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We model both the photo-stationary state and dynamics of an illuminated, photo-sensitive, glassy
liquid crystalline sheet. To illustrate the interplay between local tilt θ of the sheet, effective incident
intensity, curvature and dynamics, we adopt the simplest variation of local incident light intensity
with angle, that is cos θ. The tilt in the stationary state never overshoots the vertical, but maximum
curvature could be seen in the middle of the sheet for intense light. In dynamics, overshoot and
self-eclipsing arise, revealing how important moving fronts of light penetration are. Eclipsing is
qualitatively as in the experiments of Ikeda and Yu (2003).

I. INTRODUCTION

Nematic networks change their shape when their ori-
entational order is induced to change thermally or, if dye
molecules are present, optically. Mechanical strains can
be between several hundred % for elastomers and e.g.
4-5% for glassy networks. We concentrate on the latter
since they are strong (moduli ∼ 109− 1010 Pa) and their
directors immobile, eliminating further causes of mechan-
ical response. The experiments of Ikeda and Yu [1] show
two uniquely interesting new phenomena:
(i) Large, optically-driven response in the direction of
the polarization of light. Samples are polydomain so
the only definers of directions are k0, the incident light’s
wave vector, and E0, the incident light’s electric (and
polarization) vector. At once, both the ease of deliv-
ery of stimulus and the control of mechanics by optics
were demonstrated. These aspects have been explored
by many authors [2–7].
(ii) Curling, in the direction of E0, occurred with large
amplitude. Remarkably, curling continued so that much
of the photo-glass sheet eclipsed itself; see Fig. 1. In
shadow, one might expect curling to cease, or indeed re-
verse since the initially lower side of the sheet is now
uppermost and being irradiated. No explanation of this
seemingly paradoxical phenomenon was advanced by [1]

FIG. 1. A nematic sheet of Ikeda and Yu bending in response
to illumination from above and self-eclipsing as the deforma-
tion develops. The right hand half is stuck to the support.

or by subsequent authors. Our theory here shows that
the phenomena uncovered by these seminal experiments
reveal much about the non-linear and dynamical pro-
cesses behind nematic photo-solid absorption of light and
mechanical response. We suggest further experiments.

II. ABSORPTION, PHOTOMECHANICS AND
BEND ACTUATION

Dye molecules are linear in their ground (trans, t)
states and bent when excited (cis, c) by photon absorp-
tion. The number fraction of cis, nc = 1 − nt, increases
by illumination, I(x), and decreases by thermal recovery
to nt at a rate 1/τ , where τ is the c-lifetime, and where
I(x) is the intensity (Poynting flux) at depth x into the
sheet/cantilever. Thus

τ
∂nc
∂t

=
I

Im
nt−nc ≡ ṅc = −(αI/I0 +1)nc +αI/I0, (1)

where Im is a material parameter 1/Im = Γτ and α =
I0/Im ≡ ΓI0/(1/τ) [8]. The constant Γ subsumes an
absorption cross section per chromophore and a quantum
efficiency, while the reduced time t/τ derivative ∂/∂(t/τ)
is denoted by · . We neglect c-absorption, background
absorption and scattering in order to simply establish
the qualitative aspects of the Ikeda and Yu phenomenon,
which we succeed in doing. Thus such additional sources
of absorption are seemingly not central, and our model
evidently has the essence of this mysterious effect.

The parameter α measures the ratio of the forward rate
ΓI0 (using the surface light intensity) to the back rate
1/τ . Large α implies strong perturbation from nc = 0.
Small α is the Beer limit where nc ' 0 and absorption is
by a dye population little perturbed from the dark state.
We show that the Ikeda and Yu experiments reveal non-
linearity (α & 1) is vital. The photo-stationary state,
ṅc = 0, gives

nc =
αI

1 + αI
, (2)
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where I(x) = I(x)/I0 is an intensity at depth x reduced
by the intensity of light just having entered (at x = 0).

Intensity is reduced with depth by the photon absorp-
tion in eq. (1) above, leading to nt → nc

∂I

∂x
= −nt

d
I, (3)

where the Beer Length d subsumes cross sections, num-
ber densities etc., and absorption depends on the number
fraction nt of absorbers. When nt = 1, (α� 1), the Beer
limit I(x) = I0e−x/d is obtained. We require finite con-
version to get a mechanical response at all and to obtain
the observed dynamics. Hence (3) must be solved in the
non-linear limit of nc(x) 6= 0, that is, nt is a function of I
itself [8], either statically, eq. (2), or dynamically, eq. (1).

Creation of cis isomers lowers order and gives a photo-
contraction along E, that is a strain εp = −Cnc in
its simplest form, with C a dimensionless scaling. For
εp ∼ −0.04 and nc ∼ 0.8 (say), then C ∼ 1/20. An εp(x)
varying with depth gives curvature 1/R as the solid aims
to reduce the elastic cost of deviating from its new, nat-
ural local shape. The effective strain is

ε(x) =
x

R
+K − εp. (4)

The longitudinal stress at a depth x in the sheet is
a modulus times this strain. Integrating the stress and
the moment of the stress through the thickness, w, of
the sheet to get the force and the torque, setting both
these to zero, and cancelling the modulus yields the two
equations [8]

0 =

∫ w

0

[
x

R
+K+Cnc(x)]dx =

∫ w

0

x

R
+K+Cnc(x)]xdx.

(5)
Eliminating between these two equations for w/R one
obtains

w

R
=

12C

w2

∫ w

0

(w
2
− x
)
nc(x)dx. (6)

These equations must hold generally, even in a dynam-
ically evolving system, in a limit where inertia can be
ignored, for instance in the creeping motion seen by [1].

III. PHOTO-STATIONARY DYE
POPULATIONS AND MECHANICAL RESPONSE

Using the stationary population (2) in the form nt =
1 − nc = 1/(1 + αI) in (3) for I gives ∂I/∂(x/d) =
−I/(1 + αI). Integration gives [8, 9]

ln(I(x)) + α(I(x)− 1) = −x/d. (7)

The solution for I(x) is in terms of the Lambert-W
function (or ProductLog function), W (c), which satis-
fies c = W (c)eW (c). Thus I(x) = 1

αW (αeα−x/d). For
large α – intense light giving a high forward t → c rate

compared with the decay rate 1/τ – the penetration is
linear and very deep, I ∼ 1 − x/(αd) rather than expo-
nential, I = e−x/d, which accounts for substantial me-
chanical response [8, 10, 11] when one would otherwise
expect little response due to only a thin skin d� w be-
ing Beer-penetrated. Dynamics will turn out to be strong
evidence for non-linear effects.

Taking the solution (7) for I into nc = αI/(1 + αI)
and putting nc(I(x)) into eq. (6), then integrating using
a variable change d(x/d) = −(1/I + α)dI, and finally
eliminating for 1/R gives [4, 8]:

(w/D)

R
= α

[w
d
Iw − (1− Iw)(1− w

2d
)− α

2
(1− I2w)

]
(8)

where the dimensionless combination D = 12C
(
d
w

)2
sets

a scale to the reduced curvature w/R. (For C = 1/20
and w/d = 3 of our illustration, D = 1/15.) Recall the
definition of the reduced intensity, I, after eq. (2). The
solutions of (7) for x = w are injected in this curvature
expression. The curvature 1/R increases as incident in-
tensity, measured by α, increases, but eventually must
decrease again for very high α – penetration is deep and
I(w) ∼ 1−w/(αd)→ 1. The cis fraction nc saturates to
a high value (dye is depleted) and the consequent small
variation of photo-strain εp(x) with depth cannot induce
bending.
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FIG. 2. Curvature as a function of incident light intensity α
for w/d = 3, with the optimal intensity, αm at ♦, for this
thickness indicated. Two intensities α = 1, 5 (×, ◦) are used
illustratively below.

Fig. 2 shows the non monotonic function of curvature
against incident light intensity α: When incident light is
very weak, the cis fraction is small thereby producing a
small curvature. When incident light is very strong and
therefore deeply penetrating, the cis fraction is close to 1
and nearly uniform through the thickness, and thus again
there is hardly any curvature. Curvature is maximized at
an optimal intermediate reduced light intensity, αm say.
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A. Photo-stationary shapes of sheets

We are concerned with the interplay between bend as
a function of incident intensity, but also bend making the
sheet oblique to the incident light and thereby itself influ-
encing the effective intensity and penetration of the light
responsible for the bend. This connection and feedback
determines the photo-stationary state and also the com-
plex dynamics that we later examine. To establish and
illustrate such qualitative effects, we adopt the simplest
possible variation of intensity penetrating the upper sur-
face of the sheet, namely I0 cos θ which simply expresses
the dilution of the incident flux I0 to an effective flux
by obliquity. This assumption will be deficient in detail
since (a) there are complicated Fresnel coefficients gov-
erning the wave amplitude refracted into the medium,
and (b) the wave entering is not completely refracted to
be along the normal to the sheet (though it is nearly so
in the case of strong absorption where Snell’s law takes
an extreme form). In consequence, the electric vector
will not be along the local beam direction, see Fig. 3(b),
and its effect on inducing bend will have another angu-
lar factor. Consequently, though our analysis reproduces
the qualitative features of self-eclipsing and dynamics de-
pendent on trans-depletion front penetration, the precise
shapes of sheets to be compared with future experiments
may depend on these refinements of angular dependence.
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FIG. 3. A cantilever illuminated from above by light entering
the solid with intensity I0. (a) Initially flat, (b) curled up so
that the tangent t(s) at s makes an angle θ(s) with y, and
light is incident at angle θ(s) to the cantilever’s normal.

At an arc distance s along the sheet, the tangent and
normal are rotated through an angle θ(s), see Fig. 3(b).
It is the local x direction (the thickness direction) that
enters the attenuation equation (7) and the effective in-
tensity is α0 cos θ, where α0 = I0/Im is the effective in-
tensity were the beam to strike normally. Hence θ(s)
enters the solution I to be injected into eq. (8) for the lo-
cal curvature, itself having explicit θ dependence through
the α0 cos θ factor appearing.

Eq. (8) can be written in a superficially simpler form
as

dθ/ds =
1

R
=
D

w
a cos θ(s), (9)

where there is also θ-dependence in a:

a = α0[
w

d
Iw− (1−Iw)(1− w

2d
)− α0 cos θ

2
(1−I2w)] (10)

both explicitly, and buried in Iw. This differential equa-
tion can be integrated to give θ(s), and then a second in-
tegration gives the photo-stationary shape (x(s), y(s)) of
the sheet bending in the x−y plane. See Fig. 4 for shapes
corresponding to two effective intensities α0 (that would
be falling on flat sheets) that are less than or greater than
αm; the two cases are qualitatively different.
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FIG. 4. Photo-stationary shapes for α0 = 1 and α0 = 5.
The positions of maximum curvature correspond to angles,
and therefore arc positions, marked on Fig. 2 (×,♦). The
reduction of curvature by w/D is used here for lengths too.
Sheets of reduced length L/(w/D) = 14 are shown. For a
given α0 and w/d, these are master curves; sheets of smaller
L will terminate at intermediate places along the curve.

Consider incident light with α0 = 1 < αm, that is
smaller than the α for optimal curvature for this w/d.
The effective intensity incident locally on the sheet,
α = α0 cos θ, decreases with θ. Therefore for α0 = 1,
the maximum curvature obtains at s = 0, as shown in
Fig. 4, where α(s) is greatest, namely α0. However inci-
dent light with α0 = 5 is more intense than optimal: As
θ increases, α decreases down to αm (if the total length L
is large enough) and curvature increases to a maximum.
If θ continues to increase, then α(s) and thus curvature
decreases to 0. Thus the maximum curvature for α0 = 5
obtains at an intermediate s in the sheet; see Fig. 4.

To give a simple insight into the effect of curvature
being arc-position dependent, one can look for solu-
tions of eq. (9) for curvature where we take the ex-
plicit, leading θ-dependence via cos θ, and ignore the
further θ-dependence in a which we now set to be con-
stant. Reducing arc lengths by w/(aD), that is s =
uw/(aD), then dθ/du = cos θ(u) integrates simply to
sin θ(u) = tanh(u). Recognising that (x(u), y(u)) =
w/(aD)

∫ u
0

du′(cos θ(u′), sin θ(u′)) and using cos θ(u) =
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dθ/du yields the parametric forms.

x(u) =
w

aD
θ(u) =

w

aD
sin−1(tanh(u))

y(u) =
w

aD
ln(cosh(u)) (11)

and eliminating u gives

y(x) = − w

aD
ln (cos[x/(w/aD)]) (12)

which is qualitatively of the form in Fig. 4.

B. The marginal effect of gravity

To rule out any role of gravity in determining static
shapes, and later the dynamics of a glass sheet or can-
tilever, we calculate an extreme bound from Fig. 3(a).
Considering such a sheet of width W , we can calculate
the curvature close to the clamped end induced by grav-
ity, the torque being estimated as if the sheet were flat
(i.e. estimating the most critical location for curvature
and over-estimating the torque). Equating elastic and
gravitational torques,

EWw3

12R
=
ρwWgL2

2
⇒ w

R
=
ρg

E

6L2

w
≡ 6L2

lw
(13)

where l = E/ρg is a characteristic length emerging from
matching elasticity (E – the Young’s modulus) with grav-
ity (g, ρ – acceleration of gravity and density of the photo-
glass). For photo-glasses l ∼ 105m.

If gravity were to change the beam’s curvature by
that of a quarter circle of radius R, thus L = πR/2,
then 1/R = π/2L in the above yields a length Lg =

(πlw2/12)1/3 before gravitational effects compete with
elastic. Ikeda and Yu [1] have w = 7µm and L ∼ 3mm
(half their total sample length since they clamped in the
middle and not one end), whence Lg ∼ 10−2m is comfort-
ably larger than their L. Mol et al [12] have w ∼ 10µm
– 40µm, and their L = 10−2m is comfortably within the
(extremely low) estimates of Lg = 2 − 4 × 10−2m. We
henceforth ignore gravitational effects.

IV. DYNAMICAL PHOTOMECHANICAL
RESPONSE AND ECLIPSING

The varying cis-fraction of dye with depth and time,
nc(x, t), arises from penetration of a trans depletion front.
Sometimes this front is loosely called a bleaching wave
or front, since the converted dye is not an effective ab-
sorber of the original colour of light when in the cis state.
However this bleaching is reversible (not chemical) and
is otherwise referred to as saturated absorption [13]. The
resulting curvature (6) determined by nc is thus a func-
tion of time, non monotonic since 1/R depends on the
spatial variation of nc(x). Thus we have time dependent

over-bend, and this is further complicated by (a) the flux
driving the depletion front varies with θ(s), which results
from the accumulation of curvature ∂θ/∂s from s′ = 0
to s, and (b) development of angles θ(s, t) > π/2 giving
eclipsing, the incident light being blocked from falling on
the sheet at arc positions before that s where θ = π/2.
Such sections are in the dark, their nc(x) fraction of cis
recovers, and they lose their curvature. The sections of
sheet that are doing the eclipsing necessarily have their
under sides now exposed to the light and their curva-
ture is reduced and eventually reversed. A reversal can
lead to double eclipsing. We now explore this complex
dynamics.

The cis fraction at any time can be taken from (3),
solving for nt and replacing it by 1 − nc. Thus nc =
1 + (d/I) ∂I/∂x = 1 − d ∂A/∂x where the absorption
A = − ln(I). When the above nc is injected into eq. (6),
the 1 term in nc gives a vanishing integral. The gradient
term either integrates trivially against w/2, or integrates
by parts against −x to give overall

w

D

∂θ

∂s
≡ w/D

R
= 1

2

w

d
A(w, t)−

∫ w

0

A(x, t)
dx

d
. (14)

We have used A(0, t) = 0 since I(0, t) = 1.
The coupled, non-linear pair of PDEs (1) and (3) for

ṅc(≡ −ṅt) and I ′ can be reduced to a single temporal
quadrature for A [14] at each s:

Ȧ = x/d−A+ α0 cos θ(s, t)(e−A − 1), (15)

with A(0, t) = 0 and A(x, 0) = x/d. The latter is Beer’s
law of exponential decay I = e−x/d of light in an as-yet
undepleted dye population. This 2nd condition needs
careful reexamination after eclipsing when sheets start
to be irradiated from the back face.

We solve (15) (see [14]) for depletion front solutions
and inject them into (14) for (w/D)/R(s, t). The form of
the dynamics, especially eclipsing, depends critically on
the sheet length L and the reduced intensity α. Longer
L means that higher angles θ(s, t) =

∫ s
0

ds′∂θ/∂s′ can
be accumulated and θ → π/2 is more achievable. When
the tip of the sheet approaches π/2, it can be convected
over to θ > π/2 by continuing light penetration at s < L
since curvature increases with a further increasing gra-
dient of nc(x) deeper through the sheet thickness. This
non-linearity in response leads to eclipsing before later
recovery.

Fig. 5(a) shows the dynamics for α0 = 5. The corre-
sponding photo-stationary state in Fig. 4 is the dashed
line in Fig. 5(a). The sheet starts bending from an ini-
tially flat shape. One already sees overshoot at t/τ = 0.1.
The overshot section is now illuminated on what was the
back face, while at least part of the sheet with θ(s) < π/2
is eclipsed. The maximum curvature is more or less
in the middle of the sheet where it was most strongly
bent before being eclipsed. After overshoot, parts with
θ(s) > π/2 bend backward because of the reversed il-
lumination, as can be seen in t/τ = 0.3, while eclipsed
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FIG. 5. Bend curve sequences in t/τ of 0.01, 0.1, 0.3, 4, ∞
for (a) α0 = 5 and (b) α0 = 1 (where the t/τ = 4 curve sits
on top of that for t/τ = ∞). Reduced sheet length is again
L/(w/D) = 14, and w/d = 3.

parts unbend exponentially in time since they are in the
dark. Approach to the stationary state takes a long time,
in terms of the fundamental time scale τ , because of the
complex sequence of overshoots.

Fig. 5(b) has α0 = 1, which is slightly less than the
maximal value αm for w/d = 3. Now strongest bending
is closer to the fixed end, as expected from Fig. 4 for
this α0. Overshoot is not so extreme and the approach
to stationarity is much quicker. For smaller α0, for in-
stance 0.5 for this length L, overshoot still occurs, but
only slightly, whereas for α0 = 0.1 with this L, it is lost.

V. CONCLUSIONS

We have demonstrated that because the effective il-
lumination is controlled by orientation, and at the same
time drives orientation since it induces bend, the bending
of photo-responsive sheets is subtle. To explore the qual-
itative behaviour that should arise, both in statics and in
dynamics, a simple geometrically-inspired dependence of
light penetration on angle of incidence is adopted. The
other essential physical driver of this photo-mechanics is
that conversion of the isomerising guest dye molecules to
their excited state has to be considerable (i) to perturb
the local structure of the glass and induce mechanical
change, and (ii) to allow deep penetration (via a front of
depletion of the ground state species) so that bend can
actually occur. We then find:

• Photo-stationary shapes arising are qualitatively
different according to whether the intensity of il-
lumination normally incident is more or less than
a characteristic value that depends on both a ma-
terial constant and on the thickness of the sheet
reduced by the Beer length for adsorption. These
stationary states cannot be self-eclipsing.

• Seminal experiments on nematic glass bend re-
sponse did display self-eclipsing as response pro-
ceeded. By analysing the dynamical evolution of
the mechanics, we show that this must have arisen
as a transient effect and, accordingly, must be im-
possible to explain with just linear, Lambert-Beer,
light absorption. We further predict that the route
to the final photo-stationary state must show par-
tial unbending via back bend, and could display
multiple eclipses.

The two regimes both suggest further experiments
which should also give insight into how complex the true
angular dependence of absorption is. For example the
experiments of Ikeda and Yu [1] could be illuminated
for longer, such that appreciable backbend in addition
to eclipsing are observed. Eclipsing itself depends quite
crucially on the length of the photo-responsive sheets,
therefore repeating the experiments of Ikeda and Yu with
different sample lengths should also reveal a complicated
behaviour. Perhaps most simple of all would be to coat
the back face of the sheet with a reflective coating, thus
removing effects from illuminating the back surface and
allowing one to focus entirely on front-surface illumina-
tion and eclipsing.
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