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We obtain a general connection between a large quantum advantage
in communication complexity and Bell non-locality. We show that
given any protocol offering a sufficiently large quantum advantage in
communication complexity, there exists a way of obtaining measure-
ment statistics which violate some Bell inequality. Our main tool is
port-based teleportation. If the gap between quantum and classical
communication complexity can grow arbitrarily large, the ratio of the
quantum value to the classical value of the Bell quantity becomes
unbounded with the increase in the number of inputs and outputs.

communication complexity | Bell non-locality | quantum advantage | quantum

information

The key element which distinguishes classical from quan-
tum information theory is quantum correlations. The

first attempt to quantify their strength was quantitatively ex-
pressed in Bell’s theorem [1]. They are similar to classical cor-
relations in that one cannot take advantage of them to perform
superluminal communication, yet, every attempt to explain
such correlations from the point of view of classical theory
– namely, to find a local hidden variable model – is impos-
sible. For a long time the existence of quantum correlations
was merely of interest to philosophically minded physicists,
and was considered an exotic peculiarity, rather than a useful
resource for practical problems in physics or computer science.
This has changed dramatically in recent years – it became ap-
parent that quantum correlations can be used as a resource for
a number of distributed information processing tasks [2, 3, 4]
producing surprising results [5, 6].

One area where using quantum correlations has wide-
reaching practical implications is communication complexity.
A typical instance of a communication complexity problem
features two parties, Alice and Bob, who are given binary in-
puts x and y. They wish to compute the value of f(x, y)
by exchanging messages between each other. The minimum
amount of communication required to accomplish the task by
exchanging classical bits (with bounded probability of success)
is called classical communication complexity, denoted as C(f).

There are two ways to account for the communication com-
plexity of computing a function when we want to make use of
quantum correlations. In the first one, Alice and Bob share
any number of instances of the maximally entangled state
|Ψ−〉AB = 1√

2
(|01〉 − |10〉)AB beforehand and are allowed to

exchange classical bits in order to solve the problem. An-
other approach is to have no pre-shared entanglement, but
instead allow Alice and Bob to exchange qubits. The latter
type of protocol can always be converted to the former with
pre-shared entanglement and classical communication. We de-
note the quantum communication complexity of computing
the function f(x, y) (with bounded probability of success) by
Q(f).

For a large number of problems, the respective quantum
communication complexity is much lower compared to its clas-
sical counterpart [4, 7]. In such cases, we say that there ex-

ists a quantum advantage for communication complexity. In
other words, one achieves a quantum advantage if the quan-
tum communication complexity of the function is lower than
its corresponding classical communication complexity.

One of the most striking example of quantum advantage is
the famous Raz problem [5, 8] where quantum communica-
tion complexity is exponentially smaller than classical. An-
other example is the “hidden matching” problem for which
the quantum advantage leads to one of the strongest possi-
ble violations of the Bell inequality [9]. The latter inequality
plays an important role in detecting quantum correlations and
certifying the genuinely quantum nature of resources at hand.
Previously, to obtain an unbounded violation of a particular
Bell inequality one resorted to problems with the exponential
quantum advantage. Here, we show that one can achieve the
same result using only polynomial quantum advantage.

As a matter of fact, the very first protocols offering quan-
tum advantage were based on a quantum violation of certain
Bell inequalities [6]. It was even shown that for a very large
class of multiparty Bell inequalities, correlations which vio-
late them lead to a quantum advantage (perhaps, for a pecu-
liar function) [10]. This indicates that Bell non-locality often
leads to a quantum advantage. However, there are more and
more communication protocols which offer a quantum advan-
tage, but, nevertheless, they are not known to violate any Bell
inequality.

Significance

For many communication complexity problems the quantum
strategies, distinguished by using Bell non-local correlations,
provide exponential advantage over the best possible classical
strategies. Conversely, for any Bell non-local correlations there
exists a communication complexity problem which is solved more
efficiently using the former. Despite many efforts, there were
only two problems for which one could certify that any strategy
that outperforms the classical one must harbor Bell non-local
correlations. We prove that any large advantage over the best
known classical strategy makes use of Bell non-local correla-
tions. Thus, we provide the missing link to the fundamental
equivalence between Bell non-locality and quantum advantage.
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It has long been suspected [6] that quantum communication
complexity and Bell non-locality are the two sides of the same
coin. While it is possible to convert a Bell non-locality testing
experiment to the communication complexity instance, the re-
verse has been known only for some particular examples. The
question is whether this relationship holds in general, namely:

Q: Is quantum communication inherently equivalent to Bell
non-locality when solving communication complexity prob-
lems?

Until now, there were only two concrete examples where one
could certify quantum correlations in the context of commu-
nication complexity by providing a quantum state and a set
of measurements whose statistics violate some Bell inequality.
The first case is the “hidden matching” problem and the sec-
ond one is a theorem, which states that a special subset of
protocols that provide quantum advantage also imply the vio-
lation of local realism [6]. To get the violation of Bell inequal-
ities obtained from the examples above, one had to perform
an involved analysis which relied on a problem-specific set of
symmetries. Thus, such an approach cannot be generalized to
an arbitrary protocol for achieving a quantum advantage in
the communication complexity problem.

In this paper, we show that given any (sufficiently large)
quantum advantage in communication complexity, there ex-
ists a way of obtaining measurement statistics which violate
some linear Bell inequality. This completely resolves the ques-
tion about the equivalence between the quantum communica-
tion and Bell non-locality: whenever a protocol computes the
value of the function f(x, y) better than the best classical pro-
tocol, even with a gap that is only quadratic, then there must
exist a Bell inequality which is violated.

We provide a universal method which takes a protocol which
achieves the quantum advantage in any single- or multi-round
communication complexity problem and uses it to derive the
violation of some linear Bell inequality. This method can be
generalized to a setting with more than two parties. Our Bell
inequalities lead to a so-called unbounded violation (see [11]):
the ratio of the quantum value to the classical value of the
Bell quantity can grow arbitrarily large with the increase of
the number of inputs and outputs, whenever the ratio of C(f)
and (Q(f))2 grows too. In particular, an exponential advan-
tage leads to an exponential ratio.

Our method consists of two parts. In the first part, we
use the quantum protocol based on the given communication
complexity game to construct a set of quantum measurements
on a maximally entangled state The central ingredient of our
construction is the recently-discovered port-based teleporta-
tion [12, 13]. In the second part, given a protocol which
computes a function f by using Q(f) qubits, and the opti-
mal classical error probability achievable with (Q(f))2 bits,
we construct the corresponding linear Bell inequality which is
subsequently violated by the above quantum measurements.

For one-way communication complexity problems we de-
velop a much simpler method which is based on the remote
state preparation and results in a non-linear Bell inequality.

Quantum communication complexity protocol.We start by
defining a general quantum multi-round communication pro-
tocol. Two parties, Alice and Bob receive inputs x ∈ X =
{0, 1}n and y ∈ Y = {0, 1}n according to some distribution µ
and their goal is to compute the function f : X×Y → {0, 1} by
exchanging qubits over multiple rounds. We will further use
subscripts for the system names to denote the round number.
The parties proceed as follows.

1. Alice, applies UA0→M1A1
x on her local state ρA0 and sends

ρM1 to Bob. In general, M1 may be entangled with A1,
which remains with Alice.

2. Bob performs UM1B0→M2B1
y on the state ρM1 ⊗σB0 . Then

he sends back the system M2 to Alice, keeping B1.
3. Parties repeat steps 1 and 2 for r − 1 rounds. In the last

round, instead of communicating back to Alice, Bob mea-
sures the observable oy and outputs the value of the func-
tion f . The observable oy acts on the system M2r−1 and
Bob’s memory Br−1.

The above protocol may be transformed to the form where a
one-qubit system is exchanged between Alice and Bob at any
round. To achieve this, we split the Q-qubit message from
Alice to Bob (or vice versa) into Q rounds of one-qubit trans-
mission and modify the protocol as follows. We start from the
initial state which has the form:

|ρMA 〉|θCA〉|σM
B 〉, [1]

where |ρMA 〉 and |σM
B 〉 describe the memory registers which be-

long to Alice and Bob respectively. The state |θCA〉, initially in
state |θ〉 = |0〉 with Alice, is a one-qubit system which is used
for message passing from Alice to Bob and vice-versa. In each
round, Alice applies U i

x to ρ⊗ θ, and Bob applies U i
y to σ⊗ θ.

In the last round, instead of applying a unitary transforma-
tion, Bob performs a measurement. One may view unitaries
U i

x and U i
y as controlled gates acting on the memory with the

one-qubit register acting as a control. This implies that for
given x, in round i the state of Alice memory is spanned on at
most 2i orthogonal vectors. This observation will be crucial
for the construction of a compressed-memory quantum proto-
col. Thus, we can transform any given protocol which requires
Q qubits of communication into one which makes use of 2Q
one-qubit exchanges.

From an arbitrary protocol to a compressed-memory protocol.
One shortcoming of the above protocols is that both players
possess a local memory, possibly entangled with the message,
which can span an arbitrary number of qubits and which there-
fore could be much too big to properly handle in other parts
of our construction. We solve this problem by converting an
arbitrary protocol, as described above, to a protocol where we
can upper bound the maximum size of the local memory.

The following proposition, which is a consequence of the
Yao-Kremer Lemma [3, 14] shows that it is possible to com-
press the parties’ local memory each step, and that therefore
the size of the local memory can be assumed to be at most
the total communication. We include the proof in Section IV
of the Supporting Information.

Proposition 1. For any Q-qubit quantum communication proto-
col (without prior entanglement) there exists a Q-qubit quan-
tum communication protocol for which Alice and Bob can en-
code their local memory on at most Q qubits each.

Quantum measurements from the quantum communication
complexity protocol. We now show how to convert a multi-
round compressed-memory protocol for computing f(x, y)
which gives a quantum advantage to the violation of a linear
Bell inequality. There exist two different protocols to achieve
this. The first protocol is based on the recently introduced
method of port-based teleportation which we briefly review in
the next section. The second method, discussed at the end
of the paper, relies on remote state preparation [15]. We will
base our construction on the port-based teleportation because
unlike the remote state preparation it is easily extendible to
the multi-round protocol and also gives rise to a linear Bell
inequality.

2 Footline Author
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Port-based teleportation. In deterministic port-based
teleportation, the two parties share N pairs of maximally en-
tangled qudits |Ψ−〉A1B1 ⊗ · · · ⊗ |Ψ−〉ANBN , each of which is
called a ‘port’. To transmit the state |Ψin〉A0 , the sender per-
forms the square-root teleportation measurement given by a
set of POVM elements {Π}Ni=1 (precisely defined in Eqn. (27)
of [13]) on all the systems Ai, i = 0, . . . , N , obtaining the re-
sult z = 1 . . . N . Then, he communicates z to the receiver who
traces out the subsystems B1 . . . Bz−1Bz+1 . . . BN and remains
with the teleported state |Ψout〉Bz in the subsystem Bz. Tele-
portation always succeeds and the fidelity of the teleported

state with the original is F (|Ψin〉A0 , |Ψout〉Bz ) ≥ 1− d2

N
. The

cost of the classical communication from sender to receiver is
equal to c = log2 N . The distinctive feature of this protocol
is that unlike with original teleportation, it does not require a
correction on the receiver’s side.
Constructing quantum measurements. Using port-based
teleportation we can now construct the relevant quantum mea-
surements. Parties start with the initial state [1] and perform
the following protocol.

1. Alice applies UA0→M1A1
x on her local state ρA0 . She obtains

the state of size Q1 = log dimM1 + log dimA1 which is tele-
ported to Bob at once using N1 ports each of dimension
2Q1 . This consumes N1 ports. Alice does not communi-
cate the classical teleportation outcomes {iA1 }, |{iA1 }| = N1

with iA1 ∈ {1, . . . , N1} to Bob.
2. Bob applies the local unitary UM1B0→M2B1

y to each of the
ports (he does not know the value of i1) and teleports each
of the N1 states one-by-one by applying the teleportation
measurement using N2 ports each of the dimension 2Q2

where Q2 = log dimM2 + log dimB1 + log dimA1. This con-
sumes N1N2 ports. Bob keeps the set of N2 teleportation
outcomes {iB1,1, . . . , iB1,N2

}, |{iB1,1, . . . , iB1,N2
}| = N1N2 where

for each j = 1 . . . N2, iB1,j ∈ {1, . . . , N2}.
3. Parties repeat steps 1 and 2 for r − 1 rounds.

At the end of the protocol we obtain the set of measurements
which map the generic communication protocol into the set of
correlations:

p({iA1 }, {iB1,1, . . . , iB1,N1
}, {iA2,1, . . . , iA2,N1N2

}, . . . ,

{iBr,1, . . . , iBr,N1N2...N2r−1
}, {o1, . . . , oN1N2...Nr}|x, y), [2]

where {oj} are the final teleportation measurements in round
r on Bob’s side. An important feature of this construction is
that all the quantum measurements are performed simultane-
ously but the classical information exchange happens sequen-
tially. A single round of the protocol is depicted in Figure 1
and the entire protocol is depicted in Figure 2.
Simulating the quantum protocol. The last part of the
puzzle is a method of simulating the compressed-memory
quantum protocol using the above correlations and classical
communication.
Lemma 1. Given a protocol for computing f which uses Q
qubits of communication and achieves the success probability
psucc ≥ 1/2 + ε, ε > 0, one can simulate it using correla-
tions [2] and 10Q2 bits of classical communication with the
success probability psucc ≥ 1/2 + (1− 2−Q)2Qε.
Proof: Having access to correlations [2], Alice and Bob ex-
change their respective outcomes of the teleportation measure-
ments which amount to log2 N1N2N3 . . . N2r−1 bits of com-
munication. This finalizes the port-based teleportation and
thus simulates the corresponding quantum protocol. After ex-
change, Bob returns oL where L denotes the last index which
he received from Alice.

The above protocol is equivalent to 2r rounds of port-based
teleportation employed for the compressed-memory protocol.
Since by the compression of Proposition 1 for every round
i the dimension of the teleported state Qi is at most 22Q+1

(the message is encoded in 1 qubit and the local memories
are encoded in Q qubits each), we set log2 Ni = 5Q so that
the fidelity of teleportation on each step is F ≥ (1 − 2−Q).
Then the protocol has success probability psucc ≥ 1/2 +F 2rε,
where psucc ≥ 1/2 + ε is the success probability of the orig-
inal quantum protocol. Bounding the number of rounds r
by the total amount of quantum communication Q, we get
psucc ≥ 1/2 + 1/2(1 − 2−Q)2Qε. Thus, the total amount of
classical communication is bounded above by 10Q2. �

Construction of a Bell inequality and its violation. Let us sum
up the whole construction. Firstly, we start with quantum
multi-round protocol to compute f which uses quantum com-
munication and no shared entanglement. This protocol re-
quires Q qubits of communication and achieves psucc ≥ 1/2+ε.
In this protocol, Alice and Bob may use an arbitrary amount
of local quantum memory between rounds. Second, we con-
vert it to the protocol with compressed local quantum mem-
ory, where the latter can be encoded in Q qubits. The com-
pressed protocol is then used to obtain correlations in the
form [2]. These correlations together with classical commu-
nication are used to recover the original communication com-
plexity protocol which computes f . This protocol uses O(Q2)
bits of classical communication and achieves success probabil-
ity psucc ≥ 1/2 + (1− 2−Q)2Qε.

Now, if for a function f(x, y) there exists a gap between
C(f) and (Q(f))2 with psucc = 1/2 + δ for the classical com-
munication complexity protocol, and δ � ε – then we observe
the quantum violation of the Bell inequality of the form:

∑
x,y

µ(x, y)
∑
q∈P

p (oq = f(x, y)|x, y) ≤ 1/2 + δ, [3]

where µ is a probability measure on X ×Y , the set P denotes
the set of all paths from the root to the leaves of length 2r−1
of the tree formed by the subsequent outputs of Alice and
Bob in the protocol and p (oq = f(x, y)|x, y) is the marginal
probability which comes from summing over all indices which
do not explicitly appear in the path q (cf. Figure 3). With
the exception of the last level, every node on the i-th level
has Ni children which correspond to the outcome of the i-th
round of teleportation. The index of the first node in the path
corresponds to the state being on Alice’s side and each sub-
sequent index corresponds to the state being either on Alice’s
or Bob’s side in the alternating manner. The leaves of the
tree correspond to the outcomes of Bob’s binary observable,
which is his guess of the value of the function f(x, y). (Note
that in the Bell inequality, there appear only special outputs –
those given by the paths of length 2r− 1 from the root to the
leaves – while in general, outputs will be given by all sequences
composed by choosing one node from every level.)

The Bell inequality [3] is the central quantity of the paper.
The left hand side of the inequality constitutes the maximal
success probability of guessing the value of f which can be
achieved with the correlations of the form [2]. If this success
probability turns out to be greater than the maximal success
probability attained by the best classical protocol (the right
hand side of the inequality) this implies that correlations [3]
reveal Bell non-locality.

Large violation of a Bell inequality from communication com-
plexity. We now show how to combine the above ingredients to

Footline Author PNAS Issue Date Volume Issue Number 3
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get the main result: whenever C(f)� (Q(f))2, we obtain an
unbounded violation of the Bell inequality – the ratio of the
quantum to classical value of our Bell inequality grows arbi-
trarily when we increase the number of inputs and outputs
[6, 9, 11, 16, 17, 18].

In order to state and proof the main theorem we summarize
the above results in the following sequence of steps:

1. Given a quantum protocol with advantage which uses Q
bits of communication and achieves psucc = 1/2+ε we con-
vert it (using Proposition 1) to the memoryless protocol
which uses 10Q2 bits of communication and achieves the
same success probability.

2. From memoryless protocol using measurements and quan-
tum state we obtain the set of quantum correlations Rq.

3. Using Rq and 10Q2 bits of classical communication we ob-
tain a new protocol P̄ which achieves

psucc ≥
1

2
+ (1− 2−Q)2Qε.

Recall that all the above measurements are done simul-
taneously, but the exchange of the corresponding classical
information happens sequentially.

4. We turn protocol P̄ into a Bell inequality. To this end,
we consider a general construction of Bell inequality given
any function f(x, y) and a protocol P that uses communi-
cation and correlations. Namely, denote by fP (a, b, x, y) to
be a guess of f(x, y) determined by the protocol for given
inputs (x, y) and outputs (a, b). Then, consider the proba-
bility of success of guessing the correct value of the function
f parametrized by the correlations R:

psuccf,P (R) = Prob
[
fP (a, b, x, y) = f(x, y)

]
≡

≡
∑
x,y

µ(x, y)
∑
a,b

R(ab|xy)I{fP (a,b,x,y)=f(x,y)}, [4]

where I(·) is the indicator function. Our Bell inequality will
simply be a shifted value of guessing probability

Bf,P (R) = psuccf,P (R)− 1

2
. [5]

5. We consider the behavior of the above Bell inequality on
classical correlations Rcl, as a function of the amount of
communication used by P̄ . To this end we apply Lemma 3
(proved in Section I of the Supporting Information) which
states that given an arbitrary protocol P which uses CP

bits of communication, we have

Bf,P (Rcl) ≤
√

3CP

C(f, 2
3
)
.

We apply it to our protocol P̄ .

Our main claim is contained in the following theorem:

Theorem 1. Suppose two parties can compute a function f us-
ing the protocol P with Q qubits of communication and the
success probability 2

3
. Then there exists a quantum correlation

Rq and Bell inequality Bf,P such that

Bf,P (Rq)

Bf,P (Rcl)
≥

√
C(f, 2

3
)

6
√

30Q
(1− 2−Q)2Q, [6]

where C(f, 2
3
) is the classical communication complexity of f

with probability 2
3
, and Rcl stands for arbitrary classical cor-

relation.

Remark. The theorem implies that, if Q2 is sufficiently
smaller than C (i.e. when we have a sufficiently large quan-
tum advantage in communication complexity) then we obtain
violation of a Bell inequality.

Proof: Given the protocol P computing f with success
probability 2

3
= 1

2
+ 1

6
(where we set ε = 1

6
) while using Q

qubits of communication, we consider protocol P̄ from item 3
which uses 10Q2 bits of communication with the same prob-
ability of success. If applied to correlations Rq of item 2
and using Lemma 1 above, it achieves the success probability
1
2

+ (1− 2−Q)2Q 1
6

Thus, the Bell inequality Bf,P̄ constructed
in item 5 evaluated on Rq gives

Bf,P̄ (Rq) ≥ (1− 2−Q)2Q 1

6
[7]

The next step is to check the value of the same Bell inequality
on classical correlations Rcl. To this end, we apply item 5
with P = P̄ , and CP = 10Q2, obtaining that for any classical
correlations Rcl

Bf,P̄ (Rcl) ≤
√

30Q2

C(f, 2
3
)
. [8]

We put together Eqs. [7] and [8] obtaining the required
bound for the ratio of Bell value on our particular quantum
correlation Rq, and arbitrary classical correlation Rcl

Bf,P̄ (Rq)

Bf,P̄ (Rcl)
≥

√
C(f, 2

3
)

6
√

30Q
(1− 2−Q)2Q. [9]

�
For C(f, 2

3
)� Q the right-hand side becomes large implying

large violation of a Bell inequality. The diagrammatic proof
of the theorem is depicted in Figure 4.

We provide several examples to demonstrate the power of
our result.

Examples
Both of the examples are based on an explicit communication
complexity problem called ‘Vector in Subspace’ which was first
introduced in [5]. In this problem, Alice and Bob receive the
n-dimensional vector v and the description of n/2-dimensional
subspace H, respectively, with the promise that either v ∈ H
or v ∈ H⊥. The aim of the game is to determine which sub-
space v belongs to by exchanging messages between the par-
ties. We will consider two variants of the problem below.

Vector in subspace problem with 1-way communi-
cation. In this protocol, there is only one round of com-
munication from Alice to Bob. Also, the local memory is
not used. The deterministic quantum protocol requires logn
qubits of communication (where n is the length of the vector
in the problem), while the classical communication complexity
is C (f, 2/3) = Ω( 3

√
n) [8].

Knowing the quantum protocol P explicitly, we obtain a
stronger Bell inequality because we do not need to invoke any
approximations. Using 5 logn bits of communication and cor-
relations [2], we can achieve the quantum success probabil-
ity of pq = 1/2 + 1/2(1 − 2−5 log n)10 log n, while the classical
protocol using the same amount of communication achieves
pc = 1/2 + δ, where δ2 ≤ 5 log n

A 3√n
, for some constant A. Thus,

the ratio of quantum to classical values of the Bell inequality
given in Theorem 1 is:

B(Rq)

B(Rcl)
=

1/2(1− 1/n)√
5 logn/A 3

√
n

= Ω

(
6
√
n√

logn

)
, [10]

4 Footline Author
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where we use B ≡ Bf,P when it does not lead to ambiguity.
Vector in subspace problem with 2-way communi-

cation (Raz original problem [5]). In this protocol, Al-
ice sends Bob a quantum state of size logn (where n is the
length of the vector in the problem) and then receives a state
of the same size. As in the previous example, the parties
do not use any local memory. There exists a deterministic
quantum protocol for this problem. The classical communica-
tion complexity is C (f, 2/3) = Ω( 4

√
n/ logn). But using only

10 logn qubits of communication and correlations [2], we get
pq = 1/2 + (1 − 2− log n)2. The classical protocol using the
same amount of communication achieves pc = 1/2 + δ where

δ2 ≤ c 10 log2 n
4√n

, for some constant A. Thus, the ratio of quan-

tum to classical Bell values is:

B(Rq)

B(Rcl)
=

1/2(1− 1/n)2√
10A log2 n/ 4

√
n

= Ω

(
8
√
n

logn

)
. [11]

One-way communication complexity problems. We now detail
the scenario when Alice is allowed to send a single message to
Bob in order to introduce a very different approach to obtain
the violation of a Bell inequality. In this case, state prepara-
tion protocol on Alice’s side followed by the measurement of
a quantum state by Bob will suffice. Also, there is no need
for the local quantum memory on either side because one does
not have to preserve the state of the communication protocol.
Therefore, the role of the port-based teleportation is played
by the remote state preparation.

One marked difference of this approach is that it consumes
a significantly smaller amount of entanglement. Also, in this
setting, we obtain the non-linear Bell inequality which explic-
itly features the probability of Bob guessing the communica-
tion from Alice – something which is not possible using the
method which relies on the port-based teleportation.

We first outline the remote state preparation protocol, and
then construct the relevant Bell inequalities below.

Remote state preparation. In the remote state prepa-
ration, Alice and Bob share a maximally entangled qudit
state |Φ+〉AB = 1√

d

∑d−1
i=0 |i〉A|i〉B . Alice wants to prepare

a known quantum state |φ〉 on Bob’s side by acting only on
her share of the qudit, requiring no post-processing on his
side. To achieve this, she performs a measurement with ele-
ments {|φ∗〉〈φ∗|, I−|φ∗〉〈φ∗|}, where |φ∗〉 is a conjugation of |φ〉
in the computational basis, on her part of |Φ+〉AB , followed
by the communication of the classical outcome to Bob if she
measured |φ∗〉〈φ∗| (we denote this outcome as 1). This pro-
tocol has a very low probability of success 1

d
. We discuss the

techniques to amplify it in the Section II of the Supporting
Information.

Correlations. Applying the remote state preparation pro-
tocol to our communication complexity problem, we obtain
the following correlations:

p(a, b|x, y) = tr
[
(Ma

x ⊗Mb
y)ρAB

]
, [12]

where {Ma
x} are the POVM elements from the remote state

preparation and {Mb
y} describes Bob’s measurements on the

shared state ρAB . In the current setup, the number of the
binary observables of Alice and Bob is equal to the number of
inputs x and y. The correlations [12] are obtained by acting
on a single instance of the entangled state whereas the multi-
round approach uses in the order of 2Q states. Merging m
instances together, we obtain following set of correlations:

p ({i}, {o1, . . . , oN}|x, y) , [13]

where i ∈ I, I = {1, . . . ,m} denotes the case when the remote
state preparation succeeds and {oi} are the respective outputs.
Thus, our Bell inequality may be written in the form [3]:∑

x,y

µ(x, y)
∑
i∈I

p(i, oi = f(x, y)|x, y) ≤ 1/2 + δ. [14]

Nonlinear Bell inequality. Here we derive a Bell inequal-
ity for the case where the parties have the option to abort at
any stage of the protocol. Our inequality turns out to be non-
linear and will depend only on two parameters, pA and pB ,
defined as follows:

• pA - probability that Alice succeeded, i.e. her outcome is 1
(averaged over all observables by the measure µ)

pA =
∑
x,y

µ(x, y)p(a = 1|x, y). [15]

This probability turns out to be equal to Bob successfully
‘guessing’ the communication from Alice in the absence of
communication from the latter.

• pB - conditional probability, that Bob’s outcome is equal
to value of the function, given that Alice succeeded

pB =
∑
x,y

µ(x, y)p(b = f(x, y)|x, y, a = 1). [16]

Using roughly m ≈ 1/pA instances of the state ρAB , Alice ob-
tains one successful outcome a = 1 on average. Then, Alice
communicates to Bob this successful instance.

To obtain the inequality, we show how Alice and Bob may
guess the correct value of the function. In this setup, as in the
previous case, Alice uses m ≈ 1/pA instances of the state ρAB .
Then Alice communicates to Bob the first instance where the
outcome appeared, using logm ≈ − log pA bits. Lastly, Bob
looks at the outcome for the successful instance, and with
probability pB obtains the value of the function f .

If Alice and Bob share a state that admits a local-realistic
description, then the used communication cannot be smaller
than the value C (pB , n), since it is the optimal value attain-
able by classical means. Thus for any local-realistic state, we
must necessarily have:

log
1

pA
& C(pB , n). [17]

See Section III of the Supporting Information for further de-
tails.

Discussion
Examples show that our protocol produces large violations
which are a bit weaker than the best known ones such as n

log2 n

[16] or
√
n

log n
[9]. This seems to be the price for its universal-

ity. However, it is an interesting open question, whether one
can find a communication complexity protocol, such that the
obtained Bell inequality would admit more dramatic viola-
tion that what is currently achievable. Another challenge is
to decrease the amount of entanglement used to violate our
Bell inequalities, which in our construction is exponential in
the quantum communication complexity of the given problem.
Similarly, the output size grows exponentially which gives rise
to the question of whether there exists a more efficient method
of exhibiting the Bell non-locality of quantum communication
complexity schemes. The last two challenges could be ad-
dressed by devising a more efficient teleportation protocol or
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improving one of the existing ones [19]. Finally, our method
does not cover the protocols with initial entanglement. This
is quite paradoxical, because protocols that use initial entan-
glement should be Bell non-local even more explicitly. It is
therefore desirable to search for a method of demonstrating
the Bell non-locality of such protocols.
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Fig. 1. The structure of a single round of the protocol. Alice applies Ux to her system,

which if followed by Bob’s unitary Uy . Bob has no information about the outcome of Alice’s

port-based teleportation, iA1 , so he teleports each of his qudit subsystem individually obtaining

iB1,1, iB1,2,. . . .

𝑥 𝑦

𝑈𝑥
𝐴→𝑀1𝐴1

𝑈𝑦
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Fig. 2. Constructing quantum measurements. A and B denote Alice’s and Bob’s local

subsystems respectively. Each measurement Mi, i = 1, . . . , r2r−1 represents the square-

root measurement in the port-based teleportation [12].
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Fig. 3. Exchange of the information after simultaneous teleportations in order to reveal

the path of teleported system in a 3-round protocol. After Alice’s teleportation measurement

in the first round the state ended up in port 1. Then, Bob teleports each of the two ports

from the array that he used in the previous round, obtaining the outcomes 2 and 3 for ports

1 and 2 respectively. Lastly, Alice performs a teleportation measurement for each of her four

ports, obtaining the outcomes 2, 4, 5, 8 for the ports 1, 2, 3, 4 respectively. A defines a path

q to be a sequence of teleportation outcomes: q = {i1,1 = 1, i2,1 = 2, i3,2 = 4}. The

last node of the path points to the system, whose outcome provides Bob’s guess. Recall that

the measurements are performed at the same time, and the sequential multi-round protocol

consists only of the exchange of classical information obtained after teleportation. The latter is

required to identify the last node of the path, which is used to make a guess about the value

of the function.
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Fig. 4. The scheme of the proof of Theorem 1. (a) an initial protocol evaluating function

f with bias 1/6, using Q qubits; (b) memoryless protocol, with the same bias, using Q2

qubits; (c) protocol P̄ using quantum correlations and Q2 qubits, with bias still about 1/6;

(d) protocol P̄ gives small bias for any classical correlation Rc if Q2 is sufficiently smaller

than C(f, 2/3).
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