order on each them. This allowed us to

define representative functions and to show that they are well-defined.

In this section, we give another application of representative functions. But this time

we don’t impose restrictions on the families for which we construct choice functions;

instead, we deduce the Axiom of Choice from NSred, a strong version of the Nielsen–

Schreier theorem which produces reduced bases – see below for the definition. This

section is adapted from Kleppmann’s paper [28].

Definition 5.18. Let F = F(X) be a free group. If K ≤ F is a subgroup, and B is a

basis for K, then B is reduced with respect to X if, for all β ∈ K, `B(β) ≤ `X(β).

This definition gives rise to a strong version of the Nielsen–Schreier theorem, defined as

follows:

NSred (reduced Nielsen–Schreier): If F = F(X) and K ≤ F is a subgroup, then there is

a basis B of K which is reduced with respect to X.

Of course, we must check that it makes sense to adopt this as a choice principle. We

show that the statement is provable in ZFC.

Proposition 5.19. NSred is a theorem of ZFC.

Proof. Consider the proof of the Nielsen–Schreier theorem given in chapter 4. The

subgroup K of the free group F = F(X) was thought of as the group of cycles based at

K in the Schreier graph of K ≤ F . A spanning tree was used to find a set B of cycles

such that any cycle based at K can be expressed as a unique product of members of B:

Every cycle

ξ = eε11 · · · eεnn

of length n is written as a product

λ(e1)ε1 · · ·λ(en)εn (5.7)

of n elements of B. So the B-length of ξ cannot exceed the its X-length. As some

cancellation may occur in (5.7), the B-length may be less than the X-length.
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In section 5.1 we encountered level sets and sets with the Nielsen property. Both of

these properties give rise to strong versions of the Nielsen–Schreier theorem, which, as

stated in theorem 5.5, both imply the Axiom of Choice. To check that our results are

not implied by theorem 5.5, we show that there are bases that are level and not reduced,

and there are bases that are reduced and not level. As every basis satisfying the Nielsen

property is level, there is no need to check the Nielsen property separately.

Example 5.20. Let F be the free group on X = {x, y}. Then B = {xy2, x} is a basis

of the subgroup K = 〈x, y2〉. We verify that B is reduced and not level:

(i) B is reduced.

If α ∈ K is any word in x and y2, replace each occurrence of y2 (of X-length 2)

with x−1 ∗ xy2 (of B-length 2), thus making it a B-word of the same B-length.

After reducing with respect to B we have `B(α) ≤ `X(α).

(ii) B is not level.

Letting α = y2 ∈ K, we have α = x−1 ∗ xy2 in terms of B. As `X(α) = 2 < 3 =

`X(xy2), α 6∈ 〈{b ∈ B : `X(b) ≤ `X(α)}〉.

Example 5.21. Let F be the free group on X = {w, x, y, z}. Then

B = {wx−1, xy−1, yz−1}

is an independent set, so it is a basis for the subgroup K = 〈B〉.

(i) B is not reduced.

`B(wz−1) = `B(wx−1 · xy−1 · yz−1) = 3 is bigger than `X(wz−1) = 2.

(ii) B is level.

We have 〈{b ∈ B : `X(b) ≤ n}〉 = K for all n ≥ 2. Since all members of K

have even X-length, it follows that `X(α) ≥ 2 for all α ∈ K \ {1}, and hence that

α ∈ 〈{b ∈ B : `X(b) ≤ `X(α)}〉.
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The two properties of being level and reduced are in some sense complementary. If

F = F(X) is a free group, K ≤ F is a subgroup, and B is a level basis of K, then the

elements β ∈ K can be written as a product of a possibly large number of b ∈ B±, with

the X-length of each such b limited by `X(β). On the other hand, if B is a reduced basis

of K, then each β ∈ K can be written as a product of at most `X(β) factors b ∈ B±,

where there is no limitation on the X-length of such b.

We now show that the existence of reduced bases of subgroups implies the Axiom of

Choice. But first we need a short lemma involving the following choice principle.

AC≥n (Axiom of Choice for sets of size ≥ n): Any family {Xi : i ∈ I} of sets of size ≥ n

– including infinite sets – has a choice function.

Lemma 5.22. If 0 < m < ω, then ZF ` AC≥m ⇒ AC.

Proof.

Claim. Let n, k > 0 be integers. Then ZF ` ACnk ⇒ ACn.

Let {Xi : i ∈ I} be a family of n-element sets. Then {Xk
i : i ∈ I} is a family

of nk-element sets. Using ACnk , there is a function f defined on I such that

f(i) = 〈f1(i), ..., fk(i)〉 ∈ Xk
i for each i ∈ I. f1 is a choice function for the

original family {Xi : i ∈ I}.

Now let S = {Xi : i ∈ I} be a family of non-empty sets. For each n with 0 < n < m, let

S(n) = {Xi : |Xi| = n}, and let T = S \
⋃
n<m S

(n). By AC≥m there is a choice function f

for T . For each n satisfying 0 < n < m, let k(n) be the least integer satisfying nk(n) ≥ m.

Then AC≥m ⇒ ACnk(n) ⇒ ACn by the claim, so there is a choice function fn for S(n).

Hence f ∪
⋃
n<m fn is a choice function for S.

We are now ready to prove the main theorem of this section.

Theorem 5.23. ZF ` NSred ⇒ AC≥3.
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Proof. Let {Xi : i ∈ I} be a family of sets, each of size ≥ 3. We may assume without loss

of generality that the Xi are pairwise disjoint. Define X =
⋃
i∈I Xi and let F = F(X)

be the free group on X. Let

K =
⋂
{ker(#Xi) : i ∈ I} ≤ F,

where the #Xi are defined as in section 5.4. K is a non-trivial normal subgroup of F .

By NSred there is a basis B for K such that `B(β) ≤ `X(β) for all β ∈ K. Hence any

β ∈ K may be written uniquely as a B-reduced word b1 · · · bn with 0 ≤ n ≤ `X(β) and

b1, ..., bn ∈ B±. In particular, `B(xy−1) ≤ `X(xy−1) = 2 for any distinct x, y ∈ Xi and

any i ∈ I. So, when x 6= y, the only possible B-lengths for xy−1 are 1 and 2. Note that

`B(xy−1) = 1 means that either xy−1 or its inverse is in B.

From now on we will work in an arbitrary but fixed Xi, and we will show how to pick a

single element of Xi without making any choices.

Definition. Regard Xi as the vertex set of a complete undirected graph. With every

edge connecting x ∈ Xi to y ∈ Xi we associate the length `B(xy−1) ∈ {1, 2}. As

yx−1 = (xy−1)−1, the length does not depend on the ordering of x and y. Edges of

length 1 are short, and edges of length 2 are long.

Since B is an independent set, there can’t be any cycles consisting of short edges (we

call this a short circuit). In particular, every triangle must have at least one long edge.

Let

Yi = {x ∈ Xi : there is a long edge with endpoint x}.

Note first that Yi 6= ∅ because |Xi| ≥ 3 and every triangle has a long edge. We now

define a representative function fi : Yi → K. Let y ∈ Yi. Pick any x ∈ Xi connected to

y by a long edge, and write yx−1 = b1b2, where b1, b2 ∈ B±. Then fi(y) is defined to be

fi(y) = b1 ∈ K.

At first sight, it seems that we made a choice in picking an arbitrary x ∈ Xi connected

to y by a long edge. However, no choice is made if the value of fi(y) does not depend
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on the chosen x. We will show that this is the case by using the fact that B is reduced

to enforce suitable cancellation of B-letters.

Claim. fi : Yi → K is a well-defined function.

Let y ∈ Yi, and let x1, x2 ∈ Xi be connected to y by long edges. We must

show that the value of fi(y) is the same for x1 and x2. Write

yx−1
1 = b1b2,

yx−1
2 = c1c2,

where b1, b2, c1, c2 ∈ B±. As B is reduced with respect to X, `B(x1x
−1
2 ) ≤

`X(x1x
−1
2 ) = 2, so that

`B(b−1
2 b−1

1 c1c2) = `B(x1y
−1 · yx−1

2 ) ≤ 2.

It follows that b−1
1 c1 = 1, i.e. that b1 = c1. Hence the value of fi(y) does not

depend on the choice of vertex connected to y by a long edge.

Claim. If y1, y2 ∈ Yi are connected by a long edge, then fi(y1)−1y1 = fi(y2)−1y2:

Write y1y
−1
2 = b1b2 as a reduced B-word with b1, b2 ∈ B±. Then fi(y1) = b1.

As y2y
−1
1 = b−1

2 b−1
1 , fi(y2) = b−1

2 . Hence fi(y1)fi(y2)−1 = y1y
−1
2 , proving the

claim.

As before, we define a function gi to go with fi:

gi : Yi → F : y 7→ fi(y)−1y.

The last claim says that gi(y1) = gi(y2) if y1, y2 ∈ Yi are connected by a long edge. More

generally, if y1, y2 ∈ Yi and there is a path y1, z1, ..., zn, y2 consisting of long edges, then

gi(y1) = gi(z1) = ... = gi(zn) = gi(y2).

Our aim will be to show that there is a path consisting of long edges between any two

points y1, y2 ∈ Yi, showing that gi : Yi → F is in fact constant. This constant value is

then used to pick a single element of Xi.
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Claim. If y1, y2 ∈ Yi are distinct, then there is a path from y1 to y2 which consists of at

most 3 long edges.3

Since y1, y2 ∈ Yi, there are x1, x2 ∈ Xi such that

`B(y1x
−1
1 ) = `B(y2x

−1
2 ) = 2.

If x1 = y2 or x2 = y1, then y1 and y2 are connected by a long edge, and we

are done.

If x1 = x2, then the path y1, x1, y2 consists of two long edges, and we are

done.

So assume that the four points y1, y2, x1, x2 are all distinct. Then there are 4

edges connecting a point in {x1, y1} with a point in {x2, y2} – see figure 5.3.

They can’t all be short, as this would give a short circuit x1, x2, y1, y2, x1.

Hence one of these 4 edges must be long, proving the claim.

y1 y2

x2x1

lo
n

g lon
g

Figure 5.3:

We conclude that gi is a constant function. Let its value be αi = fi(y)−1y. We check

that αi mentions letters from Xi:

#Xi(αi) = #Xi(fi(y)−1y)

= #Xi(y)−#Xi(fi(y))

= 1− 0,

as y ∈ Yi ⊆ Xi and fi(y) ∈ K ≤ ker(#Xi). Hence at least one Xi-letter appears in the

X-reduced expression for αi. Picking a the first Xi-letter appearing in the X-reduced

expression for α, we have made the required choice.

3Thank you to Vu Dang for helping with this part.
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Combine this theorem with lemma 5.22 to obtain the full result:

Corollary 5.24. ZF ` NSred ⇒ AC.

As in section 5.4, the subgroup considered here was normal. So we actually proved a

stronger result:

Theorem 5.25. The statement

If F is a free group and K ≤ F is a normal subgroup, then K has a reduced

basis.

is equivalent to the Axiom of Choice.
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Chapter 6

Free abelian groups

In the last chapter we were concerned with free groups and their subgroups. However,

many of the questions considered in chapter 5 aren’t special to free groups. As bases

also make sense for, among others, free abelian groups, and vector spaces, one might try

to find a class of structures in the model theoretic sense for which there is a notion of

basis, i.e. a subset B such that every element of the structure can be written uniquely

as a finite combination of elements of B. We can then consider the equivalent of the

Nielsen–Schreier theorem in this general context. The translation of NS is:

If S is a structure with a basis and T ≤ S is a substructure, then T has a basis. (6.1)

However, this statement is not valid for all structures for which there is a notion of basis,

as the following example shows.

Example 6.1. 1 Let F be the free monoid on one generator. Then F is isomorphic to

〈N, 0,+〉 and has basis {1}. It is easy to verify that K = 〈N \ {1}, 0,+〉 is a submonoid

of F , with generating set {2, 3}. In fact, every generating set must contain 2 and 3. As

6 = 2 + 2 + 2 = 3 + 3, we conclude that no generating set of K is a basis.

This example shows that it doesn’t make sense to take a general statement such as (6.1)

as an axiom of set theory. Based on the similarity with free groups, we will restrict our

attention free abelian groups:

1Thank you to Alex Kruckman for suggesting this example.
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NSab (Nielsen–Schreier for abelian groups): If F is a free abelian group and K ≤ F is a

subgroup, then K is a free abelian group.

Proposition 6.2. ZFC ` NSab.

Proof. A proof is available on page 41 of Lang’s classic book [30].

In section 6.1 we show that the abelian version of the Nielsen–Schreier theorem implies

the Axiom of Choice for 2-element sets. The proof uses the representative functions

introduced in section 5.4.

This implication is shown to be strict in section 6.2, where we prove that the Boolean

Prime Ideal Theorem doesn’t imply the abelian version of the Nielsen–Schreier theorem.

This is achieved with the same model as in section 5.5.

In section 6.3 we extend the representative functions introduced in section 6.1 to families

of non-empty finite sets, and we discuss potential applications to vector spaces.

6.1 Abelian Nielsen–Schreier implies AC2

In this section, we show that NSab implies AC2, the Axiom of Choice for families of

2-element sets. This shows that NSab can’t be proved entirely without the Axiom of

Choice. The idea of the proof is similar to that of lemma 5.12. However, the definition

of the representative function fy(xi) as the ‘first half’ of xix
−1
i+1 cannot be translated,

and picking the first y-letter in αy is impossible. Both of these issues can be resolved in

the commutative setting when working with a family of 2-element sets.

Before proceeding to the proof, we must translate the counting homomorphisms from

section 5.4 to free abelian groups. Let Y be a family of pairwise disjoint 2-element sets.

For the rest of this section we define X =
⋃
Y , and let F = FA(X) be the free abelian

group with basis X.
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Definition 6.3. The counting functions #y : F → Z are defined by

#y(n1x1 + ...+ nkxk) =
∑
i:xi∈y

ni.

It is easy to check that the #y are group homomorphisms from F to the additive group

of integers. For the remainder of this section we fix a subgroup

K =
⋂
{ker(#y) : y ∈ Y }

of F . By NSab there is a basis B for K. This allows us to define the positive and negative

parts of elements of K:

Definition 6.4. Let β ∈ K and write it in terms of the basis B as β =
∑
nibi, where

the bi ∈ B are distinct and the ni ∈ Z are non-zero. We define the positive and negative

parts of β with respect to B as

p(β) =
∑
i:ni>0

nibi,

n(β) =
∑
i:ni<0

nibi.

Here are some basic properties of p and n:

1. For all β ∈ K, β = p(β) + n(β).

2. Multiplication by −1 swaps positive and negative parts: −n(−β) = p(β) and

−p(−β) = n(β) for all β ∈ K.

3. The functions p, n : K → K are not group homomorphisms: Pick any b ∈ B and

define β1 = −b, β2 = 2b. Then p(β1 +β2) = p(b) = b while p(β1)+p(β2) = 0+2b =

2b. Similarly, n(β1 + β2) 6= n(β1) + n(β2).

We have now defined all of the tools necessary to prove our next result.

Proposition 6.5. ZF ` NSab ⇒ AC2
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Proof. Recall that Y is a family of pairwise disjoint 2-element sets. Fix a member y ∈ Y .

We will find a way of picking one of its elements without making any choices.

Write y = {x0, x1}. After stipulating that i ≡ j (mod 2) ⇒ xi = xj, it makes sense to

talk about points xi ∈ y, where i ∈ Z. This convention will improve readability later in

the proof.

Now define the representative function fy by

fy : y → K : xi 7→ p(xi − xi+1).

On a superficial intuitive level, it makes sense to associate xi with the positive part of

xi−xi+1 and −xi+1 with the negative part of xi−xi+1. Amazingly, this definition works.

As usual, fy comes with its companion function gy, defined by

gy : y → F : x 7→ x− fy(x).

fy exhibits the good behaviour that we have come to expect from it:

fy(xi)− fy(xi+1) = p(xi − xi+1)− p(xi+1 − xi+2)

= p(xi − xi+1) + n(xi+2 − xi+1)

= p(xi − xi+1) + n(xi − xi+1)

= xi − xi+1

Hence gy(x0) = gy(x1) and gy is a constant function. Let αy be the single element of its

image. Then

#y(αy) = #y(x0 − fy(x0))

= #y(x0)−#y(fy(x0)) (#y is a homomorphism)

= 1 (x0 ∈ y and fy(x0) ∈ K ≤ ker(#y))

So, when writing αy as a Z-linear combination of basis elements x ∈ X, the coefficients

of x0 ∈ y and x1 ∈ y cannot be equal. For if they were, they would both have to be 1/2.

An element of y is chosen by picking the member with the larger coefficient in αy.
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6.2 The implication is strict

Let M be the Dawson–Howard model described in section 2.3. We saw in corollary 5.16

that

M |= BPIT ∧ ¬NS.

In this section, we show that M |= ¬NSab. In particular, this means that, just like NS,

NSab does not follow from BPIT, and that the implication ZF ` NSab ⇒ AC2 cannot be

reversed.

In order to prove the failure of NSab in the Dawson–Howard model, let F = FA(A) be

the free abelian group on A, the set of atoms in M. Define the usual subgroup

K =
⋂
{ker(#Ai) : i < ω} ≤ F,

where the counting functions #Ai are defined in section 6.1. If M |= NSab, then K has a

basis B with finite support E ⊆ A. We will derive a contradiction. Recall definition 3.6,

where we defined the set of A-components of α = n1a1 + ...+ nkak, where a1, ..., ak ∈ A

are distinct and n1, ..., nk ∈ Z \ {0}, to be CA(α) = {a1, ..., ak}.

Definition 6.6. If β is any element of the subgroup K, write β = n1b1 + ... + nkbk,

where b1, ..., bk ∈ B are distinct and n1, ..., nk ∈ Z \ {0}. The set of A-components of β

via B is CBA (β) =
⋃k
i=1 CA(bi).

Example 6.7. Let i < ω, let a, b, c, d ∈ Ai be distinct, and suppose that {a − b +

c − d, c − d} ⊆ B. Defining β = a − b ∈ K, we see immediately that CA(β) = {a, b}.

Moreover, since β = (a− b+ c− d)− (c− d) in terms of B, CBA (β) = {a, b, c, d}.

Note that the sets CA(α) and CBA (β) are always finite, whatever the choice of α ∈ F and

β ∈ K. Moreover, (∀β ∈ K) CA(β) ⊆ CBA (β). As example 6.7 shows, this inclusion may

be strict.

We now describe the ideas behind the proof. Our aim is to find β ∈ K which can be

expressed as a Z-linear combination of elements of B in two different ways, giving the

required contradiction. We will find an element β = a1 − a2 of K such that the set of



6.2 The implication is strict 79

A-components of β contains a point a 6∈ E ∪ {a1, a2} (where E is the support of B).

There are permutations of A which move a while at the same time fixing E ∪ {a1, a2}.

Such permutations fix β, but they don’t fix its B-components. This gives two different

B-expressions for β.

Having seen the strategy of the proof, we are now ready to prove some lemmas before

moving on to the main theorem.

Lemma 6.8. Let β ∈ K and j < ω be arbitrary. Then |CA(β) ∩ Aj| is either 0 or ≥ 2.

Proof. Suppose there is β ∈ K and j < ω with |CA(β) ∩ Aj| = 1. Write β = n1a1 +

... + nkak, where a1, ..., ak ∈ A are distinct and n1, ..., nk ∈ Z \ {0}. After reordering if

necessary, a1 ∈ Aj and a2, ..., ak 6∈ Aj. It follows that #Aj(β) = n1 6= 0, contradicting

β ∈ K ≤ ker(#Aj).

Lemma 6.9. There are a1, a2 ∈ A with a1 − a2 ∈ K and CBA (a1 − a2) 6⊆ E ∪ {a1, a2}.

Proof. Let j < ω be such that E ∩ Aj = ∅, and let a1, a2, a3 ∈ Aj be arbitrary and

distinct. (In particular, a1, a2, a3 6∈ E). If CBA (a1 − a3) 6⊆ E ∪ {a1, a3} or CBA (a2 −

a3) 6⊆ E ∪ {a2, a3}, then we are done. So assume that CBA (a1 − a3) ⊆ E ∪ {a1, a3} and

CBA (a2 − a3) ⊆ E ∪ {a2, a3}. Write

a1 − a3 = n1b1 + ...+ nkbk (6.2)

a2 − a3 = n′1b
′
1 + ...+ n′k′b

′
k′ , (6.3)

where the bi ∈ B are distinct, the b′i ∈ B are distinct, and ni, n
′
i ∈ Z \ {0}. Since

E ∩ Aj = ∅,

CBA (a1 − a3) ⊆ E ∪ {a1, a3}

implies that

CBA (a1 − a3) ∩ Aj ⊆ {a1, a3}.

This gives

CA(bi) ∩ Aj ⊆ {a1, a3} for i = 1, ..., k.
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By lemma 6.8, CA(bi) ∩ Aj is either ∅ or {a1, a3} for each i = 1, ..., k. In other words,

the bi either mention neither a1 nor a3, or they mention both. Since the left-hand side

of (6.2) mentions a1 and a3, at least one of the bi mentions both. By rearranging the

sum, we may assume that this is b1.

Subtracting (6.3) from (6.2), we obtain

a1 − a2 = n1b1 + ...+ nkbk − (n′1b
′
1 + ...+ n′k′b

′
k′). (6.4)

Since CBA (a2 − a3) ⊆ E ∪ {a2, a3}, b1 isn’t equal to any of b′1, ..., b
′
k′ . Hence it doesn’t

cancel out when reducing the right-hand side of (6.4) with respect to B. So a3 ∈ CA(b1) ⊆

CBA (a1 − a2), proving that CA(a1 − a2) 6⊆ E ∪ {a1, a2}, as required.

Theorem 6.10. M |= ¬NSab.

Proof. By lemma 6.9, let a1, a2 ∈ A be such that β = a1 − a2 ∈ K and CBA (β) 6⊆

E ∪ {a1, a2}.

Write β = n1b1 + ... + nkbk, where n1, ..., nk ∈ Z \ {0} and b1, ..., bk ∈ B are distinct.

By reordering the summands, we may assume that CA(b1) 6⊆ E ∪ {a1, a2}. Let a ∈

CA(b1)\ (E∪{a1, a2}). Since {π(a) : π ∈ fix(E∪{a1, a2})} is infinite and CBA (β) is finite,

there is π ∈ fix(E ∪ {a1, a2}) with π(a) 6∈ CBA (β). Now

n1b1 + ...+ nkbk = β

= π(β) (as π ∈ fix({a1, a2}))

= n1π(b1) + ...+ nkπ(bk),

so

n1b1 + ...+ nkbk − (n1π(b1) + ...+ nkπ(bk)) = 0. (6.5)

We have arranged π ∈ fix(E), so π(b1), ..., π(bk) ∈ B. Moreover, the π(bi) are distinct,

as the bi were chosen to be distinct. By the choice of π, we have π(a) 6∈ CBA (β), which

shows that π(b1) 6∈ {b1, ..., bk}. Hence at least the one summand n1π(b1) remains when

reducing the left-hand side of equation (6.5) with respect to B. Since n1 6= 0, (6.5) is

a non-trivial B-expression for 0, so that B is no basis after all. This is the required

contradiction.
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We saw in example 2.16 that ¬NS is a transferable statement. A Similar argument shows

that ¬NSab is also transferable. Thus:

Corollary 6.11. ZF 6` BPIT⇒ NSab

In particular, as BPIT ⇒ AC2, this shows that the implication NSab ⇒ AC2 is not

reversible.

6.3 More on representative functions

In this section we do not prove any new results. Instead, we present work that might lead

to stronger and more general results in the future. The foundations for this section were

laid in section 6.1 where we deduced AC2 from NSab by finding representative functions

for sets of size 2. Here we will construct representative functions for sets of any finite

size.

Recall the set-up from section 6.1: We start with a family Y of pairwise disjoint non-

empty finite sets. Then we let X =
⋃
Y , F = FA(X), and K =

⋂
{ker(#y) : y ∈ Y }.

Using NSab, we obtain a basis B for K.

As the general case is rather involved, we present the construction for a family 3-element

sets first. This special case illustrates all of the main ideas needed for the full construc-

tion.

Example 6.12. Assume Y is a family of pairwise disjoint 3-element sets. Let y ∈ Y ,

and write it as y = {x0, x1, x2}. We will use the indices 0, 1, 2 to distinguish the elements

of y, but we will not use them to choose from among them, or to put them in a certain

order. Define

β0 = 2x0 − x1 − x2,

β1 = −x0 + 2x1 − x2,

β2 = −x0 − x1 + 2x2.
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Each βi distinguishes xi from the other elements of y by putting more weight on xi.

Inspired by their shape, we call such elements of a free abelian group spikes. Note that

β0, β1, β2 ∈ K and β0 + β1 + β2 = 0. The representative function fy : y → K is given by

fy(x0) = p(β0)− n(β1)− n(β2)

fy(x1) = −n(β0) + p(β1)− n(β2)

fy(x2) = −n(β0)− n(β1) + p(β2)

Let us define the companion function to fy by

gy : y → F : xi 7→ 3xi − fy(xi).

Our aim is to use fy to show that gy is a constant function. For this purpose we will

need the following equality:

2fy(x0)− fy(x1)− fy(x2)

= (2p(β0) + n(β0) + n(β0)) + (−2n(β1)− p(β1) + n(β1)) +

(−2n(β2) + n(β2)− p(β2))

= 2β0 − β1 − β2

= 3β0 − (β0 + β1 + β2)

= 3β0

= 3(2x0 − x1 − x2).

Similar calculations show that

−fy(x0) + 2fy(x1)− fy(x2) = 3(−x0 + 2x1 − x2) and

−fy(x0)− fy(x1) + 2fy(x2) = 3(−x0 − x1 + 2x2).

These three equalities are summarised by the following matrix equation:
2 −1 −1

−1 2 −1

−1 −1 2



gy(x0)

gy(x1)

gy(x2)

 = 0.
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By elementary linear algebra, it follows that gy(x0) = gy(x1) = gy(x2), i.e. that g is a

constant function, as desired.

Having seen this special case, it is straightforward to find a generalisation for any family

Y of pairwise disjoint non-empty finite sets. Let y ∈ Y be arbitrary, and suppose

|y| = n ≥ 2. Writing y = {x0, ..., xn−1}, we define, for each i = 0, ..., n− 1 a spike

βi = (n− 1)xi −
∑
j 6=i

xj,

a representative function

fy : y → K : xi 7→ p(βi)−
∑
j 6=i

n(βj),

and a companion function

gy : y → F : xi 7→ nxi − fy(xi).

Fix any i ∈ {0, ..., n− 1}. Then

(n− 1)fy(xi)−
∑
k 6=i

fy(xk)

= (n− 1)

(
p(βi)−

∑
j 6=i

n(βj)

)
−
∑
k 6=i

(
p(βk)−

∑
l 6=k

n(βl)

)

= (n− 1)p(βi)−
∑
j 6=i

((n− 1)n(βj) + p(βj)) +
∑
k 6=i

∑
l 6=k

n(βl)

There are n− 1 pairs 〈k, l〉 where k 6= i, and l 6= k, and l = i. So

= (n− 1)(p(βi) + n(βi))−
∑
j 6=i

((n− 1)n(βj) + p(βj)) +
∑
k 6=i

∑
l 6=i,k

n(βl)
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For each j 6= i there are n− 2 pairs 〈k, l〉 where k 6= i, and l 6= i, k, and l = j. So

= (n− 1)(p(βi) + n(βi))−
∑
j 6=i

((n− 1)n(βj) + p(βj)− (n− 2)n(βj))

= (n− 1)(p(βi) + n(βi))−
∑
j 6=i

(p(βj) + n(βj))

= (n− 1)βi −
∑
j 6=i

βj

= nβi −
∑
j

βj

= nβi

= n

(
(n− 1)xi −

∑
k 6=i

xk

)
.

In summary, we have (n − 1)fy(xi) −
∑

k 6=i fy(xk) = n
(

(n− 1)xi −
∑

k 6=i xk

)
for all

i = 0, ..., n− 1. As in the earlier example, this gives a matrix equation
n− 1 −1 . . . −1

−1 n− 1 . . . −1
...

...
. . .

...

−1 −1 . . . n− 1




gy(x0)

gy(x1)
...

gy(xn−1)

 = 0,

which in turn implies that gy is a constant function by elementary linear algebra.

In order to pick a single element of y, our standard procedure is to let αy be the constant

value of gy. Then #y(αy) = #y(nx0 − fy(x0)) = n 6= 0 implies that αy mentions letters

from y. If we were dealing with free groups, we could choose an element of y by picking

the first y-letter appearing in αy. But in free abelian groups, it is no longer possible to

use the ordering of letters to make a choice. Instead, we must distinguish the letters by

their coefficients in αy. If we could guarantee that the y-letters appearing in αy don’t

all have the same coefficient, then ACfin could be deduced from NSab.

The above construction of representative functions works for vector spaces over fields

whose characteristic does not divide n. This might give a fresh point of view on state-

ments of current interest, such as

B(F ) (existence of bases): Every F -vector space has a basis.



6.3 More on representative functions 85

Blass [1] showed that the Axiom of Choice follows from (∀F )B(F ). However, if we

restrict our attention to B(F ) for a particular field F , such as the two-element field F2

or the rationals Q, then we obtain a weaker Choice principle. A list of open questions

relating to this principle is given at the end of Howard and Tachtsis [20]. Among them

are:

Question. Is there a field F for which B(F ) implies AC?

Question. Is there a field F for which B(F ) does not imply AC?

The literature only offers partial answers. Keremedis [26] showed that B(Q) implies

that every infinite well-ordered set of two-element sets has an infinite subset with a

choice function. Later, Howard [18] proved that B(F2) implies that every well-ordered

collection of two-element sets has a choice function. This was improved by Morillon

[33], who deduced AC2 from B(F2). (This is not stated explicitly, but it is implicit in the

proofs.) The most recent paper in this field is Howard and Tachtsis [20]. They showed

that, for every field F in the Dawson–Howard model there is an F -vector space with no

basis.

To end this chapter, I would like to formulate a conjecture. Its proof would be a sig-

nificant improvement of the results published in the past few years. Representative

functions seem to be a promising tool for attacking it.

Conjecture. If F is a field of characteristic 0, then ZF ` B(F )⇒ ACfin.
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