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ABSTRACT: Carbon nanotubes (CNTs) and graphene oxide (GO) have been used to reinforce 

PMMA-siloxane-silica nanocomposites, considered to be promising candidates for 

environmentally compliant anticorrosive coatings. The organic-inorganic hybrids were prepared 

by benzoyl peroxide (BPO) induced polymerization of methyl methacrylate (MMA), covalently 
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bonded through 3-(trimethoxysilyl)propyl methacrylate (MPTS) to silica domains, formed by 

hydrolytic condensation of tetraethoxysilane (TEOS). Single-walled carbon nanotubes and 

graphene oxide nanosheets were dispersed by surfactant addition and in a water/ethanol solution, 

respectively. These were added to PMMA-siloxane-silica hybrids at a carbon (CNT or GO) to 

silicon (TEOS and MPTS) molar ratio of 0.05%, in two different matrices, both prepared at 

BPO/MMA molar ratios of 0.01 and 0.05. Atomic force microscopy (AFM) and scanning 

electron microscopy (FEG-SEM) showed a very smooth, homogeneous and defect free surfaces 

of about 3 - 7 m thick coatings deposited onto A1020 carbon steel by dip-coating. Mechanical 

testing and thermogravimetric analysis confirmed that both additives, CNT and GO, improved 

the scratch resistance, adhesion, wear resistance and thermal stability of PMMA-siloxane-silica 

coatings. Results of electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution, 

discussed in terms of equivalent circuits, showed that the reinforced hybrid coatings act as a very 

efficient anticorrosive barrier, with an impedance modulus up to 1
 
GΩ cm

2
, about 5 orders of 

magnitude higher than the bare carbon steel. In the case of GO addition, the high corrosion 

resistance was maintained for more than 6 months in saline medium. These results suggest that 

both carbon nanostructures can be used as structural reinforcement agents, improving the thermal 

and mechanical resistance of high performance anticorrosive PMMA-siloxane-silica coatings, 

and thus extending their application range to aggressive environments.  

INTRODUCTION 

Since their discovery by Iijima [1] and Novoselov et al. [2], carbon nanotubes (CNTs) and 

graphene have stimulated intense activities in both fundamental and applied research areas. As a 

consequence of their outstanding mechanical, thermal and electrical properties, these carbon 

nanostructures have potentially a large number of applications in electronic devices, energy 
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storage systems, electrochemical electrodes and in the reinforcement of composite materials. 

Carbon nanotubes and graphene profit from their hexagonal sp
2
 arrangements of carbon atoms, 

forming extremely stable cylindrical and monolayer structures, respectively. The thermal, 

chemical and mechanical resistance of CNTs and graphene are highly promising in the context of 

improving the properties of materials and extending their functionality.  

To guarantee a reinforcement effect, the main challenge regarding the incorporation of CNTs 

and graphene into a host matrix is the ability to achieve their homogeneous dispersion by 

disaggregation of micrometric agglomerates, formed as a consequence of attractive van der 

Waals interactions between the 1D tubes or 2D layers, respectively. Several authors have studied 

an effective approach to separate the dense bundles into individual CNTs. Those methods, which 

proved to be most effective, are the use of surfactants and the linking of different functional 

groups to the nanotube walls [3,4]. A widely used strategy for incorporating graphene is the use 

of graphene oxide (GO) nanosheets. GO can be easily acquired from natural graphite flakes by 

acid treatment and due to the presence of epoxy, hydroxyl, and carboxyl functional groups on its 

basal planes, it can be stably dispersed in polar solvent, such as water and ethanol. For this 

reason, GO has attracted considerable attention as polymer filler [5]. 

Recent studies have shown that the inclusion of relatively small amounts of carbon nanotubes 

and graphene in polymer matrices results in a significant improvement in their mechanical 

strength [6-8] and thermal stability [6-10]. Mallakpour and Zadehnazari reported on the thermal 

and mechanical reinforcement of poly(amide-imide) (PAI) using multi-walled carbon nanotubes 

(MWCNTs) functionalized first with carboxylic groups and secondly with dopamine (MWCNT-

Dop) [7]. The results indicate that MWCNT-Dop produced an increase of 21% in the thermal 

stability, 52% in the tensile strength and 65% in the Young’s modulus, as the MWCNT-Dop 
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content increased from 0 to 15 wt.%. Similar results were obtained by Wang et al., using 

graphene as filler to poly(methyl methacrylate) (PMMA) matrix [8]. Compared with pure 

PMMA, PMMA/graphene composites showed improved mechanical properties (Young's 

modulus, tensile stress and elongation at break) and higher thermal stability.  

Recent research activities involving the use of carbon nanostructures as fillers have been 

extended to the modification of composite materials applied as protective coatings of metallic 

alloys [11-15]. These composite materials face the challenge of being able to resist 

simultaneously severe situations such as high temperatures, abrasive conditions and corrosive 

environments.  Recent reports on epoxy coatings containing 0.5 wt.% of CNT, deposited on 

2024-T3 aluminum alloy, showed an improvement in adhesion strength and wear resistance, 

however their corrosion resistance did not increase significantly compared to those obtained for 

pure epoxy (10 kΩ cm
2
) [12]. Another study on corrosion protection properties of 

epoxy/graphene composite coatings deposited on cold-rolled steel, repots only a moderate 

increase of the corrosion resistance of one order of magnitude compared to that of bare substrate 

(1 kΩ cm
2
) [13]. Ramezanzadeh and coworkers grafted graphene oxide (GO) with a 

polyisocyanate (PI) resin, and subsequently incorporated 0.1 wt.% of PI/GO nanosheets into a 

polyurethane (PU) matrix, deposited on steel substrate [15]. They found that the incorporation of 

PI/GO into the PU matrix resulted in a significant improvement of the corrosion protection with 

impedance modulus values of up to 1 GΩ cm
2
 after 30 days immersion in 3.5 wt.% NaCl 

solution. Despite of all these efforts, to our best knowledge there are no reports on simultaneous 

substantial improvement of mechanical, thermal and anticorrosive properties of protective 

coatings based on nanocomposites modified by carbon nanostructures. 
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The tendency of metal alloys to suffer corrosion in chemically aggressive environments, 

involving the spontaneous conversion of the metal to its original ore, is one of the most serious 

problems of the industrial age. In addition to the generation of significant amounts of waste, 

corrosion-induced damage results in huge economical losses, mainly related to replacement 

costs, and can lead to lack of serious safety problems due to the failure of critical components. 

Recent progress in material science has enabled new alloys and protective coatings to be 

developed, leading to a substantial retardation of the corrosion induced disintegration process, 

and thus reducing substantially the replacement and failure prevention costs. The development of 

new alloys is one important approach for inhibiting corrosion, but this is usually associated with 

high costs and requires the complete replacement of already installed metallic components. 

Protective organic coatings such as paints or resins, or inorganic coatings based on ceramic 

materials, represent a cheaper, easier and more efficient route for a significant improvement of 

durability of metallic parts, as they can be easily applied and provide a superior corrosion 

protection efficiency, in comparison with most alloys. Thus, for example, the Forth Bridge in 

Scotland has a triple layer glass flake epoxy paint coating expected to last 25 years, and it is 

routine to protect nickel-based superalloy turbine blades used in aerospace engines with thermal 

barrier coatings based on yttria-stabilized zirconia [16,17]. Despite of the advantages of these 

coatings, organic films often suffer from poor thermal and mechanical stability and a lack of 

adhesion, while most inorganic coatings present some degree of porosity and stress, leading 

potentially to cracks and adhesion failure of micron-thick films [18]. To overcome the limitations 

of ‘traditional’ coatings, organic-inorganic hybrids have been developed. Such materials present 

an intimate mixture of ceramic and polymeric phase on the molecular scale [19].  
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The PMMA-siloxane-silica hybrid system (PSS) is a class of organic-inorganic hybrid 

nanocomposites formed of a poly(methyl methacrylate) (PMMA) organic phase, covalently 

bonded to a silica network through siloxane (C-Si-O) bonds provided by the 3-

(trimethoxysilyl)propyl methacrylate (MPTS), which acts as a coupling agent between the 

organic PMMA phase and inorganic silica phase. Recent studies have shown that this hybrid 

structure consists of dense silica cross-link nodes bridged by short PMMA chains, providing a 

dense nanocomposite, suitable for corrosion protection applications [18,20]. These optically 

transparent, dense and defect-free materials, prepared by the sol-gel process, have proved to be 

very efficient as protective coatings for metallic surfaces, showing a high corrosion resistance 

(impedance modulus > 10 GΩ cm
2
), coupled with a long-term stability of more than 6 months in 

contact with 3.5% NaCl solution [20]. However, given the high fraction of the polymeric phase 

(>70 wt.%), the principal concern regarding the industrial applicability of PSS hybrids as 

protective coatings is related to their relatively low thermal and mechanical stability. To explore 

how this limitation can be overcome, MWCNTs functionalized by carboxylic groups have been 

added in a PSS hybrid at carbon to silicon ratios of 0.1, 1.0 and 5.0%. The results showed that 

CNTs did not affect the thermal stability of hybrid matrix of ~170 ºC and only slightly decreased 

the corrosion resistance (10 MΩ cm
2
 in 3.5% NaCl solution) for the C/Si molar ratio of 5.0% 

[21]. However, in this study the mechanical properties of the CNT-loaded hybrids were not 

examined.  

In this work, we demonstrate the feasibility to conjugate CNTs and GO with PMMA-siloxane-

silica hybrids, resulting in a nanocomposite that combines improved mechanical and thermal 

stability with excellent anticorrosion properties, thus extending the field of application of these 

materials as protective coatings. The reinforcement effect has been confirmed by a number of 
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experimental techniques probing the thermal, mechanical and anticorrosive properties of the 

material. 

 

EXPERIMENTAL METHODS 

Carbon nanotubes dispersion. Single-walled carbon nanotubes (SWCNTs) were purchased 

from Dropsens. The catalytic chemical vapor deposition (CCVD) and a subsequent purification 

process yielded SWCNTs with diameter of 2 nm and length of several microns. Using the 

method of Alves da Cunha et al., the SWCNTs were dispersed in sodium dodecyl sulfate 

surfactant (SDS, Sigma-Aldrich) and hexadecanoic acid (palmitic acid, Sigma-Aldrich) [4]. 0.3 

mg of CNTs were added to 10 mL of SDS 1% water solution and after 30 min in an ultrasonic 

bath, 110 mg of palmitic acid was added. After further 20 min of sonication, the solution was 

centrifuged for 3 h at 4000 rpm. The supernatant consisted of CNTs dispersed in SDS and 

palmitic acid with the non-polar part of these reagents interacting physically with the CNTs, 

while the polar groups interact with water, promoting the disentanglement of the nanotubes [4]. 

After dispersion, CNTs were added to the PMMA-siloxane-silica hybrid solution at a carbon 

(CNT) to silicon (MPTS and TEOS) molar ratio of 0.05%, in two different matrices (BPO0.01 

and BPO0.05). These two CNT-loaded matrices were designated BPO0.01_CNT and 

BPO0.05_CNT, respectively. 

Graphene oxide dispersion. Graphene oxide, provided by the Nanomaterials Laboratory 

(UFMG), was dispersed in a water/ethanol solution at 0.2 mg mL
-1

 concentration. The good 

dispersion of GO in water allowed the sol-gel preparation of a highly homogeneous hybrid 

nanocomposite. The dispersed GO was added to the hybrid inorganic phase, at a carbon (GO) to 

silicon (MPTS and TEOS) molar ratio of 0.05%, in two different matrices (BPO0.01 and 



 8 

BPO0.05). These two GO-loaded matrices were designated BPO0.01_GO and BPO0.05_GO, 

respectively. 

Nanocomposite synthesis. The synthesis was performed in three steps (Scheme 1): the first 

step consisted in the radical polymerization of methyl methacrylate (MMA, Sigma-Aldrich) with 

3-(trimethoxysilyl)propyl methacrylate (MPTS, also known as TMSM, Sigma-Aldrich) using 

benzoyl peroxide (BPO, Sigma-Aldrich) as a thermal initiator and tetrahydrofuran (THF, Sigma-

Aldrich) as the solvent. The reaction was maintained at 80 ºC for 4 h under reflux and constant 

stirring. In the second step, the sol-gel synthesis of the silica phase was performed, separately, by 

stirring a mixture of tetraethoxysilane (TEOS, Sigma-Aldrich), ethanol (Sigma-Aldrich) and 

water, acidified with nitric acid (pH 1), during 1 h at 25 ºC. Finally, the organic and inorganic 

components were mixed to produce a transparent and homogeneous PMMA-siloxane-silica 

solution.  

The synthesis procedure and the molecular structures of TEOS, MPTS and MMA are shown in 

Scheme 1. The siloxane bridges (C-Si-O) between the organic and the inorganic phases are 

provided by MPTS, a modified silicon alkoxide with a methacrylate group, which acts as a 

coupling agent between the organic component, PMMA (polymerized MMA), and the inorganic 

silica phase. The molar ratios of following reagents were kept constant: MMA/MPTS = 8, 

TEOS/MPTS = 2, H2O/Si = 3.5 and ethanol/H2O = 0.5. The BPO/MMA molar ratio was kept at 

0.01 and 0.05 to study the influence of the carbon nanostructures in two different matrices 

(BPO0.01 and BPO0.05). 

Film deposition. First, A1020 carbon steel substrates (2.5 x 2.5 x 0.4 cm), having a nominal 

composition (wt.%) of C = 0.15%, Mn = 0.55 to 0.69%, Si = 0.13%, P = 0.03% and S = 0.01%, 

with the balance of Fe, were sanded using 100, 300, 600 and 1500 abrasive paper, washed with 
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isopropanol for 10 min in ultrasonic bath and dried under nitrogen. The hybrids solution was 

then used to coat the carbon steel substrates by dip-coating (3 immersions of 1 min, at a 

withdrawal rate of 14 cm min
-1

, with intervals of 10 min air-drying). The remaining solution was 

placed in a Teflon holder to obtain unsupported films. Finally, all samples were cured at 60 °C 

for 24 h and subsequently at 160 °C for 3 h. 

 

 

Scheme 1. Preparation conditions of the PMMA-siloxane-silica coatings and the molecular 

structures of precursors (inset).  

 

Characterization. X-ray photoelectron spectroscopy (XPS) was used for characterization of the 

CNT and the GO carbon nanostructures. The measurements were performed in an UNI-SPECS 

UHV surface analysis system, using Mg K radiation (hν = 1253.6 eV) and a pass energy of 10 

eV for high-resolution spectra. The CasaXPS software was used for the determination of the 

surface composition and for the deconvolution of the C 1s spectra, using a Shirley baseline and 

Voigt profiles. A field emission scanning electron microscope (FEG-SEM), JEOL 71500F, was 

used to obtain the morphology of the carbon nanostructures. 
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The coatings thickness was determined using Filmetrics F3-CS optical interference system. 

Atomic force microscopy (AFM) and FEG-SEM was performed to analyze the homogeneity and 

morphology of the surface of all hybrids coatings. For AFM, an Agilent Technologies 5500 

atomic force microscope was used in tapping mode with a silicon cantilever. Root mean square 

(RMS) roughness values were obtained from a surface area of 1 μm
2
, using the Gwyddion 

software. For electron microscopy (FEG-SEM), the coated steel samples were covered with a 16 

nm evaporated gold layer to evaluate the morphology of the hybrid surface.  

Thermogravimetric analyses (TGA) of unsupported films were carried out using a TA 

Instruments STD Q600 analyzer. For this, a quantity of 7 mg was heated at a rate of 5 ºC min
-1

 

from 25 to 800 ºC, under 100 mL min
-1

 of nitrogen flow.  

Microscratch measurements were performed at the National Physical Laboratory (NPL, 

Teddington, London, UK) using purpose-built equipment constructed at NPL. A spherical-

conical diamond tip of 10 μm radius was applied to the coated substrates, with an increasing load 

from 2 mN to 100 mN on a 6 mm long track. For each sample, 3 scratches were performed to 

determine the average critical load for delamination, established using an optical microscope 

(Nikon Measuring Microscope MM-60). 

Wear tests were carried out using the microscratch equipment by applying a constant load of 

70 mN for 50 cycles on a 6 mm length track. The wear results were analyzed using an optical 

microscope (Nikon Measuring Microscope MM-60) and a confocal microscope (Olympus 

Confocal Scanning Laser Microscope LEXT OLS3100/OLS3000). Using the Gwyddion 

software, the 3D images of the wear track were used to extract for each sample 9 cross-section 

topographic profiles to obtain the average value of the tracks depth. 
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The anticorrosive efficiency of the hybrid coatings was investigated by electrochemical 

impedance spectroscopy (EIS) using a Gamry Potentiostat Reference 600. The impedance data 

were collected once a week until failure, over a frequency range from 10
-2

 Hz to 10
4
 Hz, using 80 

mL of NaCl 3.5% standard solution at 25 °C, 10 points per decade and an amplitude of 10 mV 

(rms), after checking the open circuit potential (OCP) for 5 min. The coated carbon steel was 

used as working electrode, Ag|AgCl|KClsat served as reference electrode and a platinum mesh 

was used as counter electrode. A fourth platinum electrode connected to reference thought a 0.1 

μF capacitor was used to avoid high-frequency phase shifts. To guarantee the reproducibility of 

the results, all electrochemical measurements were performed in duplicate. The EIS lifetime of 

the coating was defined as the time span until a significant drop of the corrosion resistance 

occurred. 

The experimental data were fitted with an equivalent circuit to obtain a deeper insight into the 

electrochemical properties of the electrolyte/coating/substrate system. As the capacitive element 

does not behave ideally it was represented by constant phase elements (CPE). The effective 

capacitance of the coating can be calculated by: 

                                 Eq. 1 

where   and n are CPE parameters, and R is the coating resistance [22]. 

 CPE becomes equal to a capacitance for   = 1, equal to a resistance for   = 0, and equal to an 

inductance for   = −1 [23]. After extracted the coating capacitance, the volume fraction of water 

uptake, , of the coating was calculated using the Brasher-Kingsbury relation [24]: 

     
    

  
  

 

       
               Eq. 2 
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where Ct is the coating capacitance at time t, C0 is the initial coating capacitance and w is the 

dielectric constant of water at the working temperature. As the measurements were performed at 

25 °C the value of dielectric constant of water used was taken to be 78.3 [25].    

 

RESULTS AND DISCUSSION  

Morphology and bonding structure of CNTs and GO. Excluding the presence of hydrogen, 

the quantitative XPS analyses have shown that the raw CNTs are composed of 93.2 at.% of 

carbon and 6.8 at.% of oxygen, while the GO structure contains 70.6 at.% of carbon, 28.5 at.% of 

oxygen and traces of contaminants (0.4 at.% of nitrogen, 0.1 at.% of silicon and 0.3 at.% of 

sulfur). As expected the XPS C 1s spectra of the CNTs (Figure 1a) showed a predominant 

aromatic C–C sp
2
 component, smaller contributions associated with sp

3
 carbon (C–H), 

ether/alcohol (C–O), carbonyl (C=O) and carboxyl (O–C=O) groups, as well as the characteristic 

 plasmon transitions, related to collective oscillations of valence electrons of the hexagonal 

lattice. The C-C sp
2
 component, related to aromatic bonds (284.4 eV), has a high intensity 

(65.0%) and narrow FWHM (0.9 eV), which scale with the high degree of order of the hexagonal 

carbon structure [26]. The C 1s spectrum of GO displays a strong contribution of C-O groups 

and a pronounced presence of C=O and O-C=O bonds, inserted by acidic treatment into the 

hexagonal carbon planes (Figure 1b).  

Raw CNTs are found in the form of dense bundles due to van der Waals interactions between 

the individual carbon tubes. The applied procedure using SDS surfactant and palmitic acid 

promoted a disentanglement of the dense clusters leading to a homogeneous dispersion of 

individual carbon nanotubes (Figure 1c). As can be observed in Figure 1d, the GO nanoflakes 

dispersed in an ethanol/water solution have an average size of 25±5 nm. 
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Figure 1. C 1s XPS spectra of as-received CNTs (a) and GO (b). FEG-SEM micrograph of 

CNTs dispersed with SDS surfactant and palmitic acid (c), and GO dispersed in an ethanol/water 

solution (d). 

 

Hybrid morphology. Polymethyl methacrylate (PMMA) can be obtained by a variety of 

polymerization mechanisms, from which the most common is the polymerization of the methyl 

methacrylate monomer using a thermal initiator. Since the function of BPO as a thermal initiator 

is to produce radicals that initiate the polymerization process, the main effect caused by 

increasing BPO content was an enhanced polymerization rate. This leads to a reduction of 
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gelation time and a more viscous solution, and consequently to thicker coatings. Moreover, the 

addition of GO and CNTs also contributed to a higher viscosity of the solution, thus increasing 

the thickness of the coatings (Table 1). In addition, it is important to note that a higher degree of 

polymerization may have important implications on the thermal and mechanical stability of the 

formed nanocomposite. 

 

Table 1. Properties of PMMA-siloxane-silica coatings modified with CNTs and GO: film 

thickness obtained by optical interferometry, surface roughness extracted by AFM images, 

critical load for delamination obtained by microscratch measurements, average depth of 

the wear tracks, open circuit potential (OCP) measured after one day immersed in 3.5% 

NaCl solution and coating lifetime in 3.5% NaCl solution. 

sample thickness 

(µm) 

RMS roughness 

(nm) 

critical load 

(mN) 

track depth 

(µm) 

OCP 

(mV) 

EIS lifetime 

(days) 

 BPO0.01 2.8 0.4 78 3.0 196 56 

 BPO0.01_CNT 5.7 0.4 --- 2.1 246 43 

 BPO0.01_GO 3.1 0.3 94 3.1 227 203 

 BPO0.05 3.5 0.4 84 --- 248 21 

 BPO0.05_ CNT 6.6 0.5 133 --- 582 7 

 BPO0.05_GO 5.5 0.5 148 --- 198 168 

 

All PMMA-siloxane-silica hybrid coatings on carbon steel were colorless, transparent and 

presented a very uniform and defect free surface. A representative image of the coated samples is 

shown in Figure 2a. Inspections by FEG-SEM and AFM, performed for all hybrid coatings, 

confirmed their homogeneity and the absence of micrometric agglomerates of CNTs and GO 

(Figure 2b and 2c). In addition, the AFM analysis confirmed the smoothness of the surface of the 

coatings (Figure 2c) with extremely low RMS roughness values (≤ 0.5 nm), listed in Table 1. 

Recently we reported on the structural properties of PMMA-siloxane-silica nanocomposites 

and the results showed that the hybrid nanostructure consists of a dense network of ramified 
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silica-siloxane cross-link nodes, with an average radius of 0.8 nm, covalently interconnected by 

short PMMA chains over an average distance of 4.6 nm [20]. Hence, the smooth surface is 

indicative of the small size of the building blocks of the system, showing no significantly change 

after incorporation of CNTs and GO additives.  

 

 

        

 

Figure 2. Representative image (a), FEG-SEM micrograph (b) and AFM map (c), obtained for 

the BPO0.01_CNT coating deposited on carbon steel.  

 

Thermal analysis. Thermogravimetry curves (TG) and differential thermogravimetry curves 

(DTG) for all samples are shown in Figure 3. These curves provide information on the thermal 

stability and consequently on the overall connectivity of the hybrid nanocomposites. Three 

events of thermal degradation can be identified in the DTG plots (Figure 3b and 3c): the small 

narrow peak around 220 ºC (T1) indicates the scission of inherently weak head-to-head linkages 

of the PMMA polymer, the shoulder of the main peak around 310 ºC (T2) corresponds to 

vinylidene chain-end initiation, and the main event at about 400 ºC (T3) arises from 

depolymerization of head-tail segments [27,28]. In addition, the weak signal at ~500 ºC (T4) is 

related to the dehydration of remaining silanol groups of the silica network [27]. The 

temperatures at which the rate of mass loss is a maximum (T1, T2 and T3) are listed in Table 2, 
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together with the 5% weight loss temperatures (T0), marking the thermal stability of the hybrid, 

and the residue at 800 ºC.   

The results show clearly that the addition of CNTs and GO into the BPO0.01 matrix, and, to a 

lesser extent, to the BPO0.05 matrix, improves the thermal stability of the hybrids. For BPO0.01 

the onset of thermal degradation (T0) increased by 15 ºC and 70 ºC in presence of CNTs and GO, 

respectively, and all depolymerization events were suppressed and shifted to higher 

temperatures. This result is more pronounced than the 30 °C shift of T0, observed by Jin et al 

[29] for PMMA containing 26 wt.% of CNTs. The authors attributed the retardation effect to 

interactions between the carbon nanostructure and macroradicals generated during the 

depolymerization process. A shift of the non-oxidative onset of degradation in the range of 10 - 

30 °C has been reported for GO-based fillers [30]. Pham et al. [31] found a thermal retardation 

effect of 10 ºC for 1.0 wt.% of reduced GO in PMMA matrix, which they attributed to a barrier 

effect of GO, inhibiting the emission of decomposition products. Consequently, the incorporation 

of GO-derived fillers can significantly reduce gas permeation through a polymer composite due 

to the formation of a ‘tortuous path’ along the GO platelets, hindering molecular diffusion 

through the matrix, and thus providing an improved thermal resistance of the material [30, 32].  

Besides the radical scavenging and barrier effects, the remarkable increase of the thermal 

stability of PSS hybrids containing carbon nanostructures can be explained by the flame-

retardant effect of the CNTs and GO nanostructures [33,34]. During decomposition, the 

flammable polymeric phase forms in the presence of the carbon nanostructures a carbonaceous 

char structure, which acts as diffusion barrier and thermal insulator [35]. The higher residue 

percentage observed for the BPO0.01_CNT and BPO01_GO samples hints on the role of GO 

and CNT in the char formation, which hinders the diffusion of volatile species and contributes to 
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the enhances of the thermal stability of the material. In comparison with CNTs, the two-

dimensional GO geometry might be more favorable for the improvement of the thermal 

properties of the hybrid nanocomposite.  

 

 

Figure 3. Thermogravimetry curves of all PMMA-siloxane-silica hybrids (a), and differential 

thermogravimetric curves of BPO0.01 hybrids (b) and BPO0.05 hybrids (c).  

 

Table 2. The characteristic parameters of the hybrid thermal degradation in N2 

atmosphere: temperature of 5% weight loss (T0), temperatures of the first (T1), second (T2) 

and third (T3) degradation event (see text), and the percentage of the residue at 800 °C. 

sample  T0 (ºC) T1 (ºC) T2 (ºC) T3 (ºC) residue (wt.%) 

 BPO0.01 205 210 290 385 24.0 

 BPO0.01_CNT 220 255 355 405 25.1 

 BPO0.01_GO 275 270 suppressed 395 27.1 

 BPO0.05 208 220 310 390 21.1 

 BPO0.05_ CNT 209 220 310 390 19.8 

 BPO0.05_GO 216 235 310 405 18.4  

 

Mechanical properties. For industrial applications, protective coatings should be able to 

increase the lifetime of the metal substrate in abrasive and corrosive environments, ensuring that 

film detachment, scratch or wear failure does not occur, thus preventing that the electrolytes 

access the undelaying metal surface. The microscratch technique is a fast, effective and widely 
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used method to assess the mechanical performance of thin films and the coating/substrate 

adhesion strength. A scratch resistant material presents a high coefficient of friction, hindering 

the penetration of the scratch tip into the material, while a strongly adherent coating has a high 

critical load for delamination due to the strong bonding at the coating/substrate interface. In the 

case of PSS hybrids the adhesion between coating and carbon steel is the consequence of the 

covalent interaction between the hydroxyl groups of the substrate and the silanol groups of the 

inorganic part of the hybrid. 

The scratch resistance and adherence of all coatings were tested by sliding a diamond tip under 

increasing load on a 6 mm track until film detachment (Figure 4), marked as critical load of 

delamination (Table 1). The critical values were accessed by optical examination of the scratch 

track, divided in 5 intervals: 0.0 mm (starting point), 1.5 mm, 3.0 mm, 4.5 mm and 6.0 mm (end 

point), marking a load of 100 mN (Figure 5). 

 

Figure 4. Microscratch curves obtained for unloaded and CNT and GO loaded PMMA-siloxane-

silica coatings deposited on A1020 carbon steel for (a) BPO0.01 matrix and (b) BPO0.05 matrix. 
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The results obtained indicate that BPO0.01 and BPO0.05 were the softest and less adherent 

coatings, each showing four deformation stages with increasing force: (1) elastic deformation, 

(2) plastic deformation (3) cracks and (4) delamination, marked in Figure 5. For these two 

coatings, the coefficient of friction increased from 0.2 to 0.4 during the test and the critical loads 

of delamination were 78 mN and 84 mN for the BPO0.01 and BPO0.05 matrix, respectively. The 

BPO0.01_CNT coating showed the highest reinforcement effect. Here, no delamination was 

observed up to 240 mN, the maximum load of the equipment (Figure 6a). It is remarkable that 

for the BPO0.05_CNT and BPO0.05_GO coatings a load of 100 mN was not sufficient to induce 

delamination. The critical loads of BPO0.05_CNT and BPO0.05_GO coatings were 133 mN and 

148 mN (Figure 6b and 6c), respectively, also having 0.1 to 0.2 units higher friction coefficient 

(Figure 4). The higher scratch resistance coupled with 2 – 3 fold increases in the critical loads for 

delamination are related to the contribution of intrinsic mechanical properties of CNT and GO, 

leading to a significant improvement of the coatings. 
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Figure 5. Optical micrographs after scratch test of unloaded and CNT and GO loaded PMMA-

siloxane-silica coatings deposited on A1020 carbon steel. 

 

  

Figure 6. Optical micrographs of the BPO0.01_CNT coating after scratch testing up to a load of 

240 mN (a), BPO0.05_CNT coating after scratch testing up to a load of 133 mN (b), and 

BPO0.05_GO coating after scratch testing up to a load 148 mN (c). 
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The wear resistance of the three BPO0.01 matrix coatings was determined by analysis of the 

wear tracks by optical and confocal optical microscopy, after applying 50 scratch cycles at a load 

of 70 mN (Figure 7). The positive values of the friction coefficient correspond to scratching to 

the right and the negative values correspond to scratching to the left. The BPO0.01 and 

BPO0.01_GO coatings showed a variation of their friction coefficient between 0.3 - 0.6, 

accompanied by the formation of cracks along the wear track, and a average track depth of 

3.0±0.2 µm and 3.1±0.3 µm, respectively, while the BPO0.01_CNT sample displayed a constant 

coefficient of friction of 0.6 and ended the wear test after 50 cycles with a smooth and less deep 

track of 2.1±0.2 µm. The average scratch depth observed for BPO0.01 and BPO0.01_GO sample 

indicates that the metal substrate was reached, while the depth of the BPO0.01_CNT remained 

noticeably smaller than the coating thickness of 5.7 m (Table 1), highlighting the beneficial 

effect of the CNT nanosized filler. The higher friction coefficient of the BPO0.01_CNT hybrid, 

remaining constant value over the 50 scratch circles, suggest that the homogeneously dispersed 

CNTs act as rigid obstacles for the wear tip, thus improving significantly the wear performance 

of the coating. 
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Figure 7. Friction coefficient as a function of the scratch number, optical micrograph of the wear 

track and confocal optical micrograph of the wear track of the BPO0.01 (a), BPO0.01_GO (b) 

and BPO0.01_CNT (c) of PMMA-siloxane-silica hybrid coatings. 

 

Anticorrosive properties. The corrosion resistance of the coatings was determined using 

electrochemical impedance spectroscopy in an unaerated 3.5 % NaCl standard saline solution at 

room temperature. Before each EIS data acquisition, the open circuit potential (OCP) was 
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measured over a period of 5 min. The OCP values of all coated carbon steel samples, determined 

after one day of immersion in saline environment, are shown in Table 1. All coated samples had 

extremely stable OCP values, which were shifted significantly into the passive potential region in 

comparison with the -718 mV OCP of the carbon steel substrate.  

All impedance measurements were performed once a week until the observation of a 

significant drop in the impedance modulus, associated with the appearance of localized corrosion 

in form of pitting. The corresponding time span values, referred as EIS lifetime of the coating, 

are listed in Table 1. Figure 8 shows the Nyquist and Bode plots for all hybrid coated samples 

after one day of immersion in saline environment. The Bode plot of the pure BPO0.01 matrix 

had an impedance modulus of 0.1 GΩ cm
2
, remaining almost unchanged during 56 days of the 

coating lifetime, while the BPO0.05 coatings had an even higher impedance modulus of up to 8 

GΩ cm
2
, remaining stable for 21 days. This finding might be related to the higher overall 

connectivity of the BPO0.05 matrix, presenting highly polymerized organic moieties densely 

interconnected with reticulated silica nodes, supported by TG/DTG and mechanical testing. 

Both hybrid matrices containing CNT and GO presented a higher level of corrosion resistance, 

and in the case of GO incorporation also a prolonged lifetime of up to 29 weeks. The excellent 

corrosion resistance of the BPO0.01_GO coating was confirmed by the time evolution of 

Nyquist and Bode plots, shown in Figure 9. Following the work of Kuhn at al. [12], who studied 

the role of CNTs in epoxy composite films, it can be suggested that the carbon nanostructures 

embedded in PSS matrix act as densifier of the nanocomposite structure, thus providing 

improved barrier properties against the penetration of electrolytes in the coating. Once again, the 

two-dimensionality of GO structure provides better barrier effect compared to CNTs, increasing 

the pathway of the electrolyte to reach the metal substrate. An additional protection mechanism 
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might be related to the increase of the ionic resistance of the coatings by the presence of carbon 

nanostructures [14,15]. In this case, the negatively charged GO and CNTs act as repulsive agents 

for the chloride anions, resulting in an improved barrier property of the coating.  

 

Figure 8. Nyquist and Bode plots of unloaded and CNT and GO loaded (a) BPO0.01 and (b) 

BPO0.05 matrix compared to bare carbon steel, after one day of immersion in 3.5 % NaCl 

solution. 

 

The capacitance of the coating is indicative for the diffusion behavior of the electrolyte [15]. 

Low permeability towards corrosive electrolytes results in low capacitance values. To extract the 

capacitance values, the equivalent circuit, displayed in Figure 10, was used to fit the EIS data. It 
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contains a high frequency (~10
4
 Hz) and low frequency (~0.1 Hz) time constants, with Rc and 

CPEc being the resistance and capacitance of the coating, while Rct and CPEdl is the resistance to 

charge transfer and capacitance of the double layer at the coating/steel interface, respectively 

[36]. The parameters determined by fitting the EIS measurements are shown in Table 3. 

The high value of the coating resistances (Rc) and the even higher charge transfer resistances 

(Rct) are consequences of the densely packed hybrid network, which hinders the uptake of the 

electrolyte and its diffusion to the steel substrate. As only extremely small quantities of the 

electrolyte are able to reach the metal/coating interface, the formed double-layer has a very low 

capacitance and very high charge transfer resistance, in the range of several GΩ cm
2
 for 

BPO0.05_GO samples (Table 3). The low values of the coating capacitance, Cc, calculated using 

Eq. 1, show that the dielectric hybrid layer acts as a capacitor, blocking the entrance of charged 

corrosive species into the coating. This behavior is also expressed by the nc values, all close to 

unity, approaching the behavior of ideal capacitor (n ~ 1), and by the wide band in phase angle 

graph with values below -80° extending over a frequency range of 4 orders of magnitude. 

 

 
Figure 9. Nyquist and Bode plots for BPO0.01_GO sample deposited on carbon steel with 

immersion time dependence in 3.5 % NaCl standard saline solution. 
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Figure 10. The electrical equivalent circuit used to fit all EIS experimental data. 

 

 

Table 3. Electrochemical parameters derived by fitting of the EIS data, using the electrical 

circuit of Figure 10, for all hybrid coatings after one day immersion in saline NaCl 3.5% 

solution. The values in brackets correspond to the error (%) of each parameter. 

 

The coating capacitances values as a function of immersion time in saline environment are 

presented in Figure 11. It is interesting to note that for both hybrid matrices the addition of GO 

Sample BPO0.01 BPO0.01_ 

CNT 

BPO00.1_ 

GO 

BPO0.05 BPO0.05_ 

CNT 

BPO00.5_ 

GO 


2
 1.4×10

-3
 3.0×10

-4
 9.0×10

-4
 3.0×10

-4
 2.3×10

-4
 1.4×10

-4


Rc (Mcm
2
) 28 (3.8) 13 (8.8) 29 (5.0)   

Qc (n
-1

cm
-2

s
n
)      

nc 0.95 (0.1) 0.96 (0.1) 0.95 (0.2)   

Cc (nFcm
-2

) 3.4 1.3 2.5 2.3 0.78 1.1

Rct (G cm
2
) 0.19 (1.3) 0.16 (1.1) 0.22 (1.7)   

Qdl(n
-1

cm
-2

s
n
)      

ndl 0.74 (1.3) 0.65 (0.9) 0.68 (1.5)   



 27 

and in particular of CNTs decreases the coating capacitance as a result of the negatively charged 

carbon nanostructures, thus contributing to a improved barrier property of the coatings. 

Moreover, Figure 11a and 11b show that the coating capacitance quickly increases during initial 

period of immersion, which is attributed to the water uptake into the coatings. With prolonged 

immersion times a clear saturation behavior can be observed. The water uptake of the coatings, 

calculated from Eq. 2, is plotted as a function of immersion time in Figure 11c.  Compared to the 

pure BPO0.01 matrix the incorporation of both GO and CNT reduced the water uptake of the 

coating. For BPO0.05_GO sample the uptake remains below 6 vol.% during the entire coating 

lifetime of 24 weeks. From these results it can be concluded that the addition of CNTs and GO in 

both matrices has a significant effect on the corrosion resistance of the coatings, expressed by the 

low values of coating capacitance and water uptake. 

 

 

Figure 11. Immersion time dependence of the coating capacitances of the BPO0.01 matrix (a) 

and BPO0.05 matrix (b) containing CNTs and GO, extracted from fitting the EIS data. (c) Water 

uptake time dependence of all coatings.  
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Overall, all coatings showed a 4 - 6 orders of magnitude higher impedance modulus than 

uncoated carbon steel, highlighting the efficiency of the PMMA-siloxane-silica system as a 

protective coating. Compared to CNT or GO reinforced polymer coatings, reported so far, the 

PPS coatings studied in this work provide by far the most effective corrosion protection barrier 

of metallic alloys, with a significantly higher impedance modulus and lifetime in 3.5% NaCl 

medium. This extraordinary electrochemical performance, for films with only several 

micrometers in thickness, approaching the characteristics of thick paints, is related to their dense 

hybrid nanostructure, acting as efficient anticorrosive barrier [20].  

Nevertheless, high performance protective coatings face the challenge of being able to resist 

simultaneously severe situations such as high temperatures, abrasive conditions and corrosive 

environments. Therefore the key result here is that the high corrosion resistance of the PMMA-

siloxane-silica coatings can be combined with a significant improvement of the thermal and 

mechanical stability of the hybrid structure by the addition of carbon nanofillers, extending the 

applicability of these coatings to a wider range of environments. Comparing the effect of GO and 

CNTs is clear that due to its geometry GO contributes more for the improvement of thermal 

resistance, while CNTs account as rigid obstacles for a stronger mechanical reinforcement, both 

nanofillers contribute to an improvement of the corrosion resistance of the coatings. 

 
 

CONCLUSIONS 

Noticeable improvement of thermal and mechanical properties has been achieved by the 

uniform dispersion of carbon nanotubes and graphene oxide in PMMA-siloxane-silica 

nanocomposites. The hybrid sols containing CNTs and GO, deposited on A1020 carbon steel, 

yielded homogeneous and defect-free coatings, with very smooth surface (RRMS < 0.5 nm) and 
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thicknesses in the range of 3 – 7 m. Mechanical and thermal reinforcement of the coatings was 

achieved for both carbon nanofillers, producing significantly higher scratch resistant and 

adherent coating to the carbon steel substrate, particularly in the case of CNT addition, and a 

substantial increment of the thermal stability of 70 °C, found for GO coatings. Electrochemical 

impedance spectroscopy results showed that CNT and GO reinforced coatings act also as very 

efficient corrosion barrier, showing impedance modulus up to 8
 
GΩ cm

2
. Here, GO containing 

coatings proved to be very effective in improving the impedance modulus and the long-term 

stability, up to 203 days in saline solution. From a technological point of view, the possibility of 

achieving a significant mechanical and thermal reinforcement effect of the PMMA-siloxane-

silica matrix by incorporation of CNT and GO, is particularly promising for extending the 

applicability of these thin, environmentally compliant, high efficiency anticorrosive coatings to 

abrasive environments.  

 

AUTHOR INFORMATION 

Corresponding Author 

*
E-mail: peter@iq.unesp.br 

Instituto de Química, Departamento de Físico-Química 

Rua Prof. Francisco Degni, 55 

CEP 14800-060, Araraquara/SP, Brazil 

+55 16 33019887 

 

Author Contributions 



 30 

S.V.H. is the main author contributing in all steps. S.H.P. and C.V.S. worked on results 

discussion. K.M.K. planned and discussed the mechanical experiments in this work. P.H. 

(supervisor of S.V.H.) suggested the experiments, discussed the results and wrote together with 

S.V.H. the manuscript. All the authors read and commented on the manuscript. 

 

ACKNOWLEDGMENT 

We would like to thank John Nunn from the National Physical Laboratory, England, for access 

to the microscratch equipment. This work was supported by CNPq, CAPES and FAPESP. The 

FAPESP scholarships processes were 2014/12182-9 and 2013/04314-0. 

 

ABBREVIATIONS 

MMA, methyl methacrylate; PMMA, poly(methyl methacrylate);  TEOS, tetraethoxysilane; 

MPTS, 3-(trimethoxysilyl)propyl methacrylate; OCP, open circuit potential; CNT, carbon 

nanotube; GO, graphene oxide; PSS, PMMA-Siloxane-Silica; EIS, electrochemical impedance 

spectroscopy; FEG-SEM, field emission scanning electron microscope; AFM, atomic force 

microscopy; XPS, X-ray photoelectron spectroscopy. 

 

REFERENCES 

1 Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56-58. 

2 Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; 

Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 

2004, 306, 666-669. 



 31 

3 Voiry, D.; Vallés, C.; Roubeau, O.; Pénicaud, A. Dissolution and Alkylation of Industrially 

Produced Multi-Walled Carbon Nanotubes. Carbon 2011, 49, 170-175. 

4 Alves da Cunha, J. R.; Fantini, C.; Andrade, N. F.; Alcantara, P.; Saraiva, G. D.; Filho, A. G. 

S.; Terrones, M.; Santos, M. C. Dos. Enhanced Solubilization of Carbon Nanotubes in Aqueous 

Suspensions of Anionic−Nonionic Surfactant Mixtures. J. Phys. Chem. C 2013, 117, 25138–

25145. 

5 Chen, L.; Chai, S.; Liu, K.; Ning, N.; Gao, J.; Liu, Q.; Chen, F.; Fu, Q. Enhanced 

Epoxy/Silica Composites Mechanical Properties by Introducing Grapheme Oxide to the 

Interface. ACS Appl. Mater. Interfaces 2012, 4, 4398-4404. 

6 Xiong, J.; Zheng, Z.; Qin, X.; Li, M.; Li, H.; Wang, X. The Thermal and Mechanical 

Properties of a Polyurethane/Multi-Walled Carbon Nanotube Composite. Carbon 2006, 44, 

2701-2707. 

7 Mallakpour, S.; Zadehnazari. A. Preparation of Dopamine-Functionalized Multi-Wall 

Carbon Nanotube/Poly(Amide-Imide) Composites and their Thermal and Mechanical Properties. 

New Carbon Mater. 2016, 31, 18–30. 

8 Wang, J.; Shi, Z.; Ge, Y.; Wang, Y.; Fan, J.; Yin, J. Solvent Exfoliated Graphene for 

Reinforcement of PMMA Composites Prepared by In Situ Polymerization. Mater. Chem. Phys. 

2012, 136, 43–50. 

9 Mohamadi, S.; Sharifi-Sanjani, N.; Mahdavi, H. Functionalization of Graphene Sheets via 

Chemically Grafting of PMMA Chains Through In-Situ Polymerization. J. Macromol. Sci., Part 

A: Pure Appl.Chem. 2011, 48, 577-582. 

http://www.sciencedirect.com/science/article/pii/S0254058412005755
http://www.sciencedirect.com/science/article/pii/S0254058412005755
http://www.sciencedirect.com/science/article/pii/S0254058412005755
http://www.sciencedirect.com/science/article/pii/S0254058412005755
http://www.sciencedirect.com/science/article/pii/S0254058412005755
http://www.sciencedirect.com/science/article/pii/S0254058412005755


 32 

10 Gojny, F. H.; Wichmann, M. H. G.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon Nanotube-

Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube 

Content. Compos. Sci. Technol. 2004, 64, 2363–2371.  

11 Jeon, H.; Park, J.; Shon, M. Corrosion Protection by Epoxy Coating Containing Multi-

Walled Carbon Nanotubes. J. Ind. Eng. Chem. 2013, 19, 849-853. 

12  Khun, N. W.; Troconis, B. C. R.; Frankel, G. S. Effects of Carbon Nanotube Content on 

Adhesion Strength and Wear and Corrosion Resistance of Epoxy Composite Coatings on 

AA2024-T3. Prog. Org. Coat. 2014, 77, 72–80. 

13 Chang, K-C; Hsu, M-H; Lu, H-I; Lai, M-C; Liu, P-J; Hsu, C-H; Ji, W-F; Chuang, T-L; Wei, 

Y.; Yeh, J-M; Liu, W-R; Room-Temperature Cured Hydrophobic Epoxy/Graphene Composites 

as Corrosion Inhibitor for Cold-Rolled Steel. Carbon 2014 6, 144–53. 

14 Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Moghadam, M. H. M. 

Enhancement of Barrier and Corrosion Protection Performance of an Epoxy Coating through 

Wet Transfer of Amino Functionalized Graphene Oxide. Corros. Sci. 2016, 103, 283–304. 

 15 Ramezanzadeh, B.; Ghasemi, E.; Mahdavian, M.; Changizi, E.; Mohamadzadeh 

Moghadam, M. H. Covalently-Grafted Graphene Oxide Nanosheets to Improve Barrier and 

Corrosion Protection Properties of Polyurethane Coatings. Carbon 2015 93, 555 – 573. 

16 Case Study, Forth Rail Bridge United Kingdom, The Sherwin-Williams Company 2013. 

17 Clarke, D. R.; Phillpot, S. R. Thermal Barrier Coating Materials. Mater. Today 2005, 22-29. 

http://www.sciencedirect.com/science/article/pii/S0008622313008257
http://www.sciencedirect.com/science/article/pii/S0008622313008257
http://www.sciencedirect.com/science/article/pii/S0008622313008257
http://www.sciencedirect.com/science/article/pii/S0008622313008257
http://www.sciencedirect.com/science/article/pii/S0008622313008257


 33 

18 Hammer, P.; Santos, F. C. Dos; Cerrutti, B. M.; Pulcinelli, S. H.; Santilli, C. V. Highly 

Corrosion Resistant Siloxane-Polymethyl Methacrylate Hybrid Coatings. J. Sol-Gel Sci. Technol. 

2012, 63, 266-274.  

19 Sanchez, C.; Belleville, P. ; Popall, M.; Nicole, L. Applications of Advanced Hybrid 

Organic-Inorganic Nanomaterials: from Laboratory to Market. Chem. Soc. Rev. 2011, 40, 696-

753. 

20 Santos, F. C. Dos; Harb, S. V.; Menu, M.; Turq, V.; Pulcinelli, S. H.; Santilli, C. V.; 

Hammer, P. On the Structure of High Performance Anticorrosive PMMA-siloxane-silica Hybrid 

Coatings. RSC Adv. 2015, 5, 106754-106763.  

21 Hammer, P.; Santos, F. C. Dos; Cerrutti, B. M.; Pulcinelli, S. H.; Santilli, C. V. Carbon 

Nanotube-Reinforced Siloxane-PMMA Hybrid Coatings with High Corrosion Resistance. Prog. 

Org. Coat. 2013, 76, 601–608. 

22 Hirschorn, B.; Orazem, M. E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. 

Determination of Effective Capacitance and Film Thickness from Constant-Phase-Element 

Parameters. Electrochim. Acta 2010, 55 6218–6227. 

23 Córdoba, L. C.; Montemor, M. F.; Coradin, T. Silane/TiO2 Coating to Control the 

Corrosion Rate of Magnesium Alloys in Simulated Body Fluid. Corros. Sci. 2016, 104, 152–161. 

24 Brasher, D. M.; Kingsbury, A. H. Electrical Measurements in the Study of Immersed Paint 

Coatings on Metal. I. Comparison Between Capacitance and Gravimetric Methods of Estimating 

Water-Uptake. J. Appl. Chem. Biotechnol. 1954, 4,, 62-72. 



 34 

25 Malmberg, C. G.; Maryott, A. A.; Dielectric Constant of Water from 0° to 100° C. J. of Res. 

of the Nat. Stand. 1956, 56, 1-8. 

26 Briggs D., Seah M.P., editors. Practical Surface Analysis: Auger and X-Ray Photoelectron 

Spectroscopy. 2nd ed. Chichester: Wiley; 1990. 674 p. 

27 Wang, Y. T.; Chang, T. C.; Hong, Y. S.; Chen, H. B. Effect of the Interfacial Structure on 

the Thermal Stability of Poly(Methyl Methacrylate)-Silica Hybrids. Thermochim. Acta 2003, 

397, 219-226. 

28 Kashiwagi, T.; Inaba, A.; Brown, J. E.; Hatada, K.; Kitayama, T.; Masuda, E. Effects of 

Weak Linkages on the Thermal and Oxidative Degradation of Poly(Methyl Methacrylates). 

Macromol 1986, 19, 2160-2168. 

29 Jin, Z.; Pramoda, K. P.; Xu, G.; Goh, S. H. Dynamic Mechanical Behavior of Melt-

Processed Multi-Walled Carbon Nanotube/Poly(Methyl Methacrylate) Composites. Chem. Phys. 

Lett. 2001, 337, 43–47. 

30 Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer 

Nanocomposites. Polym. 2011, 52, 5-25.  

31 Pham, V. H.; Dang, T. T.; Hur, S. H.; Kim, E. J.; Chung, J. S. Highly Conductive 

Poly(Methyl Methacrylate) (PMMA)-Reduced Graphene Oxide Composite Prepared by Self-

Assembly of PMMA Latex and Graphene Oxide through Electrostatic Interaction. ACS Appl. 

Mater. Interfaces 2012, 4, 2630-2636. 

32 Paul, D. R.; Robeson, L. M. Polymer Nanotechnology: Nanocomposites. Polym. 2008, 49, 

3187-3204.  

https://scifinder.cas.org/scifinder/references/answers/A2E11FE7X86F35012X25394C92339F7DBF30:A2E1B535X86F35012X28D61A942481334536/4.html?nav=eNpb85aBtYSBMbGEQcXRyNXQydTYNMLCzM3Y1MDQKMLIwsXM0NHSxMjEwtDY2MTU2AyoNKm4iEEwK7EsUS8nMS9dzzOvJDU9tUjo0YIl3xvbLZgYGD0ZWMsSc0pTK4oYBBDq_Epzk1KL2tZMleWe8qCbiYGhooCBgYEJaGBGCYO0Y2iIh39QvKdfmKtfCJDh5x_vHuQfGuDp5w5UkV9cyFDHwAxUz1jCwFRUhuoCp_z8nNTEvLMKRQ1X5_x6B3RBFMwFBQwAac5DaQ&key=caplus_2008:798653&title=UG9seW1lciBuYW5vdGVjaG5vbG9neTogTmFub2NvbXBvc2l0ZXM&launchSrc=reflist&pageNum=1&sortKey=ACCESSION_NUMBER&sortOrder=DESCENDING


 35 

33 Zhang, T.; Du, Z.; Zou, W.; Li, H.; Zhang, C. The Flame Retardancy of Blob-Like Multi-

Walled Carbon Nanotubes/Silica Nanospheres Hybrids in Poly (Methyl Methacrylate). Polym. 

Degrad. Stabil. 2012, 97, 1716-1723. 

34 Bao, C.; Guo, Y.; Yuan, B.; Hu, Y.; Song, L. Functionalized Graphene Oxide for Fire 

Safety Applications of Polymers: a Combination of Condensed Phase Flame Retardant 

Strategies. J. Mater. Chem. 2012, 22, 23057-23063. 

   35 Carvalho, H. W. P.; Suzana, A. F.; Santilli, C. V.; Pulcinelli, S. H. Synthesis, Structure, and 

Thermal Stability of Poly(methyl methacrylate)-co-Poly(3-tri(methoxysilyil)propyl 

methacrylate)/ Montmorillonite Nanocomposites. Polymer Energneering and Science – 2013, 

2013, 1253-1261. 

36 Mansfel, F. Electrochemical  Impedance  Spectroscopy  (EIS) as  a  New  Tool  for  

Investigating  Methods of  Corrosion  Protection. Electrochim. Acta 1990, 35, 1533-1544. 

 

Table of Contents Graphic 

 


