
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Polymorphism, Subtyping, and Type Inference in MLsub

Stephen Dolan Alan Mycroft
University of Cambridge, UK

stephen.dolan@cl.cam.ac.uk alan.mycroft@cl.cam.ac.uk

Abstract
We present a type system combining subtyping and ML-style para-
metric polymorphism. Unlike previous work, our system supports
type inference and has compact principal types. We demonstrate
this system in the minimal language MLsub, which types a strict
superset of core ML programs.

This is made possible by keeping a strict separation between
the types used to describe inputs and those used to describe out-
puts, and extending the classical unification algorithm to handle
subtyping constraints between these input and output types. Prin-
cipal types are kept compact by type simplification, which exploits
deep connections between subtyping and the algebra of regular lan-
guages. An implementation is available online.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Type
structure

Keywords Subtyping, Polymorphism, Type Inference, Algebra

1. Introduction
The Hindley-Milner type system of ML and its descendants is pop-
ular and practical, sporting decidable type inference and principal
types. However, extending the system to handle subtyping while
preserving these properties has been problematic.

Subtyping is useful to encode extensible records, polymorphic
variants, and object-oriented programs, but also allows us to expose
more polymorphism even in core ML programs that do not use such
features. For instance, given the definition twice = λf.λx.f(fx),
ML gives twice (λx.true) the principal type bool→ bool, allowing
only arguments of type bool, while MLsub gives it type> → bool,
allowing arguments of any type (see Section 2.4 for details).

Supporting subtyping requires thinking carefully about data
flow. Consider the select function, which takes three arguments:
a predicate p, a value v and a default d, and returns the value if the
predicate holds of it, and the default otherwise:

select p v d = if (p v) then v else d

In ML and related languages, select has type scheme

∀α. (α→ bool)→ α→ α→ α

[Copyright notice will appear here once ’preprint’ option is removed.]

This scheme is quite strange, in that it demands that whatever we
pass as the default d be acceptable to the predicate p. But this
constraint does not arise from the behaviour of the program: at no
point does our function pass d to p.

Let’s examine the actual data flow of this function:

v

argument to p result

d

Only by ignoring the orientation of the edges above could we
conclude that d flows to the argument of p. Indeed, this is exactly
what ML does: by turning data flow into equality constraints be-
tween types, information about the direction of data flow is ignored.
Since equality is symmetric, data flow is treated as undirected.

To support subtyping is to care about the direction of data
flow. With subtyping, a source of data must provide at least the
guarantees that the destination requires, but is free to provide more.

The data flow graph of a program gives rise to constraints be-
tween types, which can be represented as a constraint graph. Once
we add subtyping, we must treat the constraint graph as directed
rather than undirected. This directed constraint graph complicates
matters: instead of using unification to find connected components
in the constraint graph, we need to deal with reachability and cycles
and strong connectivity.

One way to sidestep these difficulties is to widen the definition
of “type” to include an explicit constraint graph. This gives the
notion of a constrained type used in previous work [7, 22], where
the principal type of an expression is given as a type with an
attached explicit graph of constraints. For instance, such a system
might represent the type of select as follows:

(α→ bool)→ α→ β → γ | α ≤ γ, β ≤ γ

Unfortunately, this just moves the burden of dealing with constraint
graphs onto the programmer. Constrained types are often large, and
are difficult to compare.

In his PhD thesis, Pottier1 noticed that constraint graphs can
be simplified due to the structure of data flow. By keeping a strict
separation between inputs and outputs, we can always represent
the constraint graph as a bipartite graph: data flows from inputs
to outputs. With edges only from inputs to outputs, such graphs
have no cycles (or even paths of more than one edge), simplifying
analysis.

We take this insight a step further, and show that by keeping the
same religious distinction between input and output we can avoid
using explicit constraint graphs altogether, giving a much simpler
type system. In MLsub, select has this type scheme:

∀α, β. (α→ bool)→ α→ β → (α t β)

1 The mono-polarity invariant [18, ch. 12]

1 2016/11/7

This represents the data flow graph above: the predicate p must
accept the value v (of typeα), but the default dmay be of a different
type β. The output, being of type αtβ, can only be used in contexts
that accept either an α or a β.

Our contributions are as follows:

The MLsub type system We extend the ML type system with
subtyping (Section 2). This amounts to a trivial change to the typing
rules (the addition of a subtyping rule), but we take some care in
constructing the lattice of types. The distinction between inputs and
outputs uses an unusual (but equivalent) formulation of the typing
rules (Section 3), which simplifies type inference.

Type inference We show how MLsub preserves the decidability
and principality of ML type inference (Section 4). As part of this,
we introduce biunification, a variant of the unification algorithm
which handles subtype rather than equality constraints.

Type simplification MLsub types have many equivalent repre-
sentations (e.g. bool t bool t ⊥ is equivalent to just bool), and
a naive implementation of inference may generate a complicated
one. Like previous work, we use automata to simplify types (Sec-
tion 5). Unlike previous work, we do not specify a particular sim-
plification algorithm. Instead, we prove the general theorem that
two automata represent equivalent types iff they accept equal lan-
guages (Section 5.3). This allows any optimisation algorithm from
the literature on finite automata to be used to simplify types.

1.1 Focus of this Paper
This paper focuses on the core problem of inferring types for pure
programs in a minimal ML-style calculus (booleans, records, func-
tions and let). A full-scale programming language requires many
more features, some of which are described in the first author’s the-
sis [6], along with proofs of this paper’s results.

Two important topics not discussed here are deciding subsump-
tion and mutable reference types. Subsumption, written ≤∀ and
discussed in Section 3.2, describes whether one polymorphic type
scheme is more general than another. While unnecessary for type
inference, it is necessary to decide subsumption in order to check
modules against signatures, or to compare an inferred type scheme
with a user-provided annotation. Unlike much previous work, the
algebraic construction of types in MLsub makes subsumption de-
cidable [6, Ch. 8].

Mutable references are usually typed with invariant parameters
(neither co- nor contravariant), which would appear to pose a prob-
lem for MLsub since inference relies on each type parameter being
either co- or contravariant. However, the issue is easily solved: the
reference type can be given two type parameters, a contravariant pa-
rameter for what goes in and a covariant parameter for what comes
out (see e.g. Pottier [18, p.165]). In fact, this encoding gives more
precise types than invariance [6, Sec. 9.1].

A prototype implementation of MLsub is available on the first
author’s website:

http://www.cl.cam.ac.uk/~sd601/mlsub

This prototype includes features not discussed here for space
reasons, such as type definitions, labelled and optional function
arguments, type annotations, and others. When tested against
OCaml’s standard List module (with some syntactic changes to
satisfy our rather primitive parser), the types inferred by MLsub
were no larger than the types inferred by OCaml, despite being
more general. For instance, List.map is assigned a type syntac-
tically identical to that assigned by OCaml, but in MLsub may be
passed a list containing records with different sets of fields, and a
function that accesses only the common ones.

1.2 An Algebraic Approach
A vital aspect of this work is to adopt a more algebraic approach to
the construction of types and the subtyping relation. We distinguish
two aspects of types: the model of types (the concrete construction
of types themselves, usually some flavour of syntax tree), and their
algebra or theory of types (the equations and relations true about
them).

Traditionally, we start by picking a model of types, by giving
them a syntax, and only later do we explore the algebra, by proving
facts about this syntax. Unfortunately, with subtyping this leads to
a rather ill-behaved algebra of types. We give an example here, but
leave detailed discussion of related work to Section 6.

A standard definition of types with function types, top and
bottom might start with the following syntax for ground types:

τ ::= ⊥ | τ → τ | >

We give these a subtyping order making functions contravariant in
their domain and covariant in their range, and making ⊥ and >
the least and greatest types. With this ordering, these types form
a lattice, so for any two types τ1, τ2 we have their least upper
bound τ1 t τ2 and greatest lower bound τ1 u τ2. We introduce
type variables α, β, . . . by quantifying over these ground types.

Despite the succinctness of this definition, these types have a
remarkably complicated and unwieldy algebra. Pottier gave the
following example illustrating the incompleteness of a particular
subtyping algorithm [18, p. 86]. We reuse his example, arguing that
it demonstrates a flaw in the underlying definition rather than the
incompleteness of one algorithm:

(⊥ → >)→ ⊥ ≤ (α→ ⊥) t α (E)

With the above definition of subtyping, (E) holds. We can show
this by case analysis on α: if α = >, then it holds trivially.
Otherwise, α ≤ ⊥ → > (the largest function type), and so
(⊥ → >)→ ⊥ ≤ α→ ⊥ by contravariance.

However, this example is rather fragile. Extending the type
system with a more general function type τ1

◦→ τ2 (a supertype
of τ1 → τ2, say “function that may have side effects”) gives a
counterexample α = (> ◦→ ⊥)

◦→ ⊥. This counterexample arises
even though the extension did not affect the subtyping relationship
between existing types, and only added new ones. Introducing type
variables by quantification over ground types permits reasoning by
case analysis on types, which is invalidated by language extensions.

In order to make an extensible type system, we focus on build-
ing a well-behaved algebra of types, rather than choosing for min-
imality of syntax. Two changes are particularly important: first, we
add type variables directly to the definition of types, rather than
first defining ground types and then quantifying over them. This
disallows case analysis over types, and ensures that the awkward
example (E) does not hold in MLsub.

Secondly, and more subtly, we construct types as a distributive
lattice. Frequently, the lattice of types is constructed such that
different type constructors have no common subtypes other than
⊥. That is, given a function type τf and a record type τr , then
τf u τr = ⊥. While this seems intuitive, it also implies some odd
relations, such as:

τf u τr ≤ bool
This is counterintuitive, and makes type inference more difficult:
the compiler must accept as a boolean any value used as both
a function and a record. The vacuous reasoning that justifies it
(reasoning that the left-hand side is empty, and thus a subtype of
anything) is not extensible, since adding values which are usable
both as functions and records falsifies it.

To preclude such examples, we demand that all subtyping rela-
tionships between the meet of two types and another type follow

2 2016/11/7

(VAR-λ)
Γ ` x : τ

Γ(x) = τ

(VAR-∀)
Γ ` x̂ : τ [~τ/~α]

Γ(x̂) = ∀~α.τ

(ABS)
Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

(APP)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

(LET)
Γ ` e1 : τ1 Γ, x : ∀~α.τ1 ` e2 : τ2

Γ ` let x̂ = e1 in e2 : τ2
~α not free in Γ

(TRUE)
Γ ` true : bool

(FALSE)
Γ ` false : bool

(IF)
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

(CONS)
Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` {`1 = e1, . . . , `n = en} : {`1 : τ1, . . . , `n : τn}

(PROJ)
Γ ` e : {` : τ}

Γ ` e.` : τ

(SUB)
Γ ` e : τ

Γ ` e : τ ′
τ ≤ τ ′

Figure 1: MLsub typing rules

from some property of the first two. Formally,

If τ1 u τ2 ≤ τ3, then τ ′1 u τ ′2 = τ3 for some τ ′1 ≤ τ3, τ ′2 ≤ τ3
This condition is equivalent to distributivity. Its effect on the type
system is to require the existence of more types, allowing us to
distinguish τf u τr from ⊥.

The construction of types in Section 2.1 follows these princi-
ples. We do build an explicit model of types, but we do so by start-
ing from the algebra: types are defined by quotienting syntax by the
equations of the algebra.

2. The MLsub Language
Presentations of the Hindley-Milner calculus often limit themselves
to function types and a base type, since all of the difficulties en-
countered in type inference arise in this simpler setting. With sub-
typing, we need a slightly richer type language before we hit the
difficult cases. So, we include a base type (booleans), functions (so
that we must handle co- and contravariance in the same type con-
structor), and records (so that we must handle subtyping between
type constructors of different arity).

In all variants of ML, the typing of let-bound and λ-bound
variables is quite different, allowing polymorphism for let-bound
variables and allowing the type of λ-bound variables to be inferred
from their uses. This separation is important in MLsub, so we
include it in the syntax, distinguishing λ-bound variables x from
let-bound variables x̂, giving the following:

e ::= x | λx.e | e1 e2 |
{`1 = e1, . . . , `n = en} | e.` |
true | false | if e1 then e2 else e3 |
x̂ | let x̂ = e1 in e2

In the record construction syntax { . . . }, the labels `i are drawn
from some collection L and assumed distinct. We take the order of
labels to be significant in expressions (so that a simple, determinis-
tic, left-to-right evaluation order can be defined), but insignificant
in types.

Type environments Γ likewise distinguish let and λ-bound vari-
ables, by mapping λ-bound variables to monomorphic types τ , and
let-bound variables to type schemes ∀~α.τ :

Γ ::= ε | Γ, x : τ | Γ, x̂ : ∀~α.τ
The typing rules for MLsub (Fig. 1) are entirely standard: the
Hindley-Milner calculus, extended with records, booleans and the
standard subtyping rule. The only novelty here lies in the construc-
tion of the monotypes τ .

2.1 Defining Types
As well as standard boolean, function and record types, MLsub has
least-upper-bound and greatest-lower-bound type operators (writ-
ten t and u), and least and greatest types (written⊥ and>), which
are needed to assign principal types.

Due to subtyping, recursive types are also necessary for princi-
pality. With the > and ⊥ types, there are expressions typeable in
MLsub not typeable in ML, for instance:

Y (λf.λx.f)

where Y is the call-by-value Y-combinator. This expression gives
a function which ignores its argument and returns itself. In MLsub,
this expression is typeable with any of the types > → >, > →
(> → >), > → (> → (> → >)), . . . , and the recursive type
µα.> → α is needed to express its principal type.

So, we define MLsub types using the following syntax:

τ ::= bool | τ1 → τ2 | {`1 : τ1, . . . , `n : τn} |
α | > | ⊥ | τ t τ | τ u τ

where α ranges over type variables. Rather than using a syntactic
list, record types are defined as a partial function from record
labels to types, making the order of label-type pairs in record types
irrelevant. Occasionally, we explicitly denote this: {`1 : τ1, `2 :
τ2} is the same as {f} where dom f = {`1, `2}, f(`1) = τ1,
f(`2) = τ2. We assume the set L of record labels and the set A of
type variables to be finite, but arbitrary.

We allow the syntax trees of types to be infinite, except that we
require that the syntax tree of any type contain no infinite path of
t, u without an intervening type constructor (bool,→, or { . . . }).
These syntax trees are quotiented by an equivalent relation making
t, u, ⊥, > a distributive lattice. Thus, we allow the infinite type:

bool→ (bool→ (bool→ . . .))

but not:
bool t (bool t (bool t . . .))

Rather than directly operating on these infinite syntax trees, the
concrete algorithms of Section 4 operate on polar types (defined in
Section 3.3), a restricted subset of types which can be represented
finitely and which suffice for type inference.

More precisely, we define for each i ∈ N the i-types to be
terms of the above syntax, in which type constructors (bool, →
and { . . . }) are nested to a depth of at most i. We define an
equivalence relation≡i on i-types as the least relation closed under
the equations of distributive lattices (Fig. 2, or see e.g. Davey and
Priestley [5]) and the equations of Fig. 3. The distributive lattice Ti
is then given by the equivalence classes of ≡i.

The distributive lattice T of MLsub types is the inverse limit:

T = lim←−
i

Ti

The equations of Fig. 3 imply the usual subtyping rules (co- and
contravariance for functions, and width and depth subtyping for
records). They go a little further by directly specifying that e.g. the
upper bound of two record types has the intersection of their fields.
We recover a partial order (up to≡) from this structure by defining

3 2016/11/7

τ t τ ≡ τ τ u τ ≡ τ
τ1 t τ2 ≡ τ2 t τ1 τ1 u τ2 ≡ τ2 u τ1

τ1t(τ2tτ3) ≡ (τ1tτ2)tτ3 τ1u(τ2uτ3) ≡ (τ1uτ2)uτ3
τ1 t (τ1 u τ2) ≡ τ1 τ1 u (τ1 t τ2) ≡ τ1

⊥ t τ ≡ τ ⊥ u τ ≡ ⊥
> t τ ≡ > > u τ ≡ τ

τ1 t (τ2 u τ3) ≡ (τ1 t τ2) u (τ1 t τ3)

τ1 u (τ2 t τ3) ≡ (τ1 u τ2) t (τ1 u τ3)

Figure 2: Equations of distributive lattices

(τ1 → τ2) t (τ ′1 → τ ′2) ≡ (τ1 u τ ′1)→ (τ2 t τ ′2)

(τ1 → τ2) u (τ ′1 → τ ′2) ≡ (τ1 t τ ′1)→ (τ2 u τ ′2)

{f} t {g} ≡ {h}
where domh = dom f ∩ dom g
and h(`) = f(`) t g(`)

{f} u {g} ≡ {h}
where domh = dom f ∪ dom g

and h(`) =

f(`) u g(`) if ` ∈ dom f ∩ dom g

f(`) if ` ∈ dom f − dom g

g(`) if ` ∈ dom g − dom f

Figure 3: Equations for function and record type constructors

τ1 ≤ τ2 as τ1tτ2 ≡ τ2, or equivalently τ1 ≡ τ1uτ2. In this order,
t gives least-upper-bounds, u gives greatest-lower-bounds, and ⊥
and > are the least and greatest elements.

Since L and A are assumed finite, T is a profinite distributive
lattice (an inverse limit of finite lattices), which is an algebraic
class with many pleasant properties. For an algebraic derivation of
this construction, see the first author’s thesis [6, Ch. 3], which also
contains the technical details of the construction of T .

2.2 Recursive Types
The treatment of recursive types in MLsub deserves special com-
ment. Traditionally, a recursive type µα.τ is treated as the unique
fixed point of a map φ(τ ′) = τ [τ ′/α]. This justifies the α-
renaming of the variable bound by µ, as well as giving us the
following reasoning principle:

τ [τ0/α] = τ0 =⇒ µα.τ = τ0

This is not strong enough in the presence of subtyping, since the
knowledge that τ [τ0/α] = τ0 is hard to come by. Instead, we need
a reasoning principle that uses subtyping information:

τ [τ0/α] ≤ τ0 =⇒ µα.τ ≤ τ0
This requires that µα.τ be a least pre-fixed point of the map φ, a
condition not implied by being the unique fixed point. (For exam-
ple, the function f(x) = 2x on R has a unique fixed point at 0, but
no least pre-fixed point).

The algebraic structure of T allows us to construct least pre-
fixed points. We say that α is covariant in τ if all occurrences of
α in the syntax of τ are to the left of an even number of→. More
concisely, α is covariant in τ when the map φ(τ ′) = τ [τ ′/α] is
monotone.

Lemma 1. If α is covariant in τ , then φ(τ ′) = τ [τ ′/α] has a
least pre-fixed point, written µ+α.τ , and a greatest post-fixed point
written µ−α.τ .

The µ syntax binds loosely: µ+α. τ1 → τ2 is µ+α.(τ1 → τ2),
not (µ+α.τ1)→ τ2. This lemma provides both least pre-fixed and
greatest post-fixed points, but they need not agree in general: α is
covariant in α, but:

µ+α. α = ⊥
µ−α. α = >

To remedy this, we introduce another condition. We say that α is
guarded in τ if all occurrences of α occur under at least one type
constructor (that is, are guarded by a function or record type). Note
that the operators t and u are not, by themselves, sufficient for
guardedness: α is guarded in ⊥ → α and ⊥ → (α t bool) but not
in α t bool.

Lemma 2. If α is covariant and guarded in τ , then

µ+α.τ = µ−α.τ

We write this type as µα.τ . Note that α is vacuously covariant
and guarded in any τ in which it does not occur, but this causes no
issues: if α does not appear in τ , then µα.τ = τ .

At first glance, it seems that the covariance condition reduces
expressiveness since it excludes, for example, µα.α → α. How-
ever, a result of Bekić [2] allows us to find a unique type τ such
that τ ≡ τ → τ . The trick is to define two types τ1, τ2 in a mutu-
ally recursive fashion:

τ1 = τ2 → τ1 τ2 = τ1 → τ2

Here, τ1 depends on itself in a covariant and guarded way, as does
τ2. We can thus introduce well-formed µ-types:

τ1 = µα. τ2 → α τ2 = µβ. τ1 → β

Substitution gives:

τ1 = µα. (µβ. α→ β)→ α τ2 = µβ. (µα. β → α)→ β

These types are α-equivalent, so we conclude that τ1 ≡ τ2, giving
us a type τ ≡ τ → τ .

This technique works in general, allowing us to express arbi-
trary recursive types by encoding them with covariant ones2—any
map φ(τ1, τ2) (contravariant in τ1 and covariant in τ2) has a fix-
point given by:

µα. φ(µβ. φ(α, β), α)

2.3 Soundness
We equip MLsub with a small-step operational semantics e −→ e′

(elided for space), which evaluates terms left-to-right using call-by-
value. We carry out a standard soundness proof by proving progress
and preservation [23], but a wrinkle arises at the point where a stan-
dard soundness proof attempts inversion on the subtyping relation.

Our subtyping relation is not defined by cases, and inversion by
case analysis is not a meaningful operation. Indeed, given merely
that τ1 ≤ τ2 → τ3, it is not the case that τ1 is a function type: we
could have τ1 = ⊥ or τ1 = (α → β) u α. However, a weaker
form of inversion does hold in T , when we know the head type
constructor on both sides of ≤:

2 This works in MLsub because positive recursive types (e.g. µα. (α →
⊥) → ⊥) are the unique solutions of their defining equations (e.g. τ =
(τ → ⊥) → ⊥). Positive recursive types can also be encoded in say,
System F, but lack uniqueness: τ = (τ → ⊥) → ⊥ has distinct least
(inductive) and greatest (coinductive) solutions, which prevents the use of
Bekić’s theorem to find τ where τ = τ → τ . If we try to carry through the
above construction in System F, we end up defining τ1 inductively and τ2
coinductively (or vice versa), and cannot then conclude that τ1 = τ2.

4 2016/11/7

Lemma 3 (Inversion). If τ1 → τ2 ≤ τ ′1 → τ ′2, then τ ′1 ≤ τ1 and
τ2 ≤ τ ′2.
If {f} ≤ {g}, then f(`) ≤ g(`) for ` ∈ dom g.

Happily, this weak inversion principle suffices to carry out the
standard proof.

Theorem 4 (Progress). If ` e : τ then either e is a value, or
e −→ e′ for some e′.

Theorem 5 (Preservation). If ` e : τ and e −→ e′, then ` e′ : τ .

2.4 MLsub Subsumes ML
Since the typing rules for MLsub are just those of ML with an extra
(SUB) rule, any expression typeable in ML is trivially typeable in
MLsub with the same type. Furthermore, since recursive types can
be expressed in MLsub (Section 2.2), MLsub also subsumes MLrec
(ML extended with recursive types). We have the (strict) inclusions:

ML ⊂ MLrec ⊂ MLsub

However, some ML expressions can be given a more general type
in MLsub. Consider the function twice, defined as:

λf.λx.f(fx)

This is typeable in ML with type scheme ∀α. (α→ α)→ α→ α.
The same type scheme works in MLsub, but the following principal
type is more general:

∀α, β. ((α t β)→ β)→ (α→ β)

This type scheme states that any result of f (of type β) must be
usable as an input of f (since β ≤ α t β), and that twice f must
be passed something (of type α) usable as an input of f (since
α ≤ α t β), but these types need not be identical.

For instance, in ML, twice (λx.true) has type bool → bool
since the input type of λx.true is unified with its output type. In
MLsub, the same expression has type> → bool and may be passed
anything, since the above type scheme for twice can be instantiated
by α 7→ >, β 7→ bool, giving

(> → bool)→ >→ bool

Note that the operator t is instrumental in defining the above
principal typing scheme for twice. In fact, Hoang and Mitchell
showed that a type system with subtyping using only ML types
(i.e. types lacking t and u) cannot express the principal type for
twice without explicit constraints [11].

Other expressions are not typeable at all in ML, but are in
MLsub. For instance, the self-application function λx. xx is not
typeable in ML while in MLsub it can be given the following
(principal) type scheme:

∀α, β. ((α→ β) u α)→ β

Applying this function to λx.true gives a term of type bool.

3. Reformulated Typing Rules
In this section, we reformulate the typing rules to more clearly
separate inputs and outputs, which simplifies type inference.

The strength of ML is that expressions can be written once and
re-used at different types using the let construct. For instance, here
the identity function is bound to g and used twice:

let g = λx.x in (. . . g . . . g . . .)

The function g has type scheme ∀α. α → α, and then g can be
used at distinct types τ1 → τ1 and τ2 → τ2.

The tricky part of the ML type system is when the type of a let-
bound expression cannot be fully generalised because it depends

on λ-bound variables, as in the following example.

λf. let g = λx.if f x then x else x in (. . . g . . . g . . .)

If Γ(f) = α → bool, the type of g is α → α, which cannot be
generalised because of the dependency on f . The two uses of g
must then both be at the same type.

Adding subtyping complicates this further. Suppose Γ(f) =
τ0 → bool and τ1 and τ2 are both subtypes of τ0. In order
to maintain the let-expansion property that let x = e1 in e2 is
typeable if e2[e1/x] is (again assuming x occurs in e2), we must
allow the above example with g used at types τ1 → τ1 and
τ2 → τ2.

Giving g a monomorphic type does not suffice. We need a type
like “∀α where α ≤ τ0. α → α”, but we promised to avoid types
with constraints. Instead, we reformulate the typing rules to make
explicit such partially generalised types.

3.1 Typing Schemes
Following Trifonov and Smith [22] and Pottier [18], our reformu-
lated typing rules use the so-called lambda-lifted style. Instead of
type schemes σ, we use typing schemes [∆]τ , where ∆ is as be-
fore a finite map from λ-bound variables to types, and τ is a type.
Typing schemes have no free type variables: all of their type vari-
ables are implicitly generalised, and so we omit the ∀. Every typing
scheme explicitly carries around its dependencies on λ-bound pro-
gram variables, rather than relying on a coincidence of type vari-
ables (which happens to work for ML, but is trickier with subtyp-
ing).

Thus, in the previous example, g (being defined in terms of the
λ-bound variable f) gets the following typing scheme:

[f : α→ β]α→ α

For the reformulated rules, we assume the expression being
typed has undergone enough α-renaming that bound variables are
distinct, avoiding issues with shadowing.

We split the type environment Γ into a monomorphic part ∆
and a polymorphic part Π, where ∆ maps λ-bound variables to
monomorphic types and Π maps let-bound variables to typing
schemes:

∆ ::= ε | ∆, x : τ

Π ::= ε | Π, x̂ : [∆]τ

Writing the ML typing rules in terms of typing schemes leads
to the rules in Figure 4, with judgements of the form Π e : [∆]τ .
We write ∆1u∆2 to denote that ∆ such that dom ∆ = dom ∆1∪
dom ∆2, and ∆(x) = ∆1(x)u∆2(x) when both are defined, and
equal to whichever is defined in other cases.

Mostly, the translation consists of bringing ∆ to the other side
of the turnstile, except that the side-condition of the new (SUB)
rule uses the subsumption relation ≤∀, combining subtyping and
instantiation of type variables. In particular, note that if the sub-
typing relation were trivial (i.e. all ≤ replaced with =), then the
relation ≤∀ reduces to Hindley-Milner instantiation.

Unlike previous work in which explicit constraints complicated
the presentation, the reformulated typing rules can be related di-
rectly to the original, ML-style typing rules:

Theorem 6. ` e : τ iff e : []τ

The proof is by proving a stronger theorem, which works in
nonempty typing contexts. The proof is straightforward induction,
although the statement of the theorem is somewhat messy due to
the need to convert between Γ and Π/∆-style environments.

5 2016/11/7

[∆]τ ≤∀ [∆′]τ ′ iff dom(∆) ⊆ dom(∆′)

and ∆′(x) ≤ ρ(∆(x)) for all x ∈ dom(∆)

and ρ(τ) ≤ τ ′, for some substitution ρ

(VAR-Π)
Π x̂ : [∆]τ

Π(x̂) = [∆]τ

(VAR-∆)
Π x : [x : τ]τ

(ABS)
Π e : [∆, x : τ]τ ′

Π λx. e : [∆]τ → τ ′

(APP)
Π e1 : [∆]τ → τ ′ Π e2 : [∆]τ

Π e1 e2 : [∆]τ ′

(LET)
Π e1 : [∆1]τ1 Π, x̂ : [∆1]τ1 e2 : [∆2]τ2

Π let x̂ = e1 in e2 : [∆1 u∆2]τ2

(TRUE)
Π true : []bool

(FALSE)
Π false : []bool

(IF)
Π e1 : [∆]bool Π e2 : [∆]τ Π e3 : [∆]τ

Π if e1 then e2 else e3 : [∆]τ

(CONS)
Π e1 : [∆]τ1 . . . Π en : [∆]τn

Π {`1 =e1, . . . , `n=en} : [∆]{`1 :τ1, . . . , `n :τn}

(PROJ)
Π e : [∆]{` : τ}

Π e.` : [∆]τ

(SUB)
Π e : [∆]τ

Π e : [∆′]τ ′
[∆]τ ≤∀ [∆′]τ ′

Figure 4: Reformulated typing rules

3.2 Type Variables in MLsub
The reformulated (SUB) rule uses the relation≤∀, where [∆]τ ≤∀
[∆′]τ ′ iff there is some substitution ρ making ρ(τ) a subtype of
τ ′, and ρ(∆(x)) a supertype of ∆′(x) (for x ∈ dom ∆). This
relation thus combines the two forms of polymorphism in MLsub:
subtyping and the instantiation of type variables.

We write inst([∆]τ) for the instances of [∆]τ , that is, the set
of [∆′]τ ′ such that [∆]τ ≤∀ [∆′]τ ′. The instances of a typing
scheme describe the ways it can be used, using any combination of
subtyping and instantiation.

This subsumption relation is simpler than those of previous
work. Pottier’s relation ≤∀ requires that, for every ρ′, there ex-
ists some ρ making ρ(τ) a subtype of ρ′(τ ′) (and conversely for
∆,∆′). This more complex condition seems more general, but it
is a consequence of the definition of T (in particular, the treatment
of type variables as indeterminates rather than quantification over
ground types) that in the current setting they coincide.

The presence of subtyping causes type variables to behave dif-
ferently in MLsub as compared to ML. We say two typing schemes
[∆1]τ1 and [∆2]τ2 are equivalent when each subsumes the other.
In ML two typing schemes are equivalent iff they are syntactically
equal up to renamings of type variables. Equivalence in MLsub is
more subtle, since it is possible in MLsub to have two equivalent
typing schemes with different numbers of type variables.

An example is the function choose , which takes two (curried)
arguments and randomly returns one or the other. In MLsub, it can
be given either of the following two typing schemes:

[]α→ α→ α

[]β → γ → (β t γ)

The first corresponds to the usual ML type scheme ∀α.α → α →
α, while the second reflects the behaviour of subtyping: the func-
tion takes two arguments, possibly of different types, and returns
something at the upper bound of those types. Superficially, the sec-
ond appears more general, and indeed

[]β → γ → (β t γ) ≤∀ []α→ α→ α

since we can take β = γ = α. Less obviously, we also have that

[]α→ α→ α ≤∀ []β → γ → (β t γ)

To show this, we need to instantiate α so that α→ α→ α becomes
a subtype of β → γ → (β t γ), and taking α = β t γ suffices.

The typing scheme []α → α → α describes a function type,
accepting two inputs and producing one output. In ML, since all
are labelled α, each of the three values involved must be of the
same type. On the contrary, the subtyping in MLsub means that
the two inputs need not be of the same type: for any given choice
of α, subtyping allows the two inputs to be given at any two
subtypes of α. Because MLsub tracks data flow (as described in
the introduction), it only requires a constraint between inputs and
outputs: the negative uses of α (the two inputs) must both be
subtypes of the positive uses of α (the output). More succinctly,
in MLsub, type variables label data flow, a fact exploited in the
automaton construction of Section 6.4.

3.3 Polar Types
Although our syntax includes all combinations of the lattice opera-
tors, the structure of programs does not allow the lattice operations
t and u to appear arbitrarily. If a program chooses randomly to
produce either an output of type τ1 or one of type τ2, the actual
output type is τ1 t τ2. Similarly, if a program uses an input in a
context where a τ1 is required and again in a context where a τ2
is, then the actual input type is τ1 u τ2. Generally, t only arises
when describing outputs, while u only arises when describing in-
puts. In a similar vein, the least type ⊥ appears only on outputs (of
non-terminating programs), while the greatest type > appears only
on inputs (an unused input). Thus, we carve out two subsets of T :
positive types τ+ (which describe outputs) and negative types τ−

(which describe inputs), defined by the following syntax (in which
α is required to be covariant and guarded in µα.τ+ and µα.τ−):

τ+ ::= bool | τ−1 → τ+2 | {`1 : τ+1 , . . . , `n : τ+n } |
α | τ+1 t τ

+
2 | ⊥ | µα.τ

+

τ− ::= bool | τ+1 → τ−2 | {`1 : τ−1 , . . . , `n : τ−n } |
α | τ−1 u τ

−
2 | > | µα.τ

−

A polar typing scheme is a typing scheme [∆−]τ+ where
∆−(x) is a negative type for x ∈ dom ∆− and τ+ is a positive
type, while Π is said to be polar if Π(x̂) is polar for all x̂ ∈ dom Π.

Polar typing schemes are a very restricted subset of the possible
typing schemes. However, the principality result of the next section
shows that this subset is large enough to perform type inference: ev-
ery expression typeable with any typing scheme has a principal typ-
ing scheme which is polar. For this reason, the concrete algorithms
of Section 5 manipulate only polar types and typing schemes.

4. Type Inference for MLsub
With our reformulated typing rules, the type inference problem is
to find a principal typing scheme [∆p]τp given inputs Π, e such that

Π e : [∆]τ iff [∆p]τp ≤∀ [∆]τ

An advantage of the reformulated rules is that the inputs and out-
puts of type inference are more clearly delineated, in contrast to

6 2016/11/7

Milner’s AlgorithmW which takes Γ, e and produces substitution
with which to modify Γ and a type τ .

If e is closed and has principal typing scheme []τp, then this
implies (using Theorem 6 and the definition of ≤∀) that:

` e : τ iff ρ(τp) ≤ τ for some substitution ρ

So, we must construct a function P (Π; e), which for any polar
typing environment Π and expression e produces a principal typing
scheme (assuming e is typeable).

This function is defined by induction on e, and is trivial when e
is a variable:

P (Π; x̂) = Π(x̂)

P (Π;x) = [x : α]α

Let-bindings are only slightly more complicated:

P (Π; let x̂ = e1 in e2) = [∆1 u∆2]τ2

where [∆1]τ1 = P (Π; e1)

and [∆2]τ2 = P (Π, x̂ : [∆1]τ1)

Inferring types for introduction forms is also straightforward.
To infer typing schemes for λ-bindings, we infer a typing scheme
[∆]τ for the body, and then extract the argument’s type from ∆. To
this end, we write ∆x for ∆ with x removed from the domain, and
extend the syntax ∆(x) by using the convention ∆(x) = > for
x 6∈ dom ∆, so that functions that do not use their argument are
given types > → τ .

P (Π; true) = []bool
P (Π; false) = []bool
P (Π;λx.e) = [∆x](∆(x)→ τ)

where [∆]τ = P (Π; e)

P (Π; {`1 = e1, . . . , `n = en}) =

[
l

i

∆i

]
{`1 : τ1, . . . , `n : τn}

where [∆i]τi = P (Π; ei)

The difficult case of type inference is inferring types for elimi-
nation forms: application, projection, and if. This mirrors Milner’s
AlgorithmW . Most cases of inference construct a principal typing
scheme for an expression by gluing together the principal typing
schemes of its subexpressions, but in the case of an application
e1 e2 it may be necessary to perform a substitution3 on the prin-
cipal types of e1 and e2. For instance, if e1 = λx.x with principal
typing scheme []α→ α and e2 = true, it is necessary to substitute
bool for α to type the application.

Specifically, we take [∆1]τ1 and [∆2]τ2 to be the principal
typing schemes of e1 and e2 in the environment Γ. Not all instances
of [∆1]τ1 and [∆2]τ2 result in e1 e2 being typeable: in the above
example, the instance []⊥ → ⊥ of [∆1]τ1 leaves the expression
untypeable. Only those instances allowing a subsequent use of the
(APP) rule are permitted.

All type variables in a typing scheme are implicitly universally
quantified, so without loss of generality we assume that [∆1]τ1 and
[∆2]τ2 have no type variables in common. We can thus use a single
substitution ρ to assign types to the type variables in [∆1]τ1 and
[∆2]τ2. In order for e1 e2 to be typeable, ρ must satisfy:

ρ(τ1) ≤ ρ(τ2)→ ρ(α)

for some fresh variable α.

3 This corresponds to AlgorithmW finding a “generic instance”, which in-
volves removing ∀ quantifiers as well as substituting. With typing schemes,
substitution suffices as we have no ∀ quantifiers to remove.

subU (bool = bool) = ∅
subU (τ1 → τ2 = τ3 → τ4) = {τ1 = τ3, τ2 = τ4}

subU ({f} = {g}) = {f(`) = g(`) | ` ∈ D}
where D = dom f = dom g

U(∅) = []

U(α = α,C) = U(C)

U(α = τ, C) = U(θα=τC) ◦ θα=τ α 6∈ ftv(τ)

U(τ = α,C) = U(θα=τC) ◦ θα=τ α 6∈ ftv(τ)

U(c, C) = U(subU (c), C)

Figure 5: The classical unification algorithm (for finite terms)

By the definition of ≤∀, the instances inst([∆]τ) of [∆]τ are:

↑ {ρ([∆]τ) | ρ a substitution}
where ↑ is upwards-closure under the subtyping order. We write
inst([∆]τ | τ1 ≤ τ2) for the instances under a constraint, that is:

↑ {ρ([∆]τ) | ρ(τ1) ≤ ρ(τ2)}
The set of possible typing schemes for e1 e2 is:

↑ {ρ([∆1 u∆2]α) | ρ(τ1) ≤ ρ(τ2)→ ρ(α)}
To infer a type for e1 e2 we must find a typing scheme [∆]τ
whose instances are the above. If we can do this, we can define
P (Π; e1 e2) as follows:

P (Π; e1 e2) = [∆]τ

where inst([∆]τ) = inst([∆1 u∆2]α | τ1 ≤ τ2 → α)

and [∆1]τ1 = P (Π; e1), [∆2]τ2 = P (Π; e2)

The same reasoning can be used for projections and conditionals:

P (Π; e.`) = [∆]τ

where inst([∆]τ) = inst([∆1]α | τ1 ≤ {` : α})
and [∆1]τ1 = P (Π; e)

P (Π; if e1 then e2 else e3) = [∆](τ)

where inst([∆]τ) = inst([∆1 u∆2 u∆3](τ2 t τ3) | τ1 ≤ bool)
and [∆1]τ1 = P (Π; e1)

[∆2]τ2 = P (Π; e2)

[∆3]τ3 = P (Π; e3)

So, to compute principal types, we must find a way of constructing
[∆]τ such that

inst([∆]τ) = inst([∆′]τ ′ | C)

where C is some set of constraints. In general, the generated
constraints are always of the form τ+ ≤ τ−, which intuitively
represents an attempt to use the output of one expression (of type
τ+) in a particular context (requiring type τ−).

To construct such [∆]τ , we introduce biunification, a variant of
standard unification (as used to infer types in ML) that can handle
subtyping constraints of the form τ+ ≤ τ−.

4.1 Unification in ML
Type inference for ML uses unification to eliminate constraints.
Figure 5 shows Martelli and Montanari’s unification algorithm [15].

Unification decomposes constraints into a set of atomic con-
straints, which constrain a type variable to equal a term. An atomic

7 2016/11/7

subUµ(µα.τ1 = τ2) = {τ1[µα.τ1] = τ2}
subUµ(τ1 = µα.τ2) = {τ1 = τ2[µα.τ2]}

subUµ(c) = subU (c)

Uµ(H; ∅) = []

Uµ(H; τ1 = τ2, C) = Uµ(C) τ1 = τ2 ∈ H
Uµ(H; α = α,C) = Uµ(H; C)

Uµ(H; α = τ, C) = Uµ(θα=τH; θα=τC) ◦ θα=τ
Uµ(H; τ = α,C) = Uµ(θα=τH; θα=τC) ◦ θα=τ

Uµ(H; c, C) = Uµ(H, c; subUµ(c), C)

Figure 6: The unification algorithm with recursive types

constraint α = τ is eliminated using the substitution θα=τ which
replaces all uses of α with τ , an operation classically termed “vari-
able elimination”. When we extend this to subtyping constraints,
elimination will not always remove a variable, so in this work we
prefer the term atomic constraint elimination. Atomic constraint
elimination is trivial in plain unification where we define, for all τ
and α not free in τ :

θα=τ = [τ/α]

θα=τ fails if α is free in τ (the occurs check).
In MLsub, the presence of subtyping and recursive types make

atomic constraint elimination more complex.

4.2 Extending Unification with Recursive Types
First, we extend the ML unification algorithm with support for re-
cursive types µα.τ , as supported by ML variants such as OCaml
(Figure 6). To ensure termination, the recursive unification algo-
rithm Uµ uses an extra argument H to record previously-visited
constraints. When processing a constraint c of the form µα.τ1 =
τ2, the recursive type µα.τ1 is unrolled and c is added to H so that
it can be ignored if encountered again.

Unlike plain unification, this algorithm uses atomic constraint
elimination θα=τ even when α is free in τ and the occurs check
fails. We extend the definition of θα=τ to introduce a recursive type
in this case:

θα=τ =

{
[τ/α] if α not free in τ
[µα.τ/α] otherwise

Real implementations of this algorithm replace H with a single
mutable table T , which makes the algorithm more efficient. We use
this trick in our automata-based implementation in Section 5.6.

4.3 Extending Unification with Subtyping
Unification cannot be used directly for MLsub, since unification
uses equality rather than subtyping constraints. In particular, unifi-
cation treats constraints symmetrically and thus loses information
about the direction of data flow, which is vital for subtyping. Also,
our careful distinction between input and output is not observed by
unification, so the substitution it produces may not respect the syn-
tactic restrictions we place on typing schemes about where positive
and negative types may occur.

So, we define a variant of this algorithm which respects the
direction of data flow (in particular, treats upper and lower bounds
differently), and preserves our syntactic restrictions. To this end,
we use bisubstitutions instead of substitutions, which we define
as substitutions which may assign a different type to positive and
negative uses of a type variable. We write [τ+/α+, τ−/α−] for

subB(τ−1 → τ+1 ≤ τ
+
2 → τ−2) = {τ+2 ≤ τ

−
1 , τ

+
1 ≤ τ

−
2 }

subB(bool ≤ bool) = {}
subB({f} ≤ {g}) = {f(`) ≤ g(`) | ` ∈ dom g}

where dom g ⊆ dom f

subB(µα.τ+ ≤ τ−) = {τ+[µα.τ+/α] ≤ τ−}
subB(τ+ ≤ µα.τ−) = {τ+ ≤ τ−[µα.τ−/α]}

subB(τ+1 t τ
+
2 ≤ τ

−) = {τ+1 ≤ τ
−, τ+2 ≤ τ

−}
subB(τ+ ≤ τ−1 u τ

−
2) = {τ+ ≤ τ−1 , τ

+ ≤ τ−2 }
subB(⊥ ≤ τ−) = {}
subB(τ+ ≤ >) = {}

B(H; ∅) = []

B(H; τ1 ≤ τ2, C) = B(H; C) τ1 ≤ τ2 ∈ H
B(H; α ≤ α,C) = B(H; C)

B(H; α ≤ τ, C) = B(θα≤τH; θα≤τ C) ◦ θα≤τ
B(H; τ ≤ α,C) = B(θτ≤αH; θτ≤α C) ◦ θτ≤α

B(H; c, C) = B(H, c; subB(c), C)

Figure 7: The biunification algorithm

a bisubstitution which replaces positive occurrences of α with τ+

and negative occurrences of α with τ−. We also write [τ−/α−] for
a bisubstitution which leaves positive occurrences of α unchanged.
That is, [τ−/α−] has the same effect as [α/α+, τ−/α−], and
similarly for [τ+/α+]. Bisubstitutions always make positive-for-
positive and negative-for-negative replacements, so we may apply
them without violating our syntactic restrictions.

The biunification algorithm takes as input a set of constraints of
the form τ+ ≤ τ− and produces a bisubstitution. The algorithm is
shown in Figure 7, and it is instructive to compare it to unification
with recursive types.

Note in particular the straightforward definition of subB. By en-
suring that constraints are always of the form τ+ ≤ τ−, decom-
posing constraints is made easy. The syntactic restrictions on polar
types ensure that hard cases like τ1 u τ2 ≤ τ3 do not arise.

Biunification treats recursive types in the same way as Uµ.
Constraints involving t on the left of ≤ are decomposed into
several constraints, since τ1 t τ2 ≤ τ3 iff τ1 ≤ τ3 and τ2 ≤ τ3
by the least-upper-bound property of t. The situation is similar for
u-constraints on the right. The benefit of the syntactic restrictions
on polar types is that we need not handle the awkward cases of t
on the right nor u on the left.

Atomic constraint elimination θα=τ has been split in two: we
use bisubstitutions θα≤τ to eliminate upper bounds and θτ≤α to
eliminate lower bounds. Their definition is trickier than for plain
unification, and is explained below.

4.4 Atomic Constraint Elimination in Biunification
Atomic constraints can be eliminated by using the t and u oper-
ators on types. Consider the following type with an atomic con-
straint, which expresses the type of a function which takes argu-
ments of a type τ0 and returns them unchanged (assuming for now
that α is not free in τ0):

α→ α where α ≤ τ0

8 2016/11/7

That is, the function has type α → α, whenever α is a subtype of
τ0. Since α u τ0 is always a subtype of τ0, we could equivalently
describe the function as having the following type:

(α u τ0)→ (α u τ0)

However, this violates our syntactic restrictions, since u appears
in a positive position. The essential insight that lets us eliminate
atomic constraints in polar types is that the upper bound τ0 on
the type variable α only affects negative uses of α: the function
argument must be a τ0, but the result need not be used as a τ0.
So, we encode the constraint on α by replacing only the negative
occurrences of α with the type τ0 u α, using the bisubstitution
[τ0 u α/α−], giving the unconstrained type:

(α u τ0)→ α

Although it may not seem so at first, this is equivalent to the original
constrained type. The original type can be instantiated with any
type τ such that τ ≤ τ0, while the unconstrained type can be
instantiated with any type τ . For any instance of one, the other has
an instance which gives a subtype.

For any instance α 7→ τ (where τ ≤ τ0) of the original type,
we choose an instance α 7→ τ of the unconstrained type, giving:

(τ u τ0)→ τ ≤ τ → τ

which is true since τuτ0 = τ . Similarly, for any instance α 7→ τ of
the unconstrained type, we choose an instance α 7→ τ u τ0, giving:

(τ u τ0)→ (τ u τ0) ≤ (τ u τ0)→ τ

which holds since τ u τ0 ≤ τ . This construction works in general:
when α is not free in τ0, we eliminate the atomic constraint α ≤ τ0
by applying the bisubstitution [τ0 u α/α−].

As before, we handle the cases where α is free in τ by intro-
ducing a recursive type. To ensure that the substitution only affects
uses of α of the correct polarity, we perform the recursion on a
fresh type variable β, giving:

θα≤τ =

{
[α u τ/α−] if α not free in τ
[(µβ.α u [β/α−]τ)/α−] otherwise (β fresh)

θτ≤α is defined dually, as:

θτ≤α =

{
[α t τ/α+] if α not free in τ
[(µβ.α t [β/α+]τ)/α+] otherwise (β fresh)

4.5 Correctness of Biunification
To prove the correctness of biunification, we must show that its
output bisubstitutions are stable and solve the input constraints.

In standard unification, applying any substitution to a type
yields an instance of the type. Indeed, this is how “instance” is
usually defined. However, applying an arbitrary bisubstitution to
a typing scheme does not always yield an instance of the typing
scheme, since bisubstitutions may replace positive and negative
occurrences of a variable with incompatible types. For instance,
clearly

[]α→ α 6≤∀ []> → bool
and yet the latter can be formed from the former by applying the
bisubstitution [>/α−, bool/α+]. In fact, ξ([∆−]τ+) is in general
an instance of [∆−]τ+ only when ξ(α−) ≤ ξ(α+) for all type
variables α.

So, we define a stable bisubstitution as any ξ such that ξ(α−) ≤
ξ(α+) for all type variables α, and ξ2 = ξ. The idempotence
condition is imposed for technical convenience, as it allows us to
simplify the definition of solving. This is not peculiar to subtyping:
careful accounts of standard unification prove the same about the
output of unification algorithms.

We say that a bisubstitution ξ solves a set of constraintsC when,
for any polar typing scheme [∆−]τ+,

inst([∆−]τ+ | C) = inst(ξ([∆−]τ+))

As we saw above, [τ0 u α/α−] solves α ≤ τ0 when α is not free
in τ0. In general, we have:

Lemma 7. For any atomic constraint c, θc is stable and solves c.

Theorem 8. For any set of constraints C of the form τ+ ≤ τ−, if
the algorithm B(∅;C) returns ξ then ξ is stable and solves C.

Producing bisubstitutions that solve a given set of constraints
suffices to discharge the side-conditions in Section 4, allowing type
inference to produce principal types [6].

However, B(H;C) does not always produce an output bisubsti-
tution. It can fail, upon encountering a constraint such as bool ≤
> → ⊥ for which subB is not defined. In such cases, we report a
type error, which is justified by the following theorem:

Theorem 9. If the algorithm B(∅;C) fails, then C is unsatisfiable.

Of course, these results leave open a third possibility, that
B(H;C) does not terminate. We leave discussion of termination
and complexity to Section 5.7, since the arguments are much sim-
pler when expressed in terms of the next section’s automata.

5. Simplifying Typing Schemes with Automata
This section introduces a compact representation of typing schemes
as finite automata, as well as an efficient biunification algorithm
and techniques for simplifying typing schemes to simpler, equiva-
lent ones. This material is not strictly necessary to infer principal
types, but without it, the inferred types quickly grow large.

Indeed, a common criticism of type systems with subtyping
and inference is that they tend to produce large and unwieldy
types. Systems based on constrained types are particularly prone
to creating large types: without simplification, many such systems
produce overly large type schemes [11].

Various algorithms for simplifying types appear in the literature,
since many type systems with subtyping are impractical without
them. Informal connections to standard constructions in automata
have been made before: the removal of unreachable constraints by
Eifrig et al. [8] corresponds to removing dead states from a finite
automaton, while Pottier noted that the canonisation and minimisa-
tion algorithms he describes [18] are analogous to determinisation
of an NFA and minimisation of the resulting DFA.

Our representation theorem (Section 5.3) generalises these tech-
niques, by putting the connection between automata and subtyping
on a sound formal footing: two automata represent the same type
iff they accept equal languages. This allows us to use standard algo-
rithms like removal of dead states, determinisation and minimisa-
tion, but also admits more advanced simplification algorithms such
as those given by Ilie, Navarro and Yu [12] which operate directly
on NFAs. Due to the representation theorem, any algorithm which
simplifies standard finite automata also simplifies types.

5.1 Type Automata
Types are represented by type automata, a slight variant on standard
non-deterministic finite automata. A type automaton consists of:

• a finite set Q of states
• a designated start state q0 ∈ Q
• a transition table δ ⊆ Q× ΣF ×Q.
• for each state q, a polarity (+ or −) and a set of head construc-

tors H(q).

9 2016/11/7

The alphabet ΣF contains one symbol for each field of each type
constructor. ΣF contains the symbols d, r (representing the domain
and range of function types), and a symbol `i for each record label.

The transition table δ of a type automaton has the condition that
d-transitions only connect states of differing polarity, and all other
transitions connect states of the same polarity. This means that the
polarity of every state reachable from q is determined by that of q,
and is in some sense redundant. However, we find it more clear to
be explicit about state polarities.

We use f to quantify over transition labels d, r, and write a
transition from q to q′ labelled by f as q

f−−→ q′ (this notation
should not be confused with→ as used for function types).

Standard NFAs label each state as either “accepting” or “non-
accepting”. Instead, a type automaton labels each state q with a
set of head constructors H(q), drawn from the set consisting of
type variables, the symbol 〈→〉 (representing function types), 〈b〉
(representing the boolean type) and 〈L〉 for any set L of record
labels ` (representing record types). We maintain the invariant that
H(q) does not contain both 〈L〉 and 〈L′〉 for distinct sets of labels
L,L′.

5.2 Constructing Type Automata
The simplest way to construct a type automaton from a positive or
negative type is to first construct a type automaton containing extra
transitions labelled by ε, and then to remove these transitions in a
second pass. This mirrors the standard algorithm for constructing a
nondeterministic finite automaton from a regular expression.

The grammar of Section 2.1 gives the syntax of positive and
negative types. For the purposes of this section, we assume that
all µ operators in a type bind distinct type variables. The set of
subterms of a type is the set of types used in its construction,
including the type itself, but omitting type variables bound by µ.
For instance, the subterms of µα.β t (bool→ α) are:

{µα.β t (bool→ α), β t (bool→ α), β, bool→ α, bool }

The type automaton for a positive type τ0 has one state for
every subterm τ of τ0, written q(τ) by slight abuse of notation.
The start state q0 is q(τ0). The polarity of q(τ) matches that of τ ,
H(q(α)) = {α}, H(q(bool)) = {〈b〉}, H(q(τ1 → τ2)) = {〈→〉},
and H(q({f})) = {〈dom f〉}. In all other cases, H(q(τ)) = ∅.

We further abuse notation by defining q(α) = q(µα.τ1) for
every type variable α bound by a recursive type µα.τ1.

The type automaton has the following transition table:

q(τ1 t τ2)
ε−→ q(τ1) q(τ1 t τ2)

ε−→ q(τ2)

q(τ1 u τ2)
ε−→ q(τ1) q(τ1 u τ2)

ε−→ q(τ2)

q(τ1 → τ2)
d−→ q(τ1) q(τ1 → τ2)

r−→ q(τ2)

q(µα.τ1)
ε−→ q(τ1)

Finally, we remove ε-transitions using the standard algorithm.
For a state q, we define E(q) as the set of states reachable from q
by following zero or more ε-transitions, and then set:

H(q) =
⋃

q′∈E(q)

H(q′)

q
f−−→ q′ iff ∃q′′ ∈ E(q). q′′

f−−→ q′

To maintain the invariant that H(q) does not contain distinct 〈L〉,
〈L′〉, we replace multiple record symbols with their union or inter-
section in negative and positive states respectively.

The syntactic restrictions on positive and negative types are im-
portant in ensuring that this process generates a valid type automa-
ton. The positivity and negativity constraints on function types and
the covariance condition on µ types ensure that d transitions con-

q0

〈b〉

ε

〈→〉

ε

α

d

α

r

(a) With ε-transitions

〈→〉
〈b〉

q0

α

d

α

r

(b) ε-transitions removed

Figure 8: Automata construction with ε-transitions

〈→〉

q0

〈→〉
d

d

α
r

α

r

(a) Type automaton

q0

d−

d+

r−

q∞

〈→〉+

〈→〉− α+
α−

r+

(b) NFA

Figure 9: Type automaton and NFA for µβ. (β → α)→ α.

nect states of unlike polarity and r transitions connect ones of like
polarity, while the guardedness condition on µ types avoids cycles
of ε-transitions.

As an example, the type automaton for the positive type (α →
α) t bool is shown in Figure 8, before and after removal of ε-
transitions, with negative states drawn shaded and H(q) drawn
inside the state q. An example with recursive types appears in
Figure 9a.

The construction above does not preserve every detail of the
syntax of types. For instance, α t (⊥ t bool) and bool t α are
converted to identical automata. As we see in the next section,
this causes no ambiguity: equivalent automata arise only from
equivalent types.

5.3 Simplifying Type Automata
Type automata can be converted to standard NFAs, by labelling
each transition with the polarity of the state from which it orig-
inates, and converting H(q) to a set of transitions (also labelled
with polarity) to a new accepting state q∞. For example, Figure 9a
shows a type automaton, while Figure 9b shows the same automa-
ton after conversion to an NFA. (The full details of this conversion
can be found in the first author’s thesis [6, Ch. 7]).

With this conversion of type automata to standard NFAs, we
now talk about the language accepted by a type automaton. Thus,
we say that the automaton in Figure 9a accepts the following
language:

(d+d−)∗(d+(r−α− + 〈→〉−) + r+α+ + 〈→〉+)

Now, we state our representation theorem:

Theorem 10. For types τ1, τ2 (both positive or both negative)
represented by automata accepting languages L1, L2, we have
τ1 ≡ τ2 if and only if L1 = L2.

Any algorithm for simplifying finite automata may therefore be
used to simplify type automata. The canonical choice is to convert
to a deterministic finite automaton using the subset construction

10 2016/11/7

and then simplify using Hopcroft’s algorithm. In fact, this describes
the canonisation and minimisation algorithms of Pottier [18], al-
though in his presentation they were individually proved correct
for types rather than relying on a general representation theorem.

5.4 Simplifying Typing Schemes
The simplification techniques of the previous section preserve
equivalence as types, and can therefore be used to simplify typ-
ing schemes by simplifying their component types. However, typ-
ing schemes admit more simplifications than those which preserve
equivalence of their component types.

Recall that two typing schemes may be equivalent even though
they have different numbers of type variables, as long as those type
variables describe the same data flow (Section 3.2). For instance,
the following two typing schemes for choose are equivalent:

[]α→ α→ α

[]β → γ → (β t γ)

More generally, consider a typing scheme

φ(τ−1 , . . . τ
−
n ; τ+1 , . . . τ

+
m)

parameterised by n negative types and m positive ones, where φ
contains no type variables except via τ−i , τ

+
j . For instance,

φchoose(τ−1 , τ
−
2 ; τ+1) = [] τ−1 → τ−2 → τ+1

An instantiation of φ is a typing scheme formed from φ where τ−i
(1 ≤ i ≤ n) is given as

d
S for some finite set S of type variables

(taking
d
∅ to be >), while τ+j (1 ≤ j ≤ m) is similarly given as⊔

S (taking
⊔
∅ to be ⊥). In this manner, the two typing schemes

for choose are φchoose(α, α;α) and φchoose(β, γ;β t γ).
For a given instantiation of φ, we say that there is a flow edge

i j if τ−i and τ+j have a type variable in common. The two
typing schemes for choose both have the same two flow edges:
1 1 and 2 1. This is an instance of a general principle:

Lemma 11. Any two instantiations of a typing scheme

φ(τ−1 , . . . τ
−
n ; τ+1 , . . . τ

+
m)

with the same flow edges are equivalent.

Flow edges capture the notion of data flow from the introduc-
tion, and provide a means of simplifying typing schemes: rela-
belling type variables while preserving flow edges preserves typ-
ing scheme equivalence, so we can represent typing schemes with
fewer type variables. Next, we show how this simplification can be
implemented with scheme automata, which represent flow edges
directly.

5.5 Scheme Automata
Typing schemes are represented by scheme automata. Scheme au-
tomata have a domainD, which is a set of λ-bound variables corre-
sponding to dom(∆) in a typing scheme [∆]τ . A scheme automa-
ton with domain D consists of:

• a finite set Q of states
• (multiple) designated start states q0 and qx for x ∈ D
• a transition table δ ⊆ Q× {d, r} ×Q
• for each state q, a polarity (+ or −) and a set of head construc-

tors H(q)

• a set of flow edges q− q+

Instead of a single start state, a scheme automaton has distinguished
negative states qx for each x ∈ D (corresponding to ∆(x) in a
typing scheme [∆]τ), and a positive state q0 (corresponding to τ in

a typing scheme [∆]τ). The transition table δ retains the polarity
condition of type automata.

In a scheme automaton, the head constructors H(q) of a set q
are similar to those of a type automaton, but do not contain type
variables. Instead, type variables are represented implicitly as flow
edges.

To construct a scheme automaton from a typing scheme [∆]τ ,
we start by constructing type automata for τ and ∆(x) (for each
x). The states and transitions of the scheme automata are given by
the disjoint union of those of the type automata, and the start states
q0 and qx are the start states of each type automaton.

For each type variable α, we add flow edges q− q+ for ev-
ery q−, q+ such that α ∈ H(q−), α ∈ H(q+). Having represented
type variables as flow edges in this way, we remove all type vari-
ables from the head constructors H(q). Below, we see a scheme
automaton for the typing scheme [f : α → β]α → β, with flow
edges q− q+ drawn as dashed lines.

→

qf

d r
→

q0

d r

Two typing schemes may be represented by the same scheme
automaton, despite syntactic differences. For instance, the two typ-
ing schemes for choose above are represented identically.

We simplify typing schemes by representing them as scheme
automata, and then rendering these as a tuple of type automata
using as few type variables as possible. To do this, we must find an
assignment of type variables to states that exactly generates the flow
edges of the scheme automaton. Doing this optimally is the NP-
complete problem of biclique decomposition, but we have found
that simple heuristics give good results.

The two typing schemes for choose above are represented by
the same scheme automaton, since they have the same flow edges.
To display this to the user, the scheme automaton is converted
back to type automata and then to a syntactic typing scheme. Our
conversion heuristic chooses the []α → α → α representation, as
it involves introducing fewest type variables.

5.6 Biunification of Automata
As well as enabling simplification, type and scheme automata are
useful to efficiently implement type inference. In fact, our imple-
mentation uses them throughout: types and typing schemes are al-
ways represented as automata, and syntactic types are only used
for input and output. To this end, we implemented the biunifica-
tion algorithm of Section 4.3 in terms of scheme automata, which
turns out to be simpler than the description in terms of syntactic
types. Our implementation is imperative, and destructively updates
automata.

The algorithm B(H;C) takes as input a set of hypotheses H , a
set of constraints C, and produces as output a bisubstitution. In the
imperative implementation, the hypotheses and constraints are both
represented by pairs of states of a scheme automaton. The output
bisubstitution is not represented explicitly: instead, the scheme
automaton is mutated. Since the scheme automaton represents H
and C, mutating it simultaneously applies a bisubstitution to H , C
and the output.

For states q1, q2 of a given scheme automaton (both positive
or both negative) we define the operation merge(q1, q2) which
adds the transitions and flow edges of q2 to q1. More specifically,
merge(q1, q2) modifies the automaton by adding, for all q′1, q′2, f ,

11 2016/11/7

function biunify(q+, q−)
if (q+, q−) 6∈ T then

T ← T ∪ {(q+, q−)}
if ∃x ∈ H(q+), y ∈ H(q−). x 6≤ y then

fail
for q′+ where q− q′

+ do
merge(q′

+
, q+)

for q′− where q′− q+ do
merge(q′

−
, q−)

for q′−, q′+ where q+ d−→ q′
−
, q−

d−→ q′
+ do

biunify(q′
+
, q′
−

)

for q′−, q′+, f 6= d where q+ r−→ q′
+
, q−

f−−→ q′
− do

biunify(q′
+
, q′
−

)

Figure 10: Biunification algorithm for scheme automata

• transitions q1
f−−→ q′1 when q2

f−−→ q′2

• flow edges q′1 q2 when q′1 q1 (if q1, q2 positive)
• flow edges q1 q′2 when q2 q′2 (if q1, q2 negative)

and by adding the head constructors H(q2) to H(q1).
If the state q1 represents an occurrence of a type variable α (i.e.

α ∈ H(q1) in the type automaton representation, or q1 has a flow
edge in the scheme automaton representation), and q2 represents
some type τ , then the effect of merge(q1, q2) is to perform the
atomic constraint elimination θα≤τ or θτ≤α as per Section 4.4.
The addition of new transitions by merge may introduce cycles,
which corresponds to introducing µ-types during atomic constraint
elimination.

As earlier, the biunification algorithm operates on constraints
τ+ ≤ τ−, here represented as pairs of states (q+1 , q

−
2). Instead

of threading the argument H through all recursive calls, we use a
single mutable table T of previously-seen inputs. The biunification
algorithm for automata is shown in Figure 10.

5.7 Termination and Complexity
Each recursive call to biunify either terminates immediately or adds
a pair of states not previously present to T . Since there are finitely
many such states, this must terminate.

Suppose the input automaton has n states and m transitions.
There are O(n2) possible pairs of states, and therefore O(n2)
possible recursive calls to biunify. Since biunify iterates over pairs
of transitions, the total amount of work is bounded by their number,
so the worst-case complexity is O((n+m)2).

However, this complexity is difficult to attain. In particular, in
the common case where the automaton is a tree (that is, there are no
states reachable by two routes nor cycles), each state can be visited
only once, giving O(n+m) complexity.

In practice, the algorithm is sufficiently performant that our
online demo retypes the input program on each keystroke, without
noticeable delay.

6. Related Work and Discussion
This work extends a long thread of research into non-structural
subtyping, some of which we summarize below. This form of sub-
typing is called non-structural since it admits subtyping relation-
ships between type constructors of different arities (e.g.⊥ ≤ ⊥ →
⊥). The alternative, structural subtyping, has been well-studied and
is easier to deal with (see e.g. Henglein and Rehof [9]), but cannot
express top or bottom types, or subtyping between records with dif-
ferent sets of fields as used in object-oriented programming.

6.1 Definition of the Subtyping Relation
The prototypical example of non-structural subtyping with recur-
sive types is the system of Amadio and Cardelli. Their seminal pa-
per [1] describes ground types t as regular trees over the following
signature:

t ::= ⊥ | > | t→ t

Regular trees are trees with at most finitely many distinct subtrees,
which are exactly the trees representable as finite closed terms
using a fixpoint operator µ.

These are equipped with a partial order ≤ which is bounded by
⊥ and >, where → is covariant in the range and contravariant in
the domain. This partial order forms a lattice, which satisfies the
equations of Fig. 3.

Amadio and Cardelli show that the subtyping order for ground
types is decidable (while their original algorithm is inefficient,
Kozen, Palsberg and Schwartzbach [14] later showed how to decide
subtyping efficiently).

6.2 Type Variables and Polymorphism
However, combining Amadio and Cardelli’s subtyping with poly-
morphism proved problematic. The most straightforward way of
adding type variables to their system is to quantify over ground
types t. We take type terms τ as given by the following syntax:

τ ::= ⊥ | > | τ → τ | α
A ground substitution ρ maps type variables to ground types t, and
can be used to interpret a type term τ as a ground type ρ(τ). The
subtyping relation on type terms is then defined by quantification
over ground substitutions:

τ1 ≤ τ2 iff ∀ρ. ρ(τ1) ≤ ρ(τ2)

Handling type variables by quantifying over ground types is a com-
mon approach [10, 16, 21, 22], but turns out to have issues. As dis-
cussed in Section 1.2, defining type variables by quantifying over
ground types allows reasoning by case analysis over type variables,
which makes the polymorphic subtyping relation complex and dif-
ficult to decide, as well as non-extensible. These issues are resolved
by adding type variables directly to the definition of types rather
than quantifying over ground types.

Castagna and Xu [4] also introduce type variables by quanti-
fying over ground types. However, they avoid the above issues by
applying a convexity condition to the definition of ground types,
which recovers in their system the intuitive idea that type variables
are related only to themselves.

The complexities of this approach to type variables come up
in the well-studied problem of entailment. An entailment problem
asks whether some constraints imply others, where the constraints
are often restricted to not include t, u or µ. For instance, the
example (E) of Section 1.2 can be written as an entailment problem:

α ≤ α→ ⊥ |= (⊥ → >)→ ⊥ ≤ α

In the standard formulation where type variables quantify over
ground types, entailment is not known to be decidable despite much
research. The full first-order theory was shown undecidable by Su
et al. [21], and sound but incomplete algorithms for entailment and
subtyping have been published [18, 22]. We conjecture that some
of these algorithms may be sound and complete for MLsub, since
their incompleteness seems to arise from avoiding the sort of case-
analysis necessary to prove (E).

6.3 Ad-hoc Polymorphism and Overloading
This work integrates ML-style parametric polymorphism with sub-
typing but does not consider any form ad-hoc polymorphism, in
which functions are allowed to operate with different behaviours at

12 2016/11/7

different types. For example, ad-hoc polymorphism is necessary to
allow an overloaded operator +, which is simultaneously addition
of integers (of type int → int → int) and concatenation of lists (of
type ∀α.list[α]→ list[α]→ list[α]).

Kaes [13] presented a system extending ML, combining para-
metric polymorphic, subtyping and overloading, and a similar sys-
tem lifting some of its restrictions was later given by Smith [20].
However, both systems infer types with an explicit collection
of constraints, rather than just a type term. With their language
ML≤, Bourdoncle and Merz [3] present a language combining ML
with object-oriented programming, supporting CLOS-style multi-
method dispatch, which also infers constrained types.

6.4 Automata and Simplification
Representing types as automata is a standard technique, which
has been used to tackle subtyping, entailment and simplification.
Kozen, Palsberg and Schwartzbach [14] gave an algorithm based on
automata for efficiently deciding subtyping between ground types
of Amadio and Cardelli’s system. Henglein and Rehof [10] reduced
the problem of NFA universality to entailment in the Amadio-
Cardelli system, thus proving it PSPACE-hard. In fact, our repre-
sentation theorem began life as an attempt to find a sort of converse
to Henglein and Rehof’s result. Niehren and Priesnitz [17] stud-
ied also entailment using a form of finite automata (their cap-set
automata, explained in detail in Priesnitz’s thesis [19]). Eifrig et
al. [8], Trifonov and Smith [22], Pottier [18] all use some form of
automata for simplifying types.

7. Conclusion
We have presented MLsub, a minimal language subsuming the
Hindley-Milner calculus with let-polymorphism integrated seam-
lessly with subtyping. An implementation is available online.

We improve on previous work in this area by offering an algo-
rithm to infer compact types (syntactic terms, rather than a term
and a possibly-large set of constraints), and proving that these are
principal.

We provide a general means of simplifying types and typing
schemes: instead of specifying a particular simplification algo-
rithm, our representation theorem shows that anything from the lit-
erature of finite automata and regular languages can be used.

Languages incorporating ML-style type inference often have
interesting type system features not present in the core calculus,
such as advanced module systems, GADTs, typeclasses, etc. We are
interested in seeing which of these constructs can be implemented
(or even continue to make sense) in the context of MLsub.

Acknowledgements Thanks to Leo White for discussions about
MLsub, particularly on the relationship between the ML-style and
reformulated rules, to Derek Dreyer for helpful comments about
the presentation of this paper, and to the anonymous referees. This
work was funded by Trinity College, Cambridge, and OCaml Labs.

References
[1] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM

Transactions on Programming Languages and Systems (TOPLAS), 15
(4), 1993.

[2] H. Bekič. Definable operations in general algebras, and the theory of
automata and flowcharts. In C. Jones, editor, Programming Languages
and Their Definition, volume 177 of Lecture Notes in Computer Sci-
ence, pages 30–55. Springer Berlin Heidelberg, 1984.

[3] F. Bourdoncle and S. Merz. Type checking higher-order polymorphic
multi-methods. In POPL ’97: 24th ACM Symposium on Principles of
Programming Languages, pages 302–315, Paris, Jan. 1997. ACM.

[4] G. Castagna and Z. Xu. Set-theoretic foundation of parametric poly-
morphism and subtyping. In Proceedings of the 16th ACM SIG-

PLAN International Conference on Functional Programming, ICFP
’11, pages 94–106. ACM, 2011.

[5] B. A. Davey and H. A. Priestley. Introduction to lattices and order.
Cambridge University Press, 2002.

[6] S. Dolan. Algebraic Subtyping. PhD thesis, University of Cambridge,
2016. To appear.

[7] J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively
constrained types and its application to OOP. Electronic Notes in The-
oretical Computer Science, 1:132–153, 1995. MFPS XI, Mathemati-
cal Foundations of Programming Semantics, Eleventh Annual Confer-
ence.

[8] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type infer-
ence for objects. In Proceedings of the Tenth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’95, pages 169–184. ACM, 1995.

[9] F. Henglein and J. Rehof. The complexity of subtype entailment for
simple types. In Logic in Computer Science, 1997. LICS’97. Proceed-
ings., 12th Annual IEEE Symposium on, pages 352–361. IEEE, 1997.

[10] F. Henglein and J. Rehof. Constraint automata and the complexity
of recursive subtype entailment. In 25th International Colloquium on
Automata, Languages and Programming, ICALP ’98, pages 616–627.
Springer Berlin Heidelberg, 1998.

[11] M. Hoang and J. C. Mitchell. Lower bounds on type inference with
subtypes. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’95, pages
176–185. ACM, 1995.

[12] L. Ilie, G. Navarro, and S. Yu. On NFA reductions. In J. Karhumäki,
H. Maurer, G. Păun, and G. Rozenberg, editors, Theory Is Forever,
volume 3113 of Lecture Notes in Computer Science, pages 112–124.
Springer Berlin Heidelberg, 2004.

[13] S. Kaes. Type inference in the presence of overloading, subtyping and
recursive types. In Proceedings of the 1992 ACM Conference on LISP
and Functional Programming, LFP ’92, pages 193–204. ACM, 1992.

[14] D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient recursive
subtyping. In Proceedings of the 20th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’93, pages
419–428. ACM, 1993.

[15] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4
(2):258–282, 1982.

[16] J. Niehren and T. Priesnitz. Entailment of non-structural subtype con-
straints. In P. Thiagarajan and R. Yap, editors, Advances in Computing
Science — ASIAN’99, volume 1742 of Lecture Notes in Computer Sci-
ence, pages 251–265. Springer Berlin Heidelberg, 1999.

[17] J. Niehren and T. Priesnitz. Non-structural subtype entailment in au-
tomata theory. In N. Kobayashi and B. C. Pierce, editors, Theoretical
Aspects of Computer Software, volume 2215 of Lecture Notes in Com-
puter Science, pages 360–384. Springer Berlin Heidelberg, 2001.

[18] F. Pottier. Type inference in the presence of subtyping: from theory to
practice. PhD thesis, Université Paris 7, 1998.

[19] T. Priesnitz. Subtype Satisfiability and Entailment. PhD thesis, Saar-
land University, 2004.

[20] G. S. Smith. Principal type schemes for functional programs with
overloading and subtyping. Science of Computer Programming, 23
(2):197–226, 1994.

[21] Z. Su, A. Aiken, J. Niehren, T. Priesnitz, and R. Treinen. The first-
order theory of subtyping constraints. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 203–216. ACM, 2002.

[22] V. Trifonov and S. Smith. Subtyping constrained types. In R. Cousot
and D. A. Schmidt, editors, Static Analysis, volume 1145 of Lecture
Notes in Computer Science, pages 349–365. Springer Berlin Heidel-
berg, 1996.

[23] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and computation, 115(1):38–94, 1994.

13 2016/11/7

	Introduction
	Focus of this Paper
	An Algebraic Approach

	The MLsub Language
	Defining Types
	Recursive Types
	Soundness
	MLsub Subsumes ML

	Reformulated Typing Rules
	Typing Schemes
	Type Variables in MLsub
	Polar Types

	Type Inference for MLsub
	Unification in ML
	Extending Unification with Recursive Types
	Extending Unification with Subtyping
	Atomic Constraint Elimination in Biunification
	Correctness of Biunification

	Simplifying Typing Schemes with Automata
	Type Automata
	Constructing Type Automata
	Simplifying Type Automata
	Simplifying Typing Schemes
	Scheme Automata
	Biunification of Automata
	Termination and Complexity

	Related Work and Discussion
	Definition of the Subtyping Relation
	Type Variables and Polymorphism
	Ad-hoc Polymorphism and Overloading
	Automata and Simplification

	Conclusion

