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Purpose of review: 

Here, we provide a summary of the current knowledge on the impact of early life nutrition on 

cardiovascular diseases that have emerged from studies in humans and experimental animal models. 

The involvement of epigenetic mechanisms in the Developmental Origins of Health and Disease 

(DOHaD) will be discussed in relation to the implications for the heart and the cardiovascular system. 

Recent findings: 

Environmental cues, such as parental diet and a suboptimal in utero environment can shape growth and 

development, causing long-lasting cardiometabolic perturbations. Increasing evidence suggest that 

these effects are mediated at the epigenomic level, and can be passed onto future generations. In the last 

decade, epigenetic mechanisms (DNA methylation, histone modifications) and RNA-based 

mechanisms (microRNAs [miRNAs], Piwi-interacting RNA [piRNAs] and transfer RNA [tRNA] 

fragments) have therefore emerged as potential candidates for mediating inheritance of cardiometabolic 

diseases.  

Summary: 

The burden of obesity and associated cardiometabolic diseases is believed to arise through interaction 

between an individual’s genetics and the environment. Moreover, the risk of developing poor 

cardiometabolic health in adulthood is defined by early life exposure to pathological cues and can be 

inherited by future generations, initiating a vicious cycle of transmission of disease. Elucidating the 

molecular triggers of such process will help tackle and prevent the uncontrolled rise in obesity and 

cardiometabolic disease. 
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KEY POINTS 

 

- The Developmental Origins of Health and Disease (DOHaD) hypothesis suggests that the 

environment experienced in early in life can influence the long-term cardiovascular health of 

an individual; 

- Studies in humans and animal models suggest that a suboptimal environment during early life 

increases the risk of cardiovascular disease in the offspring; 

- The epigenome is sensitive to dietary challenges applied during critical windows of 

development (fetal and early post-natal); 

- Recently, small non-coding RNAs have been proposed as mediators of intergenerational 

programming of metabolic diseases through the paternal line; 

- The contribution of epigenetic mechanisms to the programming of cardiovascular diseases by 

early life disturbances is relatively unexplored. 

 

INTRODUCTION 

The Developmental Origins of Health and Disease (DOHaD) hypothesis proposes that exposure to 

detrimental stimuli during pre-natal and early post-natal life can shape the long-term health of an 

individual. The developing fetus is extremely sensitive to the external environment, and adapts its 

physiology in order to increase its survival post-natally. This idea was first conceptualised as the Thrifty 

Phenotype Hypothesis in the early 90’s by David Barker and colleagues who suggested that the fetal 

environment is a major determinant of long-term cardiometabolic health [1]. Although initial studies 

focussed on the detrimental effects of fetal under-nutrition, subsequent studies in humans and animal 

models have consistently reported that either deficiency (undernutrition) or excess (overnutrition) 

availability of nutrients, oxygen and hormones influence tissue development, and lead to an increased 

risk of “non-communicable diseases” in the adult progeny including obesity, type-2 diabetes (T2D) and 

cardiovascular diseases (CVD) [2]. In this context, nutritional imbalances applied during “critical 

windows” of development (fetal and post-natal life) can induce permanent changes to the structure and 

function of organs and systems, predisposing the fetus to an increased risk of diseases later in life.  

 

CARDIOVASCULAR DISEASE RISK: THE IMPACT OF FETAL LIFE 

The balance of nutrient supply during gestation and lactation is critical to ensure correct fetal 

development and growth. Failure of the fetus to meet the nutritional demand may result in in utero 

growth restriction (IUGR) and high risk of delivering a low birth weight (LBW) baby, both of which 

have been associated with increased risk of cardiovascular diseases [3]. Birth weight is a proxy of fetal 

health and predicts the risk of T2D in a U-shaped manner, with babies at both ends of the curve being 

more at risk [4]. LBW is an independent risk factor for cardiovascular diseases (CVD) in adulthood, 



inversely correlates with systolic blood pressure (SBP) [5, 6], and associates with increase mortality 

from coronary heart disease [7] and higher risk of hypertension [8]. IUGR in human pregnancies has 

been strongly linked to poor cardiovascular health already in utero, such as altered parameters of 

systolic and diastolic function [9, 10], and throughout infancy and adulthood [11]. Consistently, studies 

conducted on various experimental models of fetal growth restriction (nutritional, hypoxia, 

glucocorticoid exposure, diabetes) have identified the cardiovascular system as a major target of 

developmental programming, and have shown that control of cardiomyocyte number and size may play 

an important role in this process [12]. IUGR babies have a higher risk of being born Small for 

Gestational Age (SGA), and often undergo a rapid (catch-up) growth early after birth in an attempt to 

compensate for the slow uterine development. This causes long-lasting changes to the structure and 

metabolism of an organism. 

 

EARLY POST-NATAL LIFE: NUTRITION AND GROWTH 

As well as during fetal life, suboptimal nutrient availability early after birth can impair offspring growth 

and also program a higher risk of metabolic diseases. In humans, overfeeding and excess post-natal 

weight gain is causally linked to offspring insulin resistance, obesity and CVD [13-15]. Similarly, a 

restricted period of overfeeding during lactation results in an increased incidence of obesity in adult 

baboons [16, 17] and only partially in rodents [18]. More recently, it has been shown in humans that 

accelerated neonatal growth was associated with the expression of obesity genes [19], confirming once 

more the strong causal relationship between altered growth trajectory and risk of obesity.  

Common ways of promoting post-natal growth in animals are manipulation of litter size or cross-

fostering. Litter size reduction induces post-natal overfeeding in rodents, via reducing pup competition 

for maternal milk and consequently increasing pup energy intake. The cardiovascular system is 

particularly sensitive to nutritional imbalances during lactation [18]. Studies on overfed pups in rodents 

have shown that overnutrition during lactation results in left ventricular cardiac hypertrophy and 

increased susceptibility to ischemia-reperfusion injury [20], impaired insulin signalling [21]* and leptin 

signalling [22], and leads to dysregulation of gene expression of cardiac structural proteins [23]. 

Cross-fostering is a husbandry practice where new born pups are assigned to a surrogate control mum 

in order to promote catch-up growth and development in IUGR pups. Increased cardiac DNA damage 

and oxidative stress was reported in hearts of IUGR rats born to under-nourished mothers which 

underwent a rapid catch-up growth post-natally [24, 25], as well as increased risk of T2D [26] and 

reduced longevity [27] . 

 

THE MATERNAL ENVIRONMENT AND CARDIOVASCULAR DISEASE IN ADULTHOOD 

The causal link between suboptimal exposures during fetal life and poor cardiovascular outcomes in 

later life has been extensively highlighted in human epidemiological studies. Studies on the Dutch 

Famine Birth Cohort revealed that individuals who were in utero during the famine in the Netherlands, 



when compared with those not exposed had a lower birth weight and had a higher prevalence of 

coronary heart disease [28, 29]. Poor cardiovascular outcomes are also common in babies born to type-

1 diabetic mothers, and this is thought to be a consequence of the teratogenic effects of maternal 

hyperglycaemia. Among those, congenital heart defects [30], increased cardiac ventricular output [31], 

reduced cardiac function, cardiac hypertrophy [32] and increased heart rate [33] are observed in babies 

born to diabetic mothers. Similarly, maternal hypoxia increases the risk of delivering a growth-restricted 

baby [34], which will develop high blood pressure and chronic hypertension in the long-term, exposing 

the offspring to a high risk of heart failure [35]. Similar observations have been reported in offspring 

born to obese mothers. A positive association between maternal Body Mass Index (BMI) and increased 

offspring risk of hospital admission and premature death for cardiovascular events has been revealed 

by the Aberdeen Cohort study [36]; in addition, findings from the Helsinki Birth Cohort Study indicated 

that higher maternal BMI was associated with an increased risk of CVD and T2D diabetes among the 

offspring [37]. Excessive gestational weight gain leads to pregnancy complications, such as gestational 

diabetes and pre-eclampsia, which expose the offspring to increased risk of cardiometabolic diseases 

[38]. Fetuses from obese mothers were shown to be insulin resistant in utero [39], and to develop fetal 

myocardial dysfunction [40, 41*]. Most importantly, such cardiometabolic perturbations were 

significantly ameliorated in human offspring born to obese mothers after gastrointestinal bypass 

compared to age matched siblings born before the surgery [42]. Maternal bariatric surgery resulted in a 

significant improvement in the metabolic and cardiovascular profile of offspring born after the surgery, 

reflected by ameliorated insulin sensitivity and reduced systolic blood pressure [43]**. 

In parallel, evidence from animal models of dietary manipulation including undernutrition (caloric 

restriction, low protein diet) and overnutrition (high-fat diet, obesogenic diet) have reinforced the 

causative link between suboptimal maternal environment and CVD risk in adulthood, and have been 

important in the characterization of the complex mechanisms underlying the developmental 

programming of CVD (table 1). 

 

 

 

Maternal 

diet 

Species 
Timing of 

exposure 
Cardiovascular outcome 

Sex 

studied 
Reference 

High-fat mouse 

in utero 

and 

lactation 

Hypertension M and F [44] 

 mouse 

in utero 

and 

lactation 

Hyperglycaemia, insulin 

resistance, obesity, and 

hypertension 

F [45] 

 rat 

in utero 

and 

lactation 

Increased lipid peroxidation 

and evidence of mitochondrial 

dysfunction 

not 

available 
[46] 



 rat 

in utero 

and 

lactation 

Vascular dysfunction 
not 

available 
[47] 

 rat 

in utero 

and 

lactation 

High systolic and diastolic 

blood pressure, abnormal 

vascular function, reduced 

endothelium-dependent 

relaxation 

M and F 

[48], [49] , 

[50], [51, 

52]  

 rat in utero 

Cardiac vulnerability to 

ischemic injury in adult male 

offspring 

M and F [53]* 

 rat 

in utero 

and 

lactation 

Increased blood pressure, 

insulin resistance, 

dyslipidaemia, obesity and 

mesenteric artery endothelial 

dysfunction in adult offspring 

M and F [54] 

 sheep in utero 
Fibrosis and collagen 

deposition 
M and F [55] 

 sheep in utero 

Impaired cardiac insulin 

signalling and impaired left-

ventricular-developed pressure 

in response to high workload 

stress. 

M and F [56] 

 sheep in utero 
Myofibril hypertrophy and 

fascicular disarray 
M and F [57] 

 
Japanese 

macaque 

in utero 

and 

lactation 

Vascular dysfunction 

manifested as depressed 

endothelium-dependent 

vasodilatation and thickened 

intima wall 

not 

available 
[58] 

High 

fat/high 

sugar 

(obesogenic) 

mouse 

in utero 

and 

lactation 

Hypertension, cardiac 

hypertrophy and cardiac  

dysfunction ex vivo 

M 
[59*, 60] 

[61, 62] 

Caloric 

restriction 
mouse 

in utero 

and 

lactation 

Increase in systolic blood 

pressure, perivascular fibrosis 

of the coronary artery, 

cardiomegaly and 

cardiomyocyte hypertrophy 

M [63, 64] 

 rat 

in utero 

and 

lactation 

Endothelial dysfunction M [65] 

 rat in utero Elevated blood pressure M and F [66] 

 rat 

in utero 

and 

lactation 

Persistent hypertension and 

endothelial dysfunction across 

F1-F3 offspring 

M [67] 

 rat in utero 

Reduced heart weight and 

cardiomyocytes number at 

birth 

F [68] 

 rat in utero 

 Pathological cardiac 

remodeling, diastolic 

dysfunction, altered Ca2+ 

M and F [69*, 70] 



handling properties is isolated 

cardiomyocytes 

 rat in utero 
Hypertension and reduced 

number of glomeruli 
M [71] 

 sheep 

Gestation 

and/or 

lactation 

Hypertension and impaired 

glomerulogenesis 
M [72] 

 sheep in utero 

Left and right ventricular 

cardiac hypertrophy (fetus and 

adult offspring) 

F [73, 74] 

Low protein mouse 

in utero 

and 

lactation 

Elevated offspring systolic 

blood pressure 
M and F [75] 

 mouse 

in utero 

and 

lactation 

Cardiac hypertrophy M [76] 

 mouse 

in utero 

and 

lactation 

Hypertension and vascular 

dysfunction 
M [77] 

 rat 

in utero 

and 

lactation 

Reduced cardiac beta-

adrenergic responsiveness 
M [78] 

 rat 

in utero 

and 

lactation 

Increase in the cardiovascular 

sympathetic tone 
M [79] 

 rat in utero 
Higher systolic blood pressure 

at 4 weeks of age 
M and F [80] 

 rat 

in utero 

and 

lactation 

Increased oxidative stress 
not 

available 
[81] 

 rat in utero 

Increased systolic blood 

pressure, impaired recovery of 

left ventricular developed 

pressure after ischaemia 

(Langendorff) 

M and F [82] 

 rat in utero 
Hypertension and renal 

dysfunction 
M and F [83] 

 goat 
Late 

gestation 

Reduced heart and body 

weight at birth 
M [84] 

Low protein 

and post-

natal catch-

up growth 

Rat in utero  
Cardiac DNA damage and 

oxidative stress 
M [24, 25] 

 

Table 1: Experimental evidence of the effects of maternal under and overnutrition on the offspring 

cardiovascular system.  

 

DIET AND CARDIOVASCULAR EPIGENOMICS 

Current diet is thought to be a potent epigenetic modifier. However, there is also now evidence to 

suggest that early life exposure to suboptimal nutrition can permanently affect transcriptional regulation 

through epigenetic alterations, and this is thought to contribute to the long-lasting consequences on 



offspring health [85]. Epigenetic regulation of the genome in mammals is mediated by DNA 

methylation, histone protein modification and epigenetic related RNA-based mechanisms (miRNAs, 

piRNAs, tRNA fragments and long non-coding RNAs). During embryogenesis the epigenetic 

information is believed to be globally erased, and subsequently re-established after embryo 

implantation. The timing and nature of the epigenetic modification will define different cell phenotypes. 

All the aforementioned epigenetic marks are sensitive and modifiable upon dietary challenges in utero 

[86]. Whether the effects are tissue specific or global will depend on the timing of the challenge. If it 

occurs early (when only a few cells exist) prior to tissue differentiation, then these changes will be 

present in all tissues within the body (meta-stable epialleles - see DNA methylation). The impact of the 

in utero environment (F0) on the transmission of certain metabolic traits to the F1 generation is an 

example of “inter-generational” inheritance. In contrast, “trans-generational” transmission requires the 

phenotype manifestation to occur in absence of the original stimuli which caused it, nutrition in this 

case (F2 for inheritance via paternal line; F3 for inheritance via maternal line) [87]. 

Although epigenetic regulation of gene expression has been extensively implicated in the 

pathophysiology of CVD, evidence for the existence of a causative link between nutrition, epigenetics 

and developmental programming of CVD is still limited. More evidence exists for the influence of early 

life nutrition on epigenetic regulation of gene transcription in adipose tissue, brain, liver and pancreas 

[85, 86]. 

 

DNA methylation  

DNA methylation is by far the best characterized epigenetic modification. Changes in DNA methylation 

patterns have been identified in human patients with heart failure [88] and dilated cardiomyopathy [89]. 

However in these studies it is impossible to dissect out whether these changes occurred as a consequence 

of the disease state or are causative in its development. Recent analysis of the DNA methylome of 

newborn, healthy adult and adult failing cardiomyocytes revealed a prominent role for DNA 

methylation in regulating various aspect of cardiac biology, from heart development to disease [90].  

Human studies have contributed significantly to the evidence for a link between exposure to peri-

conceptional cues and permanent changes in DNA methylation. Studies from the Dutch Famine Birth 

Cohort Study [91] showed low methylation levels at various loci involved in growth and metabolism in 

individuals exposed to famine peri-conceptionally, and not during gestation [92, 93]. In mammals, the 

degree of DNA methylation of certain genomic regions called metastable epialleles (MEs) is determined 

at the early stages of embryonic development, and is susceptible to peri-conceptional disturbances 

which will ultimately be present in all tissues potentially affecting their functionality [94]. The maternal 

nutritional status of Gambian women, which are known to undergo seasonal fluctuations in nutrient 

intake, significantly influenced the DNA methylation status of specific MEs in offspring hair follicles 

and lymphocytes post-natally [95**, 96], demonstrating that maternal nutrition can permanently shape 

the fetal epigenome. As mentioned above, maternal bariatric surgery in obese women improves 



offspring cardiometabolic health [43]. Two independent studies have reported that babies born to the 

same obese mother before and after bariatric surgery display alterations in the methylome of genes 

involved respectively in glucose regulation, inflammation, and vascular disease [43], or in diabetes, 

obesity and insulin signalling [97]*. Peroxisome proliferator-activated receptor alpha (PPARα) 

promoter methylation was reduced in adult and neonatal rat hearts exposed to maternal protein 

restriction, and this was associated with increased mRNA levels of PPARα only in adult hearts [98]. 

Oxidative stress is known to interfere with DNA methylation. High levels of reactive oxygen species 

(ROS) and oxidative stress are features of pregnancy complications (such as pre-eclampsia), and can 

induce permanent changes in transcription [99]. Epigenetic repression by DNA methylation of protein 

kinase C ɛ by ROS was reported in rat fetal hearts and increased ischemia susceptibility in adult male 

offspring, which was restored by treatment with a ROS scavenger [100]. Similarly, exposure to maternal 

caloric restriction caused impaired endothelium-dependent pulmonary artery vasodilation with 

alterations in the DNA methylation profile of lung tissue in 12-week old male offspring; both artery 

dysfunction and DNA methylation profile were restored after maternal anti-oxidant treatment [101].  

 

Histone modifications 

Acetylation of histone tails by histone acetyl transferases causes de-compaction of the nucleosomes and 

promotes transcription. The role of histone deacetylase enzymes (HDAC) in cardiovascular biology has 

been well characterized [102], as well as their potential as therapeutic targets of heart disease [103].  

In vivo HDAC inhibitor treatment attenuated cardiac hypertrophy [104] and fibrosis [105] in hearts 

exposed to hypertrophic stimuli. HDAC1 and HDAC2 null mice developed dilated cardiomyopathy 

[106], whereas cardiac-specific deletion of HDAC3 resulted in severe cardiac hypertrophy [107]. Also, 

mice lacking either HDAC5 or HDAC9 spontaneously developed cardiac hypertrophy [108]. It is well 

established that dietary challenges in utero and post-natally modify the chromatin histones code in a 

wide variety of tissues [86]; however, not much evidence has been provided so far regarding the impact 

of in utero suboptimal nutrition on the epigenetic control in the heart through changes in histone 

modification.  

 

Small non-coding RNAs (snRNAs) 

Whether poor maternal nutrition can alter and shape offspring metabolic profile and organ function 

through alterations in snRNAs such as miRNAs, piRNAs and tRNA fragments is a very intense area of 

research. A few labs have identified miRNAs as potential inter-generational mediators of the fetal 

response to maternal nutrition in offspring organs of obese or undernourished mothers such as liver 

[109-111], adipose tissue [112] and skeletal muscle [113]. In the heart, alterations in miRNA profile 

was shown in the heart of fetal baboons born to high fat/high fructose-diet fed mothers [114]*. Among 

the dysregulated miRNAs, fifteen were previously associated with CVD in human and animal models 

and were shown to regulate cellular death, growth, and proliferation. MiR-133a was up-regulated in the 



heart of offspring exposed to a maternal obesogenic diet during gestation and lactation [60]. Hearts 

from those mice presented pathological cardiac hypertrophy [60] and early onset of cardiac dysfunction 

[59] when compared to age-matched controls. In humans, an obesogenic intrauterine environment 

perturbs the amniotic miRNA profile, with possible consequences for placental function and fetal 

growth [115]. Also, a recent study implicates miRNAs as modulators of pre- and post-natal growth of 

babies born to mothers with gestational diabetes mellitus [116]*. These studies provide evidence that 

maternal overnutrition can alter the miRNA profile in different offspring tissues, and can potentially 

influence their long-term health.  

Important insights into the role of snRNAs in the programming of metabolic diseases have recently 

emerged from studies addressing the impact of paternal nutrition. A suboptimal dietary regime in the 

father, modifies the snRNA profile in mature sperm of humans and mice, making snRNAs excellent 

candidates for trans-generational epigenetic inheritance of metabolic traits. Mechanisms of inheritance 

through the paternal line can be studied in absence of the in utero confounding effects. Only recently, 

an exciting series of papers have proposed that in mice alterations in the sperm miRNA [117-119]*, 

tRNA fragments [120, 121] and piRNA [119] profile can induce metabolic and behavioural 

perturbations in the progeny. Sperm of mice fed a western diet showed an altered piRNAs profile 

[119]**. Also, bariatric surgery in obese individuals modified the abundance of miRNAs, piRNAs and 

tRNA fragments in the sperm [122]**, suggesting that diet and metabolic state can interfere with 

progeny metabolic health through paternally inherited RNA-based mechanisms, and that these 

mechanisms are likely to be conserved in humans. MiRNA injection in naïve zygotes was able to initiate 

in the offspring metabolic alterations similar to a high fat diet-induced phenotype [119], whereas 

transfer of tRNA fragments isolated from mature sperm into 2-cell embryos induced severe glucose 

intolerance in 7-week old mice [120]**. Whether maternal diet could modify snRNA expression in the 

oocyte is unknown. MiRNA function seems to be globally suppressed in the murine female germline 

[123]; however, components of the piRNA-pathway have been shown to be active in the bovine, 

macaque, and human ovaries, as well as in the early embryo [124]. The oocyte contribution to the 

epigenetic transmission of metabolic diseases is still unexplored and perhaps difficult to assess directly 

in presence of other modalities of inheritance through the female germline (e.g. mitochondria). Oocytes 

of obese mice display oxidative stress-induced defects in mitochondrial function, as well as altered 

methylation levels [125], which may contribute to the programming of altered metabolic phenotypes 

post-natally [126]. Recent work suggests that in mice the insulin resistant phenotype is mainly acquired 

through the maternal line [127]*, but the underlying epigenetic mechanisms are not known.  

 

CONCLUSIONS 

It is an exciting scientific moment for the developmental programming field. Extensive evidence has 

been provided in the last decades of a direct causative link between a suboptimal intrauterine 

environment and development of cardiovascular diseases in humans and animal models. Here, we have 



summarized the evidence regarding how diet and metabolic disturbances in early life can affect the 

offspring epigenome rendering the progeny more prone to cardiovascular diseases (figure 1). Despite 

much effort that has been exerted so far, we are only starting to understand the epigenetic contribution 

towards this process. Improving our knowledge of the molecular pathways and the modality of 

programming of cardiometabolic disease by suboptimal early life is demanding, in order to design 

rational intervention strategies for the mother and the baby.  
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Figure 1. Influences of suboptimal pre-natal and post-natal environment on offspring 

cardiovascular health 

 


