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Abstract 

Background: Smoking and chronic obstructive pulmonary disease (COPD) are risk 

factors for cardiovascular disease, and the pathogenesis may involve endothelial 

dysfunction. We tested the hypothesis that endothelium-derived epoxyeicosatrienoic 

acid (EET)-mediated endothelial function is impaired in patients with COPD, and a 

novel sEH inhibitor GSK2256294 attenuates EET-mediated endothelial dysfunction 

in human resistance vessels both in vitro and in vivo. 

Methods: Endogenous and stimulated endothelial release of EETs was assessed in 

12 COPD patients, 11 overweight smokers, and 2 matched control groups, using 

forearm plethysmography with intra-arterial infusions of fluconazole, bradykinin, and 

the combination. The effects of GSK2256294 on EET-mediated vasodilatation in 

human resistance arteries were assessed in vitro and in vivo in a Phase 1 clinical 

trial in healthy overweight smokers.  

Results: Compared to controls, there was reduced vasodilatation to bradykinin 

(p=0.005), blunted effect of fluconazole on bradykinin-induced vasodilatation 

(p=0.03), and a trend towards reduced basal EET/DHETs ratio in COPD patients 

(p=0.08). A similar pattern was observed in overweight smokers. In vitro, 10 µM 

GSK2256294 increased 11,12-EET-mediated vasodilatation compared to vehicle 

(90±4.2% vs. 72.6±6.2% maximal dilatation), and shifted the bradykinin EC50 (-

8.33±0.172 vs. -8.10±0.118 logM; p=0.001 for EC50). In vivo, 18 mg GSK2256294 

improved the maximum bradykinin response from 338±46% pre-dose to 566±110% 

post single dose (p=0.02), and to 503±123% post chronic dose (p=0.003). 

Conclusion: GSK2256294 attenuates smoking related EET-mediated endothelial 

dysfunction, suggesting potential therapeutic benefits in patients with COPD.  

Trial Registration: ClinicalTrials.gov NCT01762774 

 

Key words: soluble epoxide hydrolase inhibitor, endothelial function, smokers, clinical 

trial, EETs, COPD  
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Introduction 

Chronic obstructive pulmonary disease (COPD) is the third leading cause of 

death worldwide, and a risk predictor for atherosclerosis.1,2,3 Several 

pathophysiological processes may contribute to disease progression, and increased 

cardiovascular risk in COPD, including systemic effects of smoking, chronic 

inflammation,4 and endothelial dysfunction.5 Patients with COPD are also more likely 

to suffer from other cardiovascular co-morbidities, including central abdominal 

obesity, and the metabolic syndrome, particularly in earlier stages of COPD.6–8 

Endothelium-derived hyperpolarising factors (EDHF), particularly epoxyeicosatrienoic 

acids (EETs) are involved in the modulation of vascular tone,9 attenuation of 

inflammation,10 and activation of fibrinolysis by augmenting tissue plasminogen 

activator (tPA) expression.11  

EETs are synthesised by cytochrome P450 (CYP) enzymes, and metabolised 

to their less biologically active diols by soluble epoxide hydrolase (sEH) enzymes.12 

Smoking has a synergistic effect with CYP450 and sEH polymorphisms,13 resulting in 

enhanced sEH activity, reduced plasma EETs, and increasing overall risk of 

myocardial infarction.14 Plasma EETs levels are reduced in patients with coronary 

artery disease who are obese, or who smoke.15 EETs are also produced in lung 

epithelial cells, and they may become dysfunctional in COPD.12 In vivo, smokers 

exhibit reduced endothelial responses to bradykinin,5 and this may be associated 

with impaired EDHF-mediated vasodilatation.16,17 However, the functional role of 

EETs has not yet been characterised in humans. 

Up-regulation of EETs by sEH inhibition in animals improves the metabolic 

syndrome,18 lung function, and attenuates smoking-related inflammation and 

emphysema.19 GSK2256294 is a novel potent sEH inhibitor in Phase 1 clinical 

development, and may have the potential to impact upon systemic and pulmonary 

endothelial function. As this was a Phase 1 clinical trial, mainly focussed on safety, 

and tolerability in the healthy, we used a cohort of overweight smokers as a 

representative for patients with early stage COPD. 

We hypothesised that EETs synthesis is reduced in patients with COPD and 

otherwise healthy overweight smokers, and that sEH inhibition would up-regulate 

EETs and endothelial dysfunction. We completed a physiological study, in which we 

assessed EETs-mediated basal tone, and the EETs component of bradykinin 

stimulated vasodilatation in patients with COPD, and in overweight smokers, in order 

to maximise the impact of cardiovascular risk factors in otherwise healthy subjects. 

Subsequently, we examined the effects of a novel sEH inhibitor GSK2256294 in 

human resistance arteries in vitro, and in vivo in a Phase 1 clinical trial with an 



5 

experimental medicine arm to provide early proof-of-mechanism for target 

engagement in overweight smokers. The study design, safety and pharmacokinetic 

data from the Phase 1 trial were reported separately,20 and we only report the effects 

of sEH inhibition on endothelial function in this manuscript. 

 

Materials and Methods 

All study procedures were conducted in accordance with the Declaration of 

Helsinki, approved by appropriate institutional review boards, and received 

favourable opinions from local ethics committees (13/EE/0032, 12/LO/1832), and the 

Medicines and Healthcare products Regulation Agency. Analysis and Statistical 

methods are described in the supplementary material. All subjects were recruited 

following written consent.  

We used forearm venous occlusion plethysmography21 to assess vascular 

function in vivo with intra-arterial infusion of challenge agents via a 27-gauge needle 

(Coopers Needleworks, Birmingham, UK) inserted into the brachial artery. Venous 

plasma concentrations of EET/DHETs were assessed as a representative of sEH 

activity at baseline, and during the forearm blood flow studies. Oscillometric blood 

pressures were monitored in the non-infused arm. Detailed methods and statistical 

analyses are in the supplementary material. 

Study 1 

Twelve male COPD patients (FEV1/FVC < 0.7 and FEV1 < 80% post-

bronchodilator), and 12 healthy gender matched controls (matched controls 1) 

underwent a single forearm blood flow study to assess EETs mediated vasodilatation 

(UKCRN Portfolio ID: 14339). Patients taking concomitant medications which 

interfere with CYP450 or cyclo-oxygenase enzymes were asked to stop for at least 4 

days prior to the forearm blood flow. Overall endothelium-dependent function was 

assessed by infusing bradykinin (100, 300 and 1000 pmol/min, Bachem Distribution 

Services GmbH, Germany), and stimulated EETs release was assessed by co-

infusing bradykinin with 0.4 µmol/min fluconazole; a cytochrome P450 inhibitor which 

inhibits EETs synthesis (Pfizer Ltd, Kent, UK).9 (Supplementary material figure 1). 

Endothelium-independent responses were assessed using 12, and 38 nmol/min (3, 

and 10 μg/min) sodium nitroprusside (SNP) (Nitroprussiat FIDES, Madrid, Spain). 

Study 2 
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Twelve overweight smokers (≥10 cigarettes/day, and >5 pack-year history, 

weight >60kg and BMI 28-35kg/m2), and equal numbers of healthy gender and age-

matched non-smoker controls (matched controls 2) underwent the same forearm 

blood flow protocol as subjects in Study 1.  

Study 3 

We first assessed the effects of sEH inhibition, in vitro, by application of 

GSK2256294 to human resistance arteries treated with L-nitroarginine methyl ester 

(LNAME), and indomethacin (detailed methods in supplementary material), and in 

vivo, using forearm blood flow pre-dose, after a single dose (acute effects), and after 

14 days (chronic effects) of oral GSK2256294. Responses to bradykinin (300, 600 

and 1000 pmol/min) were assessed in the presence of 8 μmol/min NG-monomethyl-L-

arginine (LNMMA; Bachem) and 6 mmol (1 g) intravenous aspirin (Aspergic Sanofi-

Aventis, France) to inhibit NO and PGI2 syntheses in order to maximise EDHF and 

EETs (Supplementary material figure 2). Venous concentrations of t-PA and 

plasminogen activator inhibitor-1 (PAI-1) were measured before and after each dose 

of bradykinin.22 Challenge agent doses were chosen based on previous studies.5,5 

To assess the effects of GSK2256294 in vivo, we studied healthy overweight 

smokers (no concomitant medications) as a paradigm for a COPD population in a 

Phase 1 clinical trial to provide early proof of mechanism (ClinicalTrials.gov 

NCT01762774). Thirty male overweight smokers, were allocated in a 2:1 ratio 

between GSK2256294 (6 mg or 18 mg) and placebo for 14 days repeat dose. 

GSK2256294 doses were chosen based on enzyme inhibition and pharmacokinetic 

data from the single dosing cohorts.20  

Results 

Study 1 

Subject demographics are presented in Table 1. The average FEV1 was 

53±13% predicted, and FEV1/FVC ratio was 0.5±0.1 in the COPD subjects. There 

was a trend towards higher plasma concentration of basal EET/DHETs ratio in 

matched controls 1 compared to COPD patients (0.54±0.12 vs. 0.45±0.14; p=0.08) 

(Figure 1). 

There was a dose-dependent increase in forearm blood flow ratio following 

bradykinin in both groups (p<0.0001). Bradykinin response was significantly higher in 

matched controls 1 than patients with COPD (maximal dilatation 1314±191% vs. 

552±103%; p=0.005) (Figure 2A). In the presence of fluconazole, maximum 
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dilatation to bradykinin was reduced in matched controls 1 (406±64%; p<0.0001), but 

not in patients with COPD (447±124%; p=0.32), showing a significant between group 

difference in inhibition (p=0.03). There was no difference in SNP response between 

groups (data not shown). Blood pressure remained constant throughout the studies. 

Although not significant, plasma concentrations of EET/DHETs ratio in 

response to bradykinin was higher in matched controls 1 compared to patients with 

COPD (maximum 8.6±3.4 vs. 6.8±1.1; p=0.83). In the presence of fluconazole, 

although not significant, total EET/DHETs were slightly less in matched controls 1 

(maximum 4.7±0.4; p=0.27), but not in patients with COPD (5.2±0.9; p=0.70) (Figure 

3A).  

 

Study 2 

Although not significant, basal EET/DHETs ratio was higher in matched 

controls 2 compared to overweight smokers (0.46±0.06 vs. 0.39±0.04; p=0.33) 

(Figure 1). 

Bradykinin response was higher in matched controls 2 than overweight 

smokers (maximal dilatation: 930±81% vs. 575±112%; p=0.02) (Figure 2B). In the 

presence of fluconazole, maximum dilatation to bradykinin was reduced in matched 

controls 2 (400±49%; p<0.0001), but not in overweight smokers (437±57%; p=0.16), 

resulting in a significant between group difference (p=0.002). There was no 

difference in SNP response between groups (data not shown). Blood pressure 

remained constant throughout the studies. There was no difference in the bradykinin 

response between COPD and overweight smokers (p=0.72). 

Although not significant, the increase in EET/DHETs ratio in response to 

bradykinin was higher in healthy matched controls 2 compared with overweight 

smokers (maximum 10.31±4.43 vs. 5.66±0.46; p=0.80). In the presence of 

fluconazole, EET/DHETs were reduced in matched controls 2 but slightly increased 

in overweight smokers (maximum 5.02±0.38 vs. 8.19±2.18; p=0.003) (Figure 3B).  

 

Study 3 

In LNAME and indomethacin treated resistance vessels, GSK2256294 10 µM 

increased 11,12-EET-mediated vasodilatation compared to vehicle (n=6 in each 

group, 90±4% vs. 73±6% maximal dilatation; Figure 4A), and shifted the bradykinin 

EC50 (n=6, -8.33±0.17 vs. -8.10±0.12 logM; p=0.001; Figure 4B). However, 

vasodilatation to 8,9-EET was unaltered (82±16% vs. 72±19%, maximal dilatation), 

suggesting that the effects were regio-isomer specific. The vasodilatation to 
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papaverine (100 μM), a test of direct smooth muscle vasodilatation, was unchanged 

in GSK2256294. 

In vivo, 28 subjects, including the 11 who took part in the physiological study, 

completed forearm blood flow studies at pre-dosing, after a single dose, and after 14 

days repeat dosing with placebo (n=6) or GSK2256294 6 mg or 18 mg (n=11 in each 

group) (Table 1). There was a trend to increased bradykinin response after single 

and repeat dosing in the active treatment groups. In subjects who received 6 mg, 

response to bradykinin increased by 23±17% on day 1 and by 22±22% on day 14. In 

those who received 18 mg, bradykinin response increased by 14±17% on day 1, and 

12±14% on day 14. Responses to SNP did not change. 

In a post-hoc analysis of forearm blood flow ratio, there was an 

improvement in bradykinin-induced responses following dosing with the active 

drug compared to placebo (p=0.007), with the greatest effect in the active 

drug 18 mg group. In the 18 mg active drug group, the maximum bradykinin 

response improved from 338±46% pre-dose to 566±110% post single dose 

(p=0.02), and to 503±123% post chronic dose (p=0.003). (Figure 5). 

LNMMA and aspirin inhibited basal flow equally on all three days in the three 

treatment arms (Supplementary material Table 1). Blood pressure remained stable, 

and there were no changes to t-PA in response to BK, or in PAI-1 release (data not 

shown). 

 

Discussion 

The findings from these studies suggest that COPD and smoking are 

associated with impaired overall endothelial function, and reduced stimulated 

vascular EETs production. Proof-of-mechanism data demonstrates that sEH 

inhibition with GSK2256294 results in improvements in vascular function both in vitro 

and in vivo.  

We elected to study patients with COPD and overweight smokers as the 

mechanisms behind COPD, smoking and cardiovascular disease remains poorly 

understood. Both smokers and patients with COPD exhibit low-grade systemic 

inflammation,1 which plays a key role in endothelial activation, resulting in endothelial 

dysfunction, and the initiation of atherosclerosis.23 It has been demonstrated that 

patients with COPD,5 smokers,24 and ex-smokers25 exhibit a similar degree of 

endothelial dysfunction, suggesting that smoking may be the key contributing factor. 

Cardiovascular risk factors are more likely to cluster in obesity, manifesting as a 

syndrome of increased adipocytes, hyperglycaemia, and dyslipidaemia, with 
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underlying low-grade inflammation. In normotensive overweight subjects with the 

metabolic syndrome, acetylcholine-, rather than bradykinin-induced vasodilatation is 

reduced, possibly suggesting a lesser degree of endothelial dysfunction.9 However, 

the extent to which EETs contributed to this endothelial dysfunction remained 

unclear, and our study was the first to interrogate this further, and forearm blood flow 

data suggest that EETs production is similarly impaired in patients with COPD and 

overweight smokers, supported by plasma quantification of EETs/DHETs as a 

representative of sEH activity. 

We observed a trend towards reduced baseline EET/DHETs in patients with 

COPD and overweight smokers, and when comparing the two matched control 

groups, baseline EET/DHETs ratio are slightly less in the younger matched controls 

for overweight smokers (matched control 2), than those for COPD (matched control 

1). However, human plasma EETs, and DHETs are notoriously difficult to quantify, 

due to their instability, thus, definitive conclusions cannot be drawn from these 

insignificant results, but can only be taken in context of our forearm blood flow data, 

and previous published data. In animals, obesity is associated with reduced hepatic 

expression of EETs-producing CYP2C enzymes.26 In mesenteric arteries of obese 

Zucker rats, there is reduced CYP2C and CYP2J enzymes, with enhanced activity of 

sEH enzymes.27 Increased sEH activity may represent more advanced inflammation, 

as in coronary artery disease, those who are obese or who smoke exhibit the lowest 

EET/DHETs ratio.15 sEH activity is associated with forearm blood flow, as subjects 

with Lys55Arg polymorphism in the sEH encoding gene (EPHX2) exhibit higher sEH 

activity, and reduced vasodilator responses to bradykinin.28 Smoking can also 

significantly upregulate EPHX229, and this is associated with increased coronary 

artery calcification in man.13 

The reduced EETs synthesis and endothelial dysfunction observed in patients 

with COPD and overweight smokers, may be a result of chronic low grade 

inflammation secondary to smoking.30 In animals, dimethylsulfoxide-soluble smoke 

particles can up-regulate endothelium-derived vasoconstrictors via the nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFB);31 a pivotal protein controlling 

the transcription of genes relevant to the pathophysiology of the blood vessel wall, 

including adhesion molecules and cytokines.32 EETs exert their anti-inflammatory 

effects by inhibiting the activation of NFB.32 Inflammatory states are associated with 

down-regulation of hepatic and extrahepatic CYP450 enzymes, resulting in a vicious 

cycle of reduced EETs production and an ineffective EETs-mediated anti-

inflammatory effect both locally and systemically.33  
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GSK2256294 is a potent sEH inhibitor, which exerts high levels of sEH 

enzyme inhibition both in vitro,19 and in vivo.20 In human left internal mammary 

arteries, 11,12-EETs are the most potent regio-isomer,34 and we confirmed that both 

11,12-EETs and bradykinin mediated vasodilatation were enhanced in the presence 

of GSK2256294 in human resistance arteries. In animal models of cigarette smoking 

and obesity, sEH inhibition improves lung,35 and endothelial function,36 and 

attenuates pulmonary inflammation as reflected by reduced inflammatory cells 

including neutrophils, and macrophages.19 In human bronchial cells, treatment with 

exogenous EETs protects against cigarette smoke extract–induced injury.37 

Consistent with in vitro results, both acute and chronic sEH inhibition for up to two 

weeks improve responses to bradykinin.  

No changes were observed in t-PA release following sEH inhibition. t-PA is a 

fibrinolytic serine protease that is released from the endothelium, and regulates 

degradation of intravascular fibrin. Impaired t-PA release can be associated with 

coronary atherosclerosis, and cigarette smoking.25 Treatment of human endothelial 

cells with exogenous EETs, particularly 11,12-EETs, can increase t-PA protein 

expression in a dose and time-dependent manner, possibly due to activation of a G-

protein, whilst not affecting plasminogen activator inhibitor type 1 (PAI-1), the 

endogenous inhibitor of t-PA.11 t-PA release may also be dependent on the agonist, 

and in this group of overweight smokers, substance P may elicit a greater 

response.24 

Some limitations of this study warrant consideration. As the main focus of the 

Phase 1 clinical trial was on safety, tolerability, and pharmacokinetics of 

GSK2256294 in healthy volunteers, we were not able to test this novel drug in COPD 

patients. In addition, the lack of non-smoking controls in the Phase 1 clinical trial 

means that the magnitudes of the effects of both doses of GSK2256294 were 

relatively small, and similar to the variance in bradykinin responses in the placebo 

group. Therefore, Phase 2 studies in larger patient groups are required to draw 

definitive conclusions. 

Some evidence also suggests that in NO deficient conditions, EETs may be 

upregulated.9 Thus, by creating an NO deficient milieu during the forearm blood flow 

study with LNMMA, we may have masked any further up-regulation of EETs by sEH 

inhibition. Larger clinical trials in patients with COPD, without concomitant inhibition 

of nitric oxide synthase, would be required to further understand the clinical impact of 

sEH inhibition. This must also be approached with caution for the potential of EETs 

to stimulate angiogenesis, and possibly modulate cancer genesis and metastases,38 

though, interestingly, dual action cyclo-oxygenase and sEH inhibition may in fact 
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suppress cancer.39 We found no changes in serum vascular endothelial growth factor 

the active drug group with this dosing regime after 14 days.20  

 

Conclusions 

Patients with COPD and overweight smokers have impaired endothelial 

function, and dysregulated EETs signalling. sEH inhibition can augment bradykinin-

induced vasodilatation in human resistance vessels both in vitro and in vivo, 

suggesting that sEH inhibition may be a novel therapeutic target to ameliorate 

cardiovascular risk in patients with smoking related endothelial dysfunction.  
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