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We explain how an unexpected algebraic structure, the division algebras, can be seen to underlie 
a generation of quarks and leptons. From this new vantage point, electrons and quarks are simply 
excitations from the neutrino, which formally plays the role of a vacuum state. Using the ladder operators 
which exist within the system, we build a number operator in the usual way. It turns out that this 
number operator, divided by 3, mirrors the behaviour of electric charge. As a result, we see that electric 
charge is quantized because number operators can only take on integer values.
Finally, we show that a simple hermitian form, built from these ladder operators, results uniquely in the 
nine generators of SUc(3) and Uem(1). This gives a direct route to the two unbroken gauge symmetries 
of the standard model.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
With the recent discovery of a scalar boson, whose coupling, 
spin and parity properties appear to largely align with the Higgs, 
[1–4], there is little refuting the predictive power of the standard 
model of particle physics. However, amongst the standard model’s 
impressive achievements are a number of gaps in our understand-
ing. For one, the logic behind the particle content of the standard 
model is still a mystery. Furthermore, the phenomenon of elec-
tric charge quantization remains an enigma, a property which is 
currently put into the theory by hand. One would expect that if 
a deeper mathematical structure to the standard model could be 
found, then it would act to illuminate the voids.

Here, we propose one such mathematical structure, whose po-
tential has largely gone unnoticed. This structure is the set of 
algebras known as the normed division algebras over the reals. 
Strikingly, there exist only four of these algebras: the real num-
bers, R, the complex numbers, C, the quaternions, H, and the 
octonions, O. It can be shown that particle physics relies heavily 
on the first three of these algebras.

The real numbers are used almost universally in physics; the 
complex numbers are central to quantum theory; the quaternions 
lead to the Pauli matrices, and are hence tightly entwined with 
the Lorentz algebra. In fact, in [5], it is shown that the complex 
quaternions can concisely describe all of the Lorentz representa-
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tions of the standard model: scalars, spinors, four-vectors, and the 
field strength tensor, in terms of generalized ideals.

But what is to be said for the octonions, O, the fourth, and 
final division algebra? With R, C, and H each undeniably etched 
into fundamental physics, it is hard not to wonder: is it really the 
case that O has been omitted in nature?

In earlier years, [6], Günaydin and Gürsey showed SUc(3) quark 
structure in the split octonions. Later, in [7], they showed anti-
commuting ladder operators within that model. Our new results 
stem from the octonionic chromodynamic quark model of [7], and 
are meant to replace the provisional charges of [5]. These findings 
make a case in support of those who have been long advocating 
for the existence of a connection between non-associative algebras 
and particle physics, [5–20].

Using the algebra of the complex octonions, which we will in-
troduce, we expose an intrinsic structure to a generation of quarks 
and leptons. This algebraic structure mimics familiar quantum sys-
tems, which have a vacuum state acted upon by raising and lower-
ing operators. In this case, the neutrino poses as the vacuum state, 
and electrons and quarks pose as the excited states.

With these raising and lowering operators in hand, we are then 
able to construct a number operator in the usual way,

N =
∑

i

α
†
i αi . (1)

It will be seen that N has eigenvalues given by {0, 1, 1, 1, 2, 2, 2, 3}. 
At first sight, these eigenvalues might not look familiar, that is, 
until they are divided by 3. N/3 has eigenvalues {0, 1 , 1 , 1 ,
3 3 3
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2
3 , 23 , 23 , 1}, which can now be recognized as the electric charges 
of a neutrino (or anti-neutrino), a triplet of anti-down quarks, 
a triplet of up quarks, and a positron. We will then define our 
electric charge, Q , as

Q ≡ N

3
. (2)

As N must take on integer values, Q must be quantized.
As we will show, the remaining states within a generation are 

related to these particles by complex conjugation, and hence are 
acted upon by −Q ∗ in the usual way.

Ours is certainly not the first instance where Günaydin and 
Gürsey’s model has been adapted. As an extension of their model, 
[15,16], Dixon describes electric charge as a mix of quaternionic 
and octonionic objects. It would be interesting to see if a ladder 
system could be found, which alternately gives Dixon’s Q as a 
number operator. Readers are encouraged to see [15,16], or other 
examples of his extensive work.

Since the time of first writing, more octonionic chromo-
electrodynamic models have been found. Most noteworthy of all 
were two papers written in the late 1970s, [9] and [10], which 
could also be considered as extensions of Günaydin and Gürsey’s 
model, [7]. In these papers, the authors use two separate ladder 
systems: system (a) fits with the octonionic ladder operators of 
[7], and system (b) is introduced as quaternionic. By combining 
the two systems, they describe the electric charge generator not 
as a number operator, but as the difference between the number 
operators of the two systems. References [9] and [10] are both im-
portant papers, worth careful reconsideration by the community.

Our results differ from earlier versions in that we will be con-
structing a generation of quarks and leptons explicitly as minimal 
left ideals of a Clifford algebra, generated by the complex octonions. 
In doing so, we will use just a single octonionic ladder system, 
with its complex conjugate. This in turn allows us to (1) define 
electric charge more simply as Q = N/3, and (2) expose a more 
direct route to the two unbroken gauge symmetries of the stan-
dard model. Furthermore, our formalism naturally relates particles 
and anti-particles using only the complex conjugate, i �→ −i, which 
is not a feature of these earlier models. Finally, as our generation 
of quarks and leptons will be constructed from Clifford algebra el-
ements, not column vectors, we will then be free to model mass 
and weak isospin, using right multiplication of this same Clifford 
algebra onto these minimal left ideals.

1. Acquaintance with CCC⊗OOO

The complex octonions are not a tool commonly used in 
physics, so we introduce them here.

The generic element of C ⊗O is written 
∑7

n=0 Anen , where the 
An are complex coefficients. The en are octonionic imaginary units 
(e2

n = −1), apart from e0 = 1, which multiply according to Fig. 1. 
The complex imaginary unit i commutes with the octonionic en .

Any three imaginary units on a directed line segment in Fig. 1
act as if they were a triplet of Pauli matrices, σm . (More pre-
cisely, they behave as −iσm .) For example, e6e1 = −e1e6 = e5, 
e1e5 = −e5e1 = e6, e5e6 = −e6e5 = e1, e4e1 = −e1e4 = e2, etc. It 
is indeed true that the octonions form a non-associative algebra, 
meaning that the relation (ab)c = a(bc) does not always hold. The 
reader can check this by finding three imaginary units, which are 
not all on the same line segment, and substituting them as in a, b, 
and c. For a more thorough introduction of O see [18–20].

Finally, we define three notions of conjugation on an element 
a in C ⊗ O. The complex conjugate of a, denoted a∗ , maps the 
complex i �→ −i, as would be expected. The octonionic parity conju-
gate of a, denoted ã, takes each of the octonionic imaginary units 
Fig. 1. Multiplication of octonionic imaginary units.

en �→ −en for n = 1, . . . ,7. That which we will call the hermitian 
conjugate of a, denoted a†, performs both of these maps simultane-
ously, i �→ −i and en �→ −en for n = 1, . . . ,7. The parity conjugate 
and the hermitian conjugate each reverse the order of multiplica-
tion, as is familiar from the hermitian conjugate of a product of 
matrices.

2. A system of ladders

Upon some exploration, one finds a system of ladder operators 
within the complex octonions. Consider α1 ≡ 1

2 (−e5 + ie4), α2 ≡
1
2 (−e3 + ie1), and α3 ≡ 1

2 (−e6 + ie2), similar to that defined in [6]. 
For all f in C ⊗O, and assuming right-to-left multiplication, these 
three lowering operators obey the anticommutation relations

{αi,α j} f = αi(α j f ) + α j(αi f ) = 0 (3)

for all i, j = 1, 2, 3. The above can be seen as a generalization of 
the system in [7]. That is, [7] is recovered by restricting the general 
f in C ⊗O to f = 1.

In another slight deviation from [7], we define raising operators 
as α†

1 = 1
2 (e5 + ie4), α†

2 = 1
2 (e3 + ie1), and α†

3 = 1
2 (e6 + ie2), which 

obey
{
α

†
i ,α

†
j

}
f = 0 for all i, j = 1,2,3. (4)

We finally also have
{
αi,α

†
j

}
f = δi j f for all i, j = 1,2,3. (5)

With the purpose simplifying notation, we will now implicitly 
assume all multiplication to be carried out starting at the right, 
and moving to the left, as was shown in Eq. (3). That is, we will 
now not write these brackets in explicitly. Furthermore, we will 
now be concerned only with operators, such as the αi , as opposed 
to the object f . This being the case, it will now be understood that 
all equations will hold over all f in C ⊗O, even though f will not 
be mentioned explicitly. For example, we will now write Eq. (3)
simply as

{αi,α j} = αiα j + α jαi = 0 for all i, j = 1,2,3. (6)

Incidentally, these operators acting on f may be viewed as 
8 ×8 complex matrices acting on f , an eight-complex-dimensional 
column vector. Taking into account the above paragraph, our equa-
tions from here on in can be considered as relations only between 
the matrices.

3. Complex conjugation’s analogue

Under complex conjugation, we find an analogous ladder sys-
tem. Consider α∗ = 1 (−e5 − ie4), α∗ = 1 (−e3 − ie1), and α∗ =
1 2 2 2 3
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1
2 (−e6 − ie2). These three lowering operators obey the anticom-
mutation relations
{
α∗

i ,α∗
j

} = 0 for all i, j = 1,2,3. (7)

We define raising operators as α̃1 = 1
2 (e5 − ie4), α̃2 =

1
2 (e3 − ie1), and α̃3 = 1

2 (e6 − ie2), which obey

{α̃i, α̃ j} = 0 for all i, j = 1,2,3. (8)

Finally, we have also
{
α∗

i , α̃ j
} = δi j for all i, j = 1,2,3. (9)

Using these ladder operators, we will now build minimal left 
ideals, which can be seen to mimic the set of quarks and leptons 
of the standard model.

4. Minimal left ideals

Intuitively speaking, an ideal is a special subspace of an algebra 
because it is robust under multiplication. For this reason, ideals 
are well suited to describe particles persisting under evolution and 
transformation.

Given an algebra, A, a left ideal, B , is a subalgebra of A whereby 
ab is in B for all b in B , and for any a in A. That is, no matter 
which a we multiply onto b, the new product, b′ ≡ ab, cannot leave 
the subspace B . It is easy to see how b′ ≡ ab could easily describe, 
for example, a particle b undergoing a transformation a.

A minimal left ideal is a left ideal which contains no left ideals 
other than {0} and itself. In other words, it has no non-trivial ideals 
inside it.

In this article, we are proposing to represent quarks and leptons 
using minimal left ideals within our space of octonionic operators: 
that is, within the space of the αi , α

†
j , and their products. A pair of 

these ideals, Su and Sd , will be introduced below. Readers wishing 
to confirm the construction may consult [11] for an explanation of 
how left multiplication of C ⊗ O on itself gives a representation 
of the 64-complex-dimensional Clifford algebra Cl(6). The review, 
[21], then lucidly describes the construction of minimal left ideals 
in Clifford algebras via Witt decomposition. (For an alternate phase 
space perspective on the real Clifford algebra Cl(6), see [22].)

From our first ladder system, we define

ω ≡ α1α2α3,

ω† ≡ α
†
3α

†
2α

†
1, (10)

which lead to the identies ω†ωω† = ω† and ωω†ωω† = ωω†.
The eight-complex-dimensional minimal left ideal for the first 

ladder system is given by

Su ≡ V ωω†

+ D̄r α
†
1ωω† + D̄g α

†
2ωω† + D̄b α

†
3ωω†

+ U r α
†
3α

†
2ωω† + Ug α

†
1α

†
3ωω† + Ub α

†
2α

†
1ωω†

+ E+ α
†
3α

†
2α

†
1ωω†, (11)

where V, D̄r, . . . ,E+ are 8 suggestively named complex coeffi-
cients.

As

αi ωω† = 0 ∀i, (12)

ωω† plays the role of the vacuum state, where the term vacuum
is used loosely. Readers may recognize the similarity between Su

and a Fock space.
The conjugate system analogously leads to

Sd ≡ V̄ ω†ω

+Dr α1ω
†ω +Dg α2ω

†ω +Db α3ω
†ω

+ Ū r α3α2ω
†ω + Ūg α1α3ω

†ω + Ūb α2α1ω
†ω

+ E− α3α2α1ω
†ω, (13)

where V̄, Dr, . . . ,E− are eight complex coefficients.
This new ideal, (13), is linearly independent from the first, (11), 

in the space of octonionic operators. Clearly, the two are related 
via the complex conjugate, i �→ −i. In fact, the complex conjugate 
is all that is needed in order to map particles into anti-particles, 
and vice versa. This was a feature in the models of [7,11], and also 
in the context of left- and right-handed Weyl spinors in [5].

The Clifford algebra Cl(6) is known to have just a single 
8-complex-dimensional irreducible representation, as in Su , above. 
In this paper, we will none-the-less be including the conjugate 
ideal, Sd , in anticipation of future work, which will combine Su

and Sd into a single irreducible representation under Cl(6) ⊗Cl(2). 
(Later on, we will then consider Cl(6) ⊗ Cl(4), suggesting a con-
nection to the Pati–Salam model.) Unlike in the earlier literature, 
this additional factor of Cl(2) will originate from right multiplica-
tion of our octonionic operators on these ideals, as mentioned at 
the end of this text.

As a final note, we point out that another interesting way to 
obtain anti-particles could be to use the conjugate †, instead of ∗. 
In that case, the two minimal left ideals would not be entirely lin-
early independent from each other. That is, we would find a special 
Majorana-like property unique to the neutrino: (ωω†)† = ωω†.

5. Ladders to the unbroken symmetries

Having obtained these minimal left ideals, we would now like 
to know how they transform, so as to justify the labels we gave to 
their coefficients in Eqs. (11) and (13). It so happens that a very 
simple form leads uniquely to the generators of the two unbroken 
gauge symmetries of the standard model, SUc(3) and Uem(1). We 
will find these generators, and then apply them to our minimal 
left ideals.

Consider α ≡ c1α1 + c2α2 + c3α3 and α′ ≡ c′
1α1 + c′

2α2 + c′
3α3, 

where the ci and c′
j are complex coefficients. We can then build 

hermitian operators, H, of the form

H ≡ α′ †α + α†α′. (14)

Taking the most general sum of these objects results in nine her-
mitian operators:

∑

H
H = r0 Q +

8∑

i=1

riΛi, (15)

where r0 and ri are real coefficients. Q is our electromagnetic 
generator from Eq. (2), and the eight Λi can be seen to gen-
erate SUc(3). Indeed, these Λi coincide with those introduced 
in [6] (which generate a subgroup of the octonionic automorphism 
group, G2).

The result of Eq. (15) is worth emphasizing. That is, the simple 
form, 

∑
HH leads uniquely to the generators of the two unbroken 

gauge symmetries of the standard model.
In terms of ladder operators, the SUc(3) generators take the 

form

Λ1 = −α
†
2α1 − α

†
1α2 Λ2 = iα†

2α1 − iα†
1α2

Λ3 = α
†
α2 − α

†
α1 Λ4 = −α

†
α3 − α

†
α1
2 1 1 3
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Λ5 = −iα†
1α3 + iα†

3α1 Λ6 = −α
†
3α2 − α

†
2α3

Λ7 = iα†
3α2 − iα†

2α3 Λ8 = − 1√
3

[
α

†
1α1 + α

†
2α2 − 2α

†
3α3

]
,

(16)

all eight of which can be seen to commute with Q , and its conju-
gate.

Now, the minimal left ideal, Su , transforms as

ei
∑

HSue−i
∑

H = ei
∑

HSu, (17)

where the equality holds because ω†α
†
i = 0 for all i.

We now identify the subspaces of Su by specifying their electric 
charges with respect to Uem(1), and also which irreducible repre-
sentation they belong to under SUc(3). Clearly, i, j and k are meant 
to be distinct from each other in any given row.

Q Λ Su ID

0 1 ωω† ν (or ν̄)

1/3 3̄ α
†
i ωω† d̄i

2/3 3 α
†
i α

†
jωω† uk

1 1 α
†
i α

†
jα

†
kωω† e+

(18)

So, here we identify a neutrino, ν , (or antineutrino, ν̄), three anti-
down type quarks, d̄i , three up-type quarks, uk , and a positron, e+ .

As the minimal left ideal, Sd , is related to Su by complex con-
jugation, we then see that it transforms as

e−i
∑

H∗
Sdei

∑
H∗ = e−i

∑
H∗

Sd, (19)

where the equality holds because ωαi = 0 for all i. This leads to 
the table below.

−Q ∗ −Λ∗ Sd ID

0 1 ω†ω ν̄ (or ν)

−1/3 3 αiω
†ω di

−2/3 3̄ αiα jω
†ω ūk

−1 1 αiα jαkω
†ω e−

(20)

Here, we identify an antineutrino, ν̄ (or a neutrino, ν), three down-
type quarks, di , three anti-up type quarks, ūk , and the electron, e− .

We have now shown a pair of conjugate ideals, which behave 
under SUc(3) and Uem(1) as does a full generation of the standard 
model. These are summarized in Fig. 2.

6. A signal from W bosons

Perhaps unexpectedly, it turns out that Su packages all of the 
isospin up-type states together, and Sd packages all of the down-
type states together. This is of course, if one goes ahead and makes 
an assumption about the placement of ν into Su and ν̄ into Sd .

We point out that ω is negatively charged, and converts isospin 
up particles into isospin down, via right multiplication on Su . It 
thereby exhibits features of the W − boson. Similarly, ω† is pos-
itively charged, and converts isospin down particles into isospin 
up, via right multiplication on Sd . In doing so, it exhibits features 
of the W + boson.

Other characteristics of the W bosons do not appear at the level 
of this article. For example, there is nothing to specify that these 
candidate bosons act only on left-handed particles. We also have 
no description here for the polarization states of these would-be 
bosons.
Fig. 2. A full generation represented by cubes Su (left) and Sd (right). Quark and 
electron states may be viewed as excitations from the neutrino or anti-neutrino. As 
the “vacuum” represents the neutrino, and not the zero particle state, this model 
does not constitute a composite model in the usual sense.

An obvious first step in this direction is to consider the Clifford 
algebra, Cl(8), which comes from the algebra R ⊗C ⊗H ⊗O acting 
on itself. This is in analogy to how we found that Cl(6) results 
from C ⊗ O acting on itself via left multiplication, as is explained 
in [11]. The idea, then, is to find minimal left ideals in Cl(8), and 
follow the same procedure as was introduced here.

7. Conclusion

Using only the complex octonions acting on themselves, we 
were able to recover a number of aspects of the standard mod-
el’s structure.

First of all, we found that a simple hermitian form led uniquely
to the two unbroken gauge symmetries of the standard model, 
SUc(3) and Uem(1). This new Uem(1) generator, Q , happens to be 
proportional to a number operator, thereby suggesting an unex-
pected resolution to the question: Why is electric charge quan-
tized?

Then, using octonionic ladder operators, we have built a pair of 
minimal left ideals, which is found to transform under these un-
broken symmetries as does a full generation of quarks and leptons.

If the algebra of the complex octonions is not behind the struc-
ture of the standard model, it is then a striking coincidence that 
SUc(3) and Uem(1) both follow readily from its ladder operators.
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