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Abstract 
 

Motivation: Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of ge-

netic association studies. However, related statistical methods for testing SNP-SNP interactions are 

underdeveloped. Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 

biologically meaningful interaction patterns for a binary outcome. SIPI takes non-hierarchical models, 

inheritance modes, and mode coding direction into consideration. The simulation results show that 

SIPI has higher power than MDR (Multifactor Dimensionality Reduction), AA_Full, Geno_Full (full 

interaction model with additive or genotypic mode) and SNPassoc in detecting interactions. Applying 

SIPI to the prostate cancer PRACTICAL consortium data with approximately 21,000 patients, the four 

SNP pairs in EGFR-EGFR, EGFR-MMP16, and EGFR-CSF1 were found to be associated with pros-

tate cancer aggressiveness with the exact or similar pattern in the discovery and validation sets. A 

similar match for external validation of SNP-SNP interaction studies is suggested. We demonstrated 

that SIPI not only searches for more meaningful interaction patterns but can also overcome the un-

stable nature of interaction patterns.   

 

Availability: The SIPI software is freely available at http://publichealth.lsuhsc.edu/LinSoftware/.  

Contact: hlin1@lsuhsc.edu 

Supplementary information: Supplementary figures and tables are available at Bioinformat-

ics online. 
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SNP Interaction Pattern Identifier (SIPI) 

 

1 Introduction  

 
During the past decade, the genome-wide association studies (GWAS) 

have successfully identified many inherited genetic variants (or SNPs) 
associated with complex diseases, such as cancer or related phenotypes. 

However, the predictive power of cancer risk for the GWAS-identified 

SNPs is small by a median of 1.2 per-allele odds ratio (Ioannidis, et al., 
2010). The predictive power of these GWAS SNPs can be improved by 

combining multiple SNPs in a prediction model (Van den Broeck, et al., 

2014). We recently reported the polygenic genetic models to estimate 
their risk for prostate cancer (Al Olama, et al., 2014; Amin Al Olama, et 

al., 2015; Eeles, et al., 2013). Despite these efforts, major proportion of 

familiar risk of prostate cancer remains unknown. The similar situation 
applies for using SNPs to predict prostate cancer prognosis (Van den 

Broeck, et al., 2014). It is well known that biological associations among 

genes are complicated. The majority of GWAS focus on identification of 
individual SNP effects, which are not sufficient to explain the complexi-

ty of disease causality. It has been shown that gene-gene/SNP-SNP in-

teractions play an important role in the etiology of complex diseases 
(Cordell, 2009; Moore, 2003; Moore and Williams, 2002; Onay, et al., 

2006). Although SNP-SNP or gene-gene interaction studies have been 

emerging, the statistical methods for evaluating SNP-SNP interactions 
are still underdeveloped.  

 

The majority of genetic association studies focus on two-way interac-
tions with two SNPs involved. In the past decade, various statistical 

methods have been proposed for evaluating two-way SNP-SNP interac-

tions. These methods can be classified either model-based or pattern-
based. The most common model-based approach tests an interaction 

based on a full interaction model (hierarchical model) with both main 

effects and their interaction and SNPs could be treated as different inher-
itance mode (such as additive, dominant, recessive, and genotypic). 

Examples include the full interaction model in PLINK(Purcell, et al., 

2007), SNPassoc (Gonzalez, et al., 2007) and the 2nd stage of the Boole-
an Operation-based Screening and Testing (BOOST) (Wan, et al., 2010). 

For the model-based approaches, the impact of an interaction can be 

distinguished from the main effects, but the types of detectable interac-
tion patterns are limited. In the pattern-based approach, interaction detec-

tion is based on risk patterns of the 3x3 genotype combination table of 

the two SNPs. The Hypothesis Free Clinical Cloning (HFCC) tests for 
255 patterns for one SNP pair (Gayan, et al., 2008), but some patterns 

may not be biologically meaningful or are rare. SNPmaxsel evaluates 16 

interaction patterns and four main effects for a given SNP pair 
(Boulesteix, et al., 2007). Multifactor dimensionality reduction (MDR) is 

also a pattern-based approach (Ritchie, et al., 2003; Ritchie, et al., 2001) 

to define based the best model based on classification accuracy. The 
strength of pattern-based approaches is that they are designed to detect 

wider range of interaction patterns. The limitation of the pattern-based 

approaches is that they search associations that allow for but are not 
limited to interactions. A significant result detected using the pattern-

based approaches may be due to strong main effect without an interac-

tion.  
 

To overcome these weaknesses, we propose SNP Interaction Pattern 
Identifier (SIPI), which combines the advantages of the model-based and 

pattern-based approaches. Our approach can examine 45 interaction 

models that consider biologically meaningful factors. Each model has a 
straightforward corresponding pattern, and there is a formal statistical 

test for evaluating the interaction effect. This approach is powerful, and 

the identified patterns can be easily applied to assemble risk-prediction 
models. For evaluating the performance of SIPI, we conducted a simula-

tion study to evaluate power and type I errors of SIPI with other four 

approaches: MDR, AA_full, Geno_Full and SNPassoc. The details of 
these methods are listed in Section 2.2.  

 

 
 

2 Methods 

2.1 SNP Interaction Pattern Identification (SIPI)  

SIPI can intensively and effectively search pairwise SNP-SNP interac-

tions. The conventional approach for identifying SNP-SNP interaction is 
to search a specific type of interaction using the full interaction model 

with the additive-additive mode based on the minor allele. The SIPI 

detects 45 interaction models, which take inheritance mode (both origi-
nal and reverse coding), and risk category grouping (model structure) 

into consideration. The best interaction pattern is selected based on the 

Bayesian information criterion (BIC), which is used to deal with the 
trade-off between model fit and complexity of the model. BIC is also 

shown to be consistent in selecting the true model and tends to select a 

parsimonious model compared with the Akaike information criterion 
(AIC), especially in studies with a large sample size (Yang, 2005). The 

concept of SIPI can be applied to different types of outcomes, such as 

numeric, binary and time-to-event variables. In this study, we focused on 
the binary outcome using logistic regression models. The two primary 

components of SIPI are introduced separately below.  

 

2.1a SNP Inheritance Modes  

The SNP inheritance modes can impact on power to detect SNP interac-

tions (Lin, et al., 2008).  We designate a lowercase letter ‘a’ to denote the 
minor (low frequency) allele, and an uppercase ‘A’ to denote the major 

(common) allele. Each SNP has three genotype categories: homozygous 

major type (‘AA’), heterozygous type (‘Aa’) and homozygous minor 
type (‘aa’). For a SNP, the inheritance mode for a disease risk refers to a 

specific relationship between genotype and phenotype. The inheritance 

modes include additive, dominant, recessive, genotypic and over-
dominant modes. The dominant mode assumes that the impact of having 

one or two copies of a given allele on the outcome is the same, and the 

recessive mode implies that the subjects with the homozygous genotype 
of a given allele have a different risk to develop the outcome compared 

with the other two genotypes. Additive mode refers to the impact of each 

additional copy of a given allele on the outcome being equal. The geno-
typic mode, treats a SNP as a categorical variable with three groups, and 

assumes that each genotype has a distinct effect on risk. This genotypic 

mode needs four degrees of freedom for the interaction term itself, and 
interpretation of the result is not straightforward. The over-dominant 

mode, which assumes that heterozygote has a different risk than the other 

two homozygous genotypes (Aa vs. AA/aa), is a rare case. Therefore, the 
SIPI takes three inheritance modes (dominant, recessive and additive) 

into consideration.   

 
In the majority of genetic association studies, inheritance modes are 

defined based on the minor (or variant) allele. Under this scenario, the 

binary inheritance mode (dominant and recessive) is coded as “1” for the 
group containing the homozygous minor type, and the other group as “0” 

in modeling. For the AA, Aa and aa genotypes, the additive mode coding 

is 0, 1 and 2. The reverse coding (=1 - original coding for dominant and 
recessive mode; and 2-original coding for additive mode) of inheritance 

mode is seldom to be considered in testing SNP-SNP interactions. The 

coding direction (original/reverse coding) of inheritance mode does not 
impact on statistical significance (p-values) for testing the main effect in 

a main-effect model and the interaction term in a full interaction model, 
but dramatically impacts testing the interaction term in a non-

hierarchical interaction model. As shown in Table 1, there are six total 

possible coding methods for inheritance modes for each SNP. The three 
inheritance modes with the original coding based on the minor allele are 

additive (noted as aSNP1 for SNP1), dominant (dSNP1) and recessive 

(rSNP1). For the inheritance modes with the reverse coding, the three 
modes are reverse additive (raSNP1), reverse dominant (rdSNP1), and 

reverse recessive (rrSNP1).  
 

Table 1. SNP coding scheme of the inheritance modes  
 Inheritance mode with original coding

2
  Reverse coding

2
 

SNP1 

Maj/Min
1
=A/a 

Additive 

(aSNP1) 

Dominant 

(dSNP1) 

Recessive 

(rSNP1) 

Reverse  

Additive  

 (raSNP1) 

Reverse  

Dominant   

 (rdSNP1) 

Reverse  

Recessive    

 (rrSNP1) 

AA 0 0 0 2 1 1 

Aa 1 1 0 1 0 1 

aa 2 1 1 0 0 0 

Data type Continuous Binary Binary Continuous Binary Binary 
1
Maj/Min= major/minor allele  

2
Original modes are based on a minor allele ‘a’; Reverse coding is (1 - original coding) for the dominant and 

recessive mode and is (2 - original coding) for the additive mode 
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2.1b Risk Category Grouping/Model Structure 

Both hierarchical and non-hierarchical interaction model were consid-
ered in this study. For evaluating 2-way interactions, the hierarchical or 
full interaction models are the models with two main effects and their 

interactions. This is the most common model type for testing pairwise 
SNP-SNP interactions, but this full model tests only one specific interac-

tion pattern. Non-hierarchical models are defined as models with an 

interaction, and none or one main effects. In genetic association studies, 
non-hierarchical models, which combines genotypes with similar out-

come risk are possible (Lin, et al., 2013; Lin, et al., 2008). Using non-

hierarchical models, a parsimonious model based on risk profile can be 
generated; therefore power of detecting these specific interaction patterns 

increases (Piegorsch, et al., 1994). As shown in Equations 1-4, four 
possible model structures for testing a two-way interaction include mod-

els with (1) two main effects plus an interaction (Full-int); (2) the main 

effect of variable 1 plus an interaction (Main1+int); (3) the main effect of 
variable 2 plus an interaction (Main2+int); and (4) an interaction only 

(Int-only). It is worthy to note that the interaction only model for a SNP 

pair does not mean their main effects alone.  
 

By considering a binary inheritance mode, there are four inheritance 

mode combinations (dominant-dominant, dominant-recessive, recessive-
dominant and recessive-recessive). When treating SNPs as numeric 

variables, the additive-additive mode is taken into consideration. Thus, 

SIPI considers a total of five possible types of inheritance mode combi-
nations. For each inheritance mode combination, there are nine unique 

interaction models/patterns when taking into consideration different 

model structures and inheritance modes (types and original/reverse cod-
ing direction). An example of coding direction impact on a recessive-

dominant interaction model for a SNP pair in the prostate cancer study is 

listed in Table S1.Thus, a total of 45 interaction patterns are considered 
in SIPI for each SNP pair (Table 2).  

 

The best model among the 45 models is based on the lowest value of the 
Bayesian information criterion (BIC) (Schwarz, 1978). The significance 

of the interaction effect is tested using the Wald test of the interaction 

term (H0: β3=0). Although the likelihood ratio test (LRT) is usually 
recommended as the most powerful approach, it requires performing the 

two models one wishes to compare. The Wald test is similar to LRT in 

large scale studies and only one model needs to be estimated. In order to 
ease computation burden for high-dimensional data, the Wald test was 

primarily used in SIPI. In the SIPI R package, the users can choose to 

report p-values based on the Wald test or LRT. The Bonferroni method 
is applied to adjust for multiple comparisons. 

 

Full interaction model (Full-int):  
   logit�pr	Y = 1� = β� + β�SNP� 	+ β�SNP� 			+ 	β�SNP� × SNP�					��. �        
Main 1+ interaction (Main1+int): 

   logit�pr	Y = 1� = 	β� + β�SNP� 	+ 																		+	β�SNP� × SNP�					��. �        
Main 2+ interaction (Main2+int): 

   logit�pr	Y = 1� = 	β� +													 	+ β�SNP� 	+ 	β�SNP� × SNP�					��. �        

Interaction only (Int-only):           

   logit�pr	Y = 1� = 	β� +																																						+	β�SNP� × SNP�					��.          

,where Y is the binary outcome with a value of 0 or 1. 

 
Table 2. List of 45 interaction models by considering the inheritance modes and 

model structures  
SNP1x SNP2 

Inheritance mode
1
 

Model structure
2
  Model label

3
 Model Details 

Dom-Dom Full-int  DD_Full  dSNP1 +  dSNP2 +  dSNP1x  dSNP2 

 Main1+int 

 

DD_M1_int_o1 

DD_M1_int_r1 

 dSNP1 + 

rdSNP1 +                   

  dSNP1x  dSNP2 

rdSNP1x  dSNP2 

 Main2+int 

 

DD_M2_int_o2 

DD_M2_int_r2 

  dSNP2 + 

rdSNP2 + 

 dSNP1x  dSNP2 

 dSNP1x rdSNP2 

 Int-only DD_int_oo 

DD_int_or 

DD_int_ro 
DD_int_rr 

   dSNP1x  dSNP2 

 dSNP1x rdSNP2 

rdSNP1x  dSNP2 
rdSNP1x rdSNP2 

Dom-Rec Full-int  DR_Full  dSNP1 +  rSNP2 +  dSNP1x  rSNP2 
 Main1+int 

 

DR_M1_int_o1 

DR_M1_int_r1 

 dSNP1 + 

rdSNP1 +                   

  dSNP1x  rSNP2 

rdSNP1x  rSNP2 

 Main2+int 

 

DR_M2_int_o2 

DR_M2_int_r2 

  rSNP2 + 

rrSNP2 + 

 dSNP1x  rSNP2 

 dSNP1x rrSNP2 

 Int-only DR_int_oo 

DR_int_or 

DR_int_ro 

DR_int_rr 

   dSNP1x  rSNP2 

 dSNP1x rrSNP2 

rdSNP1x  rSNP2 

rdSNP1x rrSNP2 

Rec-Dom Full-int  RD_Full  rSNP1 +  dSNP2 +  rSNP1x  dSNP2 

 Main1+int 

 

RD_M1_int_o1 

RD_M1_int_r1 

 rSNP1 + 

rrSNP1 +                   

  rSNP1x  dSNP2 

rrSNP1x  dSNP2 

 Main2+int 

 

RD_M2_int_o2 

RD_M2_int_r2 

  dSNP2 + 

rdSNP2 + 

 rSNP1x  dSNP2 

 rSNP1x rdSNP2 

 Int-only RD_int_oo 

RD_int_or 

RD_int_ro 

RD_int_rr 

   rSNP1x  dSNP2 

 rSNP1x rdSNP2 

rrSNP1x  dSNP2 

rrSNP1x rdSNP2 

Rec-Rec Full-int  RR_Full  rSNP1 +  rSNP2 +  rSNP1x  rSNP2 

 Main1+int 

 

RR_M1_int_o1 

RR_M1_int_r1 

 rSNP1 + 

rrSNP1 +                   

  rSNP1x  rSNP2 

rrSNP1x  rSNP2 
 Main2+int 

 

RR_M2_int_o2 

RR_M2_int_r2 

  rSNP2 + 

rrSNP2 + 

 rSNP1x  rSNP2 

 rSNP1x rrSNP2 

 Int-only RR_int_oo 

RR_int_or 

RR_int_ro 

RR_int_rr 

   rSNP1x  rSNP2 

 rSNP1x rrSNP2 

rrSNP1x  rSNP2 

rrSNP1x rrSNP2 

Add_Add Full-int  AA_Full  aSNP1 +  aSNP2 +  aSNP1x  aSNP2 

 Main1+int 

 

AA_M1_int_o1 

AA_M1_int_r1 

 aSNP1 + 

raSNP1 +                   

  aSNP1x  aSNP2 

raSNP1x  aSNP2 

 Main2+int 

 

AA_M2_int_o2 

AA_M2_int_r2 

  aSNP2 + 

raSNP2 + 

 aSNP1x  aSNP2 

 aSNP1x raSNP2 

 Int-only AA_int_oo 

AA_int_or 

AA_int_ro 
AA_int_rr 

   aSNP1x  aSNP2 

 aSNP1x raSNP2 

raSNP1x  aSNP2 
raSNP1x raSNP2 

1
Dom: dominant, Rec: recessive, Add: additive  

2
 Full-int: full interaction model with two main effects plus an interaction; Main1+int: main effect of variable 1 plus 

an interaction; Main2+int: main effect of variable 2 plus an interaction; and (4) Int-only: an interaction only.  
3
_o1, _r1: minor allele (original coding), and reverse coding of SNP1 

 _o2, _r2: minor allele (original coding), and reverse coding of SNP2 

 _oo, _or, _ro, _rr: based on original-original, original-reverse, reverse-original and reverse-reverse coding for SNP1 

and SNP2 

 

 

2.1c Translating Interaction Models to Interaction Patterns 

By treating SNPs as binary variables (such as dominant or recessive), we 

can simplify genotype combinations from a three-by-three panel into a 
two-by-two panel, resulting in four possible sub-groupings. For the two-

by-two panel, we can categorize the genotype combinations to 4-, 3- and 

2-risk subgroups. As shown in Figures S1-S2, we can translate the inter-
action models to the corresponding genotype interaction patterns. The 

full-int model has 4 risk subgroups, the Main1+int and Main2+int mod-

els have 3 risk subgroups, and the Int-only model have 2 rsik subgroups. 
The non-hierarchical models have flexibility to combine genotype com-

binations with similar outcome risk. Our 45 model labels are based on a 

three-by-three table with an order of homozygous major, heterozygous 
and homozygous minor types (denote as AA, Aa, and aa) and the homo-

zygous major genotypes of the two SNPs as the top left corner.  

 

2.2 Other approaches for SNP-SNP interactions 

 

2.2a MDR  

MDR (Ritchie, et al., 2003; Ritchie, et al., 2001) searches overall associ-

ations that allow for but are not limited to interactions. A promising 

MDR generates a binary risk variable (high/low risk) by comparing the 
case-to-control ratio in each genotype combination to a threshold and 

classifies each genotype to either a high risk set or low risk set. The best 

model is decided based on classification accuracy. The K-fold cross-
validation is used to relieve over-fitting issue in MDR. The permutation 

testing (Motsinger-Reif, 2008) can be used to determine MDR overall 

significance (not just for an interaction). In this study, MDR with the 5-
fold cross-validation and a permutation testing procedure (1,000 random-

ized datasets) was performed. One major weakness of MDR is that its 

identified associations may be due to strong main effect without an inter-
action. Thus, another method for the MDR selected interaction is needed 

to distinguish the impact of main effects and interaction term.  

 

2.2b AA_Full  

The AA_full [available in PLINK (Purcell, et al., 2007)] approach uses a 

logistic regression model with both main effect and interaction. Each 
SNP is treated as an additive mode based on the minor allele. The signif-

icance test is evaluated using the Wald test of the interaction coefficient.  

 

2.2c Geno_Full 

The Geno_Full uses a full logistic regression model and each SNP is 

treated as a genotypic mode with two degrees of freedom. The signifi-
cance test is evaluated using the likelihood ratio test of the interaction 

coefficient. This Geno_Full is equivalent to the 2nd stage of BOOST 

(Wan, et al., 2010), which uses the Kirkwood superposition approxima-
tion (KSA) is used to screen a subset of SNPs for the 2nd stage analyses.    

 

2.2d SNPassoc 

SNPassoc (Gonzalez, et al., 2007) used the same full logistic regression 

and allows for five different inheritance modes [additive, dominant, 
recessive, genotypic, and over-dominant (Aa vs. AA/aa)] based on the 
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minor allele. Two SNPs in the same pair are required to have the same 
inheritance mode. 

 

2.3 Simulation 

We conducted a simulation study to compare the power of SIPI with the 

conventional MDR, AA_Full, Geno_Full and SNPassoc approach for 
detecting two-way SNP-SNP interactions. For simulation settings, one 

SNP pair was considered. The two candidate SNPs were generated inde-

pendently based on the Hardy-Weinberg equilibrium. Seven sets of a 
wide range of minor allele frequencies (MAF=0.05-0.5) for SNP1 and 

SNP2 were investigated: (0.5, 0.3), (0.5, 0.2), (0.5, 0.05), (0.3, 0.3), (0.3, 

0.1), (0.3, 0.05), and (0.1, 0.05). The sample sizes of 1,000 and 5,000 
were chosen. All analyses were based on 1,000 simulation runs.  

 

The binary outcome variable (such as case/control) was generated based 
on outcome prevalence (such as disease) in each genotype combination 

of the two given SNPs using multinomial distribution. We evaluated a 

total of six designed interaction patterns, including one real-data pattern 
(Figures 1-2). Most of these simulated models are based on the interac-

tion patterns reported previously (Lin, et al., 2013; Lin, et al., 2012). One 

null model without a true interaction term was also tested. For the effect 
size of Models 1-4, the outcome prevalence was set to 0.3 or 0.4 in the 

high-risk subgroups and was 0.2 in the low-risk sub-groups. The corre-

sponding odds ratio (OR) is 1.6 and 2.7, respectively. The settings of true 
interaction models are listed in Figures 1-2.  

 

Models 1-3 were interaction-only models. For Model 1 (RR_int_rr pat-
tern), both SNPs are considered as recessive with the reverse coding. The 

disease prevalence is 0.3 and 0.2 for the high- and low-risk groups, re-

spectively. For Model 2 (DD_int_oo pattern), both SNPs are considered 
as dominant based on the minor alleles. In Model 3 (RD_int_rr), SNP1 is 

considered under a recessive mode, SNP2 is considered as dominant 

mode, and both SNPs have the reverse coding. Model 4 (DD_M1_int_o1) 
includes the SNP1 main effect and an interaction, in which both SNPs 

are considered as dominant based on the minor allele of SNP1. The 

significance of the interaction term is the same regardless of the inher-
itance mode coding (original or reverse) for SNP2. Model 5 (AA_Full) is 

a full interaction model and both SNPs are treated as an additive mode 

based on the minor allele. This AA_full model has the setting of β�= -2.5 
and β�=β�=β�=0.6 in eq. 1. Model 6 (RD_int_oo) was designed based on 

rs10488141 and rs6994019 from the PRACTICAL data (first SNP pair in 

Figure 4) with an OR of 1.9. For the null model, the outcome prevalence 
of 0.2 was applied for all nine genotype combinations.  

 

2.4 Performance Evaluation 

Both power and type I error were evaluated in the 1,000 simulation runs. 

Power is defined as the percentage of detecting a significant interaction 

when there is a true interaction. Type I error is defined as percentage of 
detecting a significant interaction when there is no interaction. The sig-

nificant tests of the interaction for all four approaches (SIPI, AA_Full, 

Geno_Full and SNPassoc) are based on testing the coefficient of the 
interaction term. Statistical significance for SIPI and SNPassoc is de-

fined as a p<0.001 (=0.05/45) and p<0.01 (=0.05/5) based on the Bonfer-
roni correction. For the AA_Full and Geno_Full approaches, the signifi-

cance level is 0.05. The significance of MDR is based on the permutation 

p-values (1,000 randomized datasets). In addition, we evaluated SIPI’s 
pattern identification rate, which is defined as the percentage of identi-

fied correct interaction pattern among the significant simulation runs.  

 

2.5 Prostate Cancer Study Application 

SIPI was applied in evaluating SNP-SNP interactions in angiogenesis 

genes associated with prostate aggressiveness using Prostate Cancer 
Association Group to Investigate Cancer Associated Alterations in the 

Genome (PRACTICAL) consortium data. The study population includes 

21,316 cases of European ancestry (3,812 aggressive and 17,504 non-
aggressive) from the 32 study sites. We randomly selected half of the 

cases as the discovery set and the other half as the validation set in each 

study site. The sample sizes in the discovery and validation sets are 
10,664 and 10,652, respectively. Individuals were excluded from the 

study based on strict quality control criteria including: overall call rate 

<95% and extremely high or low heterozygosity (p < 1.0 × 10−5). Ag-

gressive prostate cancer was defined as a Gleason score > 8, PSA >100, 
disease stage of “distant” (stage IV) or death from PCa. Ethnic groups 

were defined based on a subset of 37,000 uncorrelated markers that 
passed quality control (including ~1,000 selected as ancestry informative 

markers). Principal Component Analyses were carried out for the Euro-

pean subgroups. The details of this study population have been published 
previously (Eeles, et al., 2013).  

 

We evaluated the 148 SNPs in the six angiogenesis genes (EGFR, 
MMP16, ROBO1, CSF1, FBLN5,and HSPG2), which were reported in a 

genetic interaction network associated with prostate cancer aggressive-

ness(Lin, et al., 2013). These result in 10,878 SNP pairs. The pairwise 
interactions among these SNPs associated with prostate cancer aggres-

siveness (yes/no) were investigated using the SIPI approach in the dis-

covery set first.  For the top SNP pairs identified in the discovery set, 
both SIPI and AA_Full were conducted in the validation set.  

3 Results 

3.1 Simulation  

The power of comparing SIPI with other four methods (MDR, AA_Full, 
Geno_Full and SNPassoc) using the six simulated models for two SNPs 

with MAF of (0.5, 0.3), (0.5, 0.2) and (0.5, 0.05) is shown in Figures 1-2.  

As the sample size increased, power of all five approaches increased. In 
general, SIPI and MDR had similar power, and both of them are more 

powerful than the other three full-model approaches (AA_Full, 

Geno_Full, and SNPassoc). SIPI and MDR suffer less negative impact of 
SNPs with a low MAF than the other three full-model approaches.  

 
The four methods (SIPI, AA_Full, Geno_Full and SNPassoc) evaluate 

the impact of interactions, but MDR is used to test overall associations 

allow for an interaction. For fair comparisons, we discuss the MDR 
performance separately. In Models 1-4 for a SNP pair with a MAF>=0.2 

under a sample size of 1,000, SIPI greater than 49% power while the 

other three approaches have low power (<25%).  Under a sample size of 
1,000 with MAF of (0.5, 0.05), power decreases for all three full-model 

approaches but SIPI still has the highest power. As the sample size in-

creased to 5,000, SIPI has 100% power in most of the conditions for 
identifying an interaction with a SNP pair with MAF of (0.5, 0.3) and 

(0.5, 0.2). The order of power for detecting a SNP-SNP interaction is 

SIPI >Geno_Full>AA_Full (similar with SNPassoc) with a big sample 
size of 5,000.    

 

The three full-model approaches (AA_Full, Geno_Full and SNPassoc) 
have difficulty detecting Model 1, the ‘RR_int_rr’ pattern. With a reces-

sive interaction-only pattern (RR_int_rr) in Model 1 for a sample size of 

1,000 (Figure 1), SIPI has a power of 49-54% but the other three ap-
proaches only have a power <10%. When the sample size increases to 

5,000, the power of SIPI is approximately 100% while the other three 

approaches’ power remains low (<30%).  
 

For Model 2 (DD_int_oo), SIPI have power 58-65%, but the other three 

approaches only have <25% power in a sample size of 1,000 and MAF 
of (0.5, 0.3) and (0.5, 0.2). As the sample size increases to 5,000, the 

power of all methods increase, and SIPI has the highest power compared 

with the other three approaches.  
 

For Model 3 (RD_int_rr), SIPI have the highest power among all testing 

scenarios in Figure 1. For a sample size of 5,000, SIPI has 100% power, 
while power of other three approaches is <80%.  Similarly, the power of 

Model 4 (DD_M1_int_o1) is 59-74% for SIPI and <20% for the other 

three approaches when the sample size is 1,000. Power increases to close 
to close to 100% for SIPI and 22-60% for others when the sample size 

becomes 5,000.  

 
For Model 5 (AA_Full), the AA_Full method is the most powerful 

among all testing approaches in most of the conditions, except the condi-

tion of low MAF of (0.5, 0.05) in a sample size of 1,000. Under this 
special condition, SIPI has the highest power and about 70% of the SIPI 

significant runs selected similar patterns (AA_M1_int and 
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AA_M1_int_r). For Model 6 generated based on the real data, SIPI is 

still the most powerful approach in most of the conditions.    
 

For comparing SIPI with MDR, both methods are more powerful than 

other three full model approaches (AA_Full, Geno_Full and SNPassoc). 
SIPI has similar or higher power compared with MDR in majority of 

simulated conditions.  For Model 6 with high risk groups in the minor 

genotypes, SIPI is more powerful than MDR under the sample size of 
1,000 and 5,000.  

 

For type I errors, SIPI using the Bonferroni correction is the most con-
servative method among all testing approaches. As shown in Figure 3, 

SIPI has the smallest type I errors (0.01-0.02) compared to the other 
three methods. Some of SNPassoc’s type I errors (0.021-0.057) are also 

less than 0.05. The type I errors for MDR, AA_Full and Geno_Full are 

close to 0.05.  As shown in Tables S2-4, the power and type I error com-
parisons for additional MAF conditions show similar observations.   

 

3.2 Patten Detection Accuracy  

The accuracy rate of pattern identification increases (Figures S4-S5) as 

the sample size increases. For Models 1, 2, 3 and 6 with 1,000 samples, 

56-84% of the significant simulation runs identify the correct pattern. 
For the sample size of 5,000, all models have approximately 100% accu-

racy in identifying correct interaction patterns. For Models 4-5 and 

MAF=(0.3, 0.3) with a sample size of 1,000, the pattern identification 
rates are low (10% and 2%, respectively). However, these rate becomes 

100% for a sample size of 5,000. Although pattern detection accuracy is 

low for the smaller sample, SIPI’s power can still be high due to detec-
tion of other similar patterns. Using Model 4 with MAF=(0.3, 0.3) as an 

example, only 10% of the significant runs detect the correct pattern 

(DD_M1_int_o1) but other three similar patterns (39.9% DD_int_oo, 
23% DR_int_rr, and 12.6% DR_int_or) are identified (Figure S5). Thus, 

its power of detecting any interaction can reach 61.2%.         

 
From the simulation results, we observed an interesting scenario for 

common variants with a MAF close to 0.5. Under this condition, the 

minor allele determination is unstable, which can affect SIPI’s model 
labels. The model label system are built upon the minor/major allele. As 

an example shown in Figure S3, a low risk subgroup of a (GG+ GG) 

combination of SNP1 and SNP2 are classified as the “DD_int_rr” pattern 
when SNP1 is with a major allele of ‘G’ and a minor allele of ‘A’ but is 

classified as “RD_int_or” (called a “sister pattern”) when SNP1’s major 

allele is ‘A’. For an interaction with a SNP with a MAF close to 0.5, the 
pattern identification rate is the sum of the rates of the designed and 

sister patterns. We present the pattern identification rates for the signifi-

cant simulation runs in Figures S4-S5. For Model 1 with a SNP pair with 
MAF=(0.5, 0.3), a total of 74% runs successfully identified the correct 

risk pattern (39% designed pattern and 5% sister pattern). A similar 

observations are presented for other models. 

 

3.3 Example of Prostate Cancer Aggressiveness 

For the proposed SIPI approach, we considered SNP pairs with a p< 
1x10-7 to be statistically significant after the Bonferroni correction for 

489,510 tests (=10,878 pairs x 45 models per pair). Although the SNP-

SNP interaction results do not appear to be significant after adjusting for 
multiple comparisons, some of them show promising consistent results in 

both discovery and validation datasets. In the discovery set, 25 SNP pairs 

had a p < 0.001. Among these top 25 pairs, four pairs have a p-value < 
0.01 in the validation set. Two pairs (rs10488141+ rs6994019 and 

rs2058502+ rs4947972) have the exact interaction pattern in both sets. 

The prevalence of prostate cancer aggressiveness by the nine genotype 
combinations are shown in Figure 4, and the prediction models are listed 

in Table 3. The prostate cancer patients with the TT + AC/AA genotype 

of the SNP pair of EGFR rs10488141 and MMP16 rs6994019 tend to 
suggest a higher risk of developing aggressive tumors (odds ratio 

(OR)=1.7, p=4.5x10-6). Those with GG+ GG of two SNPs in EGFR 
(rs2058502 and rs4947972) are less likely to have aggressive prostate 

cancer tumors (OR=0.8, p=5.8x10-6). Those with GG+ AG/AA of two 

SNPs in EGFR (rs723527 and rs845555) are likely to have aggressive 
prostate cancer tumors (OR=1.2, p=3.1x10-4). The patients with AA/AG 

and CC in EGFR rs2075110 and CSF1 rs7538029 have a lower chance 

of developing an aggressive prostate cancer (OR=0.9, p=2.6x10-5).  

 
Table 3. Results of the PRACTICAL discovery and validation set for the top 25 

SNP-SNP interaction pairs associated with prostate cancer aggressiveness with a 

p<0.001 in the discovery set  
  Discovery

1
 Validation

1
  

SNP1 SNP2 Pattern  Pd Pattern Pv Pattern Similarity
2
 

rs10228436 rs723527 DR_int_oo 1.0 x10
-4
 DR_int_rr 0.020 

 rs13222549 rs16880086 RR_int_oo 2.0X10
-4
 AA_int_ro 0.378 

 rs2017000 rs6981717 DR_int_ro 2.0X10
-4
 AA_int_oo 0.043 

 rs6956366 rs763317 RD_int_oo 2.7X10
-4
 DR_int_or 0.032 

 rs10488141 rs6994019 RD_int_oo 2.8X10
-4
 RD_int_oo 0.005 same 

rs723527 rs845552 RD_int_oo 2.9X10
-4
 RR_int_oo 0.056 

 rs2058502 rs4947972 DD_int_rr 8.9X10
-4
 RD_int_or 0.002 Same (sister pattern) 

rs6548616 rs7780270 DR_int_ro 3.2X10
-4
 RR_int_ro 0.181 

 rs12666347 rs7781264 DR_int_ro 3.6X10
-4
 DD_int_ro 0.082 

 rs2017000 rs723527 DR_int_oo 3.7X10
-4
 RR_int_rr 0.079 

 rs723527 rs845555 RD_int_oo 4.5X10
-4
 RR_int_rr 0.009 similar  

rs16880086 rs6954351 AA_int_ro 4.6X10
-4
 RR_int_oo 0.123 

 rs10228436 rs7780270 DR_int_oo 4.7X10
-4
 DR_int_rr 0.070 

 rs13222549 rs16880099 RD_int_oo 4.9X10
-4
 AA_int_oo 0.424 

 rs10225877 rs16880086 AA_int_oo 5.6X10
-4
 RD_int_or 0.053 

 rs1519938 rs9842630 DD_int_ro 5.9X10
-4
 DR_int_or 0.040 

 rs13224708 rs17290392 DD_int_oo 6.1X10
-4
 DR_int_oo 0.943 

 rs10488141 rs1879202 RR_int_oo 6.4X10
-4
 RD_int_oo 0.021 

 rs10488141 rs2222294 RD_int_oo 7.3X10
-4
 DR_int_ro 0.063 

 rs2075110 rs7538029 RD_int_rr 7.7X10
-4
 DD_int_oo 0.007 similar  

rs13222549 rs17666091 RD_int_oo 8.7X10
-4
 DR_int_oo 0.021 

 rs11986591 rs6954351 AA_int_ro 9.1X10
-4
 DR_int_oo 0.138 

 rs11977660 rs9842630 DD_int_ro 9.2X10
-4
 RD_int_ro 0.044 

 rs7780270 rs9832396 RD_int_or 9.6X10
-4
 RR_int_oo 0.191 

 rs759169 rs9842630 AA_int_rr 9.8X10
-4
 AA_int_rr 0.150   

1 
Pd: p-value in the discovery set, Pv: p-value in the validation set; Pd<0.001 and Pv<0.01 were in bold. 

2 
Comparing patterns in the discovery and validation set for the SNP pairs with Pd<0.001 and Pv<0.01 

 

Three of the four SNP interaction pairs remain promising (rs10488141+ 

rs6994019, rs2058502+ rs4947972, and rs2075110+ rs7538029) after 
including these four SNP pairs and the first five principal components of 

European ancestry in the model (Table 4). For evaluating whether the 

SNPs in the top pairs in the discovery are comparable in the validation 
set, the MAF of these SNPs are calculated. As shown in Table S5, the 

MAFs for these top SNPs are very similar in these two datasets. The 

individual effects of these SNPs in the combined dataset are also evalu-
ated, and some SNPs did not have significant main effects. For example, 

the SNP pairs of rs10488141 and rs6994019 has an interaction with a p-

value of 4.5x10-6 but without significant main effects (p-value=0.145 and 
0.659, respectively). These show that some pure SNP-SNP interactions 

(without significant main effects) associated with prostate cancer aggres-

siveness. In summary, our results demonstrate SNP-SNP interactions in 
the two gene pairs (EGFR-MMP16 and EGFR-CSF1), and within EGFR. 

These findings support that EGFR may be the hub of this angiogenesis 

interaction network, which is consistent with the conclusion of the previ-
ous study (Lin, et al., 2013).    

  

4 Discussion 
 

For evaluating two-way SNP-SNP interactions, SIPI is more powerful 

than the MDR, AA_Full, Geno_Full and SNPassoc approach, in general, 
even after applying stringent Bonferroni correction for multiple compari-

son justification. Although MDR and SIPI have similar power based on 

our simulation results, SIPI performs better than MDR is terms of testing 
significance of an interaction. MDR searches overall associations allow-

ing interactions. For testing significance of an interaction, we need a 

two-stage MDR method, which has lower power than MDR alone. The 
primary strengths of SIPI are (1) taking non-hierarchical models, inher-

itance modes, and mode coding direction into consideration and (2) 

using BIC to search for a best interaction pattern. In practice, it is chal-
lenge to detect a true interaction pattern for studies with a limited sample 

size. These features equip SIPI for searching similar interaction patterns 

close to the truth, so it can overcome the unstable nature of detecting 
SNP-SNP interaction patterns. 

 

Our study demonstrated that SIPI is a more comprehensive and flexible 
tool for detecting two-way SNP-SNP interactions compared with the 

three full model approaches: AA_Full in PLINK (Purcell, et al., 2007), 

Geno_Full and SNPassoc (Gonzalez, et al., 2007). All these methods are 
based on hierarchical models, and the difference is how they deal with 

inheritance modes. AA_Full treats SNPs as an additive mode and 

Geno_Full treats SNPs as categorical variables. SNPssoc considers five 
inheritance modes (additive, dominant, recessive, genotypic and over-
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dominant) but two SNPs in a pair need to have the same mode. Thus, 
these three approaches can only detect limited interaction patterns.  For 

example, AA_Full, Geno_Full, and SNPassoc experienced difficulty in 
detecting the RR_int_rr pattern (Model 1, power<30%, Figure 1), but 

SIPI had 100% power for a large sample size of 5,000.  

 
SIPI also provides advantages compared to other statistical approaches. 

BOOST (Wan, et al., 2010) is a two-stage method using the log-linear 

model to test interactions and treats SNPs as the genotypic mode (same 
as Geno_Full in our study) as the 2nd stage. SIPI is more powerful than 

Geno_Full (Figures 1 and 2, and Tables S2-S3), which is more powerful 

than the two-stage BOOST. SNPmaxsel (Boulesteix, et al., 2007) evalu-
ates 16 interaction patterns, which are parts of SIPI patterns. These 16 

patterns are the interaction-only models for SNPs with a binary mode 

(dominant or recessive).  HFCC (Gayan, et al., 2008) is used to assess 
255 patterns, but some are rare or biologically meaningless patterns. 

Compared with these approaches, SIPI tests the 45 biologically meaning-

ful patterns, some of which have been reported previously (Lin, et al., 
2013).  

 

For external validation of SNP-SNP interactions, we suggest loosening 
the validation criteria for evaluating SNP-SNP interactions to allow for 

similar matches. The optimal goal of a genetic association study is to 

build prediction models for clinical usage. External validation using an 
independent dataset is a key in identifying true prediction factors. The 

majority of previous studies use AA_Full in the two independent datasets 

or the exact interaction pattern identified in the discovery set to verify 
the same pattern in the validation set (Su, et al., 2013). However, this 

exact match is too stringent for identifying SNP-SNP interactions. Our 

simulation findings (Figures S4-S5) indicate the unstable nature of inter-
action patterns due to unsteady risk profiles of the nine genotype sub-

groups. Thus, it should be more effective to allow for similar matches 

instead of exact matches in SNP-SNP interaction validation, especially in 
the studies with a small sample size. SIPI provides useful features that 

work to overcome this unstable pattern nature. SIPI uses the BIC to 

select the best pattern of 45 patterns so that the true pattern or the most 
similar pattern can be detected. This provides flexibility in terms of 

result validation. For a SNP pair with MAF of (0.3, 0.3) in Model 4 with 

a sample size of 1,000, SIPI can still reach 61% power to detect an inter-
action with any type of SNP1 and SNP2, even though only 10% of the 

significant results point to the correct pattern.  

 
The outcome prevalence table stratified using three-by-three genotypes 

(called the “3x3 outcome table”, available in SIPI software) is a useful 

way to boost result interpretation for interaction patterns. Using the 3x3 
outcome table for real prostate cancer data application, it is easy to ob-

serve that two of the top SNP pairs had similar interaction patterns in the 

discovery set and validation set (Figure 4). Combining the two testing 
sets with a larger sample size ensures that the interaction pattern is more 

reliable. In result validation, the sister pattern (one pattern with two 

different pattern labels) can be easily observed for an interaction with a 
SNP with a MAF close to 50%. In our prostate cancer application, three 

out of eight SNPs involved in the top SNP interactions have a 
MAF>45%. In practice, the sister pattern issue can be identified by re-

viewing the 3x3 outcome table. Thus, we cannot purely rely on model 

labels to decide whether the two patterns are exactly matched. Due to the 
sister pattern and similar matching issues, it is suggested that the 3x3 

outcome table should be consulted to further review interaction patterns.  

 
For potential biological relevance of our identified SNP-SNP interactions 

(within EGFR, EGFR-MMP16 and EGFR-CSF1), the main key protein 

was epidermal growth factor receptor (EGFR), which interacted with the 
other two proteins that were also involved in cancers. The EGFR is a 

critical protein in proliferation of epithelial cells, differentiation, and cell 
survival and is involved in oncogenesis. The EGFR has been known for 

a role in regulating prostate cellular growth and function (Bonaccorsi, et 

al., 2007; Leotoing, et al., 2007; Migliaccio, et al., 2006). Results from a 
meta-analysis of prostate cancer expression datasets were consistent with 

our results. Wang et al. identified the EGFR pathway, which was associ-

ated with prostate cancer risk (Wang, et al., 2011). 
 

The interaction between matrix metalloproteinase16 (MMP16) and 

EGFR is interesting. These two proteins have also been implicated in 
several cancers including prostate cancer. MMPs are a family of proteo-

lytic enzymes involved in tumor growth, invasion and metastasis 

(Rundhaug, 2005).  Among 24 MMPs, the role of MMP16 in prostate 
cancer has not been well investigated. Jung et al. reported a down-

regulation of MMP16 in malignant prostate tissues (Jung, et al., 2003). 

MMP16 has been shown to be associated with pancreatic cancer cell 
migration and invasion (Lin, et al., 2011) and lung development 

(Hadchouel, et al., 2008). Several cancers in which EGFR signaling is 

involved were often observed abnormal high expression of MMPs (Da-
vidson, et al., 1999). Van Meter et al. reported MMP16 mRNA levels 

significantly increased after EGF stimulation in the glioma cell lines 

(Van Meter, et al., 2004).  
 

Colony stimulating factor-1 (CSF1) is a protein that promotes metastatic 

potential in breast cancer (Lin, et al., 2001). Although there is no report 
on a role of CSF1 in prostate cancer, previous studies reported overex-

pression of serum CSF1 in several cancer sites, including pancreatic 

cancer (Pyonteck, et al., 2012), breast, ovary, and endometrial tissues 
(Espinosa, et al., 2011; Kacinski, 1997). Recently, Pei et al (Pei, et al., 

2015) observed that CSF1 expression is positively correlated with pro-

gression and EGFR expression in lung cancer and concluded that co-
expression of CSF1 and EGFR may be an independent prognostic bi-

omarker for progression of lung cancer.   

The SIPI software (SAS macro and SIPI R package) is freely available at 
http://publichealth.lsuhsc.edu/LinSoftware/. SIPI software can perform 

models adjusted for covariates. In SIPI R package, the original (‘SIPI’ 

function) and parallel computing functions (‘parSIPI’ function) are in-
cluded. SIPI can finish the analyses of all pairwise analyses of 150 SNPs 

for a dataset with a sample size of 5,000 within about 3 hours on a desk-

top computer (3.6 GHz CPU with 8 cores) using the ‘parSIPI’ R func-
tion. For large scale studies, it is recommended to apply some approach-

es (such as statistical screening or biological pathway selection) to de-

crease the number of candidate SNPs before applying the SIPI analyses.  
 

In summary, SIPI is a powerful tool to search for 45 interaction patterns 

for pairwise SNP interactions. Although only binary outcome models 
were discussed in this study, it can be extended to various outcome data 

types, such as numeric and time-to-event data. The promising interaction 

pairs identified by SIPI can be included in a risk prediction model with 
other significant individual SNPs, other known clinical risk factors, and 

biomarkers in order to increase prediction accuracy.   
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 Figure 1. Power comparisons of the SNP Interaction Pattern Identifier (SIPI) and other four methods for Models 1-3  

 
1Proportion of the outcome event in the genotype combination of the 3x3 table; a lowercase letter denotes the minor allele, and an 
uppercase letter denotes the major allele. 2 MDR (Multifactor dimensionality reduction), AA_Full, Geno_Full (full interaction model 

and each SNP is treated as an additive or genotypic mode), and SNPassoc R package    

 
Figure 2. Power comparisons of the SNP Interaction Pattern Identifier (SIPI) and other four methods for Models 4-6  

 
1Proportion of the outcome event in the genotype combination of the 3x3 table; a lowercase letter denotes the minor allele, and an 

uppercase letter denotes the major allele. 2 MDR (Multifactor dimensionality reduction), AA_Full, Geno_Full (full interaction model 
and each SNP is treated as an additive or genotypic mode), and SNPassoc R package    
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Figure 3. Comparisons of Type I errors of the SNP Interaction Pattern Identifier (SIPI) and other four methods  

 
1Proportion of the outcome event in the genotype combination of the 3x3 table; a lowercase letter denotes the minor allele, and an 

uppercase letter denotes the major allele. 2 MDR (Multifactor dimensionality reduction), AA_Full, Geno_Full (full interaction model 
and each SNP is treated as an additive or genotypic mode), and SNPassoc R package    

 

  
 

 

Table 4. SNP-SNP interaction models associated with prostate cancer aggressiveness  

 Univariate model  Multivariable model2 

 Unadjusted 

OR (95% CI) 1 

p-value adjusted 

OR (95% CI)1  

p-value 

rs10488141+ rs6994019,   TT+ AC/AA vs. others 1.7 (1.4-2.1) 4.5x10-6 1.8 (1.4-2.6) 6.3x10-7 

rs2058502+ rs4947972,   GG+ GG vs. others 0.8 (0.7-0.9) 5.8x10-6 0.8 (0.7-0.9) 5.2x10-5 

rs723527+ rs845555,   GG+ AG/AA vs. others 1.2 (1.1-1.3) 3.1x10-4 1.1 (1.0-1.3) 1.6x10-2 

rs2075110+ rs7538029,   AA/AG+ CC vs. others 0.9 (0.8-0.9) 2.6x10-5 0.9 (0.8-0.9) 6.9x10-4 
1 Odds ratio (95% confidence interval) 
2 all four SNP pairs and the first five principal components of European ancestry were included in the multivariable model.   
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