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The static dielectric constant of liquid water is computed using classical force field based molec-
ular dynamics simulation at fixed electric displacement D. The method to constrain the electric
displacement is the finite temperature classical variant of the constant-D method developed by
Stengel, Spaldin and Vanderbilt [Nat. Phys. 5, 304, (2009)]. There is also a modification of this
scheme imposing fixed values of the macroscopic field E. The method is applied to the popular
SPC/E model of liquid water. We compare four different estimates of the dielectric constant, two
obtained from fluctuations of the polarization at D = 0 and E = 0 and two from the variation of
polarization with finite D and E. It is found that all four estimates agree when properly converged.
The computational effort to achieve convergence varies however, with constant D calculations being
substantially more efficient. We attribute this difference to the much shorter relaxation time of
longitudinal polarization compared to transverse polarization accelerating constant D calculations.

I. INTRODUCTION

The static dielectric constant of model polar liquids is
usually computed from polarization fluctuations applying
the linear response relations of Kirkwood-Fröhlich the-
ory [1, 2]. These calculations are carried out in periodic
molecular dynamics (MD) cells treating long range elec-
trostatic interactions using Ewald summation[3]. This
is an expensive calculation. Indeed, it is commonly ac-
knowledged that for highly polarizable liquids such as
water simulations at time-scales of nanoseconds are nec-
essary to converge the fluctuation estimate for the dielec-
tric constant.[3–26]. These time scales are accessible for
classical force field based MD simulation. This is, how-
ever, a major challenge for MD simulation with forces
calculated “on-the-fly” using electronic structure calcu-
lation methods, such as density functional theory [27–29].

The high costs of the Kirkwood-Fröhlich scheme is a
strong motivation for the development for more efficient
alternatives. Boundary conditions can have a drastic ef-
fect on polarization fluctuations which has led to the
search for optimal boundary conditions[7, 9, 19, 26]. The
use of finite field methods is another option that has been
investigated[26, 30, 31]. The rationale here is, of course,
that converging an estimate of polarization should be
quicker than converging its fluctuations. However it was
found, in particular in the case of water, that the re-
sponse of the polarization is non-linear for already mod-
erate field strength requiring a careful extrapolation to
zero field. As a result finite field calculations of the di-
electric constant are in practice not that much cheaper
than the computation from polarization fluctuations at
zero field.

A change of boundary conditions not only affects the
size of polarization fluctuations but also the time scale.
It has been shown that the standard Ewald summation
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method corresponds to constraining the average macro-
scopic field to zero[3, 6]. The static dielectric constant
under these conditions is dominated by fluctuations of
the transverse polarization[32–34]. These are the slow
modes. The relaxation time τL of longitudinal modes
(in the k = 0 limit) is significantly faster compared to
the relaxation time τT of transverse modes. The ratio
according to Debye theory[2] is τT /τL = ε0/ε∞. For non-
polarizable SPC models of liquid water (ε∞ = 1) this
amounts almost to two orders of magnitude.

The much faster relaxation of longitudinal fluctuations
raises the question whether this can be exploited to ac-
celerate the calculation of the static dielectric constant.
In this paper we show that this can be achieved by chang-
ing the boundary conditions for Ewald summation from
zero macroscopic field (E = 0) to zero dielectric dis-
placement (D = 0). The method to compute the to-
tal energy of periodic supercells under fixed D has been
developed by Vanderbilt and coworkers. The key refer-
ence to this approach is the 2009 Nature Physics paper
by Stengel, Spaldin and Vanderbilt[35] which will be re-
ferred to as SSV (see also Ref. 36). The method is a
recent spin-off of the modern theory of polarization de-
veloped by Vanderbilt and Resta during the 90’s[37–39].
The modern theory of polarization caused a revolution
in theoretical and computational solid state physics mak-
ing it possible, for the first time, to investigate the elec-
tric equation of state of ferroelectric systems. The ini-
tial approach was to compute the total energy for fixed
values of the polarization and to determine the electric
field from the derivative[40, 41]. This was subsequently
changed to a scheme using directly the macroscopic elec-
tric field E or the electric displacement field D as the
control variable, which has both computational and con-
ceptual advantages[35, 36].

The SSV constant D and the related finite E method
are easy to implement in a classical force field code. The
method retains the regular “tin-foil” Ewald sum for the
calculation of electrostatic energy extending it with an
electric term which depends on the polarization P and
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contains E or D as a parameter. The result is an ex-
tended hamiltonian replacing the original hamiltonian
in the MD simulation. The present paper is a feasibil-
ity and validation study of this approach for a SPC/E
model of liquid water [42]. We verify that the dielectric
constant obtained from polarization fluctuations under
D = 0 conditions agrees with the value estimated from
standard E = 0 calculations. These results are then also
compared to dielectric constant estimates computed from
the change of the expectation value of P with applied E
and D using the SSV hamiltonian in finite field mode.

The approach in the present paper has multiple par-
allels to similar work that has appeared in the litera-
ture. Most of this work also involves macroscopic po-
larization dependent energy terms extending the micro-
scopic Coulomb interaction energy evaluated for an infi-
nite periodic lattice of supercells using the Ewald summa-
tion method[43]. These extensions are known as surface
terms[3, 4, 44–50] or reaction fields[6–8] and are of a form
similar to the D = 0 limit of the SSV constant D polar-
ization coupling term. What is unique about SSV the-
ory is that the extended Ewald Hamiltonians are derived
strictly complying with the rules of dielectric thermody-
namics as set out by Landau and Lifshitz[51]. The focus
on thermodynamics has certain advantages as already
pointed by Aragones et al.[52]. The paper starts there-
fore with a fairly detailed outline of the finite temper-
ature classical variant of the SSV approach (sections II
and III) supplemented with three appendices with more
formal theoretical considerations. Results are presented
and discussed in section IV. We conclude with a sum-
mary and outlook for future applications to interfaces.

II. FINITE E AND D IN EXTENDED SYSTEMS

A. Constant E and D hamiltonians and
thermodynamics

The theory behind the finite field method developed
by SSV is summarized in the supporting information of
Ref. 35. The central quantity is the electric enthalpy
functional. The electric enthalpy of a system of volume
Ω is written as

F (E, v) = EKS(v)− Ω E ·P(v) (1)

EKS(v) is the Kohn-Sham total energy with v denoting
all microscopic degrees of freedom involved, ie the or-
bital coefficients specifying the one-electron orbitals and
the positions of the ions. EKS(v) is obtained for given
v using the regular reciprocal space methods of compu-
tational solid state physics explicitly excluding all k = 0
contributions. P(v) is the macroscopic polarization den-
sity for the microscopic state specified by v.

To compute the expectation value P of the polarization
density the electronic structure v of the system is deter-
mined by minimizing the electric enthalpy functional for

fixed E

F (E) = min
v
F (E, v)) = min

v
[EKS(v)− Ω E ·P(v)] (2)

Taking the derivative gives the polarization

dF

dE
= −ΩP (3)

Eq. 3 can be regarded as the electric equation of state for
a uniform insulator.

Vanderbilts electric enthalpy scheme can be readily
adapted to classical force field based MD. The KS total
energy EKS(v) in Eq. 1 is replaced by the Hamiltonian
H(v) of the system where v is now the set of momenta
and positions of the particles.

F (E, v) = HPBC(v)− Ω E ·P(v) (4)

We have appended a subscript PBC to the Hamiltonian
as a reminder that the electrostatic energies and forces
are computed using standard Ewald summation as ap-
plied also for the computation of the KS energy in Eq. 1.
HPBC(v) can be formally written as the sum of a term
Hsr describing the short range interactions and the re-
ciprocal space representation of the electrostatic energy

HPBC(v) = Hsr(v) + 2πΩ
∑
k6=0

ρ(k)2

k2
(5)

where ρ(k) is the Fourier transform of the atomic charge
distribution (the SPC charges). Ewald summation is
a computationally more efficient method to calculate
this energy carrying out the summation partially in real
space. The result corresponds to zero average electric
field and potential, the so called tinfoil boundary con-
ditions (no surface terms)[3]. The finite electric field is
introduced as a parameter in the second term of Eq. 4.

The equivalent of the electric enthalpy of Eq. 2 is the
free energy of the ensemble generated by the extended
Hamiltonian F (E, v) of Eq. 4

F (E) = −kBT lnZE (6)

ZE is the electric field dependent partition function

ZE =

∫
dpNdrN exp[−β

(
HPBC − Ω E ·P(rN )

)
] (7)

where HPBC is the Hamiltonian of the periodic MD sys-
tem in Eq. 4. The coordinate and momentum arguments
v = rN ,pN were suppressed. β = 1/kBT is the inverse
temperature. The combinatorial prefactor 1/(h3NN !)
has been omitted. The derivative of F (E) of Eq. 6 again
gives the polarization according to Eq. 3.

Recently, Stengel, Spaldin and Vanderbilt have modi-
fied the constant E to a constant D method [35]. They
introduced a new functional, the electric internal energy
functional U (D, v). Transposed to classical MD, this
functional is written as

U (D, v) = HPBC(v) +
Ω

8π
(D− 4πP(v))

2
(8)
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The corresponding D dependent electric internal energy
is again obtained from the partition function

U (D) = −kBT lnZD (9)

with

ZD =

∫
dpNdrN exp [−β U(D, v)] (10)

where as before v = rN ,pN . Note that U(D) is still
a (Helmholtz) free energy with respect to temperature,
similar to F (E). Evaluating the derivative with respect
the control variable, D in this case, we recover the macro-
scopic field

dU

dD
=

Ω

4π
(D− 4πP) =

Ω

4π
E (11)

The second identity follows from

D = E + 4πP (12)

which is the fundamental relation of Maxwell theory
defining the dielectric displacement.

That U of Eq. 9 is indeed the electric free energy be-
comes evident when Eq. 11 is substituted in the Maxwell
field expression for electrical work (see Landau and
Lifshitz[51])

dW =
Ω

4π
E · dD = dU (13)

The link to electrical work established in Eq. 13 is cru-
cial. It is the ultimate justification for identifying E in
the electrical enthalpy of Eq. 4 with the macroscopic field.
As shown by SSV, the argument can be given a more for-
mal thermodynamic basis in a Legendre transform frame-
work. The derivation is repeated in Appendix A.

B. Parallel plate capacitor and hybrid boundary
conditions

The SSV Hamiltonians of Eqs. 4 and 8 can be given
more physical meaning when interpreted as a model of a
macroscopic parallel plate capacitor[35, 36]. Fig. 1 shows
a schematic picture of such a device as used in textbooks
(see in particular Purcell[53]). We will assume that the
normal to the electrodes is directed along the x axis. The
electrodes are a distance l apart. The charge density on
the left electrode is σm. Without dielectric material be-
tween the plates the electric field E0 generated by this
charge density is E0 = 4πσm corresponding to a poten-
tial V0 = −E0l = −4πσml. In the presence of dielectric
material the applied electric field E0 is screened by the
induced polarization Px. The resulting macroscopic elec-
tric field E can be written as

E = 4π (σm + σp) = E0 − 4πPx (14)

FIG. 1. Parallel plate capacitor at a) constant electric field Ex
and b) at constant electric displacement Dx. σm is the surface
charge density on the metal electrode. σp is the polarization
surface charge density of the dielectric material (σm > −σp >
0 in the picture). The electric field E is determined by the
net interface charge σm + σp (see text).

where σp = −Px is the polarization charge density accu-
mulating on the surface of the dielectric (see Fig. 1). Be-
cause the polarization is aligned along the applied field,
E0 and Px have the same sign (positive in the figure).
σp and σm have opposite sign. The macroscopic electric
field is determined by the net interface charge σm + σp
and therefore E < E0. Similarly the potential V = −El
is lower (in absolute value) than V0. This is how capaci-
tors store charge[53].

Setting Ex = E,Ey = Ez = 0 in Eq. 4 we obtain the
electric enthalpy hamiltonian

Fx (E, v) = HPBC(v)− ΩEPx(v) (15)

How can this relatively simple MD model without in-
terfaces possibly represent the capacitor of Fig. 1? The
idea is that interactions not affected by surface effects
are described by the supercell hamiltonian HPBC. For
a macroscopic capacitor these interactions are assumed
to include everything except the coupling to the elec-
tric field which is accounted for in the −E · P = EPx
term. This term plays the role of a pair of “virtual” elec-
trodes connected to a voltage source imposing a potential
drop of ∆V = −EL over the length L of the MD cell in
the x direction. Fx (E, v) is a microscopic Hamiltonian,
not a free energy. All quantities, except Ex = E fluc-
tuate in time. This applies to the polarization charge
σp(t) = −Px(v(t)) but also to the charge on the virtual
electrode σm(t). It is only the sum σm(t)+σp(t) = E/4π
that is constant. The instantaneous electrode charge
compensating the varying polarization charge is supplied
by the voltage source. The implication is that for E = 0
Eq. 15 can be viewed as a capacitor in short circuit, con-
sistent with the accepted view of the Ewald summation
method.

Next we introduce the displacement field. For the par-
allel plate capacitor Dx = E0 = 4πσm. As explained
above, Dx is interpreted as a property of the microscopic
system of Eq. 15 and fluctuates in time because the elec-
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tric field Ex = E is fixed. Applying the formalism of
section II A, Dx, in turn, can be constrained to a value
D in the dynamics driven by the Hamiltonian

Ux (D, v) = HPBC(v) +
Ω

8π
(D − 4πPx(v))

2
(16)

The constraint on the displacement field applies only to
the x direction. Eq. 16 is not a special case of Eq. 8. In
the y and z directions the regular Ewald boundary con-
ditions are maintained and hence Ey = 0 and Ez = 0.
Because D is effectively the charge density on the virtual
electrodes (D = 4πσm), fixing D in Eq. 16 corresponds to
simulating an open circuit capacitor. Now it is the conju-
gate variable Ex(t) that fluctuates. The time dependence
of Ex is passed on to the potential ∆V = −ExL across
the cell.

As pointed by SSV Eq. 16 can be regarded as a hybrid
form of Eq.8, obtained by a partial Legendre transform
of the Hamiltonian of Eq. 4 (see further Ref. 35). In a
plate capacitor D = E0 on average. However, it would be
wrong to identify D(t) with E0 at every instant of time.
The applied field, in the orientation of Fig. 1, is strictly
along the x axis. While on average the y and z com-
ponents of D vanish, instantaneous values can be finite.
Dy(t) and Dz(t) are equal to the transverse polarization
Py(t) and Pz(t)[34]. In fact, compared to the longitu-
dinal polarization transverse polarization (Px(t) in our
model capacitor) shows substantially larger fluctuations
(see section III A).

III. DIELECTRIC CONSTANT

A. Dielectric constant from polarization
fluctuations

The constant E and D ensembles introduced in sec-
tion II apply to different electrical boundary conditions.
Fluctuations of the polarization P are therefore ex-
pected to differ in magnitude and may occur on different
timescales. However, following Kirkwood-Fröhlich the-
ory [1, 2], it should be possible to obtain an estimate of
the dielectric constant from polarization fluctuations ei-
ther under constant E or D dynamics. Staying with the
capacitor paradigm of section II B application of linear
response to the system defined by the electrical enthalpy
hamiltonian Eq 15 gives

〈Px〉 = βΩ
(
〈P 2
x 〉 − 〈Px〉2

)
E (17)

where the second moment is evaluated at zero field (E =
0). The liquid is isotropic and we can set 〈P 2

z 〉− 〈Pz〉2 =
(〈P2〉 − 〈P〉2)/3, which gains us some accuracy in the
statistics. The response coefficient of Eq. 17 is the sus-
ceptibility χ. Converting to the dielectric constant using
4πχ = ε− 1 we find

ε = 1 +
4πβΩ

3

(
〈P2〉E=0 − 〈P〉2E=0

)
(18)

For clarity the thermal average brackets in Eq. 17 have
been marked with a subscript indicating the condition
under which the fluctuations have been obtained.

Eq. 18 is identical to the standard fluctuation formula
used in Ewald summation[3, 4, 8, 9]. We arrived at this
established result without having to worry about how
to relate the macroscopic field E to the applied field
E0[7, 8, 33]. The electric field in the SSV extended
Hamiltonian is directly equal to the macroscopic field.
This is a key feature of the SSV scheme. We will return
to this important point once more in section III C where
we make a comparison to the methods commonly used
in computational physical chemistry.

Alternatively we can average Px over the ensemble de-
fined by the open circuit Hamiltonian of Eq. 16. It is not
difficult to show that linear response now leads to the
relation

〈Px〉 = βΩ
(
〈P 2
x 〉 − 〈Px〉2

)
D (19)

In Eq. 19 we recognize the definition of the polarizability
α. Eq. 19 can be exploited to obtain another estimate
of the dielectric constant via the relation 4πα = 1− 1/ε
which should be consistent with the estimate from the
susceptibility χ (Eq. 17).

Similar to Eq. 18 we would like to retain the extra
boost in accuracy provided by isotropy (which is even
more critical here, see section IV). However, there is a
complication. Eq. 19 resembles Eq. 17, but in contrast to
a short circuit capacitor, the open circuit system is not
isotropic (see the discussion in in section II B). Fluctu-
ations in the y and z (transverse) direction are distinct
from the longitudinal fluctuations in Px. Isotropy can be
restored by imposing a D = 0 constraint also in the y
and z direction which amounts to using the hamiltonian
of Eq. 8 for D = 0. The corresponding estimate for ε
obtained from the polarization fluctuations is written as

ε =
1

1− 4πβΩ(〈P2〉D=0 − 〈P〉2D=0)/3
(20)

However, it is not immediately clear what D = 0 ensem-
ble represents. This is indeed an important question for
the understanding of the SSV method and we will come
back to it in section III C and appendices B and C.

Finally, rearranging Eq. 18 and Eq. 20 leads to:

ε =
〈P2〉E=0 − 〈P〉2E=0

〈P2〉D=0 − 〈P〉2D=0

(21)

As shown in the Madden and Kivelson’s review [33](see
also Ref. 34) polarization fluctuations are anisotropic in
the k→ 0 limit, even if the dielectric tensor is isotropic.
Transverse and longitudinal fluctuations differ by a factor
ε (for non-polarizable polar molecules). The same ratio is
found in Eq. 21 supporting our hypothesis (our argument
is not a proof) that the fluctuations sampled at constant
E and constant D can be identified with the k = 0 limit
of transverse respectively longitudinal polarization. We
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furthermore note that a relation similar to Eq. 21 can be
derived in the framework of reaction field methods[6, 8].
This is discussed in Appendix C.

B. Dielectric constant from finite field derivatives

Simulations at finite field should enable us to deter-
mine ε directly from the field derivative of polarization,
which we then can compare to the fluctuation estimates
at zero field. For sufficiently small fields these results
should in principle agree but will differ in practice be-
cause of different requirements on the accuracy of the
sampling and possible finite system size effects. An as-
sessment of these effects is the main purpose of our inves-
tigation. Finite field calculations are also of interest as
a test of the SSV scheme for additional reasons. While
fluctuations vary with the electrical boundary conditions,
the expectation value of P is a thermodynamic state vari-
able which should, in the thermodynamic limit, be the
same for a given thermodynamic state, whether obtained
under constant E or constant D.

For a sufficiently small electric field the dielectric con-
stant can be estimated using the relation

ε = 1 +
4π〈Px〉
E

(22)

with 〈Px〉 the expectation value of polarization obtained
from a MD run using the constant Ex = E Hamiltonian
of Eq. 15. A similar equation, valid in the linear regime,
was already used to extrapolate to zero-field by Yeh and
Berkowitz in their finite field calculation of ε of liquid
water [30]. The corresponding finite D estimate for ε
follows from an inverse relation

ε =
1

1− 4π〈Px〉/D
(23)

where the expectation value of polarization is determined
from an average over a trajectory generated by the con-
stant Dx = E0 = D Hamiltonian of Eq. 16.

C. Constant applied electric field E0

The form of the SSV electric enthalpy hamiltonian of
Eq. 4 might be, at first, a surprise for readers familiar
with the physical chemistry literature on polar liquids
expecting to see the applied electric field E0 in the cou-
pling term (see for example Refs. 8, 9 and 33). Eq. 4
is however a microscopic electric enthalpy intended for
constant macroscopic field E, not constant applied elec-
tric field E0. The difference Ep = E − E0 is the po-
larization field, also referred to as the depolarising field
in literature. Ep is the electric field generated by the
polarization. Substituting E = E0 + Ep in Eq. 4 gives

F (E, v) = HPBC(v)− Ω (E0(v) + Ep(v)) ·P(v) (24)

Similar to the polarization, E0 in Eq. 24 depends on the
microstate v. It is not constant all.

The parallel plate capacitor of section II B is again the
best example to understand Eq. 24. In this geometry
Ep = −4πPx = 4πσp (see Eq. 14). The depolarizing field
is determined by the polarization surface charge σp, while
the applied field E0 = 4πσm is generated by the electrode
charge σm. To keep the voltage constant, the voltage
source adds or removes electrode charge compensating
for the fluctuation in the polarization charge. Formu-
lated in terms of fields, the applied electric field responds
instantaneously to the fluctuations in the depolarizing
field such that the sum E = E0−4πPx = constant. Sub-
stituting in the enthalpy Hamiltonian for the capacitor
(Eq. 15) we obtain

Fx (E, v) = HPBC(v)− Ω(E0(v)− 4πPx(v))Px(v) (25)

Even for a shortcircuited capacitor (V = E = 0), the
applied field, while zero on average, will have finite in-
stantaneous values, cancelling the fluctuations in Ep. To
control E0 we must disconnect the voltage source (open
circuit). The charge on the metal electrode is now fixed
and therefore E0. The Hamiltonian to use for constant
E0 is therefore not Eq. 15 but Eq. 16.

Can Eq. 16 be rewritten in a form more recognizable
to physical chemists? To answer this question we expand
the coupling term (omitting volume for simplicity)

1

8π
(D − 4πPx(v))

2
=
E2

0

8π
− E0Px(v) + 2πPx(v)2 (26)

where we have used that for the parallel plate capaci-
tor D = E0. The first term of Eq. 26 gives the energy
of the polarizing field. The second term is the sought
for coupling of the polarization to the external field. To
identify the last term we introduce the depolarizing field
Ep = −4πPx to find that the third term is equal to
−EpPx/2, the work done against the depolarizing field in
the process of polarization. This energy has been shown
to the equal to the surface term in Ewald summation
carried out over layers[45, 50] instead of the more pop-
ular summation over spherical shells[3]. The key point
here is that the interaction of polarization with its own
electric field is not included in the Ewald Hamiltonian
HPBC. The coupling to the depolarizing field must be
accounted for explicitly as part of the extended hamilto-
nian. In conclusion Eq. 16 seems indeed equivalent to the
hamiltonians used in theory of a polar liquids[33, 34] if
we assume that the interaction is implicit in the Hamil-
tonian.

There are further similarities linking Eq. 26 to exist-
ing methods. The surface term 2πP 2

x is well-known in
the literature on simulation of liquid-solid interfaces[54–
56]. A benchmark in the field is the 1999 paper by Yeh-
Berkowitz who introduced a correction term to decouple
the electrostatic interactions between a slab of material
and its periodic images[54]. The same term is used in sur-
face science known there as the dipole correction[57, 58].
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These two corrections are identical and are moreover
equal to the coupling term in Eq. 26 for E0 = 0. Note,
however, that interface/surface modelling and the SSV
scheme aim for different target systems. The ideal model
system in computational surface science is an isolated
slab suspended in vacuum. A similar setup is often used
to model liquid-solid interfaces inserting a vacuum spacer
in the solid. Periodic models include therefore vacuum
layers of a width comparable to or larger than the parti-
cle system. The Yeh-Berkowitz correction is intended as
a computationally efficient replacement of the costly 2D
Ewald sum method (it seems to be doing a very good job
as shown in Ref. 54). SSV models, on the other hand, are
designed to represent continuous condensed phase sys-
tems. These systems can be homogeneous such as liquid
water studied here. Vacuum layers opening up unwanted
interfaces are avoided.

Finally, moving on to the general SSV constant D
Hamiltonian of section II A we set Dx = D,Dy = Dz = 0
in Eq. 8 to obtain

U(D, v) = HPBC(v) +
Ω

8π
(D − 4πPx(v))

2
(27)

+2πΩ
(
Py(v)2 + Pz(v)2

)
The coupling term is different from the one in Eq. 26
for the open circuit parallel plate capacitor. In Eq. 27
adds further quadratic terms for the polarization in
the perpendicular y and z direction. However, while
Eq. 27 may look unfamiliar, or even unphysical from the
perspective of physical chemistry, it is supported by a
thermodynamic foundation via Eq. 13 giving it a spe-
cial status among other forms of constant applied field
hamiltonians[26, 31, 52].

Setting D = 0 in Eq. 27 we obtain

UD=0(v) = HPBC(v) + 2πΩP2 (28)

This Hamiltonian is of special interest as it used to sam-
ple the D = 0 fluctuations in Eq. 20. The self inter-
action term in Eq. 28 resembles the (2πΩ/3)P2 surface
term in Ewald summation for spherical vacuum bound-
ary conditions[3] but is however a factor three larger.
The difference can be traced back to the finite trans-
verse polarization of a polarized sphere surrounded by
vacuum. Further discussion is deferred to appendix B.
Surprisingly, the Hamiltonian Eq. 28 is known in the
framework of the reaction field method[6–8]. Eq. 28 can
be reproduced by setting the dielectric constant of the
embedding dielectric continuum to zero[47, 59](for de-
tails see Appendix C). Such an Hamiltonian has in fact
been used for simulation studies of the dielectric proper-
ties of ionic solutions[13]. The Hamiltonian, while use-
ful, was regarded as somewhat unphysical. It is not in
the context of SSV theory. Moreover, Anthony Maggs
has pointed out that an Hamiltonian of the form Eq. 28
can also be obtained from the time dependent Maxwell
equations[59, 60]). His argument is summarized in Ap-
pendix B.

D. Model system and molecular dynamics

The theory outlined above was verified by a classical
MD simulation of liquid water at ambient conditions.
The system consists of 706 water molecules in a fixed
cubic box with length 27.7 Å. The interactions are de-
scribed by the SPC/E water model [42]. The molecules
are kept rigid using the SETTLE algorithm [61]. The
MD integration time step is 2 fs. The Ewald summation
is implemented using the Particle Mesh Ewald (PME)
scheme[62]. Short-range cutoffs for the van der Waals
and Coulomb interaction in the direct space are 10 Å.
The temperature is controlled by a Nosé-Hoover chain
thermostat [63] set at 298K. All simulations are done
with a modified version of GROMACS 4 package [64].

Two points need further comments on the practical
implementation in classical force field based MD: one is
the computation of the macroscopic polarization and the
other is the force calculation in constant E and constant
D simulations. Polar liquids such as water are extended
systems. The total dipole moment of a periodic super-
cell depends, in principle, on how we decide to draw the
boundaries [37–39] . If the bonds of a molecule are cut
by the boundaries, the two halves of this molecule will
end up on opposite sides of the MD cell resulting in a
huge change of the dipole moment. This problem can
be ignored in practice because the molecular structure
provides a natural gauge and it is automatically done
for the rigid water used in simulations. Therefore, the
macroscopic polarization can be simply defined as the
sum of the dipole moments of the molecules. For con-
stant E simulation, the field-dependent force on atom i
is qiE, where qi = ∂P

∂ri
is the point charge assigned to the

atom in the SPC/E model. For constant D simulation,
the field-dependent force on atom i is qiD − 4πqiP. In
this case, the force depends explicitly on the value and
continuity of the macroscopic polarization.

IV. RESULTS

A. Structure and dynamics

Theory predicts (Eq. 21) that a D = 0 constraint has
the effect of suppressing polarization fluctuations com-
pared to E = 0 conditions. The corresponding relaxation
times are also faster. This is shown in Fig. 2 for the x
component (the system is isotropic, so Py and Pz behave
the same). The mean of Px vanishes for both the E = 0
and D = 0 time series (Fig. 2a)) but the amplitude of
the E = 0 oscillations is significantly larger.

For an analysis of the time dependence (Fig.2b) it is
useful to recall the classical Debye theory of the relax-
ation of polarization. The relaxation in Debye theory
is exponential. Indeed, as Fig. 2b shows, the autocor-
relation function of Px at E = 0 decays exponentially
(with a hint of a slow oscillation). The relaxation time
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FIG. 2. Simulation of bulk liquid water at E = 0 using the
hamiltonian of Eq. 4 and D = 0 using the hamiltonian of
Eq. 8: a) Time evolution of Px, the x component of the po-
larization; b) Corresponding autocorrelation function defined
as CPxPx = 〈Px(0)Px(t)〉/〈Px(0)Px(0)〉. The inset shows the
short time behaviour of CPxPx for D = 0.

is 10.3 ps, which is close to the experimental Debye re-
laxation time τD for water. τD is the time for response
to a sudden change in the electric field E. The other
relaxation time defined in Debye theory is τL controlling
the response to a change in D (or equivalently a jump in
the charge of a solute). τL = τD/ε and τL and τD can
be interpreted as a longitudinal respectively transverse
relaxation time[33, 34]. In agreement with this picture,
we find that switching from E = 0 to D = 0 accelerates
the relaxation, but the time dependence in the open cir-
cuit system appears to more complex. The short time
behaviour (see inset) clearly shows oscillations. Estimat-
ing an effective decay time from the time envelope, we
obtain τL = 0.3 ps.

The pronounced contrast in magnitude and time scale
of polarization fluctuations raises the question whether
this collective behaviour is reflected in the local molec-
ular structure and dynamics. Fig. 3 shows the oxygen
radial distribution function, molecular diffusion rate as
measured by the mean square displacements and autocor-
relation function of the molecular dipole moment charac-
terizing molecular orientation. These properties are of-
ten used as probe of the structure and dynamics in liquid
water at the single molecular level. As can be seen from
Fig. 3 the change in electrical boundary condition has
little or no effect on the translational and orientational
motion of the water molecules.

FIG. 3. Simulations of bulk liquid water at E = 0 and D = 0.
a) The oxygen-oxygen radial distribution functions gOO(r); b)
The mean squared displacements (MSD) of water molecules;
c) Autocorrelation function of the molecular dipole moment
Cµµ.

B. Static dielectric constant from fluctuations

The formalism of sections III A and III B gives us four
different estimates of ε, two from fluctuations, Eq. 18 and
Eq. 20, and two from finite field derivatives, Eq. 22 and
23. We start with the fluctuation approach.

The estimates of ε for SPC/E calculated from Eq. 18
and Eq. 20 are 71.4(8) and 76(4) in good mutual agree-
ment and with literature values ranging from 67 to
81 [18, 21, 23, 24]. While the dielectric constant estimate
should be the same, whether determined under E = 0 or
D = 0 constraints, the polarization fluctuations under
these conditions are very different. This is reflected in
the r dependent Kirkwood G-factor GK(r), which is a
orientational correlation function for (rigid) dipoles(see
for example Ref. 8). It is defined as

GK(r) = 1 +N(r)
∑

j, rij<r

〈cos θij〉 (29)

The sum is over all molecules j enclosed in a sphere of
radius r centered on molecule i. N(r) is the number of
molecules in the sphere. θij is the angle between the
dipole µj of molecule j and the dipole µi of the central
molecule i. Our results for GK(r) are plotted in Fig. 4.
Both E = 0 and D = 0 curves settle in a radius inde-
pendent asymptotic regime for distance r > 22Å. The
Kirkwood G-factor interpolates between local and global
behaviour. The variation with r at short range (r < 6Å)
is similar for E = 0 and D = 0. The two curves part for
increasing values of r.

Calculations of the static dielectric constant cannot be
presented without error analysis. As demonstrated in



8

FIG. 4. Comparison of the distance dependence of the Kirk-
wood G-factor GK(r) evaluated under E = 0 and D = 0
constraints

Refs. 25 and 31 finite size effects are less of a concern for
system sizes accessible to classical MD simulation. The
MD cell used here containing 706 water molecules should
be large enough for the purpose. The time scale needed
to converge a second moment of the total dipole moment
is a more critical issue. This is confirmed by the accu-
mulating average of the normalized variance of the total
dipole moment gK determined with regular Ewald sum-
mation (E = 0) shown in Fig. 5a. Consistent with the
literature we find that it takes at least several nanosec-
onds to reduce the statistical uncertainty to a value below
1%. As can be seen from Fig. 5b, the same accuracy is
reached within less than one nanosecond by changing the
electrical boundary conditions to D = 0. Unfortunately,
because of the troublesome inverse relation between fluc-
tuations and dielectric constant (Eq. 20) the accuracy in
the second moment must be proportionally higher, and
much of the apparent gain in time scale is lost in practice.

Returning to the question discussed in section III C
how to compare the SSV method to methods used in
physical chemistry, we note that the sensitivity of the
Kirkwood G factor to a change of boundary condition has
been studied in detail by Neumann for the Stockmayer
fluid[8]. Neumann builds on the familiar cavity model
of Kirkwood. His systems consist of a sphere containing
the Stockmayer atoms (point dipoles with short-range
Lennard-Jones pair interactions) embedded in a dielec-
tric continuum. The dielectric constant of the continuum
ε′ is varied from ε′ =∞ (conducting) to ε′ = 1 (vacuum).
The distance dependent Kirkwood factors Neumann ob-
tains for conducting and vacuum boundary conditions
have a clear resemblance to our results of Fig. 4 for liq-
uid water with E = 0 corresponding to ε′ =∞ and D = 0
to ε′ = 1. For conducting boundary conditions this was
expected because, as mentioned, the expression relating
the dielectric constant to the dipole fluctuations (Eq. 18)
agree. However, the expression derived by Neumann for
the ratio of the ε′ = ∞ and ε′ = 1 total dipole fluctu-
ations is (ε + 2)/3, which (for large ε) is a factor three
smaller than what we obtained in Eq. 21. Indeed, the
ratio between the normalized variance of the total dipole

FIG. 5. The accumulating average of the normalized variance
of the total dipole moment gK of the MD cell with the length
of the MD run. gK = (〈M2〉 − 〈M〉2)/(Nµ2), where N is the
number of water molecules, µ is the (fixed) dipole moment of

a single water molecule and M =
∑N µi. The shaded area is

the margin for a 1% deviation from the final average.

moment gK at E = 0 and D = 0 from our simulations
gives 71 directly validating Eq. 21. This again raises the
question about a possible geometric interpretation of the
SSV D = 0 Hamiltonian. This will be discussed in detail
in appendix B.

C. Dielectric constant from field derivatives

Finite E simulations necessarily involve a limited sub-
set of state points. We selected five Ex = E values with
increasing strengths, as listed in the first column of Ta-
ble I. For these five values we carried out constant Ex
simulations using the Hamiltonian of Eq. 15 determining
for each of these runs the average of Px which is indicated
in the Table. Next we used Eq. 12 to compute the D val-
ues corresponding to the Px we had obtained. These
values of D were then taking as the displacement field in
constant Dx simulation using the Hamiltonian of Eq. 16.
If the SSV constant D method works as promised, the
resulting Px are the same as those of the constant Ex
simulations from which the Px values were sampled. In-
deed, as shown in the second and fourth columns of Ta-
ble I, this is the case. Note that the values of D are an
order of magnitude larger compared to E for the same
value of Px, reflecting the efficient dielectric screening in
liquid water.

After this crucial consistency test, we computed the
E and D derivative estimate of the dielectric constants
using the method explained in section III B. The compar-
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TABLE I. Simulation conditions at constant Ex or constant
Dx and the corresponding observed 〈Px〉.

Ex (V/Å) 〈Px〉 (10−3 e/Å2) Dx (V/Å) 〈Px〉 (10−3 e/Å2)
0.01 3.72(3) 0.684 3.724(2)
0.02 6.41(5) 1.180 6.418(2)
0.04 9.66(6) 1.788 9.660(1)
0.10 12.62(3) 2.385 12.632(1)
0.28 14.507(4) 2.907 14.512(1)

FIG. 6. a) The static dielectric constant ε at constant E and
constant D; b) The accumulating average of ε at Ez = 0.01
V/Å and Dz = 0.684 V/Å.

ison of ε obtained form the polarizability as a function
of D(Eq. 23) to ε computed from the susceptibility as
a function of E(Eq. 22) is plotted in Fig. 6a. Regard-
ing statistics and convergence, the small values of the
field are the most critical and computer time consuming.
Fig. 6b gives the running average for the state point cor-
responding to our smallest electric field. Comparison to
Fig. 5 confirms that the convergence for averages of the
polarization is still faster than for the second moment
even for small fields. This is of course as expected. It
is encouraging to see that the convergence time of the
dielectric constant under constant Dx turns out to be
shorter than for constant Ex, even with the unfavourable
inverse relation of Eq. 23 where the relative error δε/ε is
proportional to ε.

Using Eqs. 22 and 23 the way we did in Fig. 6 amounts
to a global linear approximation. If the dielectric re-
sponse of water was linear in the range of fields investi-
gated the curves in Fig. 6a would be horizontal straight
lines. Not surprisingly, they are not. The variation
of ε with field strength is not even linear. Dielectric
saturation for increasing E is known to follow the so-
called Debye-Langevin equation (ε ∼ 1/E(coth(βµE) −

FIG. 7. Polarization as a function of electric field E and dis-
placement D determined from constant E respectively con-
stant D molecular dynamics.

1/βµE)), derived for an independent dipole approxima-
tion [65, 66]. Consistent with this simple picture the ε(E)
dependence obtained from the constant E simulations
is approximately exponential approaching an asymptotic
value at about E = 0.2V/Å. The curvature in ε(D) is
opposite to the curvature in ε(E). The non-linear effect
in the ε(D) curve is much less pronounced. This is also
evident from a direct comparison of the Px(D) to the
Px(E) dependence(Fig. 7). This effect is, from technical
point of view, perhaps the most encouraging observation
made in this study, because it makes the extrapolation
to zero field easier.

V. SUMMARY AND OUTLOOK

Including a term coupling polarization to electric fields
is the first step in the derivation of fluctuation expres-
sions for dielectric response coefficients of polar liquids
in Kirkwood-Fröhlich theory [1, 2]. With the develop-
ment of molecular dynamics methods, such hamiltoni-
ans have also been used for finite field simulations. The
electric field in the coupling term is traditionally the ap-
plied electric field. Polar liquids are extended systems
as are solids. The key innovation brought about by the
modern theory of polarization in solids[37–39] is replac-
ing the applied electric field by the macroscopic electric
field which includes the internal field generated by the
polarization[35]. This, from the perspective of physi-
cal chemistry, rather bold move was made by Stengel,
Spaldin and Vanderbilt(SSV) on the basis of a clear un-
derstanding of what is included in Ewald summation of
electrostatic interactions in periodic systems and what is
not. This also gave the theory a firm foundation in the
thermodynamics of dielectrics[51] which enabled SSV to
transform their constant E to a constant D Hamiltonian.

This study is a report on the application of the fi-
nite temperature classical force field variant of the SSV
scheme in a calculation of the dielectric constant of
SPC/E liquid water. We started by rederiving the es-
tablished fluctuation expression of the dielectric constant
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for supercells which is generally credited to deLeeuw-
Perram-Smith[3, 4] and Neumann[8, 9]. Coupling po-
larization directly to the macroscopic electric field made
this derivation a simple exercise in perturbation theory.
A system under E = 0 constraints (equivalent to stan-
dard Ewald summation) can be interpreted as a short cir-
cuited capacitor (Fig. 1a). Using the new SSV constant
D hamiltonian we also obtained the corresponding fluc-
tuation formula for the dielectric constant under D = 0
conditions which can be compared to open circuit con-
ditions (Fig. 1b). The theory was tested in E = 0 and
D = 0 molecular dynamics simulation. Complementary
finite E and D simulations were carried out to compare to
the dielectric constant calculated directly from the field
derivatives. The estimate of the dielectric constant ob-
tained from E = 0 and D = 0 polarization fluctuations
were found to be in good agreement with each other and
with the estimates from finite field derivatives, validating
the SSV method for classical force field based MD.

The motivation for this study was the possibility that
application of constant D methods could reduce the costs
of the computation of the static dielectric constant ε.
This expectation was based on the theory of dielectric
relaxation predicting that decay of longitudinal polar-
ization is significantly faster compared to transverse po-
larization. Arguing that polarization fluctuations under
constant D are longitudinal, one can hope that fixing
the dielectric displacement instead of the electric field
will speed up the convergence of averages and second
moments of polarization.

This prediction was verified by the simulation. The
significant gain in time scale turned out to be however
of limited help for the computation of ε from fluctua-
tions at D = 0 because of the more stringent demands
on accuracy. The reason is that ε under constant elec-
tric displacement must be computed from the inverse of
a small number depending on the fluctuations(Eq. 20).
The calculation of the dielectric constant from electric
displacement derivatives suffers in principle from a sim-
ilar problem(Eq. 23). Fortunately the statistics in this
case is more favourable. A further advantage is that non-
linear effects in the response to a change in displacement
field are very modest compared to a change in the elec-
tric field making the extrapolation to zero field easier.
The constant D method may be therefore in the end the
best option for the computation of dielectric response in
DFT based MD, which is, for water, still effectively out
of reach when using zero or constant E methods.

We conclude with an outlook. The modern theory of
polarization was developed to resolve the fundamental
question of the treatment of polarization in solids. The
founding fathers of the theory of polar liquids had no such
problems, using a system consisting of point dipoles as
their basic model.[1, 67] However, this simplicity is lost
for realistic point charge models of polar molecules which
led to rather confusing arguments about the contribu-
tion of higher multipole moments to the polarization[22].
This issue is avoided in the modern of polarization by a

strict focus on macroscopic polarization, at the expense
of turning polarization into a multivalued quantity.[37–
39]

The multivalued polarization could be ignored in the
present application to liquid water. We simply held
on to polarization as the sum of molecular dipole mo-
ments viewing it as a special gauge appropriate for
molecule systems. This will no longer work for appli-
cations to interfaces between solids and electrolytic solu-
tions. Liquid-solid interfaces are described in the frame-
work of macroscopic Maxwell theory by dividing the sys-
tem up in piece-wise uniform dielectric continua. This
conventional approach is regarded by some as incompat-
ible with microscopic theory[68]. To resolve these prob-
lems it would be useful to extend the modern theory of
polarization by reintroducing some form of local polar-
ization. The question of local polarization has already
been addressed in the context of modelling of solid-solid
heterojunctions[36, 69–71]. It remains to be seen whether
these concepts can be applied to the electrical double lay-
ers formed at electrolyte-solid interfaces. If anything, the
challenges in this area of research, and physical electro-
chemistry in general, should be an inspiration for both
physical chemists and solid state physicists and we are
hopeful that progress can be made in the near future.
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Appendix A: Legendre transforms

From the way they appear in the electric work relation
Eq.13, the macroscopic field E and dielectric displace-
ment D must be considered as thermodynamic conjugate
variables[51]. This suggests that the electric enthalpy
F (E) of Eq. 6 and internal energy U(D) of Eq. 9 are
each others Legendre transform. However, while accord-
ing to Eq. 11 the D derivative of U yields E, Eq. 3 is
not consistent with a Legendre transform. The E deriva-
tive of F is not reproducing −D. Following Landau and
Lifshitz SSV adjust the definition of F (E) to[51]

F̃ (E) = F (E)− Ω

8π
E2 (A1)
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Then with Eq. 12

dF̃

dE
= − Ω

4π
D (A2)

as required. The term added to F (E) is a constant in the
ensemble generated by the electric enthalpy Hamiltonian
of Eq. 4 and will therefore not affect averages over the
ensemble.

Writing F̃ and U in thermodynamic form as the sum
of an internal energy and entropic (−TS) term we find
the expected Legendre transform relation

F̃ (E) = U(D)− Ω

4π
E ·D (A3)

U can therefore be equated with the thermodynamic po-
tential with respect to D and F̃ as the thermodynamic
potential with respect to E referred to by Landau and
Lifshitz as U respectively Ũ [51]. The negative sign of the
ΩE2/8π term in Eq. A1 is consistent with this interpre-
tation. The sign of field energy in electric enthalpy is op-
posite (negative) to the sign in internal energy[51]. Sub-
tracting ΩE2/8π in Eq. A1 therefore amounts to adding
in the energy of the constant macroscopic field as ex-
plained in the supporting information of Ref. 35

SSV also consider the Legendre transform of F (E) with
respect to P using Eq. 3 leading to the thermodynamic
potential

E(P) = F (E) + ΩE ·P (A4)

with the polarization derivative

dE

dP
= ΩE (A5)

The statistical mechanics generated by this potential cor-
responds to an ensemble at fixed polarization P[35] which
was used in the pioneering studies of the electrical equa-
tion of state of ferroelectric materials[40, 41].

The function E(P) also has already a long history in
physical chemistry[72] (going back to gas-phase chem-
ical thermodynamics). This is presumably the reason
why it was chosen by Aragones et al. as the starting
point in their study of the electric field dependence of
the phase diagram of ice[52]. They then change this into
a constant E approach by applying the reverse Legen-
dre transform giving them F (E) and the corresponding
electric enthalpy Hamiltonian of Eq. 4. Finally to con-
vert to a constant applied field method the macroscopic
field E in Eq. 4 is replaced by E0. Aragones et al. base
their approach on the thermodynamic theory of Landau
and Lifshitz. Their finite field method is consistent with
the theory in section II A which provides a further micro-
scopic basis and a clarification of the distinction between
the applied and macroscopic field (see section III C).

Appendix B: Surface terms

The issue of surface terms arose when it is was realized
that the electrostatic interactions in a finite but large

ionic crystal can be modelled by an intrinsic energy equal
to the “tinfoil” Ewald energy of a supercell in the infinite
crystal and a shape dependent extrinsic term[44]. The
derivation familiar to physicists and chemist alike is due
to deLeeuw, Perram and Smith (LPS)[3, 4]. The problem
was revisited again and again generating an extensive
literature from which we only quote a small subset[45–
50]. SSV add two field dependent coupling terms to the
Ewald Hamiltonian. From Eq. 4 we have for constant E

VE = −ΩE ·P (B1)

and for constant D from Eq. 8

VD =
Ω

8π
(D− 4πP)

2
(B2)

The question investigated in this appendix is whether
VE and VD can be regarded as a surface terms. To this
end we consider a piece of dielectric material with an
homogeneous polarization density P representing the k =
0 component of the instantaneous polarization density in
a liquid. Terminating the dielectric at an interface creates
a polarization surface charge density σp

σp = −n ·P (B3)

where n is the normal to the bounding surface pointing
inward. σp generates an electric field called the polariza-
tion field

Ep = −∇r

∫
dA

σp(r
′)

|r− r′|
(B4)

In the context of the physics of ferroelectricity Ep is usu-
ally referred to as the depolarizing field. Ep is closely re-
lated to the longitudinal component of the polarization,
which will be defined below.

The separation into a longitudinal component PL and
transverse component PT is a rigorous mathematical re-
sult of the Helmholtz theorem of vector calculus[73]

P = PL + PT (B5)

with PL and PT given

PL(r) = −∇rφ(r) (B6)

φ(r) =

∫
V

dr′
∇r′ ·P(r′)

4π|r− r′|
+

∫
A

dA
n(r′) ·P(r′)

4π|r− r′|

PT (r) = ∇r ∧Q(r) (B7)

Q(r) =

∫
V

dr′
∇r′ ∧P(r′)

4π|r− r′|
−
∫
A

dA
n(r′) ∧P(r′)

4π|r− r′|

so that ∇∧PL = 0 and ∇·PT = 0. The reader is referred
to Matyushov for a discussion of the role of transverse
polarization in solvation and hydration[68, 74].

For homogeneous polarization, there are no volume
contributions, only surface terms. The surface terms are
in principle position dependent, even if their sum P is
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homogeneous. However, because P is constant over the
whole of the body, ∇ ·PL = ∇ · (P−PT ) = 0. Similarly
∇ ∧ PT = 0. PL and PT are cavity fields, satisfying
vacuum electrostatic equations. A possible r dependence
of PL and PT will be henceforward suppressed.

Comparing Eqs. B3, B4 and B6 we obtain a general
equation for the depolarizing field of a homogeneously
polarized dielectric body of arbitrary shape identifying it
with the longitudinal component of polarization.

Ep = −4πPL (B8)

Adding the applied field E0 gives the macroscopic field

E = E0 + Ep (B9)

and therefore with Eq. B8

E = E0 − 4πPL (B10)

Next we reformulate Eqs. B9 and B10 replacing the ap-
plied electric field E0 by the more fundamental displace-
ment field D defined by the relation

D = E + 4πP (B11)

Substituting Eq. B5 and B10 we find

D = E0 + 4πPT (B12)

confirming that the longitudinal component DL of the
electrostatic induction D can be treated as an applied
electric field E0. However, Eq. B12 also states that elec-
trostatic induction cannot be simply equated to the ap-
plied field. Depending on the shape of the bounding sur-
face D may contain a transverse residue.

The E = 0 system is the original “tinfoil boundary
geometry” of LPS. There is no surface term, and also VE
of Eq. B1 is zero for zero field. This is straight forward.
The difficulty is the D = 0 system. For zero displacement
field the function VD of Eq. B2 becomes equal to

VD(0) = 2πΩP2 (B13)

Can this term can be interpreted as a LPS-type surface
term? The answer to this question is negative. We base
our argument on work by Kantorovitch[49], who showed
that the surface term of an ellipsoid shaped cluster of
supercell replicas can be written in the form

Vs (E) = −Ω

2
Ep ·P (B14)

where Ep is the depolarizing field given by Eq. B4. Re-
cently Ballenegger showed that this relation is valid for a
smooth surface of arbitrary shape[50]. The dependence
on surface geometry is implicit in the polarization field
Ep. Clearly VD(0) of Eq. B13 and Vs of Eq. B14 are
equal if

Ep = −4πP (B15)

Comparing to Eq. B8 we see that for a geometry to satisfy
Eq. B15 the polarization must be entirely longitudinal
P = PL or PT = 0. This can be realized in special
directions. For a isotropically fluctuating polarization
it must hold for all directions. The dielectric response
considered by LPS is isotropic. However, for a sphere
PL = P/3 or equivalently PT = 2PL (see for example
Ref. 73). The depolarizing field of a sphere fails Eq. B15.

Do closed surfaces for which PT is strictly zero exist?
As far as we are aware they don’t. There will always be
some direction in which the depolarizing field is less than
what the full polarization would give (Eq. B15). This
also implies that there is no dielectric body for which
the displacement field is equal to a finite applied electric
field of arbitrary orientation (Eq. B12). We are unable
to provide a mathematical proof for this statement which
must therefore remain a hypothesis. This hypothesis is
however strongly supported by the work of Maggs who
pointed out that Eq. B15 is in fact satisfied for a periodic
system without surfaces[59, 60]. While such a geometry
cannot be realized experimentally, it can be considered
as a theoretical and computational construction. The
argument is briefly summarized below. For further justi-
fication and discussion we refer to the original papers.

Maggs starts from the Helmholtz theorem Eqs. B5-B7,
but now applied to a general inhomogeneous electric field
E(r).

E(r) = −∇φ(r) +∇∧Q(r) + Ē (B16)

The first term is the longitudinal field EL = −∇φ derived
from a scalar potential φ. The formalism also allows
for a transverse component ET = ∇ ∧ Q. The system
is periodic, there are no boundaries generating surface
terms. This is the crucial difference with LPS approach.
Instead we have in Eq. B16 the r independent term Ē,
which is an as yet unspecified uniform field.

Using an infinite system from the start disregarding
surfaces is also the basis of the derivation of the frequency
and wavevector dependent dielectric and magnetic lin-
ear response functions by Fulton[32] and Madden and
Kivelson[33]. The crucial step proposed by Maggs is to
link the uniform (k = 0) electric field Ē to the polariza-
tion using the time dependent Maxwell equation

∂E(t)

∂t
= −4πJ + c∇∧B (B17)

where J is the current and B the magnetic field. c is
the velocity of light. Eq. B17 is a microscopic Maxwell
equation in Gaussian units. Integrating over time and
space gives the uniform polarization

Ē(t) = −4π

Ω

∫ t

t0

dt′
∫
cell

dr J(t′) ≡ −4πP(t) (B18)

where we have used that the spatial integral of a curl over
the unit cell of a periodic system vanishes[59]. We can
imagine that the system was subjected to some action
starting from an unpolarized reference state at time t0.
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The adiabatic current this action creates establishes a
final polarized state. This is also how polarization is
defined in the modern theory of polarization. Eq. B18
relates the homogeneous polarization P to an internal
electric field Ē. This the only electric field there is, hence
with Eq. B11 we conclude that D = 0 which then allows
us to equate Ē of Eq. B18 to the depolarizing field Ep
satisfying Eq. B15. The electric energy of a volume Ω
cut out of the system is ΩE2/8π. Replacing the filed by
the polarization and adding the Ewald sum representing
all k 6= 0 contributions to the energy leads to the D = 0
SSV Hamiltonian of Eq. 28.

The time dependent scheme proposed by Maggs and
the modern theory of polarization have much in common.
Both schemes use the current to define polarization in a
periodic system without specifying a surface. This ap-
plies to D = 0 boundary conditions as well, which are
normally associated with a finite body in vacuum. This
may seem counterintuitive, but is consistent with the ge-
ometry invariance of the constitutive relations[51].

Appendix C: Reaction fields

In parallel to the Ewald summation based methods of
the deLeeuw, Perram and Smith, an alternative approach
based on reaction field methods was developed by Neu-
mann and Steinhauser(NS)[6–8]. The central result is
a general fluctuation expression for the static dielectric
constant ε of a spherical body of polar fluid embedded in
a dielectric continuum.

ε− 1

ε+ 2
=

4π

3

(
βΩ〈P2〉

3

)[
1− 3

4π

ε− 1

ε+ 2
Tmod(εR)

]
(C1)

Following the notation of section III A, P is the polariza-
tion computed from the total dipole moment of a system
of volume Ω. The factor Tmod(εR) is the volume aver-
age of the dipolar field tensor adapted (“modified”) for
interaction with the embedding dielectric continuum of
dielectric constant εR. Tmod(εR) is closely related to the
Onsager reaction field of a dipole[2].

Tmod(εR) =
4π

3

2 (εR − 1)

2εR + 1
(C2)

For the derivation of Eqs. C1 and C2 we refer to the orig-
inal papers by NS[6, 8]. Substituting εR = ε in Eq. C1
recovers the Kirkwood-Fröhlich expression for the dielec-
tric constant[8]. However, εR can also be different from
ε. While this changes the magnitude of the polarization
fluctuations, Eq. C1 combined with the reaction field fac-
tor Eq. C2 still gives the correct relation to the dielectric
constant. In particular, the limit εR → ∞ corresponds
to a polar fluid in a spherical cavity in a metal. The

reaction field factor Eq. C2 becomes

Tmod(∞) =
4π

3
(C3)

which inserted in Eq. C1 yields

ε− 1 =
4πβΩ

3
〈P2〉εR=∞ (C4)

Eq. C4 is identical to the relation of Eq. 18 between
〈P2〉E=0 and the dielectric constant (for simplicity here
we have assumed that 〈P〉 = 0 as it should be in a con-
verged MD run). This led NS to identify Ewald summa-
tion with their εR =∞ reaction field limit[6–8]

The opposite case of a sphere in vacuum is obtained
by setting εR = 1, and hence

Tmod(1) = 0 (C5)

giving the fluctuation relation

ε− 1

ε+ 2
=

4πβΩ

9
〈P2〉εR=1 (C6)

As can already be expected from the argument of ap-
pendix B, the vacuum equation C6 is not equal to the
fluctuation relation Eq. 20 under D = 0 conditions.

However, as noticed by Caillol and coworkers[13, 47]
the NS reaction field approach is in fact capable of repro-
ducing the D = 0 Hamiltonian Eq. 28 (see also Ref.59).
This is achieved by setting the dielectric constant of the
embedding medium to the “unphysical” value of εR = 0.
Inserting in Eq. C2 gives

Tmod(0) = −8π

3
(C7)

which should be compared to Eq. C3 valid for E = 0
(note the change of sign). Substituting in Eq. C1 we find

ε− 1

ε
=

4πβΩ

3
〈P2〉εR=0 (C8)

which is indeed the counterpart to Eq. 20. Similarly,
dividing Eq. C4 by Eq. C8 gives the same ratio as Eq. 21

〈P2〉εR=∞

〈P2〉εR=0
= ε (C9)

confirming that D = 0 boundary conditions are con-
tained in the NS reaction field formalism, all be it for
an environment with the unphysical dielectric constant
of zero.

The interpretation of this rather surprising connection
is better left to the experts in reaction field methods. As
mentioned it was noticed later and is not discussed in the
original papers on the NS method. We furthermore point
out, that the thermodynamic perspective underlying the
SSV method greatly simplifies the derivation of the zero
field fluctuation relations avoiding the complication of
the dipolar tensor. Moreover, it allows for natural exten-
sion to finite displacement fields D as we have shown in
the present paper.
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