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Abstract—We present an accurate small signal model for thin film 

transistors (TFTs) taking into account non-idealities such as 

contact resistance, parasitic capacitance, and threshold voltage 

shift. The model gives high accuracy in s-parameters, and the 

predicted cutoff frequency yields 1% discrepancy compared with 

measurement results. In contrast, the conventional CMOS small 

signal model adapted for TFTs yields 12.5% error. The TFT’s 

cutoff frequency is also evaluated under bias stress to examine the 

effect of device instability on small signal behavior. 

 
Index Terms—Small signal model, s-parameter, thin film 

transistor (TFT), cutoff frequency, threshold voltage (VT) shift 

I. INTRODUCTION 

mall signal modeling simplifies the analysis of non-linear 

devices, in which the signal in question is treated as a small 

perturbation around the bias point [1]–[3]. The resulting linear 

approximation reduces design complexity of circuits such as 

amplifiers [4]–[9]. When compared to MOSFETs, TFTs have a 

different structure and unique material properties, which result 

in, for example, larger contact resistance, high parasitic 

capacitance, and stress-induced VT shift [10]–[20]. This is true 

for a-Si:H [10]–[12], organic [13]–[17] and metal-oxide [18]–

[20] TFTs alike. Therefore, it is imperative that these 

non-idealities be captured in the small signal model. This is 

especially crucial in TFT-based analog circuit design and in 

particular, for the accurate prediction of the circuit’s dynamic 

behavior. 

 In this letter, we present an accurate TFT small signal model 

where the contact resistance (RC), parasitic capacitance, and 

stress induced threshold voltage (VT) shift are considered. The 

small signal behavior is analyzed through measurements of 

S-parameters, current-voltage (I-V) and capacitance-voltage 

(C-V) characteristics, and bias-induced instability. From these 

measurements, we assess if the MOSFET’s small signal model 

is adequate or examine the modifications needed for TFTs 

using a-InGaZnO (IGZO) test TFT structures.  

II. THEORETICAL ANALYSIS 

The TFT structure examined here and equivalent passive 

components are shown in Fig. 1(a), in which the transistor is 

working in the saturation regime, where the bias conditions 

follow VDS>VGS>VT. The shaded region indicates the formed 

 
Manuscript received, xxx.2015. This work is partly supported by the project – 

XXXX. X. Cheng, S. Lee, and A. Nathan are with Electrical Engineering 
Division, Department of Engineering, University of Cambridge, Cambridge 

CB3 0FA, U.K. (e-mail: xc260@cam.ac.uk; sl684@cam.ac.uk; 

an299@eng.cam.ac.uk).  

channel and pinch-off happens at the edge adjacent to the drain 

electrode. As illustrated, the channel capacitance only 

contributes to the source side since the drain side is pinched off. 

The corresponding small signal equivalent circuit model is 

shown in Fig. 2(b), where the contact resistances and overlap 

capacitances are connected. The working channel in saturation 

is then represented by a voltage controlled current source in 

parallel with an output resistance (ro), which is supported by 

Thévenin’s theorem [21], [22] since other capacitance or 

inductance effects are negligible.  

This approach takes a different path from the CMOS small 

signal model (see also Fig. 2). In particular, the contact 

resistance separates the channel capacitor (Cch) and the overlap 

capacitor at the source side (COVS), which would yield a 

different frequency response, especially for the S11 parameter. 

In addition, the transconductance (gm) in the TFT model seen in 

Fig. 2(b) is no longer in linear operation as a function of the bias 

voltage. Note that the connection of contact resistance and Cch 

are also valid for other material families and device structures. 

A. Small signal model at low frequency 

At very low frequencies, all the parasitic capacitances and 

channel capacitances can electrically be treated as open-circuit 

connections. This is valid when the frequency of concern is 

much smaller than the first pole of the frequency response 

(i.e.𝑓 ≪ 𝑓𝑝 ≈ 1/2𝜋𝑅𝐿𝐶𝑂𝑉𝐷 , where RL is the load resistance 

connected at the drain of the TFT, assuming no parasitic at 

input). In this frequency regime, the TFT model can be 
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Fig. 1. (a) Bottom gate TFT structure and equivalent passive components, 

where Cch is the channel capacitance, COVS/OVD the overlap capacitance at 

source/drain side, RS/D the contact resistance at source/drain side. (b) Transfer 
characteristics (c) output characteristic of the TFT under test. Test structures 

used for model synthesis were IGZO TFTs reported in [23], [26]. The device 

under test has following physical and geometrical parameters: ts=50nm, 

VT=1.6V, COX=30nF/cm2, =8.6cm2/Vs 
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equivalent to the CMOS model omitting all the capacitors 

according to Thévenin’s theorem. Note that the gm and ro in Fig. 

2(a) can be calculated directly from the derivative of the 

measured drain current vs. gate-source voltage (i.e. ID-VGS) and 

drain current vs. drain-source voltage (i.e. ID-VDS) curves, 

respectively, while gmi and an internal output resistance (roi) 

cannot be obtained directly from the static behavior. As both 

models should capture the same derivatives of the static 

behavior, the expressions for gmi and roi as a function of 

measurable parameters can be derived as follows: 
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Here, RC=RD=RS, assuming the contact properties at source and 

drain sides are symmetrical. 

According to the static models developed in [23] based on the 

same set of samples, the internal gmi (Fig. 2(b)) considering VT 

shift can be expressed as: 
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where gmi0 is the initial value without any VT shift, 𝐾′ =

𝐾(𝑊/𝐿)(𝛼 + 1)(𝑉𝐺𝐴 − 𝑉𝑇)𝛼, as  is a constant close to zero, 𝐾′ is 

weakly dependent on bias and can be treated as a constant. The 

|VT| can be represented with the following stretched 

exponential functions for stress and recovery stages, 

respectively, as |𝛥𝑉𝑇|= (𝑉𝐺𝑆 − 𝑉𝑇) (1 − 𝑒𝑥𝑝(−(𝑡/𝜏𝑆)𝛽𝑆))                      

and |𝛥𝑉𝑇| = 𝛥𝑉𝑇𝑠𝑡 𝑒𝑥𝑝(−(𝑡/𝜏𝑅)𝛽𝑅 ) [10], [18]. Here, VTstis the 

initial value of VT at the start of recovery stage,S and R are 

time constants for stress and recovery stages, respectively, and 

S and R are exponents for stress and recovery stages, 

respectively. These parameters are different relating to stress 

conditions, such as bias stress and illumination stress [10], [18], 

[24]. The assumption of VT<<VGS-VT is used in the 

approximation of Eq. (3). 

The derivation above shows that the VT shift can be 

represented by a separate component. The corresponding 

small-signal model is shown in Fig. 2(b).  

B. Small signal model at high frequency 

At higher frequencies, capacitance effects are no longer 

negligible (i.e. when the low frequency assumption in the above 

section is violated), and the small signal model becomes 

different from the CMOS counterpart. This means that the two 

models in Fig.2 should give different cut-off frequencies and 

different bode-plots for the current gain (H21).  

The short circuit current gain (Ai) calculated from the CMOS 

model in Fig.2(a) is represented as, 

𝑨𝒊 =
𝒔𝑪𝑶𝑽𝑫−𝒈𝒎

𝒔(𝑪𝑶𝑽𝑫+𝑪𝑶𝑽𝑺+𝑪𝒄𝒉)
.                                 (4) 

In the bode plot for Eq.(4), there should be one pole and zero. 

And the cutoff frequency (fT) is then approximated by assuming 

that the zero of gm/COVD is far from the point of the cutoff 

frequency. Thus, 

𝒇𝑻 =
𝒈𝒎

𝟐𝝅(𝑪𝑶𝑽𝑫+𝑪𝑶𝑽𝑺+𝑪𝒄𝒉)
=

𝒈𝒎

𝟐𝝅𝑪𝒕𝒐𝒕
,                      (5) 

where Ctot is the sum of all capacitances of the transistor. 

In contrast, the current gain calculated for the TFT small 

signal model seen in Fig.2(b) is 

𝑨𝒊 =
−𝒈𝒎𝒊𝒓𝒐𝟏+((𝟐𝑹𝑪+𝒓𝒐𝒊+𝒈𝒎𝒊𝑹𝑪𝒓𝒐𝒊)𝑪𝑶𝑽𝑫+𝑪𝒄𝒉𝑹𝑪)𝒔+𝑪𝑶𝑽𝑫𝑪𝒄𝒉𝑹𝑪(𝑹𝑪+𝒓𝒐𝒊) 𝒔𝟐

𝒔(𝒈𝒎𝒊𝑪𝑶𝑽 𝑹𝑪𝒓𝒐𝒊+(𝟐𝑹𝑪+𝒓𝒐𝒊) (𝑪𝑶𝑽+𝑪𝒄𝒉)+𝑪𝑶𝑽(𝑹𝑪+𝒓𝒐𝒊)𝑪𝒄𝒉 𝒔)
  (6) 

where 𝐶𝑂𝑉 = 𝐶𝑂𝑉𝑆 + 𝐶𝑂𝑉𝐷. Therefore the cut-off frequency is: 

𝒇𝑻 =  
𝒈𝒎𝒊𝒓𝒐𝒊

𝟐𝝅(𝒈𝒎𝒊𝑪𝑶𝑽𝑹𝑪𝒓𝒐𝒊+(𝟐𝑹𝑪+𝒓𝒐𝒊)(𝑪𝑶𝑽+𝑪𝒄𝒉))
=

𝒈𝒎

𝟐𝝅(𝑪𝒕𝒐𝒕−𝒈𝒎𝑹𝑪𝑪𝒄𝒉)
   (7) 

From Eqs.(5) and (7), we can clearly see that the major 

difference between Figs.2(a) and (b) comes from the term 

gmRCCch. This implies that this difference depends on the value 

of RC and the fraction Cch is of the total capacitance. Note that 

Cch is related to both free and trapped charges associated with 

the degree of disorder in the channel layer [25], [26]. This also 

indicates that the CMOS model can be inaccurate especially 

when the contact resistance and overlap capacitance are big and 

small, respectively.  

III. RESULTS AND DISCUSSIONS 

The s-parameters are measured using the Keysight E5061B 

network analyzer calibrated by CS-11 calibration substrate 

provided by GGB Industries, Inc. The DC bias is at VGS=8V 

and and VDS=15V. The cut-off frequency extracted from the 

converted H21 parameter yields the result shown in Fig. 3. The 

extracted device parameters used here are as follows: gm=16.5 

S, Cch=0.2 pF, COVD=COVS=0.43 pF, ro=1.4M, 

RC=30kThe COVD/S> Cch due to a longer overlap length than 

the channel and the value of gm mentioned above is extracted 

from S21 directly, which is consistent with that of gm from a 

static I-V measurement (~16.4S). 

The measurement results show a cutoff frequency of 

3.11MHz while the proposed TFT and CMOS models predict 

cutoff frequencies of 3.14MHz and 2.72MHz, respectively. 

This yields an error of 1% and 12.5%, respectively.  

Note that H21 can be calculated from all four s-parameters 

using the following relation, 

𝐇𝟐𝟏 = −
𝟐 𝐒𝟐𝟏

(𝟏−𝑺𝟏𝟏)(𝟏+𝑺𝟐𝟐)+𝑺𝟏𝟐 𝑺𝟐𝟏
.                         (8) 

However, since the TFT is very resistive in s-parameter 

measurements, Eq.(8) can be approximated as, 

|𝐇𝟐𝟏| ≈ |
𝑺𝟐𝟏

𝑺𝟏𝟏−𝟏
|.                                  (9) 

Therefore, the frequency response of the TFT is dominated by 

the S11 and S21. The measurement and computational results 

 
Fig. 2. (a) CMOS small signal model and (b) TFT model. Here, VGA is the 

voltage difference between gate and the node ‘A’, where 𝑉𝐺𝐴 = 𝑉𝐺𝑆 − 𝐼𝐷𝑆𝑅𝑆 
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shown in Fig. 4 indicate that the major difference of the two 

models lies in S11, which can be explained by the different Cch 

connection at the gate-source port.  

Another important factor for TFTs is the threshold voltage 

shift (VT). In order to examine its influence on the small signal 

behavior, a constant bias stress measurement is performed on a 

W/L=50m/10m TFT with VGS=8 V and VDS=15 V for total 

10 hours while fT and VT are measured at every logarithmic 

time interval (the I-V sweep is done to extract the value of VT, 

which briefly disrupts the constant bias). The measurement 

result is shown in Fig 5. The VT increases to +0.2 V in total 

after the 10 hours bias stress and the respective fT drops to 

0.08 MHz almost linearly. This is due to the relatively small 

VT compared with VGS which leads to first order 

approximation of Eq. (7). From Eq. (3) & (7) we have: 

𝜟𝒇𝑻 ≈ −
𝒓𝒐𝒊(𝟐𝑹𝑪 + 𝒓𝒐𝒊)(𝑪𝑶𝑽 + 𝑪𝒄𝒉)

𝟐𝝅(𝒈
𝒎𝒊𝟎

𝑪𝑶𝑽𝑹𝑪𝒓𝒐𝒊 + (𝟐𝑹𝑪 + 𝒓𝒐𝒊)(𝑪𝑶𝑽 + 𝑪𝒄𝒉))
𝑲′𝜟𝑽𝑻 

=  𝜷𝜟𝑽𝑻                                                                                          (10) 

where  is the constant found to be about -3.2×10
6
 [Hz/V] for 

the examined TFTs. Eq.(10) allows to estimate the shift in unity 

gain frequency with threshold voltage shift. Here, the 

coefficient  will be different for different material- and 

process-based TFTs.  

 
The summary of the model equivalence and parameter 

relations is given in Table I. Note that when CMOS model is 

used, the effect of RC is included in gm term. When the 

equivalent conditions are met, the TFT model yields to the 

CMOS model in all frequency range. The significance of the 

model difference is determined by value of RC and Cch.  

IV. CONCLUSION 

Small signal models are indispensable for the design of 

analog circuits, especially in the former for the correct phase 

margin and bandwidth of amplifiers and analog filters. This 

work reports on an accurate small signal model that takes into 

account the contact resistance, parasitic capacitance, and 

threshold voltage shift, while introducing internal 

transconductance (gmi) and output resistance (roi). The proposed 

TFT model yields a 1% error in predicting the unity gain 

frequency, in contrast to 12.5% error using the CMOS model. It 

also provides a better fit to the measured s-parameters.  

Theoretical analysis suggests that accuracy improvement 

stems from Cch & RC connection in the TFT model. It also 

suggests that the CMOS model can be inaccurate especially 

when the channel capacitance is more dominant and the contact 

resistance (RC) is bigger. The increase of RC due to down 

scaling of TFTs indicates that the proposed TFT model can be 

more beneficial to use in smaller devices. As RC and its 

separation of channel capacitance and overlap capacitance 

generally exist in many other types of device structures and 

material families, the model is potentially applicable to other 

TFTs fabricated on insulator substrate such as glass and plastic. 

Additional bulk parasitics should be considered when 

modelling TFT on a semiconductor substrate. 

 
Fig. 3. Short-circuit current gain (Ai) for the TFT with channel width (W) = 

100m and channel length (L) = 10m, which is converted from the 

S-parameter measurement. 

 
Fig. 4. (a) Amplitude and phase plots for S11 and (b) those of S21, respectively. 

Here, the measurements are compared with the computational results for the 

CMOS model and TFT model, respectively. 

 

 
Fig. 5. Measured fT with respect to VT for the examined IGZO TFT. 

 Table I. Summary of parameters for the CMOS and TFT models 
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