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Abstract

In this study, a Computational Fluid Dynamics (CFD) solver able to sim-
ulate shale gas flow as fluid flow in a porous medium on the macro level is
presented. The shale gas flow is described by means of a tailored governing
equation with both fluid properties and permeability expressed as a function
of the effective pore pressure (stress effect) and with Knudsen effects included
through an apparent permeability. This CFD solver, developed in the Open-
Foam framework, allows for the simulation of three-dimensional fractured
geometries without limitations on the shape of the domain. The solver was
assessed and validated against literature data showing good agreement in
terms of both recovery rate and pressure field profiles. The solver was then
used to explore two different phenomena affecting shale gas dynamics: the
diffusion behaviour and the influence of fracture geometry. It was shown that
shale gas flow, on the macro level, is a diffusion-dominated phenomenon, and
its behaviour can also be qualitatively represented by a diffusion equation. It
was also shown that the early behaviour of shale gas flow is dictated by the
fracture geometry, and that the reservoir dimensions have no effect on the
flow at early times. Finally, a newly developed ”dual-zone” solver, where the
shale matrix and the fracture network are modelled as two distinct domains
interacting through the common boundaries, is presented and discussed.
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1. Introduction1

In recent years, there has been a renewed interest into alternative hy-2

drocarbon fuels (Youtsos et al. (2013)). Shale gas has become increasingly3

important after the development of effective technologies for the extraction4

of these trapped hydrocarbons (Mohaghegh (2013)). In addition to shale5

gas, shale oil and oil shale constitute part of the current shale hydrocarbon6

production. It is estimated that the world shale deposits contain around 37

trillion barrels worth of oil (Fan et al. (2010)). Because of this potential for8

the future energy supply, there is a great interest from the energy industry9

to improve the understanding of the flow of gas in tight and unconventional10

reservoirs in order to be able to correctly predict production rates (Ma et al.11

(2014)).12

Several attempts have been done in the past to model the gas flow in13

shale and tight reservoirs, ranging from analytical and semi-analytical mod-14

els to numerical simulations. The very early analytical models involved very15

simple geometries such as a single vertical fracture or a single horizontal16

fracture (Gringarten et al. (1974)). These early models were followed by17

semi-analytical models, such as the ones proposed by Patzek et al. (2013)18

and by Blasingame and Poe (1993). Patzek et al. (2013) studied a very19

simple configuration of the Barnett shale through a model derived from a20

non-linear diffusion equation. Desorption was neglected and results were21

compared with data extracted from real wells giving some insight into the22

dominant parameters which affect the asymptotic behaviour of the reservoir23

depletion. Although very fast, most of the analytical and semi-analytical24

models suffer to capture the non-linearity in shale gas compressibility, viscos-25

ity, and compressibility factor due to the use of a pseudo-pressure approach,26

rather than solving the real gas equation (Houze et al. (2010)). Furthermore,27

these models also have difficulties in reproducing the typical characteristics28

of shale gas reservoirs which involve desorption, multiphase flows and com-29

plex geometries (Houze et al. (2010)). Recently, some attempts to include30

non-linearities of shale gas properties in analytical models have been per-31

formed (Ma et al. (2014); Wu et al. (2015)), however the applicability to32

complex reservoirs needs further assessment and there is still need for an33

approach able to give more detailed information about the shale flow in com-34

pletely three-dimensional domains.35

In this scenario, numerical simulations offer the possibility to capture the36

non-linearities that in general analytical methods fail to adequately model37
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as well as the possibility of accurately reproducing complex reservoir shapes.38

Furthermore, numerical simulations can be extensively used to perform a39

sensitivity analysis on the main parameters that affect shale gas production.40

The main limitations of numerical simulations are related to the compu-41

tational cost which however is mitigated by the increasing availability of42

computational resources. Numerical simulations based on a finite element43

approach were shown to be able to match historic production data of shale44

gas (Miller et al. (2010); Jayakumar et al. (2011)). Cipolla et al. (2009) in-45

vestigated some of the parameters which may affect the gas flow, such as46

the description of the flow from the matrix to the fracture network, stress47

sensitive fracture conductivity, and desorption. A discrete approach to the48

grid rather than a dual porosity model approach was utilized and it was49

concluded that desorption might not be of importance in certain shale reser-50

voirs, but important in others. It was also concluded that the stress effect51

on the fracture network is more evident during later stages of production52

rather than at earlier stages and this could lead to optimistic production53

forecasts (Cipolla et al. (2009)). Further understanding of the shale flow54

was achieved by Freeman et al. (2013). The major parameters of shale flow55

were identified as the ultra-tight permeability of shale, configuration of the56

hydraulically fractured horizontal wells, multiple porosity and permeability57

fields, and desorption (Freeman et al. (2013)). In addition, three regimes of58

flow in typical fractured shale reservoirs were noticed: formation linear flow,59

transitioning into compound formation linear flow, and eventually transform-60

ing into elliptical flow (Freeman et al. (2013)). It was also concluded that due61

to the very low permeability in shale, the flow is controlled by the configura-62

tion of the fracture network, with and without desorption effects (Freeman63

et al. (2013)). Furthermore, Moridis et al. (2010) explored the difference be-64

tween shale gas reservoirs and tight sand reservoirs using a multiphase solver65

based on the Darcy equation. It was concluded that these types of reservoirs66

differ from each other in the contribution of desorption. While desorption67

can be neglected for tight sand reservoirs, significant deviations from field68

data are observed if desorption is neglected for shale (Moridis and Freeman69

(2014)).70

Earlier, Kwon et al. (2001) suggested that shale permeability of the71

Wilcox shale is a function of effective pressure. It was noticed that per-72

meability decreased from 300x10-21 m2 to 3x10-21 m2 when the effective pore73

pressure increased from 3 MPa to 12 MPa. A cubic power pressure depen-74

dent equation of permeability was introduced to best fit the experimental75
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values of shale permeability (Kwon et al. (2001)). Later on, Freeman et al.76

(2011) explored the compositional change of natural gas from shale reservoirs77

with time. Many reasons were suggested for this phenomenon, but the most78

important ones are the selective desorption from the surface of the matrix79

and the non-Darcy flow which is the result of the nano-pores of shale. A80

dependency between the natural gas composition and the Knudsen number81

(which controls the non-Darcy flow) and eventually the permeability was82

suggested. Freeman et al. (2011) placed a large importance on the Knudsen83

number and used it to alter permeability into an apparent permeability as84

suggested by Klinkenberg (1941) and Javadpour (2009). Apparent perme-85

ability allows retaining the form of the Darcy equation, while capturing the86

Knudsen effect within the apparent permeability (Freeman et al. (2011)).87

Further efforts in the understanding and modelling of shale gas flow include88

a sensitivity analysis of the fracture geometry (Yu et al. (2014)), the use of89

the finite elements method (Fan et al. (2015)), and a numerical solver that90

includes slip flow, Knudsen diffusion, and desorption (Shabro et al. (2012)).91

Although some aspects of shale gas flow have been already investigated,92

there is still need of improving the knowledge of shale gas flow in geometries93

close to the intricate configurations represented by the fracture network of94

real reservoirs. In order to do that, a solver able to accurately model the95

shale flow in every kind of geometry is required. In this work a new solver for96

shale gas flow predictions is proposed and assessed with the main aim of: (i)97

developing a numerical method able to solve a generic three-dimensional shale98

reservoir, (ii) analyse the sensitivity of shale gas flow to the shape and the99

physical properties of the reservoir. The newly developed tools also include a100

dual domain approach where both the matrix and the fracture are included101

in the domain and modelled as media with different properties interacting102

through the common boundaries, offering hence greater accuracy in the flow103

rate prediction as a function of fracture geometry. Both the mathematical104

model and the approach used for shale gas simulation make the proposed105

approach different from the existent commercial solver and models available106

in literature.107

2. Method108

Shale reservoirs usually consist of a porous material (which in the fol-109

lowing will be referred to as matrix ) perforated by an intricate network of110

fractures used to collect the gas trapped in the pores. Despite the porous111
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nature of the matrix, the shale gas flow has some peculiarities and cannot be112

described as the typical flow in porous media.113

The major factors affecting shale gas production modelling and even-114

tually forecast are identified as follows. The shale reservoir has a ultra-low115

permeability and nano-pores, which could lead to a Knudsen diffusion contri-116

bution to the flow. This suggests the use of an apparent permeability which117

includes matrix permeability as well as Knudsen diffusion effects (Javadpour118

(2009)), while maintaining the use of a Darcy equation. The permeability de-119

pends on the effective pressure (stress effect), which is the difference between120

confining pressure and pore pressure (Kwon et al. (2001)). Due to the ultra-121

low permeability, the fracture network has the largest influence on how the122

flow proceeds. Finally no consensus has been reached on the role of adsorp-123

tion. Hill and Nelson (2000) suggest that 20% to 85% of total shale storage124

is in the form of adsorption, however the majority may never be produced.125

Others suggest that it could be neglected for certain reservoirs (Patzek et al.126

(2013)). In this work the desorption of shale gas is not considered. This127

choice is motivated by the fact that, according to the literature (e.g. Patzek128

et al. (2013)) in the cases used for validation (Barnett shale) the desorption129

can be neglected. However, it is important to point out that the approach130

presented here is in principle not limited to cases without desorption since131

this phenomenon can be included in the formulation through the Langmuir132

isothermal theory (Shabro et al. (2012)). This will be attempted in future133

works.134

Starting from the typical equations describing the fluid dynamics, a math-135

ematical model for the shale gas flow can be derived (Chen et al. (2006);136

Gruber (2014)). The following assumptions are considered in the following:137

(a) single phase flow; (b) gas is assumed to be pure methane (single species);138

(c) isothermal conditions; (d) negligible gravitational effects; (e) no sources139

or sinks within the shale matrix; (f) porosity constant in time; (g) perme-140

ability is treated as a scalar (isotropic matrix); (h) permeability is a function141

of effective pressure; (i) no desorption (the gas is only stored within the pore142

spaces). In the following the mathematical model used in this work is first143

presented followed by a description of the developed numerical solver and the144

models adopted for shale properties. All the symbols are defined in Appendix145

C.146
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2.1. Mathematical model147

The typical representation of a continuum in Computational Fluid Dy-148

namics (CFD) problems, generally involves equations representing the con-149

servation of mass, species, momentum and energy. Since the flow considered150

here is isothermal and single species (see assumptions (b) and (c)), trans-151

port equations for the conservation of energy and specific species are not152

required (the conservation of methane is expressed through the conservation153

of mass). In addition, capillary pressures and saturation equations are also154

not required, because saturation is naturally set to one, with a single phase155

single species flow.156

Following Chen et al. (2006), the conservation of mass can be expressed157

as:158

∂φρ

∂t
= −∇ · (ρu) (1)

where φ is the porosity, ρ is the density and the source terms on the right159

hand side have been neglected because of assumption (e). The second equa-160

tion needed to completely describe the flow within the shale, is the momen-161

tum equation. However, since shale is a porous medium, the momentum162

equation is replaced with the Darcy equation of velocity, which is an empir-163

ical equation derived originally for modelling water transport through sand164

beds. Originally established by Henry Darcy in 1856, this law shows a linear165

relationship between the fluid velocity and the pressure head gradient (Chen166

et al. (2006)):167

u = − 1

µ
k(∇P − ρg∇h) (2)

where, P is the pressure, µ is the fluid viscosity, and k is the permeability.168

Applying assumption (d) to Eq. 2 yields:169

u = − 1

µ
k(∇P ) (3)

In order to close the system, an equation of state is also needed. While170

in the oil and gas industry cubic equations of state such as the Peng and171

Robinson (1975) and Soave (1972) equations of state are very common, in172

this work a real gas law exploiting the Standing and Katz (1942) empirical173

relationship for the compressibility factor z of natural gas is used (ERCB174

(1979); Mahmoud (2013)):175

ρ =
PW

zRT
(4)
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where, W is the molecular weight, T is the temperature, and R is the methane176

gas constant. Since the fluid of interest is natural gas, which is a compressible177

gas, a compressibility Cg equation should be introduced:178

Cg =

(
1

ρ

∂ρ

∂P

) ∣∣∣∣∣
T

(5)

Combining Eqs. 1, 3 and 4, a material balance for the gaseous species is179

obtained (Chen et al. (2006)):180

∂

∂t

(
φPW

zRT

)
= −∇ ·

(
PW

zRT

1

µ
(−k)∇P

)
(6)

Considering assumptions (c) and (f), Eq. 6 can be further simplified into:181

φ
∂

∂t

(
P

z

)
= ∇ ·

(
Pk

zµ
∇P

)
(7)

Generally (e.g. Patzek et al. (2013)), at this stage of derivation, the com-182

pressibility equation is incorporated in Eq. 7, and the pressures are replaced183

with pseudo pressures (or P 2) to account for the error imposed by assuming184

that the fluid properties (viscosity, compressibility, porosity, saturation) do185

not depend on the pressure. However, in this paper, all the fluid properties186

are taken to be pressure-dependent variables, and hence the need for pseudo187

pressures is eliminated. As such, this paper takes a different direction, and188

develops a tailored governing equation. Before further developing Eq. 7, Eq. 5189

needs to be manipulated by introducing Eq. 4 and simplifying:190

Cg =
zRT

PW

(
W

zRT
− PW

z2RT

dz

dP

)
=

1

P
− 1

z

dz

dP
(8)

Equation 8 can be expressed in the following form by multiplying by
(
P∂P
z∂t

)
:191

Cg
P∂P

z∂t
=
∂P

z∂t
− P

z2
∂z

∂t
(9)

Finally, by replacing the right hand side of Eq. 9 with ∂
∂t

(
P
z

)
, the final form192

of Eq. 5 is obtained.193

∂

∂t

(
P

z

)
=
∂P

∂t

CgP

z
(10)
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Equation 10 is used to manipulate Eq. 7 into the final partial differential194

equation which describes shale gas flow. Using assumption (f), the right195

hand side of Eq. 10 can be equated to the right hand side of Eq. 7 multiplied196

by the porosity (φ), leading to:197

∂P

∂t

CgPφ

z
= ∇ ·

(
Pk

zµ
∇P

)
(11)

Rearrangement of Eq. 11 yields to the partial differential equation governing198

shale gas flow:199

∂P

∂t
=

z

CgPφ
∇ ·
(
Pk

zµ
∇P

)
(12)

2.2. Numerical Methods200

Equation 12 has a similar structure to the diffusion equation (Gruber201

(2014)) and therefore its implementation into a numerical solver is easier202

than utilizing a pseudo-pressure equation. A solver for shale gas flow has203

been implemented in the open source code OpenFOAM (Weller et al. (1998))204

where partial differential equations are solved by means of the finite volume205

approach. The use of the OpenFOAM framework is very useful since it allows206

for the solution of our model in every kind of geometry, without restrictions.207

In addition, it allows the use of unstructured grids which facilitate the dis-208

cretization of complex geometries, typically found in shale gas applications.209

In order to directly exploit the discretization of the differential operators210

already available in OpenFOAM, Eq. 12 was rearranged in the following211

equivalent form which allows an easier implementation:212

∂P

∂t
= ∇ ·

(
k

φµCg

∇P
)
−∇

(
k

φµCg

)
· ∇P +

z

CgPφ
∇
(
Pk

µz

)
· ∇P (13)

Once Eq. 13 is solved and the pressure is known, the Darcy velocity can213

be calculated through Eq. 2 and hence the flow rate can be found. It is214

important to point out that the reservoir and fluid properties appearing in215

Eq. 13 can in general be a function of both space and pressure. Permeability,216

compressibility, compressibility factor, and viscosity, are all treated as spatial217

variables rather than constants. In addition, these variables will be treated218

as pressure dependent, as discussed in Section 2.4.219

In all the computations performed in this work, the time derivative was220

discretized using a backward Euler implicit scheme whereas central differ-221
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encing second order schemes were used for spatial discretization. If not dif-222

ferently specified, all the computational grids used in this paper are hexahe-223

dral meshes (generated using the OpenFOAM meshing tool), but, exploiting224

the unstructured formulation of the OpenFOAM framework, other meshing225

strategies can also be used.226

Equation 13 can be applied either (i) to the matrix only (single-zone227

solver) or (ii) to both the matrix and the fracture (dual-zone solver) and228

both these versions of the solver were implemented. The first case is the229

simplest scenario where only the matrix needs to be discretized. Boundary230

conditions are applied to (1) the reservoir confinement, where generally a231

zero-gradient condition is assumed for the pressure to represent a wall with no232

flux, but also different types of conditions such as cyclic or constant pressure233

are possible, and (2) at the interface between the matrix and the fracture,234

where a constant pressure is usually imposed. In the case of dual-zone solver235

both the matrix and the fracture should be included in the computational236

domain and different shale properties should be assigned to these two regions237

(for example matrix and fracture have different porosity). In the approach238

followed in this work, the matrix and the fracture were modelled as two239

different domains interacting through specific boundary conditions at the240

common interface. A detailed description of the dual-zone solver is given in241

Section 2.3.242

2.3. Dual Zone Solver243

Petroleum reservoirs usually consists of a low permeability/low porosity244

matrix and a network of relatively high permeability/high porosity fractures.245

Historically, the fracture network was natural and, due to the difference in246

the properties of the matrix and the fracture, this led to the development of247

dual porosity and dual porosity/dual permeability models in order to better248

represent the complex geometry of fractures inside a rock matrix (Chen et al.249

(2006)). While such models were developed long time ago in order to better250

represent petroleum reservoirs with natural fractures, there seems to be a251

similar need for shale gas reservoirs, especially with the added complexity of252

hydraulic fractures.253

It would be useful to extend the solver to allow the simulation of the gas254

flow in both the shale matrix and the fracture network. In order to do that,255

a dual-zone solver has been implemented where the matrix and the fracture256

network are treated as two distinct domains, each with its own governing257

equation and parameters (including permeability and porosity), that only258

9



interact at their common boundary. This approach is different from the dual259

porosity model, where the matrix is resembled by blocks and the fracture is260

resembled by spaces in between the matrix blocks (Chen et al. (2006)), and261

in principle does not need any transformation or simplification. This offers a262

great advantage into simulating realistic fracture networks. The dual solver263

was implemented starting from the dual-zone heat transfer solver developed264

by Craven and Campbell (2011) for conjugate heat transfer problems.265

2.3.1. Governing Equations266

While the flow within a fracture has been studied and treated as a Navier-267

Stokes flow in many studies (Brush and Thomson (2003); Zimmerman and268

Bodvarsson (1996)), the dual porosity model treats the flow within the frac-269

ture as a flow inside a porous medium (Chen et al. (2006)). The fracture is270

usually characterized by the presence of rock residuals or proppants which271

in general should be taken into account for an accurate prediction of the272

flow (Chen et al. (2006)). If Navier-Stokes equations are used, the effect of273

rock residuals can be included in the simulation only thorough the geometry274

resulting in a very complex shape of the fracture domain. However, if the275

flow inside the fracture is treated as a porous medium, the Darcy equation276

can be used and the effect of rock inside the flow can be taken into account277

through porosity and permeability values. As a result, in this work the two278

domains will be treated as porous media with the same governing equation279

(see Eq. 13). The interaction between these two domains will be controlled280

through the coupling done at the common boundary. The specific boundary281

conditions applied to the matrix and the fracture at the common interface282

are detailed in Sections 2.3.2 and 2.3.3.283

2.3.2. Matrix Boundary Condition284

The boundary condition applied to the matrix at the interface I with the285

fracture is expressed in terms of pressure. The pressure seen by the matrix286

should be equal to the pressure on the fracture side. This is a Dirichlet287

boundary condition and reads as:288

Pm|I = Pf |I (14)

2.3.3. Fracture Boundary Condition289

Inspired by the dual porosity model, which states that the flow rate of the
gas leaving the matrix enters the fracture network, the boundary condition
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for the fracture, at the fracture-matrix interface, is a Neumann boundary
condition. The introduction of the mass flow rate leaving the matrix into
the fracture as a boundary condition is done through the pressure gradient.
By imposing that the mass flow rate leaving the matrix is equal to the flow
entering the fracture and after introducing the Darcy expression (Eq. 2) for
the velocity and removing the area which is a common factor, the following
expression for the boundary condition at the common interface I is obtained:

ṁf |I = ṁm|I → ρfAuf,n = ρmAum,n

→ ρf
kf
µf

∇Pf,n|I = ρm
km
µm

∇Pm,n|I (15)

290

∇Pf,n|I =
ρm
ρf

km
kf

µm

µf

∇Pm,n|I (16)

Hence the coupling is done by imposing on the fracture side the component291

of the pressure gradient normal to the interface according to Eq. 16. If this292

coupling algorithm is working properly within the solver, considering also293

that at the interface the matrix and the fracture have the same pressure (see294

Eq. 14) and therefore the same density, the normal component of the Darcy295

velocity at the common boundary should be be equal for each zone. This296

will be used later on for validation.297

2.4. Natural Gas and Shale Properties298

In order to properly describe the evolution of shale gas, physical proper-299

ties appearing in Eq. 13 need to be accurately modelled. In the following, the300

main modelling assumptions for the physical properties of shale gas (methane301

is considered here) are summarized together with some considerations regard-302

ing the porosity and permeability of the matrix. It is important to point out303

that the code is not limited to the use of the following relations. In prin-304

ciple, every kind of relation for the physical properties can be implemented305

and used making the approach very flexible and ready to incorporate a more306

comprehensive description of the properties or to be extended to different307

fuels and applications.308

2.4.1. Compressibility factor309

Methane has a critical temperature of 190 K and a critical pressure of310

4600 kPa (Friend et al. (1989)). The pressure and temperature of the nat-311

ural gas found within shale formations exceeds the critical values. Hence,312
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methane will not behave as an ideal gas within shale. Originally, Standing313

and Katz (ERCB (1979)) developed plots of the compressibility factor for314

sweet natural gas versus reduced pressure and temperature. These charts315

were curve-fit by Dranchuk, Purvis, and Robinson, using the BWR equa-316

tion of state (ERCB (1979)). However, Mahmoud (2013) showed that the317

original equations are not accurate at high pressures, and suggested another318

set of equations which better matches compressibility factor values at high319

pressure.320

z = aP 2
r + bPr + c

a = 0.702e−2.5Tr

b = −5.524e−2.5Tr

c = 0.044T 2
r − 0.164Tr + 1.15

(17)

where the reduced pressure and the reduced temperature are given by:321

Pr =
P

Pcr

, Tr =
T

Tcr
(18)

Furthermore, Jarrahian et al. proposed a cubic equation of state which322

allows the calculation of the compressibility factor of natural gas with higher323

accuracy (Jarrahian and Heidaryan (2014)), and can be seen in Appendix324

B. In this code, due to the flexibility of the OpenFOAM framework, any ad-325

equate equation of state can be implemented, depending on the composition326

of the gas and the properties of the reservoir.327

As a result, compressibility factor was implemented into the code as328

a pressure dependent property using both, Eq. 17 (Mahmoud (2013)) and329

Eq. B.1 (Jarrahian and Heidaryan (2014)) (Eq. B.1 is the virial form of the330

cubic equation of state presented in Jarrahian and Heidaryan (2014)). The331

results shown in Section 3 were produced using Eq. 17, while the results332

produced using Eq B.1 are included in Appendix A.333

2.4.2. Compressibility334

Similar to the compressibility factor, compressibility has an empirical
equation which was developed by Dranchuk, Purvis, and Robinson (ERCB

12



(1979)). However, since compressibility can be calculated from the equation
of compressibility factor (Eq. 17), we will use the relation presented by Mah-
moud (2013), which provides better accuracy at high pressures. The com-
pressibility is described by the following set of equations (Mahmoud (2013)):

Cg =
Cr

Pr

Cr =
1

Pr

− 1

z

(
∂z

∂ρr

)
Tr

Cr =
1

Pr

− 1

z
[Pr(1.404e−2.5Tr)− (5.524e−2.5Tr)]

(19)

where the reduced pressure Pr and reduced temperature Tr were defined in335

Eq. 18. In Fig. 1, the compressibility and compressibility factor predicted336

using Eqs. 17, B.1 and 19 are compared with the equations suggested by337

Dranchuk, Purvis, and Robinson (ERCB (1979)). The three methods give338

very similar values for a reduced pressure less than 1.0 whereas for higher339

pressures (pressure larger than the critical value) the effect of the corrections340

suggested by Jarrahian and Heidaryan (2014) and by Mahmoud (2013) is341

clearly visible.342

2.4.3. Viscosity343

The viscosity of natural gas, and in this case pure methane, varies by344

a factor of four between pore pressure and fracture pressure (Ling (2010)).345

Hence, for the sake of mathematical rigour as well as exploiting the advan-346

tage of numerical simulation, viscosity will also be pressure dependent. The347

Lee-Gonzalez-Eaken correlation (Gonzalez et al. (1970)) was developed by348

measuring the viscosity of eight natural gases over a range of temperatures349

and pressures. This correlation can be seen in Eq. 20 (Ling (2010)).350
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Figure 1: Compressibility factor and compressibility versus reduced pressure, produced
using the equations from Refs. ERCB (1979), Jarrahian and Heidaryan (2014), and Mah-
moud (2013).

µ = 10−4Kexp(XρY )

K =
(9.379 + 0.01607W )T 1.5

209.2 + 19.26W + T

X = 3.448 +

[
986.4

T

]
+ 0.01009W

Y = 2.447− 0.2224X

ρ =
PW

zRT
= 0.00149406

PW

zT
(20)

where µ is in cp (centipoise), P in psia, ρ in g/cm3, and T in ◦R.351

In addition, Jarrahian et al. (2015) suggested a different viscosity cor-352

relation, based on their own cubic equation of state, which provides better353

accuracy at higher pressures and temperatures for sour and sweet natural354

gases. This correlation can be seen in Eq. B.2 (Jarrahian et al. (2015)), and355

can be found in Appendix B. The values of viscosity predicted by Eq. 20356

and Eq. B.2 are shown in Fig. 2. The results shown in Section 3 were pro-357

duced using Eq. 20, while the results produced using Eq B.2 are included358

in Appendix A.359
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Figure 2: Viscosity versus reduced pressure using Eq. 20 andEq. B.2

2.4.4. Permeability360

In general, reservoirs with permeability below 10−15 m2 (1.013 mD) are361

considered tight (Wang et al. (2014)). This dictates that shale, which is clas-362

sified as a tight reservoir, will have a permeability lower than 10−15 m2 (1.013363

mD). So Soeder (1988) reported a shale permeability of 2× 10−17 m2 (20.26364

µD). Bruner et al. (2011) reported values within the range of 2 × 10−17 m2
365

(20.26 µD) to 1 × 10−16 m2(100.13 µD). In 2006, the US geological sur-366

vey published a report which compiled shale sample results from several367

shale formations. This report states that shales with liquid petroleum in368

their pores had very low permeabilities in the range of tens of nano-darcies369

(1 × 10−20 m2) (Milici and Swezey (2006)). With many shale reservoirs370

containing oil and gas, permeabilities in the range of nano-darcies remain371

realistic. Keeping in mind that hydraulic fractures are created to increase372

permeability and that naturally occurring fractures passively increase per-373

meability, one cannot standardize a constant permeability for shale. Even374

further, some works suggest that permeability depends on pressure. For ex-375

ample, the permeability of illite-rich shale of the Wilcox formation has been376

found to decrease from 3×10−19 m2 (304 nD) to 3×10−21 m2 (3.04 nD) when377

the effective pressure increases from 3 MPa to 12 MPa (Kwon et al. (2001)).378

As a result, this paper utilizes a permeability equation which depends on379

effective pressure (Kwon et al. (2001)):380

k = 10−17

[
1−

(
Pe

19.3× 106

)0.159
]3

(21)
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The effective pressure, Pe, is the difference between confining pressure, the381

pressure due to the weight of the rock on top of the reservoir, and the pore382

pressure. Confining pressure Pc is estimated at 38 MPa throughout the paper.383

In addition, as noted in Section 1, it was suggested that the Darcy equa-384

tion for velocity is not sufficient to represent shale gas flow, which is a slip-flow385

or a transition flow. However, Javadpour (2009) showed that we can indeed386

maintain the Darcy form, but we need to use a specific form of permeability,387

called apparent permeability, which takes into account both the effect of the388

physical geometry of the rock (Darcy permeability) and the flow (slip and389

Knudsen effects). Apparent permeability is also used in this paper according390

to the following expression (Javadpour (2009)):391

ka =
2rµW

3× 103RTρ2avg

(
8RT

πW

)0.5

+

(
r2

8ρavg

)[
1 +

(
8πRT

W

)0.5
µ

pavgr

(
2

α
− 1

)]
(22)

In Eq. 22, α is called the tangential momentum accommodation coefficient392

(the fraction of the gas molecules reflected diffusely), and ranges between 0393

and 1.394

The values of permeability given by Eqs. 21 and 22 as a function of pres-395

sure are shown in Fig. 3 (pore radius was assumed to be 2 nm, and α was396

assumed to be 0.5). In Fig. 3(a), permeability increases as pressure increases.397

Physically, this can be attributed to the aperture of the pores. As the pore398

pressure increases, it resists against the confining pressure and keeps the399

physical pore volume large, which enhances the flow and subsequently in-400

creases permeability (elastic deformation is minimal). On the other hand, as401

the pore pressure decreases, the confining pressure starts to crush the pores,402

decreasing their volume, and subsequently reduce permeability (elastic de-403

formation is significant) (Kwon et al. (2001)). In addition, when natural or404

hydraulic fractures exist, the same effect can be noticed, which leads to the405

use of proppant to maintain an adequate fracture aperture and to enhance406

recovery. Nevertheless, the use of proppants does not infinitely improve re-407

covery, as the fractures and the proppant will eventually be crushed, and408

this gives shale gas its characteristic sharp production drop which is usu-409

ally mitigated by drilling many wells. On the contrary, Fig. 3(b) shows that410

the apparent permeability decreases as pressure increases. Permeability has411

a value slightly smaller than 1 × 10−19 m2 (101 nD) for pressure equal to412

35 MPa (this is the initial reservoir pressure throughout this paper), which413

is the Darcy permeability. As discussed in (Javadpour (2009)), for pressures414
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Figure 3: Permeability versus pressure using Eqs. 21 and 22, from Refs. Kwon et al.
(2001); Javadpour (2009).

larger than 10 MPa, the Darcy and the apparent permeability have a ratio415

of 1.0. As pressure decreases, the ratio of apparent to Darcy permeability416

increases significantly because the mean free path increases, and the flow417

shifts into slip and Knudsen regimes. The apparent to Darcy permeability418

ratio at the pressure of 5 MPa is around 5, as can be deduced from Fig. 3(b)419

by comparing the permeability values at 35 MPa and 5 MPa. This observa-420

tion is consistent with results presented by Javadpour (2009). Finally, the421

permeability resulting from the combined effects of pressure dependence and422

apparent permeability is shown in Fig. 3(c). In order to combine both Eq. 21423

and Eq. 22, the constant 10−17 in Eq. 21 was replaced by the permeability424

calculated from Eq. 22. The term 10−17 can be seen as a base permeability425

being adjusted by the pressure (stress effect). The permeability is equal to426

17



the base value for Pe = 0 and decreases as the effective pressure increases.427

This effect is also replicated in Fig. 3(c), where the use of Eq. 22 for the428

base value results in lower values of the permeability. This should be consid-429

ered an attempt to include both the stress and Knudsen effects in the same430

formulation.431

2.4.5. Porosity432

Although porosity is not a homogeneous and constant property, it is sim-433

pler to assume it as a constant, especially when the shale is assumed to be434

isotropic (assumptions (f) and (g)). It was estimated that the average poros-435

ity of the Barnett and Marcellus shales is 6% (Bruner et al. (2011)). Other436

sources suggest a range of porosity between 8.2% and 11.4% for the Marcel-437

lus shale (Taylor (2013)). As such, a value of 9% porosity will be used in438

this study. Note, however, that our governing equation (Eq. 13) allows for φ439

variations in space, if needed.440

3. Results and Discussion441

First, an assessment and validation of the model proposed here will be442

presented followed by the analysis of the diffusion behaviour and the influence443

of the fracture geometry. An example of simulation of a very complex frac-444

ture geometry is also included. Both the validation and the analysis of the445

behaviour of shale gas flow were performed using the single-zone solver, where446

only the matrix was included in the computational domain. The generic case447

solved here includes a horizontal well, with two vertical orthogonal penny-448

shaped fractures, as shown in Fig. 4. Finally, an application of the dual-zone449

solver, showing the potentiality of this approach, is presented and discussed.450

3.1. Validation451

The model is validated against two sets of literature results. The first452

one is the work of Patzek et al. (2013), where a two-regime flow is described.453

The second one is the work of Freeman et al. (2013), where the shale gas flow454

exhibits three types of flow: formation linear flow, compound linear flow, and455

elliptical flow.456

3.1.1. Two-Regime Flow457

In the work of Patzek et al. (2013) thousands of well data, from the
Barnett, were analysed and compared with a one-dimensional model for shale
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Figure 4: Generic fracture geometry.

gas production. It was shown that the fractional cumulative gas production
(Recovery Factor, RF) before fracture interference is proportional to a factor
κ multiplied by the square root of a normalized dimensionless (scaled) time t̃:

RF (t̃) ≈ κ
√
t̃

t̃ ≡ t/τ , τ = d2/αi

αi =
k

φSgµgCg

∣∣∣∣∣
Initial reservoir P, T

, RF (t̃) = m/M

(23)

where τ is the time elapsed before the occurrence of fracture interference,458

which depends on the initial conditions of the reservoir as well as the dis-459

tance between two adjacent fractures but not on the reservoir dimensions.460

It was also shown that the recovery rate (or mass flow rate) exhibits a two-461

regime flow. In the first regime, the recovery rate declines at a rate inversely462

proportional to the square root of the dimensionless (scaled) time. The sec-463

ond regime is an exponential decline which occurs after fracture interference.464

The one-dimensional model proposed by Patzek et al. (2013) is based on465

the same governing equations described in this study, but with a different466

treatment of the pressure dependence of the shale properties for which a467

pseudo-pressure notation was introduced. On the other hand, the formula-468

tion proposed in this work solves for the flow in three dimensions, retain-469

ing the governing equation in absolute pressure form (without resorting to470

pseudo pressures because all the fluid properties are implemented as functions471
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(a) Case 1. (b) Case 2.

Figure 5: Schematic of the two cases investigated for the assessment of the two-regime
flow.

of pressure). Since in the model derived in this work an isotropic matrix is472

assumed, a behaviour similar to the one found by Patzek et al. (2013) is also473

expected from our computations. Therefore, the capability of the present474

approach to capture the two-regime flow will be evaluated in the following475

as a first step of validation.476

Two different cases were solved here as schematically shown in Fig. 5.477

Both cases use the generic fracture geometry shown in Fig. 4 which is equiv-478

alent to the uniformly spaced hydrofracture stages in a horizontal well con-479

sidered in Patzek et al. (2013), and differ for the spacing between the fracture480

elements and the dimension of the reservoir. The relevant properties of each481

case are shown in Table 1. A uniform pressure equal to 5.0 MPa was imposed482

at the fracture boundary whereas the zero-gradient condition (no outflow)483

was applied at the reservoir walls. An initial pore pressure of 35.0 MPa was484

applied in both cases.485

While Patzek et al. (2013) assumed a constant permeability, deduced from486

Eq. 23 through a direct comparison with experimental measurements (for the487

investigated wells, a value in the range of 5×10−19 m2(506 nD) to 5×10−20 m2
488

(50.6 nD)was found), here different permeability models (PM) were consid-489

ered and applied to each case, therefore assessing the effect of permeability490

on the shale flow prediction. Table 2 summarizes the different permeability491

models used here. First, a constant permeability of 1 × 10−19 m2 (101 nD)492
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Table 1: Properties of the two generic cases solved.

Case Case 1 Case 2
Total Length 5 m 5 m
Total Width 5 m 1.5 m
Total Height 5 m 5 m
Fracture Half Length 0.9 m 0.9 m
Fracture Spacing 1.0 m 0.5 m
Fracture Thickness 3 mm 3 mm
Porosity 9 % 9 %
α 0.5 0.5
Pore Radius 2 nm 2 nm
Temperature 330 K 330 K
Critical Pressure 4.6 MPa 4.6 MPa
Critical Temperature 190 K 190 K
Molar Mass (Mw) 16.04 kg/kmol 16.04 kg/kmol
Number of Elements 1.6 million elements 0.9 million elements
Time Step 60 seconds 60 seconds
Initial Pore Pressure 35 MPa 35 MPa
Outlet (Fracture) BC Dirichlet (5 MPa or 25 MPa) Dirichlet (5 MPa or 25 MPa)
Reservoir BC Neumann (Zero-Gradient) Neumann (Zero-Gradient)
Characteristic Time τ 8.44 hours or 844 hours 2.11 hours or 211 hours

was assumed (PM1); second, the dependence on the effective pressure (stress493

effects, see Eq. 21 Kwon et al. (2001)) was accounted for (PM2); third, the494

apparent permeability (Knudsen effects, see Eq. 22 (Javadpour (2009))) was495

considered (PM3); finally, by combining Eq. 21 and Eq. 22, both the stress496

and Knudsen effects were included (PM4). An average pore radius r = 2 nm497

and tangential momentum accommodation coefficient α = 0.5 were assumed,498

when using apparent permeability.499

It is important to note that in reality, actual permeability values are larger500

than the values experimentally tested in labs, due to the effect of hydraulic501

fracturing on permeability values in the vicinity of the fracture/matrix in-502

terface (Patzek et al. (2013)). Equation 21 from Kwon et al. (2001), is a503

lab-based relationship and because of that will provide permeability values504

lower than actual wells. Therefore, it is expected that when this expression505

is used, a lower recovery rate will be produced. This relation was tested for506

an effective pressure range of 3 MPa to 12 MPa (Kwon et al. (2001)), and as507

such, the boundary condition at the fracture surface was increased to 25 MPa508

for PM2 and PM4, to maintain the effective pressure within the tested range.509

Figure 6 shows a 3D cut of the computational mesh used for Case 1.510
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Table 2: Summary of the four permeability models (PM) used in this work.
Permeability Model (PM) Main Feature
Permeability Model 1 (PM1) Constant Permeability (1× 10−19 m2) (101 nD)
Permeability Model 2 (PM2) Stress Effect (Effective Pressure Permeability, Eq. 21 Kwon et al. (2001))
Permeability Model 3 (PM3) Knudsen Effect(Apparent Permeability, Eq. 22 Javadpour (2009))
Permeability Model 4 (PM4) Stress Effect and Knudsen Effect (Eq. 21 and Eq. 22)

Figure 6: Computational mesh used for Case 1.

Refinements around the fracture were adopted in order to properly solve511

the pressure gradients, usually very steep in this region. A similar grid512

was also used for Case 2 and for all the other cases investigated in this513

work, except the complex fracture geometry presented in Section 3.4 for514

which a tetrahedral mesh was used. An example of time evolution of the515

pressure and permeability (PM3) inside the matrix is shown in Fig. 7 where516

snapshots of the solution at different times are reported. As time advances,517

the pressure around the fracture drops and hence the permeability increases,518

which matches the trend in Fig. 3-b (Since PM3 is utilized in this case).519

Although in Section 3, the solution is analysed mainly in terms of global520

quantities (such as recovery rate and recovery factor), the outcome of the521

solver is the three-dimensional pressure field which allows us to monitor the522

evolution of the shale quantities in any region of the domain.523

Since the fracture spacing in Case 1 is double the one in Case 2 (1.0 m524

and 0.5 m, respectively), the characteristic time τ for Case 1 is four times525

the characteristic time for Case 2 because the fracture spacing in Eq. 23 is526

squared. With the initial pore pressure of 35 MPa and initial reservoir tem-527

perature of 330 K (Table 1), the two cases investigated here have a charac-528

teristic interference time τ of 8.44 and 2.11 hours respectively, for PM1-PM3.529
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(a) Pressure (t=172h) (b) Permeability (t=172h)

(c) Pressure (t=344h) (d) Permeability (t=344h)

(e) Pressure (t=516h) (f) Permeability (t=516h)

Figure 7: Pressure and permeability plots at several times, for Case 1 using PM3

However, for PM4, when permeability at the initial conditions is 1×10−21 m2
530

(1.01 nD), see Fig. 3(c), interference time τ increases to 844 and 211 hours531

respectively.532

Figures 8 and 10 show the recovery factor and the recovery rate versus533

the scaled time, obtained for Case 1 using the different permeability models.534

23



0 20 40 60 80 100 120

Scaled Time

0

0.05

0.1

0.15

0.2

0.25

R
e
c
o

v
e
ry

 F
a

c
to

r 
R

F

Solver Output

0.20.40.60.8
0

5

×10
-3

(a) PM1.

0 20 40 60 80 100 120

Scaled Time

0

0.01

0.02

0.03

0.04

0.05

R
e
c
o

v
e
ry

 F
a

c
to

r 
R

F

Solver Output

0.2 0.4 0.6 0.8

2

4

6

8

10
×10

-4

(b) PM2.

0 20 40 60 80 100 120

Scaled Time

0

0.05

0.1

0.15

0.2

0.25

R
e

c
o

v
e

ry
 F

a
c
to

r 
R

F

Solver Output

0.2 0.4 0.6 0.8
0

5

×10
-3

(c) PM3.

0 0.2 0.4 0.6 0.8 1

Scaled Time

0

2

4

6

8

R
e
c
o
v
e
ry

 F
a
c
to

r 
R

F

×10
-4

Solver Output

(d) PM4.

Figure 8: Recovery factor versus scaled time for Case 1 predicted using the four perme-
ability models (PM), with curve matching.

Similarly, results for Case 2 are reported in Figs. 9 and 11. All the results535

show an agreement with the two-regime flow previously described and for536

both Case 1 and Case 2, the use of apparent permeability (PM3) allows for537

a better match of the profile inversely proportional to the square root of the538

scaled time observed by Patzek et al. (2013) before fracture interference. Ap-539

parent permeability is the key feature that distinguishes the shale gas flow540

from other porous material, and in general should be included in the formu-541

lation. It is also interesting to note that the recovery rate and recovery factor542

are very sensitive to the value of the permeability and different predictions543

are obtained with the various models. Therefore, great attention should be544

devoted to the selection of the right model for permeability.545

It is also interesting to look at the value of the constant κ appearing in546
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Figure 9: Recovery factor versus scaled time for Case 2 predicted using the four perme-
ability models (PM), with curve matching.

the expression of the recovery factor vs. scaled time during the early stages547

of the reservoir depletion (Eq. 23). This constant depends on the fracture548

geometry, the permeability of the shale, the gas properties, as well as the549

reservoir size. For the Barnet shale wells, a value around 0.625 was found550

by Patzek et al. (2013) whereas for the geometries investigated in this work551

a value in the range 0.001-0.015 seems to give a good scaling. Assuming552

that in real application the fracture network is created through hydraulic553

fracturing, for optimal (fastest) recovery, κ = 0.625 can be regarded as a554

practical (rather than theoretical) upper limit. The fracture networks used555

in this paper are far from being optimized for recovery. Hence, κ is far lower556

than the value suggested by Patzek et al. (2013). However, when comparing557

the two cases (see Fig. 8 and Fig. 9), it should be noted that Case 2 depletes558
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Figure 10: Recovery rate versus scaled time for Case 1 predicted using the four perme-
ability models (PM), with curve matching.

much faster than Case 1. This can be attributed to the reservoir size and to559

the characteristic interference time τ . For the same fracture network, a larger560

reservoir reduces the constant κ, because of the larger amount of natural gas561

in the reservoir, which naturally requires a longer time to extract. In addition,562

a larger characteristic interference time τ reduces the constant κ, because it563

takes a longer time for fracture interference to occur.564

The results shown in this section demonstrate that the three-dimensional565

shale gas flow still preserves the two-regime flow characteristics described566

by Patzek et al. (2013), regardless of the model used to include the per-567

meability. However, the recovery rate is in general very sensitive to the568

permeability, and therefore great care should be used for the selection of the569

more consistent permeability model, being both stress and Knudsen effects570
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Figure 11: Recovery rate versus scaled time for Case 2 predicted using the four perme-
ability models (PM), with curve matching.

in general non-negligible.571

3.1.2. Three-Regime Pressure Contours572

In the work of Freeman et al. (2013), the pressure field inside the matrix573

was directly analysed and on the basis of the different shapes of the pres-574

sure iso-lines. Three flow regimes were distinguished: formation linear flow,575

compound formation linear flow, and elliptical flow. In order to qualitatively576

validate the solver presented in this study, the pressure contours obtained in577

the previous simulations are compared to those presented by Freeman et al.578

(2013). Although the dimensions of the fracture and the well network used579

here are different compared to the geometry used in (Freeman et al. (2013)),580

the trends of the pressure profiles can still be compared. Figure 12 shows581
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Figure 12: Left: formation linear flow, Center: compound linear flow, Right: elliptical
flow Freeman et al. (2013). (Reused with persmission from Elsevier. License Number:
3902540332270)

the three flow regimes around the fracture from the work by Freeman et al.582

(2013). The linear flow seen in Fig. 12 is characterized by parallel pressure583

iso-lines. As the flow proceeds into compound linear and elliptical flow, the584

iso-lines spread around the fracture and are not parallel anymore but trans-585

form into elliptical profiles.586

Fig. 13 shows the pressure profiles from the solution of Case 2 (using587

a variable permeability function). Qualitatively, the same transition into588

the three regimes of Fig. 12 was found. While the geometric dimensions are589

different between the two studies, the comparison demonstrate the capability590

of the present approach to capture the required physics, showing agreement591

with literature pressure regimes around the fracture.592

Furthermore, Freeman et al. (2013) suggest that the transition between593

formation linear flow and compound linear flow is triggered by fracture inter-594

ference which causes a change of regime in the recovery rate. The formation595

linear flow and the compound linear flow are determined by the fracture ge-596

ometry and fracture interference. Fig. 13 shows that the transition between597

the formation linear flow and the compound linear flow happens at around598

a time equal to τ (i.e. scaled time = 1). According to Freeman et al. (2013),599

this change in flow regime will be matched by a change in recovery rate600

regime. Fig. 14 locates this regime change in a plot showing the recovery601
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Figure 13: Left: formation linear flow, Centre: compound linear flow, Right: elliptical
flow

rate vs. scaled time. This can be linked back to the work of Patzek et al.602

(2013) and the two-regime flow analysed in Section 3.1.1. For τ < 1, where603

the recovery factor is proportional to the square root of scaled time, the604

pressure contour does not show fracture interference. Therefore the square605

root regime of the recovery factor can be associated with the absence of in-606

terference between the fractures (i.e. formation linear flow in the pressure607

contours). The transition from formation linear flow to compound linear flow608

around the fracture triggers the regime change in recovery rate at a scaled609

time of 1.0. After fracture interference, the profile of the flow is expected to610

be affected by the global geometry of the fracture network and the recovery611

rate turns into exponential decay (Patzek et al. (2013)) if the fracture net-612

work is optimized for recovery, or a different profile depending on the global613

characteristics of the fracture. In this second stage, the interaction with the614
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Figure 14: Recovery rate versus time, with the regime change highlighted at scaled t=1

reservoir confinement may also play an important role on the evolution of615

the shale flow. This will be further investigated in Section 3.3.616

3.2. Diffusion Behaviour617

Although shale gas flow is often described as a diffusion phenomenon (Patzek618

et al. (2013)), the governing equation (see Eq. 13) is not a pure diffusion619

equation because of the two extra terms appearing on the right hand side.620

In order to investigate the contribution of these two terms to the shale flow,621

results obtained in Section 3.1 for Case 1 (see Table 1) will be compared622

with results from a reduced model, where only the diffusion term in Eq. 13623

is retained (for this test, PM4 was utilized):624

∂P

∂t
= ∇ ·

(
k

φµCg

∇P
)

(24)

This equation is quite simple to implement and solve and can be viewed as625

a simplified model of the shale gas flow.626

Comparisons between the solution obtained with the complete model627

(Eq. 13, already discussed in Section 3.1) and the diffusion-only model (Eq. 24)628

are shown in Fig. 15 where the logarithmic plot of the recovery factor and629

the recovery rate vs. time are reported. It is possible to note that the use630

of Eq. 24 leads to an overestimation of the recovery rate, and therefore an631

overestimation of the recovery factor, compared to the complete model. This632

means that the second and third terms on the right hand side of Eq. 13 have633

the effect of reducing the diffusion mass flow rate.634

Considering the depletion time, the difference between the two cases is635

significant and this suggests that Eq. 24 cannot be used to model shale gas636
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Figure 15: Comparison between the shale gas behaviour predicted by the complete model
(Eq. 13) and the diffusion-only model (Eq. 24).

when accuracy is a critical factor. However, the trends in Fig. 15 show that637

the solution of Eq. 24 still preserves the two-regime flow. Therefore, although638

the additional terms in the complete model have an important impact on the639

mass flow rate, the physical behaviour seems dominated by diffusion.640

The results in this section show that the flow of natural gas in shale is641

indeed a diffusion-dominated phenomenon. A diffusion equation can prop-642

erly model the two-regime behaviour, but gives very different predictions of643

quantities relevant for practical purposes, such as the recovery factor and the644

recovery rate, compared to the complete model.645

3.3. Influence of the geometry646

Natural gas flow in shale is known to be strongly influenced by the fracture647

network geometry (Patzek et al. (2013)). In order to further investigate this648

aspect, four geometries with the same fracture network but with varying649

reservoir sizes were solved. In all the cases the reservoir has the shape of a650

parallelepiped with the same area of the cross section but different lengths,651

as schematically shown in Fig. 16 and detailed in Table 3. Simulations with652

variations of the other dimensions of the reservoir (for example the width)653

were also performed (refer to Appendix A), leading to the same conclusions.654

The results in Fig. 17 show that the recovery rate and the recovery factor655

are the same for all geometries. Therefore it is possible to conclude that the656

flow behaviour is determined by the fracture network, regardless of the di-657

mension of the domain. Furthermore, Fig. 17 shows that all four geometries658
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Figure 16: Schematic of the cases considered for the sensitivity analysis to the reservoir
dimension.

Table 3: Geometrical properties of the geometries used to investigate the effect of fracture
network

Geometry Reservoir Length Reservoir Height Reservoir Width
Geometry 1 5 m 5 m 5 m
Geometry 2 7 m 5 m 5 m
Geometry 3 9 m 5 m 5 m
Geometry 4 11 m 5 m 5 m

produce the same amount of gas after a given time is elapsed. This means659

that, regardless of size, early shale gas behaviour is set by the fracture net-660

work. Only in the last stages of the depletion, when the flow interacts with661

the boundary walls, the reservoir shape and dimension can affect the shale662

production. In other words, the recovery rate is mainly dependent on the663

fracture geometry, until boundary conditions of the reservoir come into effect.664

This further validates the solver, as this behaviour is expected and agreed665

upon in literature, as already discussed in Patzek et al. (2013); Freeman et al.666

(2013).667
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Figure 17: Sensitivity analysis to the dimension of the reservoir.

3.4. Complex Geometry668

As stated in Section 1, one of the main properties of shale gas reservoirs,669

is the complexity of the fracture geometry. Since one of the main aims of this670

work is to present a three-dimensional CFD solver able to solve very complex671

fracture networks, it would be adequate to show the capability of the solver672

to predict the shale flow in a more realistic fracture geometry. The geometry673

was confined inside a block of matrix whose dimensions are 0.5x0.5x0.1 m3,674

and can be seen in Fig. 18. The permeability model PM3 (see Table 2) was675

used to generate the results. Due to the complex geometry, in this case the676

domain was discretized by means of a tetrahedral mesh generated using the677

software ICEM, part of the ANSYS package. A time sequence of the pressure678

and permeability distributions in the domain, is shown in Fig. 19.679

It is interesting to note how in complex fracture geometries, the inter-680

action between the different fractures happens at different times being con-681

trolled by the inter-distance between the various fracture elements. As shown682

in Fig. 19, in the region where two fracture elements are very close to each683

other the pressure is quite low (higher local depletion) whereas where the684

distance between the elements is bigger, the higher level of pressure indi-685

cates that a larger amount of shale gas is still present in that region. The686

three-dimensional solver presented here is able to capture all these features687

and solving in detail the shale flow around the fracture and, in principle,688

the solution can also be used to calibrate low-order analytical models. For689

the sake of completeness, the global recovery factor and the recovery rate690

are reported in Fig. 20. The maximum recovery factor achieved in this case691
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Figure 18: Fracture geometry of the case presented in Section. 3.4

(see Fig. 20(b)) is around 62%. This is due to the outlet boundary condition692

set to 5 MPa, well above atmospheric pressure, which does not allow the693

complete depletion of the reservoir.694

3.5. Dual Zone Solver695

In principle, the mathematical model describing the shale behaviour can696

be used to study the shale flow in both the matrix and the fracture. Keeping697

in mind that the shale matrix and the fracture network vary greatly in perme-698

ability and porosity, the domain can be decomposed into two sub-domains,699

corresponding to the matrix and the fracture respectively, where different700

properties are assigned. This is the principle behind the dual zone solver701

implemented in this work (see Section 2.3) where the governing equation of702

the single zone solver is applied to both the matrix and the fracture and703

the interaction between the two regions is imposed through specific coupling704

conditions at the common interface. In order to distinguish between the two705

regions, specific values of permeability and porosity should be assigned, con-706

sistent with the nature of the matrix and the fracture. With the main aim of707

showing the capability of this approach, the dual zone solver has been used708

to investigate the simple test case shown in Fig. 21. Although the solver709

can be applied to any kind of geometry, as the ones used for the single zone710

solver, this case was chosen for the very simple shape of the interface which711

facilitates the meshing of the two domains (a one-to-one correspondence of712

the faces at the interface is required in the current implementation) and at713

the same time reduces the computational cost. The zone parameters used in714
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(a) Pressure, Time = 0.18h (b) Permeability, Time = 0.18h

(c) Pressure, Time = 0.36h (d) Permeability, Time = 0.36h

Figure 19: Pressure and permeability distribution vs time, in a complex fracture geometry.

the present investigation are detailed in Table 4. This model should not be715

confused with the well known dual porosity model used to represent fractured716

porous media, as already discussed in Section 2.3. The model presented here717

does not require any transformation of the physical domain, and treats both718

regions as completely separate. As a result, a porosity value of 33% assigned719

to the fracture in Table 4 represents the porous space within the fracture720

only, and does not represent the volume of the fracture with respect to the721

whole fractured domain. In addition, since the fracture has a large aperture722

compared to the shale matrix which has nanopores, a constant permeability723

(PM1) was assigned to the fracture, whereas for the matrix both constant724
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Figure 20: Recovery Rate and Recovery Factor of the complex realistic geometry case.

Table 4: Properties of the matrix and the fracture for the case studied with the dual zone
solver.

Property Matrix Fracture
Porosity 9% 33%
Permeability PM1, k = 5× 10−19 m2(506nD), or PM3 PM1, k = 5× 10−15 m2 (1.013 mD)
Initial Pore Pressure 35 MPa 35 MPa
Governing Equation Eq. 13 Eq. 13
Common Boundary Condition Dirichlet BC Neumann BC
Confinement Boundary condition Neumann zero gradient (wall) Neumann zero gradient (wall)
Outlet -not applicable- Dirichlet BC (fixed value) 3MPa

permeability (PM1) and apparent permeability function (PM3) were tested,725

as also summarized in Table 4.726

Before looking at the results, it is important to note that the fracture727

is in direct contact with the low pressure outlet boundary while the matrix728

is interfaced with the fracture which is at the same initial pressure of the729

matrix. Furthermore, the fracture permeability is 5 × 10−15 m2 (1.013 mD)730

compared to 1 × 10−19 m2 (101 nD) for the matrix, at 35 MPa. Therefore,731

the fracture is expected to deplete first and at a faster rate compared to732

the matrix or, in other words, the pressure in the fracture is expected to733

balance the outlet pressure of 3.0 MPa long before the matrix. This is shown734

in Fig. 22, where the pressure field in the case of constant permeability for735

both the matrix and the fracture are reported. After 5 s the highest pressure736

existing in the fracture is around 3.1 MPa, whereas a significant volume of737

the matrix has still a pressure higher than 34.0 MPa, although the initial738

pressure of both the fracture and the matrix was the same (35.0 MPa, see739

Table 4), indicating that the fracture is almost depleted whereas the matrix740
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Figure 21: Schematic of the case studied with the dual zone solver.

Figure 22: Pressure field in the cross section at different times for the case investigated
with the dual zone solver.

still contains the most of the initial shale gas.
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Figure 23: Darcy velocity field in the cross section at different times for the case investi-
gated with the dual solver.

It is also interesting to analyse the Darcy velocity shown in Fig. 23. Con-741

sistent with the time evolution of the pressure, the fracture Darcy velocity at742

the interface with the outlet boundary decreases from 128 mm/s at t = 1 s743

to about 1 mm/s at t = 5 s, whereas values lower than 0.5 mm/s are ob-744

served at the fracture/matrix interface throughout the transient indicating745

that the fracture depletes faster than the matrix. Reminding that the Darcy746

velocity in each region is proportional to the permeability and the pressure747

gradient (see Eq. 2), the observed behaviour can be related to the time evo-748

lution of the pressure as well as the difference in permeability between the749
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two zones (the fracture permeability is four orders of magnitude larger than750

the matrix permeability). At early times the pressure gradient at the frac-751

ture/outlet interface is very high and then decreases leading to a decrease752

of the Darcy velocity, whereas pressure gradients at the fracture/matrix in-753

terface are generally low during the whole initial transient causing the lower754

levels of velocity observed at the common interface. Looking more in detail755

at the transient behaviour of the Darcy velocity at the common interface, it756

is interesting to note that, as shown in Fig. 23, the velocity increases from757

0.298 mm/s at t = 1 s to 0.37 mm/s at t = 3 s and then decreases back758

to 0.329 mm/s at t = 5 s. Such behaviour can be explained on the basis759

of the time evolution of the pressure gradient. Since the initial pressure in760

the two domains, the fracture and the matrix, is the same, at early times761

the pressure gradient at the interface is very small. However, as the fracture762

starts to deplete this pressure gradient starts to increase. Owing to the high763

permeability of the fracture network, the pressure in the fracture drops faster764

than the pressure in the matrix which has a permeability four orders of mag-765

nitude smaller. This fast drop in fracture pressure coupled with a slow drop766

in matrix pressure, causes the pressure gradient at the boundary in between767

the two zones to increase rapidly, generating an increase of the velocity. After768

that, as the pressure in the matrix starts to decrease gradually, the velocity769

at the interface starts to decrease as well until the complete depletion.770

Since the coupling conditions at the common interface impose the same771

pressure and the same mass flow rate (see Section 2.3 for details), both the772

pressure and the Darcy velocity at the two sides of the interface should be773

the same. This is clearly shown in Figs. 22 and 23, thus verifying that the774

coupling at the boundary is correctly working. This also means that, because775

of the different values of permeability, the pressure gradient on the matrix776

side is higher than the one on the fracture side. This has implications for the777

generation of the mesh. In order to properly resolve the pressure gradient, a778

higher resolution is generally required on the matrix side of the interface in779

order to proper resolve780

The different behaviour of the Darcy velocity at the outlet boundary and781

at the fracture/matrix interface has a direct impact on the recovery rate of782

the two zones, which is directly related to the velocity field. Figures 24(a)-(d)783

show the recovery factor and recovery rate of the matrix and the fracture,784

considered as two distinct domains. The recovery rate and the recovery785

factor of the fracture qualitatively resembles the two regime flow (diffusion786

dominated) whereas the recovery rate of the matrix (flow rate exiting the787
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(b) Matrix recovery factor.
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(c) Fracture recovery rate.
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(d) Fracture recovery factor.
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(e) Total recovery rate.
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(f) Total recovery factor.

Figure 24: Recovery rate and recovery factor of the matrix, fracture and matrix and
fracture combined predicted by the dual zone solver with constant permeability for both
the fracture and the matrix.

matrix into the fracture zone, Fig. 24(a)) initially increases followed by a788

decrease with the typical behaviour observed with the single zone solver789
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(the fast drop in recovery rate is unique to shale flow). This is due the790

previously discussed behaviour of the Darcy velocity at the fracture/matrix791

interface. Results show a great deal of disparity between the behaviour of flow792

within the matrix and the fracture, but the overall result of the two domains793

combined still qualitatively complies with the two regime flow as can be seen794

in Figs. 24(e)-(f), which represent the recovery factor and recovery rate of795

the matrix and fracture domains combined as one whole domain.796

Results presented so far were obtained with a constant permeability for797

both the matrix and the fracture. However, different permeability models798

can be used. For example, a more physically consistent simulation can be799

performed using an apparent permeability for the matrix, in order to include800

Knudsen effects. The recovery rate and recovery factor of matrix, fracture801

and the whole domain (fracture and matrix combined) obtained by assign-802

ing the apparent permeability to the matrix are shown in Fig. 25. Results803

are qualitatively similar to the one obtained for the case with constant per-804

meability (the same applies to the pressure and velocity fields) with some805

differences due to the change of permeability with pressure (see Fig. 3(b)).806

At the very beginning of the simulation, where the pressure is very close807

to the initial condition, the apparent permeability is lower than 10−19 m2(101808

nD) and the depletion of the matrix is slower compared to the previous case.809

The recovery rate should improve during the last stages where because of the810

smaller pressures the apparent permeability increases.811

Results presented in this section provide a fresh attempt at modelling812

shale flow behaviour, where the coupled behaviour of the fracture and the813

matrix can be analysed giving more insight into the processes affecting shale814

gas flow. The flexibility of the code with respect to the physical proper-815

ties (e.g. permeability model) of the different domains allows us to model816

the fracture and the matrix with the models and parameters that are more817

representative of the actual physical behaviour. It should be noted that818

this dual zone approach can be very expensive (in terms of computational819

cost) for cases characterized by a very large and intricate fracture network.820

However, the detailed results that can be obtained with this approach can821

be exploited to assess and possibly calibrate low-order models for shale gas822

flow.823
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(c) Fracture recovery rate.
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(d) Fracture recovery factor.

0 5 10 15 20 25

Time (s)

0

2

4

6

8

10

R
e

c
o

v
e

ry
 R

a
te

 R
R

 (
1

/s
)

(e) Total recovery rate.

0 5 10 15 20 25

Time (s)

0

0.2

0.4

0.6

0.8

R
e

c
o

v
e

ry
 F

a
c
to

r 
R

F

(f) Total recovery factor.

Figure 25: Recovery rate and recovery factor of the matrix, fracture and matrix and
fracture combined predicted by the dual zone solver with apparent permeability for the
matrix and constant permeability for the fracture.

4. Conclusion824

This study presented a three dimensional CFD solver to simulate shale825

gas flow in porous media utilizing the OpenFOAM framework. A tailored826
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governing equation that does not require the use of pseudo pressures, because827

the numerical solver implements the gas properties as functions of pressure,828

was utilized. The proposed approach allows using different relations for the829

properties on the basis of the case under investigation or the choice of the830

user. First, the solver was validated against the findings of Patzek et al.831

(2013) and Freeman et al. (2013). It was found that the recovery rate and832

the recovery factor match a two regime flow. The rate of increase in recovery833

factor, κ, depends on the fracture geometry, permeability, and initial con-834

ditions. Then, four permeability models were implemented to account for835

stress effects and Knudsen and slip flow. The results confirmed the domi-836

nance of the diffusion aspect on shale flow, as the results were comparable837

and the trends were similar between the governing equation and a diffusion838

equation. In addition, it was noted that the fracture network geometry im-839

poses the recovery rate. The flow was indistinguishable, even after fracture840

interference, for four reservoirs with the same fracture network but with dif-841

ferent reservoir dimensions. Finally, an extension was developed based on842

the single solver, named the dual solver, drawing inspiration from the dual843

porosity/dual permeability models as well as previous heat transfer models.844

The physical geometry is preserved and directly solved, without any trans-845

formation. The dual solver treats the matrix and the fracture network as846

two separate zones, each with its own governing equations and parameters.847

The recovery rate of the whole domain qualitatively adhered to the diffu-848

sion dominated two regime flow. Different permeability models were also849

implemented.850

Appendix A. Additional Results851

As noted in Sections 2.4.1 and 2.4.3, additional results were produced852

for Case 2, using the viscosity and permeability relations given by Eqs. B.1853

and B.2 in order to assess the effect of using different viscosity and com-854

pressibility factor relations proposed in literature. This further points out855

the flexibility of the proposed approach, which allows implementing any gas856

property relation, as previously discussed in Section 2.4.857

Fig. A.26 shows that, for the investigated case, recovery factor and recov-858

ery rate still adhere to the two regime flow described in Section 3.1.1. When859

comparing Fig. A.26 with Fig. 9(a,c) and Fig. 11(a,c), the variation in results860

between using Eqs. 17, 20 and Eqs. B.1, B.2 is minor, and the same slopes861

are used to match the results.862
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(c) Recovery Rate, PM1.
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Figure A.26: Recovery rate and recovery factor versus scaled time for Case 2 predicted
using the equation of state and the viscosity relationships from Jarrahian et al. (2015);
Jarrahian and Heidaryan (2014) (Eq. B.1 and Eq. B.2, with curve matching.)

Fig. A.27 shows the geometry of the case referred to in Section 3.3, when863

the change in width is tested. Fig. A.28 indicates that the results are the864

similar to that of varying length. The same conclusion can be made; the flow865

behaviour is determined by the fracture network.866
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Figure A.27: Schematic of the extra cases considered for the sensitivity analysis to the
reservoir dimension.
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Figure A.28: Sensitivity analysis to the dimension of the reservoir.

Appendix B. Additional Equations867

Appendix B includes the equations referred to, but not included in the
body of this paper.

z =
PV

RT
= 1 +

1

V

(
b− aβ

RT

)
+

1

V 2
b

(
b+

aβ

RT

)
β = β1 + β2LnPpr +

β3
Tpr

+ β4Ln
2Ppr +

β5
T 2
pr

+
β6LnPpr

Tpr

a = 0.49694
(RTpC)2

PpC

b = 0.09012
RTpC
PpC

(B.1)
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where β1, β2, β3, β4, β5, β6, Tpr, Ppr, PpC , TpC are provided in Jarrahian and868

Heidaryan (2014).869

µg = 1+

(
A1 +

A2

Tpr
+
A3

T 3
pr

)
ρR+

(
A4 +

A5

Tpr

)
ρ2R+

(
A5A6

Tpr

)
ρ5R+

(
A7

T 3
pr

)
ρ2R(1+8ρ

2
R)Exp(−A8ρ

2
R)

µatm =
C1T

C2
pr + C3Exp(C4Tpr) + C5Exp(C6Tpr) + C7

ζ
+ ∆µ(H2)

ρR =
Ppr

(B1 +B2γg)ZTpr

ζ =
TpC

M3
wP

4
pC

1
6

(B.2)

where A1, A2, A3, A4, A5, A6, A7, A8, B1, B2, C1, C2, C3, C4, C5, C6, C7,870

Tpr, Ppr, PpC , TpC , and ∆µ(H2) are provided in Jarrahian et al. (2015).871

Appendix C. Nomenclature872

Symbols873

A Surface Area, m2

Cg Gas Compressibility, 1/Pa
Cr Reduced Gas Compressibility
d Fracture Spacing, m
h Elevation, m
k Absolute Permeability, m2

m Recovered gas mass, kg
M Initial gas mass, kg
P Pressure, Pa
Pcr Critical Pressure, Pa
PM Permeability Model
RF Recovery Factor
t Time, s
t̃ Scaled Time
Tcr Critical Temperature, K
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u Darcy Velocity, m/s
Mw Molar Mass, kg/kmol
r Pore Radius, m
R Universal Gas Constant, 8.314 J/(mol.K)
z Compressibility Factor
α Tangential Momentum Accommodation Coefficient
φ Porosity
µ Viscosity, Pa.s
ρ Density, kg/m3

τ Characteristic Interference Time, s

Subscript874

a Apparent
avg Average
f Fracture
m Matrix
n Normal component
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