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On the Absence of Uniform Recovery in Many Real-World Applications
of Compressed Sensing and the Restricted Isometry Property and Nullspace

Property in Levels∗
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Abstract. The purpose of this paper is twofold. The first is to point out that the property of uniform recovery,
meaning that all sparse vectors are recovered, does not hold in many applications where compressed
sensing is successfully used. This includes fields like magnetic resonance imaging (MRI), nuclear
magnetic resonance computerized tomography, electron tomography, radio interferometry, helium
atom scattering, and fluorescence microscopy. We demonstrate that for natural compressed sensing
matrices involving a level based reconstruction basis (e.g., wavelets), the number of measurements
required to recover all s-sparse signals for reasonable s is excessive. In particular, uniform recovery of
all s-sparse signals is quite unrealistic. This realization explains why the restricted isometry property
(RIP) is insufficient for explaining the success of compressed sensing in various practical applications.
The second purpose of the paper is to introduce a new framework based on a generalized RIP and
a generalized nullspace property that fit the applications where compressed sensing is used. We
demonstrate that the shortcomings previously used to prove that uniform recovery is unreasonable
no longer apply if we instead ask for structured recovery that is uniform only within each of the
levels. To examine this phenomenon, a new tool, termed the “restricted isometry property in levels”
(RIPL) is described and analyzed. Furthermore, we show that with certain conditions on the RIPL,
a form of uniform recovery within each level is possible. Fortunately, recent theoretical advances
made by Li and Adcock demonstrate the existence of large classes of matrices that satisfy the RIPL.
Moreover, such matrices are used extensively in applications such as MRI. Finally, we conclude the
paper by providing examples that demonstrate the optimality of the results obtained.
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1. Introduction. Compressed sensing, introduced by Candès, Romberg, and Tao [18] and
Donoho [30], has been one of the important new developments in applied mathematics in
the last decade [9, 15, 24, 27, 31, 32, 33, 35, 42, 60]. By introducing a nonlinear recon-
struction method via convex optimization and randomization in the sampling procedure, one
can circumvent traditional sampling barriers when reconstructing vectors that are sparse or
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compressible, meaning that they have few nonzero coefficients or can be approximated well
by vectors with few nonzero coefficients.

Under certain conditions on the matrix U , every “s-sparse” vector x (i.e., any vector x
with at most s nonzero entries) can be recovered by observing the values of Ux and employing
`1 minimization. Remarkably this can be achieved even if U is singular. If any s-sparse
vector can be perfectly recovered in this way, we say that uniform recovery of order s is
possible.

Given the recent substantial interest in uniform recovery it is natural to ask whether
this intriguing mathematical concept is actually observed in many of the applications where
compressed sensing is applied. Certain conditions on U , like the restricted isometry property
(RIP) (see Definition 1.2) and the nullspace property of order s (see Definition 1.3) imply
uniform recovery of order s. However, for general matrices U it is difficult to check that these
properties hold. Indeed, it is shown in [62] that verifying that the RIP holds (and thus order
s uniform recovery is possible) for general U is an NP hard problem. However, there is a
simple test that can be used to show that certain matrices cannot achieve uniform recovery
of order s for reasonable values of s. This is called the flip test. As this test reveals, there
are a significant number of practical applications where uniform recovery is not the correct
model for compressed sensing. This list of applications includes magnetic resonance imaging
(MRI) [37, 52], other areas of medical imaging such as computerized tomography (CT) [23, 39],
nuclear magnetic resonance (NMR) [43], electron tomography [36, 49], as well as other fields
such as fluorescence microscopy [59, 61], surface scattering such as helium atom scattering [44],
and radio interferometry [53].

We will thoroughly document the lack of uniform recovery of order s in this paper and
explain why it does not hold for reasonable s in many applications. It is then natural to
ask whether there might be an alternative to uniform recovery of order s that may be more
suitable for the actual real-world compressed sensing applications. With this in mind, we
shall generalize uniform recovery of order s to a level based uniform recovery, which we term
uniform recovery of order (s,M). Numerical experiments will suggest that uniform recovery
of order (s,M) is better suited to many of the applications where compressed sensing is used
than uniform recovery of order s. We will extend the concepts of the RIP and the nullspace
property to this setting with the introduction of the RIP in levels and the `2 robust nullspace
property of order (s,M).

1.1. Compressed sensing. We shall begin by discussing the general ideas of compressed
sensing as it is used in linear inverse problems. Consider the problem of recovering information
x ∈ Cn from a scanning device, represented by an invertible matrix M ∈ Cn×n, given observed
measurements y := Mx. In general, we require knowledge of every element of y to be able
to accurately recover x without additional structure. Indeed, let Ω = {α1, α2, . . . , αm} with
1 ≤ α1 < α2 < α3 < · · · < αm ≤ n and define the projection map PΩ : Cn → Cm so that
PΩ(x1, x2, . . . , xn) := (xα1 , xα2 , . . . , xαm). If m is strictly less than n then for a given y there
are at least two distinct vectors x1 ∈ Cn and x2 ∈ Cn with PΩy = PΩMx1 = PΩMx2, so that
knowledge of PΩy will not allow us to distinguish between multiple candidates for x. Ideally
though we would like to be able to take m� n to reduce either the computational or financial
costs associated with using the scanning device M .
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RIP IN LEVELS 337

So far, we have not assumed any additional structure on x. However, let us consider
the case where the vector x consists mostly of zeros. More precisely, we make the following
definition.

Definition 1.1 (sparsity). A vector x ∈ Cn is said to be s-sparse for some natural number
s if |supp(x)| ≤ s, where supp(x) denotes the support of x.

The key to compressed sensing is the fact that, under certain conditions, any minimizer

(P1) z ∈ arg min ‖x̂‖1 such that Ux = Ux̂

of the `1 basis pursuit (BP) problem (where U := PΩM is a matrix in Cm×n) gives a good
approximation to x. Indeed, one would like to be able to use minimizers of (P1) to recover x
whenever x is s-sparse, and more generally if x is close to an s-sparse vector then we might
expect solutions to (P1) to be close to x. We can encapsulate this statement mathematically
by making the following definition.

Definition 1.2 (uniform recovery of order s). Let s be a positive integer. We say that
uniform recovery of order s is possible for the matrix U if solutions x̃ to (P1) satisfy

(1.1) ‖x− x̃‖1 ≤ Cσs(x)1

for some constant C independent of x, where σs(x)1:= min{‖x−x̂2‖1 such that x̂2 is s-sparse}.
Note that (1.1) implies that all s-sparse x are recovered exactly by solving (P1), since if x is
s-sparse then σs(x)1 = 0.

Proving that uniform recovery of order s is possible for the matrix U is an inherently
complicated task. To simplify this task, the nullspace property and RIP have been introduced
(see [19] and [35] for more information). More specifically, the nullspace property is defined
as follows.

Definition 1.3 (`2 RNSP of order s). A matrix U ∈ Cm×n is said to satisfy the `2 robust
nullspace property (`2 RNSP) of order s if there is a ρ ∈ (0, 1) and a τ > 0 such that
for all vectors v ∈ Cn and all S which are subsets of {1, 2, 3, . . . , n} with |S| ≤ s, we have
‖vS‖2 ≤ ρ‖vSc‖1/

√
s+ τ‖Uv‖2.

The RIP is defined in terms of the restricted isometry constant (RIC) δs. A matrix is said
to have the RIP if δs < 1.

Definition 1.4 (restricted isometry property). The RIC of order s for a matrix U ∈ Cm×n,
denoted by δs, is the minimal δ ≥ 0 such that

(1.2) (1− δ)‖x‖22 ≤ ‖Ux‖22 ≤ (1 + δ)‖x‖22

for all s-sparse vectors x ∈ Cn.

It is well known (e.g., [6] and [35]) that if U satisfies the `2 RNSP or the RIC of order s is
sufficiently small, then (1.1) is satisfied when finding minimizers x̃ of the BP problem (P1).

Remark 1.5. In fact, the RIP and RNSP both imply a stronger result. Suppose that
instead of seeing Ux, we see a noisy version v := Ux + ν for some noise vector ν with
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338 ALEXANDER BASTOUNIS AND ANDERS C. HANSEN

‖ν‖2 ≤ ε. Instead of finding minimizers of (P1), we can try to recover x by finding minimizers
to the modified `1 minimization problem (so that x itself is a feasible solution)

(P2) z ∈ arg min ‖x̂‖1 such that ‖v − Ux̂‖2 ≤ ε.

Then any minimizer x̃ to (P2) will satisfy both

‖x− x̃‖1 ≤ Cσs(x)1 +Dε
√
s,(1.3)

‖x− x̃‖2 ≤
Cσs(x)1√

s
+Dε(1.4)

provided that U satisfies the `2 RNSP (e.g., [35, Theorem 4.22]) or δs is sufficiently small
(e.g., [12, 13, 16, 34] and [14, 28, 64] for optimal conditions). In later chapters we shall
introduce the `2 RNSP in levels and the RIP in levels which will also have a similar resilience
to noise.

2. The absence of the uniform recovery and the flip test.

2.1. The flip test. Although uniform recovery seems convenient, it is in general very
difficult to verify that uniform recovery of order s is possible for a matrix U . In fact, showing
that the RIC of an arbitrary matrix is below a certain value is an NP hard problem [62].
However, some special cases for U do exhibit uniform recovery of order s (e.g., with high
probability, Gaussian and Bernoulli matrices can achieve uniform recovery [20]). Even though
it is hard to show that uniform recovery is possible for a general matrix U , there is a simple
test (the “flip test,” introduced in [2]) that shows that there are a variety of matrices used in
practical applications for which uniform recovery grossly underestimates the effectiveness of
compressed sensing.

Flip test (sparse vectors). Suppose we are given U ∈ Cm×n, s1 ∈ N, and an s1-sparse
vector x1 that is perfectly recovered by finding minimizers of the BP problem (P1) using U
and x = x1. We now want to test if this recovery is uniform.

1. Let Q be an operator that permutes the entries of x1 and let x2 = Qx1. Run the
BP problem (P1) with x = x2 to try to recover x2 from Ux2 and obtain a minimizer
x̃2. Compare x1 and Q−1x̃2. If x1 6= Q−1x̃2 then we do not have uniform recovery of
order s1.

2. If the test in the first step failed, we want to test how far we were from uniform recovery
of order s1. We want to see how many coefficients s2 of x2 one could hope to recover
uniformly. Select a nonzero coefficient of x2 and set it to zero and call this new vector
h1. If we recover h1 by using BP with x = h1 in (P1), then set s2 = s1 − 1. If not
set n nonzero coefficients of x2 to zero to obtain hn and repeat until hn is recovered
exactly by using BP with x = hn in (P1). Let

s2 = s1 − n.

3. If the first step succeeds, retry it with many different permutation matrices Q. If this
succeeds for a large variety of such Q then this is an indicator (but not a mathematical
proof) that we may have uniform recovery.

The particular choice of Q that was given in [2] was the permutation Qreverse that reverses
order—namely, if x ∈ Cn then
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Figure 1. A graphical demonstration of the flip test for matrices which exhibit the uniform recovery where
x1 is a vector exactly recovered by minimizers of (P1). Darker colors denote larger values. If uniform recovery
of a sufficiently high order holds, then Q−1

reversex̃
2 = x̃1.

Qreverse(x1, x2, . . . , xn−1, xn) = (xn, xn−1, . . . , x2, x1).

A graphical demonstration and summary of the expected results of the flip test with a matrix
U that exhibits uniform recovery is given in Figure 1.

We have performed the flip test on Fourier and Hadamard matrices in combinations with
wavelet transforms. In particular, the U used in the test is of the form

U = PΩDFT ·DWT−1
N or U = PΩHAD ·DWT−1

N

for different successful sampling patterns Ω. The notation DFT,HAD, and DWTN is used
throughout this article to represent the discrete Fourier transform, the Hadamard transform,
and the discrete wavelet transform (with Daubechies wavelets with N vanishing moments),
respectively. These different types of matrices are represented in a variety of applications
including (but not limited to) MRI [37, 52], radio interferometry [53], helium atom scattering
[44], electron tomography [36, 49], CT [23, 39], fluorescence microscopy [59, 61], and NMR [43].

In Figure 2 and Table 1 we have displayed the results of the flip test. Note the failure of
uniform recovery displayed visually in Figure 2. More quantitatively, observe the substantial
differences between s1 and s2 in Table 1. It is worth noting that even with 97% sampling as
in the second row of Figure 2, there is still a vast difference between x̃1 and Q−1x2. Although
this may seem surprising at first, this is a consequence of the near block diagonal structure
of the matrix DFT · DWT−1 (see Figure 3 and Remark 2.2). The high Fourier frequencies
(which, due to the block diagonality, correspond to the finer detail wavelet coefficients) are
heavily subsampled since the finer detail coefficients are highly sparse. However, when the
wavelet coefficients are flipped, we are now subsampling the Fourier frequencies corresponding
to the nonsparse coarse wavelet coefficients. Thus the recovery is poor and we get the results
of Figure 2. Note that the flip test will fail in a similar manner if we replace wavelets with
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CS recovery (x1) Flip recovery (Q−1x̃2) Subsampling pattern

College 1

12% samples

DFT·DWT−1
3

MRI, Surface

Scattering,

NMR

College 2

97% samples

DFT·DWT−1
4

Radio inter-

ferometry,

Electron

tomography

College 3

16% samples

HAD·DWT−1
2

Fluorescence

microscopy,

Lensless

camera

Figure 2. Results of the flip test for different compressed sensing matrices frequently used in applications.

Table 1
A table displaying the number of nonzeros that are recovered exactly by various operators. s1 represents the

number of nonzeros that can be recovered from a standard image, whereas s2 represents the nonzeros recoverable
after flipping.

Image Operator s1 s2

College 1 DFT·DWT−1
3 121,923 329

College 2 DFT·DWT−1
4 1,850,917 143

College 3 HAD·DWT−1
2 167,772 4
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DFT ·DWT−1
2 DFT ·DWT−1

5 HAD ·DWT−1
Haar

Figure 3. First row: an image and its wavelet coefficients, where a brighter color corresponds to a larger
value. Second row: absolute values of a variety of compressive sensing matrices. The block diagonal struc-
ture allows us to fully sample rows that correspond to the coarser wavelet levels and subsample the rows that
correspond to the finer wavelet levels.

other popular frames such as curvelets, contourlets, or shearlets [17, 29, 48]. We thus need
to consider more structure than just sparsity to explain the success of compressed sensing in
these applications.

Remark 2.1 (sparsity cannot be the right model). The flip test reveals that sparsity cannot
be the correct model for these examples in compressed sensing. When the values of s1 and s2

are (for example)
s1 = 121,923, s2 = 329,

it is hard to argue that one recovers s-sparse vectors for a representative s when the location
of the nonzero coefficients is arbitrary. On the contrary, as the flip test reveals, the location
of the nonzero coefficients is highly important. If sparsity is not the correct model one needs
to revise the model in order to find a more realistic description. Moreover, the concepts of
the nullspace property of order s and the RIP no longer apply if sparsity is not the correct
model for compressed sensing. Of course, it could be the case that the RIC of order 329 is

D
ow

nl
oa

de
d 

04
/1

9/
17

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

342 ALEXANDER BASTOUNIS AND ANDERS C. HANSEN

sufficiently small to allow uniform recovery of order 329; however, that has nothing to do with
the successful recovery of the image with s = 121,923 nonzero wavelet coefficients.

Remark 2.2 (large coherence and almost block diagonality). One can understand the lack
of uniform recovery from simply looking at Figure 3. The blocks in the matrices correspond
to the different scales in the wavelet expansion that give a level structure. The wavelet
coefficients get relatively sparser in the finer levels and this corresponds to the blocks in the
matrices where the absolute values (coherence; see Definition 3.8) decrease. The coherence is
not uniformly small. In fact, it is very big in the upper left corner and then decreases with
the levels. As is well known [35], it is the uniform small coherence that is the key property
to prove uniform recovery. It should be noted that there have been attempts in applications
to change the measurements in, for example, MRI and radio interferometry, in order to make
the coherence smaller in the first levels. This is called the spread spectrum technique [55, 56].

2.2. Weighted sparsity. Consideration of a different explanation for the success of com-
pressed sensing that includes more structure than just plain sparsity is not a novel idea.
Indeed, weighted sparsity and the weighted RIP were described in [58] as a structured alter-
native to sparsity and the RIP. To describe this approach, we shall begin by defining weighted
sparsity. More specifically, given a collection of weights ω := (ω1, ω2, . . . , ωn) ∈ Rn with
ωj ≥ 1 for each j, a vector x ∈ Cn is said to be (ω, s)-weighted sparse if the weighted `0

norm, ‖x‖ω,0 :=
∑

j∈supp(x) ω
2
j , satisfies ‖x‖ω,0 < s. We can similarly extend the `1 norm to a

weighted `1 norm by defining ‖x‖ω,1 :=
∑n

j=1 ωjxj and then examine weighted `1 minimiza-

tion in the same way that we can discuss `1 minimization. A preliminary idea to deal with
the difficulties raised in section 2.1 is to argue that instead of expecting uniform recovery of
order s as in equation (1.1) to hold whenever x̃ is a minimizer of (P1), we should hope for
uniform recovery of order (ω, s) to hold. More specifically,

(2.1) ‖x̃− x‖1 ≤ Cσω,s(x)1,

where σω,s(x)1 := min{‖x − x̂2‖1 such that x̂2 is (ω, s)-weighted sparse} and C is a fixed
constant. This is further motivated by the success of such an approach to the recovery
of smooth functions from undersampled measurements [58] and the improvements seen by
applying weighted `1 techniques to random Gaussian matrices [46].

2.2.1. The insufficiency of uniform recovery of weighted sparse vectors through `1

minimization with wavelets. Unfortunately, there are issues with this method when applied
to problems involving a level based construction basis such as wavelets like in section 2.1.
These are more thoroughly documented in [1], but we shall provide a brief outline here. Just
as the flip test demonstrates that in many examples relevant to practical applications the class
of s-sparse vectors is too big and contains objects that cannot be recovered by `1 minimization,
we have the same phenomenon for weighted sparsity. We find that for problems involving a
level based reconstruction basis, and for any choice of weights ω, the class of (ω, s)-sparse
vectors is too large and contains vectors that cannot be recovered by either weighted-`1 or `1

minimization.
In our specific setting above, this means that we have a “natural” image with wavelet

coefficients w that is recovered exactly and a vector w′ with ‖w′‖(ω,0) ≤ ‖w‖(ω,0) which isD
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RIP IN LEVELS 343

not recovered. Therefore, either ‖w‖(ω,0) > s and w is not (ω, s)-sparse (so a theory based on
weighted sparsity does not explain why w is recovered) or w′ is (ω, s)-sparse (but not recovered,
so that the class of (ω, s)-sparse vectors is too large and inequality (2.1) does not hold).

We can show these results by expanding the “flip test” from section 2.1. The result is the
flip test for weighted sparse vectors.

Flip test (weighted sparse vectors). Suppose we are given U ∈ Cm×n, a collection of
weights ω ∈ Cn, and a vector x1 ∈ Cn that is perfectly recovered by finding a minimizer of the
BP problem (P1) using U and x = x1. Set s to be the minimal value so that x1 is (ω, s)-sparse.
We now want to test if this recovery is uniform across all (ω, s)-weighted sparse vectors.

1. Let Q be an operator that permutes the entries of x1 and let v = Qx1. Repeatedly
set individual coefficients of v to be 0 until v is also (ω, s)-sparse. Call this new
vector x2.

2. Run the BP problem (P1) with x = x2 to try to recover x2 from Ux2 and obtain a
minimizer x̃2.

3. If x̃2 is not recovered exactly with this method, we do not have uniform recovery of
(ω, s)-weighted sparse vectors.

4. Retry steps 1 to 3 with many different permutation matrices Q. If this succeeds over
a large variety of such Q then this is an indicator (but not a mathematical proof) that
we may have uniform recovery. A single failure, however, demonstrates that we do not
have uniform recovery of (ω, s)-weighted sparse vectors.

Figure 4 displays some examples where the flip test implies a lack of uniform recovery of
weighted sparse vectors (either because s is too small to explain the perfect recovery observed
or s is too large and there are too many vectors that are (ω, s)-weighted sparse as in the pre-
vious discussion). Thus, weighted sparsity is insufficient to explain the success of compressed
sensing when using wavelets and other X-lets. In Figure 4 we have displayed only the result
of using `1 recovery; however, the results are the same when using weighted `1. See [1] for
a thorough discussion of this phenomenon. We shall provide additional insight as to why
weighted sparsity is insufficient in section 3.1.4.

Remark 2.3. It must be emphasized that weighted sparsity and the weighted RIP were
developed in [58] for the purpose of recovering smooth functions with polynomials. Thus, one
should not expect the weighted RIP to hold for wavelets. Conversely, the RIP in levels may
not work for polynomials, as unlike wavelets there is no level structure present. Moreover,
in [46] the weighted approach is used in combination with random Gaussian measurements,
which is very different from the setup in this paper. These facts demonstrate the subtleties
of compressed sensing theory and that we are in need of a collection of much more specific
theorems using different sparsity models that depend on the problem.

Remark 2.4. The matrices discussed in sections 2.1 and 2.2.1 focused on matrices that can
be used to solve finite dimensional models of the real-world compressive sensing applications.
In some circumstances, it has been shown that this does not match the original infinite dimen-
sional problem and a different finite dimensional approximation is needed [3, 4, 10, 37, 38, 54].
It should be noted that the preceding flip tests could easily be adapted to this infinite dimen-
sional setting, and thus uniform recovery of either s-sparse vectors or (ω, s)-weighted sparse
vectors will still be unattainable for descriptive values of s.D
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Setup

The function f The sampling pattern Ω used

0 0.2 0.4 0.6 0.8 1

-5.0

 0.0

 5.0

-500 0 500

0.0

0.5

1.0

Standard CS
The vector x1 (non-zero wavelet coeff. of f set to 1) Perfect recovery of x1 using Ω
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CS after the generalised flip test

The vector x2 with the same weighted sparsity as x1 x̃2 recovered unsuccessfully using Ω
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Figure 4. The figure displays the flip test for weighted sparse vectors with the function f(x) = sin(x)1[0,0.3]−
10 cos(x)1(0.3,0.8] + 91(0.8,1] after its wavelet coefficients are thresholded so that perfect recovery is possible.
Recovery was done using a subsampled one-dimensional (1D) Fourier to wavelet matrix, with Daubechies 3
wavelets and `1 minimization. The weights on the coefficients in level i were given by 2i. Similar results follow
for other weights and also for recovery with weighted `1 minimization.

3. An extended theory for compressed sensing. The current mathematical theory for
compressive sensing revolves around a few key ideas. These are the concepts of sparsity,
incoherence, uniform subsampling, and uniform recovery of order s. In [4] and [59], it was
shown that these concepts are absent for a large class of compressed sensing problems. To
solve this problem, the extended concepts of asymptotic sparsity, asymptotic incoherence, and
multilevel sampling were introduced. We now introduce the fourth extended concept in the
new theory of compressive sensing: uniform recovery of order (s,M). To accomplish this,
we shall extend the definitions of nullspace property and RIP of order s to a pair of new
concepts—the RIP in levels and the nullspace property of order (s,M).

3.1. A level based alternative to sparsity: (s, M)-sparsity. The examples given in
Figure 2 all involve reconstructing in a basis that is divided into various levels. It is this
level based structure that prevents us from observing uniform recovery of order s and necessi-
tates a new theory based on a different kind of sparsity. We shall demonstrate this new theory
with wavelets, which we give a brief description of in the following section. Despite our focus
on wavelets in the next few pages, it should be noted that our work applies equally to all level
based reconstruction bases.
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3.1.1. Wavelets. A multiresolution analysis (as defined in [25, 26, 51]) for L2(X) (where
X is an interval or a square) is formed by constructing increasing scaling spaces (Vj)

∞
j=0 and

wavelet spaces (Wj)
∞
j=0 with Vj ,Wj ⊂ L2(X) so that

1. if f(·) ∈ Vj , then f(2·) ∈ Vj+1, and vice versa;

2.
⋃∞
j=0 Vj = L2(X) and

⋂∞
j=0 Vj = {0};

3. Wj is the orthogonal complement of Vj in Vj+1.
The wavelet expansion of a function f is an expansion in terms of basis elements of V0 (the
scaling level) and Wj for j ≥ 0 (the wavelet levels, said to be increasingly fine as j increases).
For natural images f , the largest coefficients in the wavelet expansion of f appear in the levels
corresponding to smaller j (the coarser levels). Closer examination of the relative sparsity in
each level also reveals a pattern: let w be the collection of wavelet coefficients of f and for a
given level k let Sk be the indices of all wavelet coefficients of f in the kth level. Additionally,
letMn be the largest (in absolute value) n wavelet coefficients of f . Given ε ∈ [0, 1], we define
the functions s(ε) and sk(ε) (as in [4]) by

s(ε) := min



n : ‖wMn‖2 =

√∑

i∈Mn

|wi|2 ≥ ε
√∑

k∈N

∑

i∈Sk

|wi|2 = ε‖w‖2



 ,

sk(ε) := |Ms(ε) ∩ Sk|.

More succinctly, sk(ε) represents the relative sparsity of the wavelet coefficients of f at the
kth scale. If an image is very well represented by wavelets, we would like sk(ε) to be as small
as possible for ε close to 1. However, one can make the following observation: then the ratios
sk(ε)/|Sk| decay very rapidly for a fixed ε. Numerical examples showing this phenomenon
with Haar wavelets are displayed in Figure 5. Summarizing, we observe that images taken
from the real world are sparse with a structure which the traditional RIP ignores.

3.1.2. (s, M)-sparsity and uniform recovery of order (s, M). Uniform recovery of order
s suggests that we are able to recover all s-sparse vectors exactly, independent of which levels
the s-sparse vectors are primarily supported on. Instead of such a stringent requirement, we
can take advantage of the structure of our problem, a concept that is already popular from
the recovery point of view [7, 40, 41, 63]. We have observed that, for wavelets, sk(ε)/|Sk|
decays rapidly as k → ∞ (see Figure 5). To further understand this phenomenon, in [4] the
concept of (s,M)-sparsity was introduced.

Definition 3.1 ((s,M)-sparsity). Let M = (M0,M1, . . . ,Ml) ∈ Nl+1 with 1 ≤ M1 < M2 <
· · · < Ml and M0 = 0, where the natural number l is called the number of levels. Additionally,
let s = (s1, s2, . . . , sl) ∈ Nl with si ≤Mi −Mi−1. We call (s,M) a sparsity pattern.

A set Λ of integers is said to be (s,M)-sparse if Λ ⊂ {M0 + 1,M0 + 2, . . . ,Ml} and for
each i ∈ {1, 2, . . . , l}, we have |Λ ∩ {Mi−1 + 1,Mi−1 + 2, . . . ,Mi} | ≤ si. A vector is said to
be (s,M)-sparse if its support is an (s,M)-sparse set. The collection of (s,M)-sparse vectors
is denoted by Σs,M. We can also define σs,M(x)1 as a natural extension of σs(x)1. Namely,
σs,M(x)1 := minx̂∈Σs,M

‖x− x̂‖1.
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Figure 5. The relative sparsity of Haar wavelet coefficients of two images. The leftmost column displays
the image in question. The middle and final columns display the values of sk(ε) for ε ∈ [0.5, 1] and ε ∈ [0.85, 1],
respectively, where k represents a wavelet level. Of particular importance is the rapid decay of sk(ε) as k grows
larger. “Scaling level” denotes the case where k corresponds to the scaling level.

Remark 3.2. If (s,M) is a sparsity pattern, we will sometimes refer to (as,M)-sparse sets
for some natural number a even though asi may be larger than Mi−Mi−1. To make sense of
such a statement, we define (in this context)

as := (min(as1,M1 −M0),min(as2,M2 −M1), . . . ,min(asl,Ml −Ml−1)) .

Let us now look at a specific case where (s,M) represent wavelet levels (again, we emphasize
that wavelets are simply one example of a level based system and that our work is more
general). Roughly speaking, we can choose s and M (we set M so that Mi−1 + 1 is the first
index for the ith wavelet level) such that x is (s,M)-sparse if it has fewer nonzero coefficients
in the finer wavelet levels. As with uniform recovery of order s, we ask for minimizers x̃ to
(P1). Instead of asking for (1.1), we might expect

(3.1) ‖x− x̃‖1 ≤ Cσs,M(x)1

for some C independent of x. If these conditions are satisfied then we say that uniform
recovery of order (s,M) is possible for the matrix U .

3.1.3. The flip test in levels. In section 2.1, we saw that there was a simple test that
uniform recovery of order s is not an accurate explanation for why compressed sensing is
effective with some matrices U . However, the argument in section 2.1 does not apply if we
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expect uniform recovery of order (s,M) instead of uniform recovery of order s (since (1.1) will
no longer hold for minimizers x̃ of (P1)).

Flip test in levels ((s,M)-sparse vectors). Suppose we are given U ∈ Cm×n, a sparsity
pattern (s,M), and an (s,M)-sparse vector x1 that is perfectly recovered by finding a mini-
mizer of the BP problem (P1) using U and x = x1. We now want to test if this recovery is
uniform.

1. Let Q be a randomly chosen permutation with Q(Σs,M) = Σs,M and let x2 = Qx1.
Run the BP problem (P1) with x = x2 to try to recover x2 from Ux2 and obtain a
minimizer x̃2. Compare x1 and Q−1x̃2. If x1 6= Q−1x̃2 then we do not have uniform
recovery of order (s,M) (since x2 is (s,M)-sparse).

2. If the first step succeeds, retry it with many different permutation matricesQ satisfying
Q(Σs,M) = Σs,M. If this succeeds for a large variety of such Q then this is an indicator
(but not a mathematical proof) that we may have uniform recovery.

The requirement that Q(Σs,M) = Σs,M now requires us to consider different permutations
than a simple reverse permutation as in section 2.1. A natural adaptation of Qreverse to this
new “flip test in levels” is a permutation that just reverses coefficients within each wavelet level.
Figure 6 displays what happens when we attempt to do the flip test with this permutation.
In this case, we see that the performance of compressed sensing reconstruction under flipping
and the performance of standard compressed sensing reconstruction are very similar. This
suggests that uniform recovery within the class of (s,M)-sparse vectors (as in (3.1)) is possible
with a variety of practical compressive sensing matrices. Indeed, in Table 2 we also consider
a collection of randomly generated Q with Q(Σs,M) = Σs,M. We see that perfect recovery of
Qx1 is possible for a wide variety of permutation matrices Q.

Remark 3.3. Throughout this article we have used a variety of numerical tests to demon-
strate that in a collection of compressive imaging applications the concepts of uniform recovery
of sparse vectors or uniform recovery of weighted sparse vectors are not appropriate to explain
the success of compressed sensing. By contrast, there is evidence (like the flip test in levels)
to suggest that uniform recovery of (s,M)-sparse vectors is the right model to explain why
compressive imaging works with applications using matrices such as DFT·IWT or HAD·IWT.
Further detail on this claim is provided in [1].

Table 2
Flip test in levels with randomly generated permutations. The table displays the flip test in levels for vari-

ous images x1 as in Figure 6 permuted using Q to form x2 = Qx1. Each image was processed with a fixed
subsampling pattern and 1000 randomly generated permutations as described in section 3.1.3.

Image Subsampling Matrix Permutations Permutations

percentage where x2 was where x2 was

was perfectly was not perfectly

recovered recovered

College 1 12.48% DFT ·DWT−1
3 1000 0

College 2 97.17% DFT ·DWT−1
4 1000 0

College 3 15.54% HAD ·DWT−1
2 1000 0
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CS recovery (x̃1) Flip in levels recovery Subsampling pattern

College 1

12% samples

DFT·DWT−1
3

MRI,

Spectroscopy,

Radio-

interferometry

College 2

97% samples

DFT·DWT−1
4

MRI,

Spectroscopy,

Radio-

interferometry

Rocks

12% samples

HAD·DWT−1
2

Comp.

imag.,

Hadamard

spectroscopy,

Fluorescence

microscopy

Figure 6. Results of the flip test when the flipping preserves the sparsity within the levels.

3.1.4. Relating (s,M)-sparsity and weighted sparsity. The “flip test in levels” suggests
that for many compressed sensing problems, there are s and M such that all (s,M)-sparse
vectors are recovered equally well by `1 minimization. With this in mind, we are now in a
position to provide additional details on why the same is not the case for weighted sparsity.
Indeed, one can easily state and prove the following theorem (see [1] for details).

Theorem 3.4 (the relationship between weighted sparsity and (s,M)-sparsity). Let (s,M)
have l levels (with l > 2) and fix r < l. Suppose that the collection of (s,M)-sparse vectors
are all (ω,X)-weighted sparse for some X. Then there is an l0 with r < l0 < l such that the
collection of (̃s,M)-sparse are also (ω,X)-weighted sparse, where
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s̃ = (s1, s2, . . . , sr︸ ︷︷ ︸
r

, 0, 0, . . . , 0︸ ︷︷ ︸
l0−1−r

, (l − r)sl0 , 0, . . . , 0).

In particular, the set of (s,M)-sparse and (ω,X)-weighted sparse vectors are not the same.

The use of this theorem becomes apparent if we consider Figure 4. As in the second row
of Figure 3, the Fourier to wavelet matrix in Figure 4 is well approximated by block diagonal
matrices. This block diagonality structure means that we can design our sampling pattern
so that information corresponding to coarser wavelet levels is more readily captured than
the information corresponding to the finer wavelet levels. Since the finer wavelet levels are
relatively more sparse (see the first row of Figure 3 and Figure 5) we can design a sampling
pattern to effectively capture images (note, however, that these variable density/multilevel
sampling schemes have been discussed in [4, 8, 22, 47, 52, 57, 68] and structured sampling
in [21, 67]). To utilize these ideas we choose a sampling pattern so that the first r levels will
be fully sampled, but after that subsampling occurs and this is where we run into difficulties
with weighted sparsity. If we suppose that recovering all vectors with sk nonzero coefficients
in the indices corresponding to the kth wavelet level takes Ωk measurements in that level, then
recovering all weighted sparse vectors requires (l − r)Ωk measurements for some k. Unfortu-
nately, this leads to weighted sparsity overestimating the number of measurements required
to recover all vectors of interest. Unless we substantially oversample the finer wavelet levels
then we are unable to see uniform recovery of weighted sparse vectors.

3.1.5. The `2 robust nullspace property of order (s, M) and the RIP in levels. Given
the success of the “flip test in levels,” let us now try to find a sufficient condition on a matrix
U ∈ Cm×n that allows us to conclude that uniform recovery of order (s,M) is possible for U .
If the RIP implies uniform recovery of order s then the obvious idea is to extend the RIP to
a so-called RIP in levels, defined as follows.

Definition 3.5 (RIP in levels). For a given sparsity pattern (s,M) and matrix U ∈ Cm×n,
the RIP in levels (RIPL) constant of order (s,M) (RICL), denoted by δs,M, is the smallest
δ > 0 such that

(1− δ)‖x‖22 ≤ ‖Ux‖22 ≤ (1 + δ)‖x‖22

for all x ∈ Σs,M.

We will see that the RIP in levels allows us to obtain error estimates on ‖x − x̃‖1 and
‖x − x̃‖2 with x̃ set to be a minimizer of (P1). Similar error estimates can be obtained if
U satisfies the `2 robust nullspace property of order (s,M), a natural generalization of the
nullspace property of order s.

Definition 3.6 (the order (s,M) `2 RNSP). A matrix U ∈ Cm×n satisfies the `2 robust
nullspace property of order (s,M) if there is a ρ ∈ (0, 1) and a τ > 0 such that

(3.2) ‖vS‖2 ≤
ρ√
s̃
‖vSc‖1 + τ‖Uv‖2

for all (s,M)-sparse sets S and vectors v ∈ Cn.
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3.2. Matrices with a small RIPL constant. To see how matrices similar to the ones
in Figure 6 have a small RICL, we will first explain how the sampling patterns in Figure 6
were obtained. Earlier work on compressive sensing suggested that sampling should be done
uniformly at random (see [35]). Because of the near block diagonality of the matrices DFT ·
IWT and HAD · IWT for a variety of wavelets, instead of sampling uniformly at random, it is
better to sample using a multilevel structure, where the percentage subsampling of each block
depends on the relative importance of the corresponding wavelet coefficients (as done in [4],
among others). More precisely, we can make the following definition.

Definition 3.7 (multilevel sampling). Let N be the dimension of the ambient measurement
space. We set N := (N0, N1, . . . , Nl) and m := (m1,m2, . . . ,ml) so that 0 = N0 < N1 <
N2 · · · < Nl = N and mk ≤ Nk − Nk−1 for every k = 1, . . . , l. For each such k, set Ωk =
{tk,1, . . . tk,mk

}, where the tk,j for j = 1, . . .mk are selected independently and uniformly at
random from {Nk−1 + 1, . . . , Nk}. We call Ω = ΩN,m = Ω1 ∪ Ω2 · · · ∪ Ωl a (N,m)-multilevel
subsampling scheme

We define the coherence of U to determine how effective recovery is with equation (P1)
for matrices U = PΩM , where M is an isometry and where Ω is taken uniformly at random.

Definition 3.8 (coherence). The coherence of a matrix M ∈ CN×N , denoted by µ(M), is
the quantity

µ(M) := max
i,j=1,...,N

|Mi,j |2.

If µ(M) is sufficiently small and Ω is a sufficiently large set taken uniformly at random
from 1, 2, . . . , N then with high probability PΩM will satisfy the RIP (and therefore exhibit
uniform recovery). The related quantity with uniform multilevel subsampling is coherence in
levels.

Definition 3.9 (local coherence). Given a sparsity pattern (s,M) and a uniform (m,N)-
multilevel subsampling scheme, we define the (j, k) coherence in levels of the matrix M with
respect to (s,M) and (m,N) to be the value µj,k(N,M) where

(3.3) µj,k(M) = max{|Ms,t|2 such that s ∈ {Nj−1 + 1, . . . , Nj}, t ∈ {Mk−1 + 1, . . .Mk}}.

If the coherence in levels of a matrix is sufficiently small and Ω is a sufficiently dense
uniform multilevel subsampling scheme then we can show that PΩM satisfies the RIPL. Indeed
in [50] the following result was shown.

Theorem 3.10 (the existence of RIPL matrices). There exists a constant C > 0 with the
following property: let M ∈ CN×N be an isometry, l ∈ N, and ε, δ real numbers such that
0 < ε, δ < 1. Let l0 be a natural number with 0 ≤ l0 ≤ l and ΩN,m be an (N,m)-multilevel
subsampling scheme and (s,M) be a sparsity pattern. Suppose that mk = Nk − Nk−1 for
k = 1, 2 . . . , l0 and that

(3.4) mk ≥ Cδ−2(Nk −Nk−1)

(
l∑

r=1

µk,rsr

)
(l log(2m̃) log(2N) log2(2s) + log(ε−1))

k > l0, where m̃ = ml0+1 + · · ·mr. Then with probability at least 1− ε, the matrix U = PΩM
satisfies the RIPL of order (s,M) with constant δs,M ≤ δ.
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In particular, it is possible to use results from [5] to obtain a condition on the number
of measurements taken that guarantees that matrices of the form PΩDFT · Haar−1 satisfy
the RIPL where Ω is a uniform multilevel subsampling scheme and DFT and Haar−1 are the
1D discrete Fourier transform and 1D inverse Haar wavelet transform, respectively. More
precisely, Corollary 3.3 from [50] says the following.

Theorem 3.11 (the RIPL of the DFT ·Haar−1 matrix). There exists a constant C > 0 with
the following property: let N = 2l for some l ∈ N, where l is the number of wavelet levels and
ε, δ real numbers such that 0 < ε, δ < 1. Set Sk = 2max(k−1,1) to be the number of wavelet
coefficients in the kth level. Suppose that mk satisfies

(3.5) mk ≥ Cδ−2


sk +

l∑

r=l0+1

2−|k−r|sr


(log(2m) log2(2N) log2(2s) + log(ε−1)

)

for k = 1, 2, . . . , l. Then if Ω is a (N,m)-multilevel sampling scheme with N = (0, S1, S1 +
S2, . . . ,

∑l
r=1 S

k) and m = (m1,m2, . . . ,ml) then the matrix PΩ DFT ·Haar−1 satisfies δs,M <
δ for M := N and s := (s1, s2, . . . , sl) with probability exceeding 1− ε.

It is possible to give further examples of matrices with a small RIPL constant by examining
their coherence in levels and employing Theorem 3.10. Bounds on the coherence in levels
for a variety of matrices can be examined by using tools developed in papers such as [45].
Moreover, one can obtain a version of Theorem 3.11 for Hadamard matrices combined with
Haar wavelets as the resulting matrix U = HAD ·DWT−1

Haar is completely block diagonal (see
Figure 3); however, this is beyond the scope of this paper.

4. Main results. If a matrix U ∈ Cm×n satisfies the RIP then (1− δs) < ‖ui‖22 < (1 + δs)
for each column ui of U . To ensure that we have similar control over ‖ui‖2 with the RIPL we
make the following two definitions.

Definition 4.1 (ratio constant). The ratio constant of a sparsity pattern (s,M), which we
denote by ηs,M, is given by ηs,M := maxi,j si/sj .

If the sparsity pattern (s,M) has l levels and there is a j ∈ {1, 2, . . . , l} for which sj = 0
then we write ηs,M =∞.

Definition 4.2 (covering a matrix). A sparsity pattern (s,M) is said to cover a matrix
U ∈ Cm×n if

1. ηs,M <∞,
2. Ml ≥ n, where l is the number of levels for (s,M).

If a sparsity pattern does not cover U because it fails to satisfy either 1 or 2 from the
definition of a sparsity pattern covering a matrix U then we cannot guarantee recovery of
(s,M)-sparse vectors, even in the case that δs,M = 0. We shall justify the necessity of both
conditions using two counterexamples. First, we shall provide a matrix U , a sparsity pattern
(s,M), and an (s,M)-sparse vector x1 ∈ Cn such that ηs,M = ∞, δs,M = 0 and x1 is not
recovered by standard `1 minimization. Indeed, consider the following:

U =

(
1 2
0 0

)
, s = (1, 0), M = (0, 1, 2), x1 =

(
1
0

)
.
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By the definition of ηs,M, we have ηs,M = ∞ and it is obvious that δs,M = 0. Furthermore,
even without noise, x1 does not solve the minimization problem min ‖x̃‖1 such that Ux1 = Ux̃.
This can easily be seen by observing that Ux1 = Ux2 with ‖x2‖1 = 1

2 , where x2 := (0, 1/2)T .
It is therefore clear that Assumption 1 is necessary. We shall now provide an explanation for
why Assumption 2 is also a requirement if we wish for the RIPL to be a sufficient condition
for the recovery of (s,M)-sparse vectors. This time, consider the following combination of U ,
(s,M), and x1:

U =

(
1 0 2
0 1 0

)
, s = (1), M = (0, 1), x1 = (1, 0, 0)T ;

and again, even though δs,M = 0, recovery is not possible because Ux1 = Ux2 with ‖x2‖1 =
1/2 where x2 := (0, 0, 1/2)T .

We shall therefore try to prove that uniform recovery of order (s,M) is possible with the
RIPL under the assumption that (s,M) covers U . To do this, we need one further definition.
In (1.4) the bound on ||x− x̃||2 involves

√
s. This arises because s is the maximum number of

nonzero values that could be in an s-sparse vector. The equivalent for (s,M)-sparse vectors
is the following.

Definition 4.3 (number of elements of a sparsity pattern). The number of elements of a
sparsity pattern (s,M), which we denote by s̃, is given by s̃ := s1 + s2 + · · ·+ sl.

To prove that a sufficiently small RIP in levels constant implies uniform recovery of order
(s,M), it is natural to adapt the steps used in [6] to prove that the RIP implies uniform
recovery of order s. This adaptation yields a sufficient condition for recovery even in the noisy
case.

Theorem 4.4 (RIPL recovery theorem). Let (s,M) be a sparsity pattern with l levels and
ratio constant ηs,M. Suppose that the matrix U ∈ Cm×n is covered by (s,M) and has a RIPL
constant δ2s,M satisfying

(4.1) δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

.

Furthermore, suppose that x ∈ Cn and v = Ux + ν where ‖ν‖2 ≤ ε. Then any x̃ ∈ Cn which
are minimizers of the noisy `1 minimization problem (P2) also satisfy

‖x− x̃‖1 ≤ C1σs,M(x)1 +D1

√
s̃ ε and(4.2)

‖x− x̃‖2 ≤
σs,M(x)1√

s̃

(
C2 + C ′2

4
√
lηs,M

)
+ ε
(
D2 +D′2

4
√
lηs,M

)
,(4.3)

where C1, C2, C
′
2, D1, D2, and D′2 depend only on δ2s,M. Note that for the noiseless case ε = 0,

(4.2) reduces to uniform recovery of order (s,M) and (P2) reduces to (P1).

This result allows uniform recovery within the class of (s,M)-sparse vectors but the re-
quirement on δ2s,M depends on l and ηs,M. We make the following observations:

D
ow

nl
oa

de
d 

04
/1

9/
17

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RIP IN LEVELS 353

1. If we pick a sparsity pattern that uses lots of levels then we will require a smaller RIPL
constant (note, however, that if we work with wavelets and M corresponds to wavelet
levels then the number of levels l is approximately log2(N), so that the RIPL constant
only has to shrink like 1/

√
log2(N)).

2. If we pick a sparsity pattern with fewer levels then to explain the excellent observed
recovery in applications we shall have choose si so that si/sj is correspondingly larger
for distinct i and j.

3. If the RIPL constant δ2s,M is sufficiently small so that the conclusion of Theorem 4.4
holds, the bound on ‖x− x̃‖2 is weaker than the bound (1.4) obtained using the RIP.

As a consequence of these observations, at first glance it may appear that the results we
have obtained with the RIPL are weaker than those given using the standard RIP. However,
Theorem 4.4 is stronger than any theorem based around uniform recovery in two senses. First,
if one considers a sparsity pattern with one level then the bounds (4.2) and (4.3) reduce to
(1.3) and (1.4), respectively. Second, neither (1.1) nor (1.3) applies at all if we do not have
uniform recovery. Therefore, for the examples given in Figure 2, (1.1) and (1.3) are not
applicable.

Ideally, it would be possible to find a constant C such that if the RIPL constant is smaller
than C then recovery of all (s,M)-sparse vectors would be possible. Unfortunately, we shall
demonstrate that this is impossible in Theorems 4.5 and 4.6. Indeed, in some sense Theo-
rem 4.4 is optimal in l and ηs,M, as the following results confirm.

Theorem 4.5 (RIPL dependence on the ratio constant). Fix a ∈ N and f : R → R such

that f(ηs,M) = o(η
1
2
s,M). Then there are m,n ∈ N, a matrix U ′ ∈ Cm×n and a sparsity pattern

(s,M) with two levels that covers U ′ such that the RIPL constant δas,M and ratio constant
ηs,M satisfy

(4.4) δas,M ≤
1

|f(ηs,M)|

but there is an (s,M)-sparse z1 such that

z1 /∈ arg min ‖z‖1 such that U ′z = U ′z1.

Roughly speaking, Theorem 4.5 says that if we fix the number of levels and try to replace
the condition

δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

with a condition of the form δ2s,M < (ηs,M)−α/2 /(C
√
l) for some constant C and some α < 1

then the conclusion of Theorem 4.4 ceases to hold. In particular, the requirement on δ2s,M

cannot be independent of ηs,M. The parameter a in the statement of Theorem 4.5 says that
we cannot simply fix the issue by changing δ2s,M to δ3s,M or any further multiple of s.

Similarly, we can state and prove a similar theorem that shows that the dependence on
the number of levels, l, cannot be ignored.
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Theorem 4.6 (RIPL dependence on the number of levels). Fix a ∈ N and f : R→ R such

that f(l) = o(l
1
2 ). Then there are m,n ∈ N, a matrix U ′ ∈ Cm×n, and a sparsity pattern

(s,M) that covers U ′ with ratio constant ηs,M = 1 and l levels such that the RIPL constant
δas,M corresponding to U ′ satisfies δas,M ≤ 1/|f(l)| but there is an (s,M)-sparse z1 such that

z1 /∈ arg min ‖z‖1 such that U ′z = U ′z1.

Furthermore, Theorem 4.7 shows that the `2 error estimate on ‖x− x̃‖2 is optimal up to
constant terms.

Theorem 4.7 (RIPL `2 error optimality). The `2 result (4.3) in Theorem 4.4 is sharp in
the following sense:

1. For a fixed a ∈ N and any functions f, g : R → R such that f(η) = o(η
1
4 ) and

g(η) = O(
√
η), there are natural numbers m and n, a matrix U ′ ∈ Cm×n, and a

sparsity pattern (s,M) with two levels such that
• (s,M) covers U ′,
• the RIPL constant corresponding to the sparsity pattern (as,M), denoted by δas,M,

satisfies δas,M ≤ 1/|g(ηs,M)|,
• there exist vectors z and z1 such that U ′(z − z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ηs,M)√

s̃
σs,M(z1)1.

2. For a fixed a ∈ N and any functions f, g : R → R such that f(l) = o(l
1
4 ) and g(l) =

O(
√
l), there are natural numbers m and n, a matrix U ′ ∈ Cm×n, and a sparsity

pattern (s,M) with ηs,M = 1 such that
• (s,M) covers U ′,
• the RIPL constant corresponding to the sparsity pattern (as,M), denoted by δas,M,

satisfies δas,M ≤ 1/|g(l)|,
• there exist vectors z and z1 such that U ′(z − z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(l)√
s̃
σs,M(z1)1.

As with the RIP in levels, we can obtain results on recovery using the `2 robust nullspace
property of order (s,M)

Theorem 4.8 (`2 RNSP of order (s,M) recovery theorem). Suppose that a matrix U ∈ Cm×n
satisfies the `2 robust nullspace property of order (s,M) with constants ρ ∈ (0, 1) and τ > 0.
Let x ∈ Cn and y ∈ Cm satisfy ‖Ux− y‖2 < ε. Then any solutions x̃ of the `1 minimization
problem

min
x̂∈Cn

‖x̂‖1 subject to ‖Ux̂− y‖2 ≤ ε

satisfy

‖x̃− x‖1 ≤ A1σs,M(x)1 + C1ε
√
s̃,(4.5)

‖x̃− x‖2 ≤
σs,M(x)1√

s̃

(
A2 +B2

4
√
lηs,M

)
+ 2ε

(
C2 +D2

4
√
lηs,M

)
,(4.6)
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where

A1 :=
2 + 2ρ

1− ρ
, C1 :=

4τ

1− ρ
, A2 :=

2ρ+ 2ρ2

1− ρ
,

B2 :=

(
2
√
ρ+ 1

)
(1 + ρ)

1− ρ
, C2 :=

ρτ + τ

1− ρ
, and D2 :=

4
√
ρτ + 3τ − ρτ

2− 2ρ
.

This theorem explains where the dependence on ηs,M and l in (4.3) emerges from. One
technique for showing that the RIP implies uniform recovery of order s is to prove that a
sufficiently small RIC implies the nullspace property (for example, this method is used in [35]).
In a similar way, we prove the `2 error estimate in Theorem 4.4 by showing that a sufficiently
small RIPL constant implies the robust `2 nullspace property of order (s,M). The `2 error
estimate (4.6) follows and we are left with a dependence on 4

√
lηs,M in the right-hand side of

(4.3). As before, we can show that this is optimal. We do this in Theorem 4.9.

Theorem 4.9 (`2 RNSP of order (s,M) optimality). The result in Theorem 4.8 is sharp, in
the following sense:

1. For any f : R3 → R satisfying f(ρ, τ, η) = o(η
1
4 ) for fixed ρ ∈ (0, 1) and τ > 0, there

are natural numbers m and n, a matrix U ′ ∈ Cm×n, and a sparsity pattern (s,M) with
ratio constant ηs,M and two levels such that
• (s,M) covers U ′,
• U ′ satisfies the `2 robust nullspace property of order (s,M) with constants ρ ∈ (0, 1)

and τ > 0,
• there exist vectors z and z1 such that U ′(z − z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ρ, τ, ηs,M)√

s̃
σs,M(z1)1.

2. For any f : R3 → R satisfying f(ρ, τ, l) = o(l
1
4 ) for fixed ρ ∈ (0, 1) and τ > 0, there

are natural numbers m and n, a matrix U ′ ∈ Cm×n, and a sparsity pattern (s,M) with
ratio constant ηs,M = 1 and l levels such that
• (s,M) covers U ′,
• U ′ satisfies the `2 robust nullspace property of order (s,M) with constants ρ ∈ (0, 1)

and τ > 0,
• there exist vectors z and z1 such that U ′(z − z1) = 0 and ‖z‖1 ≤ ‖z1‖1 but

‖z − z1‖2 >
f(ρ, τ, l)√

s̃
σs,M(z1)1.

The conclusions that we can draw from the above theorems are the following:
1. The RIPL will guarantee uniform recovery of order (s,M), provided that the RIPL

constant is sufficiently small (Theorem 4.4).
2. The requirement on the RIPL constant to achieve uniform recovery of order (s,M)

is dependent on
√
ηs,M and

√
l. This is optimal up to constants (Theorem 4.5 and

Theorem 4.6).
3. When compared to the error estimates obtained using the RIP, the `2 error when using

the RIPL has additional factors of the form 4
√
l and 4

√
ηs,M. Again, these are optimal

up to constants (Theorem 4.7).
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4. The same additional factors of the form 4
√
l and 4

√
ηs,M on the `2 error estimate

(Theorem 4.8) are also present with the robust `2 nullspace property of order (s,M).
5. These factors are optimal up to constants, so that even if we ignore the RIPL and

still try to prove results using the `2 robust nullspace property of order (s,M) then
we would be unable to improve the `2 error (Theorem 4.9).

With these results, we have demonstrated that the RIP in levels may be able to explain why
permutations within levels are possible and why more general permutations are impossible
with compressed sensing for the matrices in 2 (similar numerical arguments can be used when-
ever the matrix is nearly block diagonal). The results that we have obtained give a sufficient
condition on the RIP in levels constant that guarantees (s,M)-sparse recovery. Furthermore,
we have managed to demonstrate that this condition and the conclusions that follow from it
are optimal up to constants.

5. Conclusions and open problems. The flip test demonstrates that in many practical
applications the ability to recover sparse signals depends on the structure of the sparsity,
so that a tool that guarantees uniform recovery of all s-sparse signals does not apply. In
particular, this is the case when considering the broadly applicable problem of recovery from
samples of Fourier or Hadamard measurements. The flip test in levels suggests that reasonable
sampling schemes provide a different form of uniform recovery, namely, the recovery of (s,M)-
sparse signals. It is therefore natural to try to find theoretical tools that are able to analyze
and describe this phenomenon. To generalize the RIP, we proposed the RIPL. Using the
results from [50], in section 3.2 we were able to produce a collection of matrices which exhibit
the RIPL. However, we are now left with the following fundamental problems:

• Is it possible to expand the analysis done in [50] and section 3.2 to show that a wider
variety of randomly sampled matrices exhibit the RIPL with a high probability? As
in section 3.2, we believe this can be achieved using results from, for example, [45].
• Can one improve on the number of measurements required in Theorems 3.10 and 3.11

(perhaps by reducing log factors) or else show that the bounds in (3.4) and (3.5) are
optimal?
• In section 3.2 we considered the size of the RICL constant δs,M when the measurement

locations Ω were selected at random using a mutlilevel subsampling scheme. Instead,
suppose that the measurements Ω and the matrix M are fixed. We can then ask the
important open question: for which (s,M) does the matrix PΩM satisfy the RIPL
with sufficiently small constant δs,M for Theorem 4.4 to apply?

Note that these problems are vast as the sampling patterns will depend not only on the
sparsity patterns but of course also on the sampling basis and recovery basis (or frame).
Thus, covering all interesting cases relevant to practical applications will yield an incredibly
rich mathematical theory.

6. Proofs. We shall present the proofs in an arrangement different from the order in which
their statements were presented. The first proof that we shall present is that of Theorem 4.8.

6.1. Proof of Theorem 4.8. We begin with the following lemma.

Lemma 6.1. Suppose that U ∈ Cm×n satisfies the `2 robust nullspace property of order
(s,M) with constants ρ ∈ (0, 1) and τ > 0. Fix v ∈ Cn, and let S be an (s,M)-sparse set such
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that |S| = s̃ and the property that if T is an (s,M)-sparse set, we have ‖vS‖1 ≥ ‖vT ‖1. Then

‖v‖2 ≤
‖vSc‖1√

s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]
.

Proof. For i = 1, 2, . . . , l, we define Si0 to be Si0 = S ∩ {Mi−1 + 1,Mi−1 + 2, . . . ,Mi} (i.e.,
Si0 is the elements of S that are in the ith level). Let m = maxi=1,2,...,l minj∈Si

0
|vj |. Since

|Si0| = si (otherwise |S| < s̃), we can see that given any i = 1, 2, . . . , l

‖vS‖2 =

√∑

n∈S
|vn|2 ≥

√∑

j∈Si
0

|vj |2 ≥
√
si min
j∈Si

0

|vj | ≥ min
k=1,2,...,l

√
sk min

j∈Si
0

|vj |

so that ‖vS‖2 ≥ mmink=1,2,...,l
√
sk. Furthermore, |vj | ≤ m for each j ∈ Sc; otherwise there

is an (s,M)-sparse T with ‖vT ‖1 > ‖vS‖1. Therefore ‖vSc‖22 =
∑

j∈Sc |vj |2 ≤
∑

j∈Sc m|vj | ≤
‖vSc‖1‖vS‖2

min
k=1,2,...,l

√
sk
. By the `2 robust nullspace property of order (s,M), ‖vSc‖1‖vS‖2 ≤ ρ√

s̃
‖vSc‖21 +

τ‖Uv‖2‖vSc‖1. Since
√
a+ b ≤

√
a+
√
b whenever a, b > 0,

(6.1) ‖vSc‖2 ≤
1

min 4
√
si

(√
ρ

4
√
s̃
‖vSc‖1 +

√
τ‖Uv‖2‖vSc‖1

)
.

Using the arithmetic-geometric mean inequality,

√
τ‖Uv‖2‖vSc‖1 =

√
τ‖Uv‖2

4
√
s̃
‖vSc‖1

4
√
s̃
≤ τ‖Uv‖2 4

√
s̃

2
+
‖vSc‖1
2 4
√
s̃
.

Therefore, (6.1) yields

‖vSc‖2 ≤
1

min 4
√
si

(√
ρ

4
√
s̃
‖vSc‖1 +

‖vSc‖1
2 4
√
s̃

+
τ‖Uv‖2 4

√
s̃

2

)

≤ ‖vSc‖1
4
√
s̃min 4

√
si

(
√
ρ+

1

2

)
+
τ‖Uv‖2 4

√
lηs,M

2

because s̃
min si

≤ lηs,M. Once again, employing the `2 nullspace property gives

‖v‖2 ≤ ‖vS‖2 + ‖vSc‖2 ≤
ρ√
s̃
‖vSc‖1 + τ‖Uv‖2 +

‖vSc‖1
4
√
s̃min 4

√
si

(
√
ρ+

1

2

)
+
τ‖Uv‖2 4

√
lηs,M

2

≤ ‖vS
c‖1√
s̃

[
ρ+

(
√
ρ+

1

2

) 4
√
s̃

min 4
√
si

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]

≤ ‖vS
c‖1√
s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖Uv‖2

[
4
√
lηs,M

2
+ 1

]
.

We shall see that the remaining error estimates will follow from the `1 robust nullspace
property (see [35, Definition 4.17]). This definition and its generalization to (s,M)-sparse sets
are as follows:
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Definition 6.2. A matrix U ∈ Cm×n satisfies the `1 robust nullspace property relative to S
with constants ρ ∈ (0, 1) and τ ′ > 0 if

(6.2) ‖vS‖1 ≤ ρ‖vSc‖1 + τ ′‖Uv‖2

for any v ∈ Cn. We say that U satisfies the `1 robust nullspace property of order (s,M) if
(6.2) holds for any (s,M)-sparse sets S.

It is easy to see that if U satisfies the `2 robust nullspace property of order (s,M) with
constants ρ and τ then, for any (s,M)-sparse set S, U also satisfies the `1 robust nullspace
property relative to S with constants ρ and τ

√
s̃. Indeed, assume that U satisfies the `2 robust

nullspace property of order (s,M) with constants ρ and τ . Then (by the Cauchy–Schwarz
inequality) ‖vS‖1 ≤

√
s̃‖vS‖2 ≤ ρ‖vSc‖1 + τ

√
s̃‖Uv‖2.

An immediate conclusion of the robust nullspace property is the following, proven in [35]
as Theorem 4.20.

Lemma 6.3. Suppose that U ∈ Cm×n satisfies the `1 robust nullspace property with con-
stants ρ ∈ (0, 1) and τ ′ relative to a set S. Then for any complex vectors x, z ∈ Cn, we
have

‖z − x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xSc‖1) +

2τ ′

1− ρ
‖U(z − x)‖2.

We can use this lemma to show the following important result, which is similar both in
proof and statement to Theorem 4.19 in [35].

Lemma 6.4. Suppose that a matrix U ∈ Cm×n satisfies the `1 robust nullspace property of
order (s,M) with constants ρ ∈ (0, 1) and τ ′ > 0. Furthermore, suppose that ‖Ux− y‖2 ≤ ε.
Then any solutions x̃ to the `1 minimization problem

min
x̂∈Cn

‖x̂‖1 subject to ‖Ux̂− y‖2 ≤ ε

satisfy

‖x− x̃‖1 ≤
2 + 2ρ

1− ρ
σs,M(x)1 +

4τ ′ε
1− ρ

.

Proof. By Lemma 6.3, for any (s,M)-sparse set S

‖x̃− x‖1 ≤
1 + ρ

1− ρ
(‖x̃‖1 − ‖x‖1 + 2‖xSc‖1) +

2τ ′

1− ρ
‖U(x̃− x)‖2.

Because both ‖Ux − y‖2 and ‖Ux̃ − y‖2 are smaller than or equal to ε, ‖Ux − Ux̃‖ ≤ 2ε.
Furthermore, because x̃ has minimal `1 norm, ‖x̃‖1 − ‖x‖1 ≤ 0.

Thus ‖x−x̃‖1 ≤ 2+2ρ
1−ρ ‖xSc‖1+ 4τ ′ε

1−ρ . If we take S to be the (s,M)-sparse set which maximizes
‖xS‖1, then

‖x− x̃‖1 ≤
2 + 2ρ

1− ρ
σs,M(x)1 +

4τ ′ε
1− ρ

.
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We can combine these results to complete the proof of Theorem 4.8. Indeed, (4.5) follows
immediately from Lemma 6.4 and the fact that U satisfies the `1 robust nullspace property
with constants ρ and τ

√
s̃. To prove (4.6), we can simply set v = x− x̃ in Lemma 6.1 to see

that

‖x− x̃‖2 ≤
‖(x− x̃)Sc‖1√

s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ τ‖U (x− x̃) ‖2

[
4
√
lηs,M

2
+ 1

]

≤ ‖x− x̃‖1√
s̃

[
ρ+

(
√
ρ+

1

2

)
4
√
lηs,M

]
+ 2τε

[
4
√
lηs,M

2
+ 1

]

and the result follows from (4.5).

6.2. Proof of Theorem 4.4. It will suffice to prove that the conditions on δs,M and (s,M)
in Theorem 4.4 imply the `2 robust nullspace property. To show this, we begin by stating the
following inequality, proven in [11].

Lemma 6.5 (the norm inequality for `1 and `2). Let v = (v1, v2, . . . , vs), where v1 ≥ v2 ≥
v3 ≥ · · · ≥ vs. Then

‖v‖2 ≤
1√
s
‖v‖1 +

√
s

4
(v1 − vs).

We will now prove the following additional lemma, which is almost identical in statement
and proof to that of Lemma 6.1 in [6].

Lemma 6.6. Suppose that x, y ∈ Σs,M and that

(6.3) ‖Ux‖22 − ‖x‖22 = t‖x‖22.

Additionally, suppose that x and y are orthogonal. Then |〈Ux,Uy〉| ≤
√
δ2

2s,M − t2‖x‖2‖y‖2,

where δ2s,M is the restricted isometry constant corresponding to the sparsity pattern (2s,M)
and the matrix U .

Proof. Without loss of generality, we can assume that ‖x‖2 = ‖y‖2 = 1. Note that for
α, β ∈ R and γ ∈ C, the vectors αx+ γy and βx− γy are contained in Σ2s,M. Therefore,

(6.4) ‖U (αx+ γy) ‖22 ≤ (1 + δ2s,M)‖αx+ γy‖22 = (1 + δ2s,M)(α2 + |γ|2),

where the last line follows because 〈x, y〉 = 0 (from the orthogonality of x and y). Similarly,

(6.5) − ‖U(βx− γy)‖22 ≤ −(1− δ2s,M)(β2 + |γ|2).

We will now add these two inequalities. On the one hand (by using the assumption in (6.3)
and the fact that α,β are real), we have

‖U(αx+ γy)‖22 − ‖U(βx− γy)‖22 = α2‖Ux‖22 + 2Re(αγ 〈Ux,Uy〉) + |γ|2‖Uy‖22
−
(
β2‖Ux‖22 − 2Re(βγ 〈Ux,Uy〉) + |γ|2‖Uy‖22

)

= (1 + t)
(
α2 − β2

)
+ 2(α+ β)Re(γ 〈Ux,Uy〉),

D
ow

nl
oa

de
d 

04
/1

9/
17

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

360 ALEXANDER BASTOUNIS AND ANDERS C. HANSEN

and on the other hand (from (6.4) and (6.5))

‖U(αx+ γy)‖22 − ‖U(βx− γy)‖22 ≤ δ2s,M

(
α2 + β2 + 2|γ|2

)
+ α2 − β2.

Therefore,

(1 + t)
(
α2 − β2

)
+ 2(α+ β)Re(γ 〈Ux,Uy〉) ≤ δ2s,M

(
α2 + β2 + 2|γ|2

)
+ α2 − β2.

After choosing γ so that Re(γ 〈Ux,Uy〉) = | 〈Ux,Uy〉 | we obtain

(6.6) | 〈Ux,Uy〉 | ≤ 1

2α+ 2β

[
(δ2s,M − t)α2 + (δ2s,M + t)β2 + 2δ2s,M

]

because |γ| = 1. By the definition of the RIP in levels constant, δ2s,M ≥ δs,M and so

(6.7) |t| =
∣∣‖Ux‖22 − ‖x‖22

∣∣ ≤ δs,M ≤ δ2s,M.

If equality holds in (6.7), then we can set β = 0 and send α → ∞ in (6.6) to obtain the

required result. Otherwise, (6.7) implies that
√

δ2s,M+t
δ2s,M−t ∈ R and so we can set α =

√
δ2s,M+t
δ2s,M−t

and β = 1
α in (6.6). With these values, we obtain

| 〈Ux,Uy〉 | ≤ α

2α2 + 2
(δ2s,M + t+ δ2s,M − t+ 2δ2s,M) ≤

4δ2s,Mα(δ2s,M − t)
4δ2s,M

≤
√
δ2

2s,M − t2.

Proof of Theorem 4.4. Let x ∈ Cm be an arbitrary m dimensional complex vector, and let

xi := x{Mi−1+1,Mi−1+2,...,Mi}

denote the ith level of x. For an arbitrary vector v = (v1, v2, . . . , vn), we define |v| to be
the vector (|v1|, |v2|, . . . , |vn|). Let Si0 denote the indexes of the sith largest elements of |xi|,
and S0 :=

⋃l
i=1 S

i
0. We then define Si1 to be the indexes of the sith largest elements of |xi|

that are not contained in Si0 (if there are fewer than si elements remaining, we simply take
the indexes of any remaining elements of |xi| and define S1 :=

⋃l
i=1 S

i
1). In general, we can

make a similar definition to form a collection of index sets labeled (Sij)i=1,2...,l,j=1,2,... and
corresponding (s,M)-sparse Sj .

These definitions and the fact that (s,M) covers U implies that if Ω =
⋃
j≥0 Sj then

xΩ = x. By the definition of S0, ‖xΛ‖2 ≤ ‖xS0‖2 and ‖xSc
0
‖1 ≤ ‖xΛc‖1 whenever Λ is

(s,M)-sparse. It will suffice to verify that

(6.8)
√
s̃‖xS0‖2 ≤ ρ‖xSc

0
‖1 + τ

√
s̃‖Ux‖2

holds for some ρ ∈ (0, 1) and τ > 0. Indeed, if (6.8) holds then for (s,M)-sparse sets Λ,

√
s̃‖xΛ‖2 ≤

√
s̃‖xS0‖2 ≤ ρ‖xSc

0
‖1 + τ

√
s̃‖Ux‖2

≤ ρ‖xΛc‖1 + τ
√
s̃‖Ux‖2
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as required in Theorem 4.8. Set

(6.9) ‖UxS0‖22 = (1 + t)‖xS0‖22.

Clearly, |t| ≤ δs,M. Then

‖UxS0‖22 = 〈UxS0 , UxS0〉 = 〈UxS0 , Ux〉 −
∑

j≥1

〈
UxS0 , UxSj

〉
,(6.10)

where we have used xΩ = x. Using the Cauchy–Schwarz inequality and (6.9) yields

(6.11) | 〈UxS0 , Ux〉 | ≤ ‖UxS0‖2‖Ux‖2 ≤
√

1 + t ‖xS0‖2‖Ux‖2.

Furthermore, we can use Lemma 6.6 to see that

∣∣∣∣∣∣
∑

j≥1

〈
UxS0 , UxSj

〉
∣∣∣∣∣∣
≤
√
δ2

2s,M − t2
∑

j≥1

‖xS0‖2‖xSj‖2 ≤ ‖xS0‖2
√
δ2

2s,M − t2
l∑

i=1

∑

j≥1

‖xSi
j
‖2.

(6.12)

Combining (6.9), (6.10), (6.11), and (6.12) yields

(6.13) (1 + t)‖xS0‖22 ≤
√

1 + t ‖xS0‖2‖Ux‖2 + ‖xS0‖2
√
δ2

2s,M − t2
l∑

i=1

∑

j≥1

‖xSi
j
‖2.

If |Sij | = si then let x+
i,j (correspondingly x−i,j) be the largest element of |xSi

j
| (correspondingly

the smallest element of |xSi
j
|). If Sij is nonempty with fewer than si elements then we set x+

i,j

to be the largest element of |xSi
j
| and x−i,j = 0. Finally, when Sij = ∅, we let x+

i,j = x−i,j = 0. It

is clear then that x+
i,j+1 ≤ x

−
i,j .

Since xSi
j

contains at most si nonzero elements, we can apply the norm inequality for `1

and `2 (Lemma 6.5) to obtain

‖xSi
j
‖2 ≤

1
√
si
‖xSi

j
‖1 +

√
si
4

(
x+
i,j − x

−
i,j

)

for any i = 1, 2, . . . , l and j ∈ N. Therefore

∑

j≥1

‖xSi
j
‖2 ≤

∑

j≥1

(
1
√
si
‖xSi

j
‖1
)

+

√
si
4

∑

j≥1

(
x+
i,j − x

−
i,j

)

=
∑

j≥1

(
1
√
si
‖xSi

j
‖1
)

+

√
si
4


x+

i,1 +
∑

j≥2

x+
i,j −

∑

j≥1

x+
i,j




=
∑

j≥1

(
1
√
si
‖xSi

j
‖1
)

+

√
si
4


x+

i,1 +
∑

j≥1

(
x+
i,j+1 − x

−
i,j

)



≤
∑

j≥1

(
1
√
si
‖xSi

j
‖1
)

+

√
si
4
x+
i,1,
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where the last inequality follows because x+
i,j+1−x

−
i,j ≤ 0. Additionally,

√
six

+
i,1 =

√
si‖xSi

1
‖∞ ≤

‖xSi
0
‖2 because each element of |xSi

0
| is larger than x+

i,1. We conclude that

l∑

i=1

∑

j≥1

‖xSi
j
‖2 ≤

∑

j≥1

l∑

i=1

1
√
si
‖xSi

j
‖1 +

l∑

i=1

1

4
‖xSi

0
‖2 ≤

1

min
√
si

∑

j≥1

l∑

i=1

‖xSi
j
‖1 +

1

4

√
l‖xS0‖2

≤ 1

min
√
si

∑

j≥1

‖xSj‖1 +
1

4

√
l‖xS0‖2 ≤

1

min
√
si

∥∥∥∥∥x
⋃
j≥1

Sj

∥∥∥∥∥
1

+
1

4

√
l‖xS0‖2,

where the second inequality follows from the Cauchy–Schwarz inequality applied to

(1, 1, . . . , 1︸ ︷︷ ︸
l

)

and (‖xS1
0
‖2, ‖xS2

0
‖2, . . . , ‖xSl

0
‖2) and the third and fourth inequalities follow from the dis-

joint supports of the vectors xSi
j

and x
Si′
j′

whenever i 6= i′ or j 6= j′. By xΩ = x and the

disjointedness of Si, Sj for i 6= j,
⋃
j≥1 Sj = Sc0 so

(6.14)
l∑

i=1

∑

j≥1

‖xSi
j
‖2 ≤

1

min
√
si
‖xSc

0
‖1 +

1

4

√
l‖xS0‖2.

Dividing (6.13) by ‖xS0‖2 and employing (6.14) yields

(6.15) (1 + t)‖xS0‖2 ≤
√

1 + t‖Ux‖2 +
√
δ2

2s,M − t2
(

1

min
√
si
‖xSc

0
‖1 +

1

4

√
l‖xS0‖2

)
.

Let g(t) :=
δ22s,M−t2

(1+t)2
for |t| ≤ δ2s,M. It is clear that g(δ2s,M) = g(−δ2s,M) = 0. Furthermore,

g is differentiable. Therefore g attains its maximum at tmax, where g′(tmax) = 0. A simple
calculation shows us that tmax = −δ2

2s,M (note that by the assumption (4.1), δ2
2s,M ≤ δ2s,M).

Thus g(t) ≤ g(−δ2
2s,M) =

δ22s,M
1−δ22s,M

. Additionally, 1√
1+t
≤ 1√

1−δ2s,M
. Combining this with (6.15)

yields

‖xS0‖2 ≤
1√

1 + t
‖Ux‖2 +

√
g(t)

(
1

min
√
si
‖xSc

0
‖1 +

1

4

√
l‖xS0‖2

)

≤ 1√
1− δ2s,M

‖Ux‖2 +
δ2s,M√

1− δ2
2s,M

(
1

min
√
si
‖xSc

0
‖1 +

1

4

√
l‖xS0‖2

)
.

A simple rearrangement gives

‖xS0‖2 ≤
√

1 + δ2s,M√
1− δ2

2s,M − δ2s,M

√
l/4
‖Ux‖2 +

δ2s,M

min
√
si

(√
1− δ2

2s,M − δ2s,M

√
l/4
)‖xSc

0
‖1

(6.16)

provided

(6.17)
√

1− δ2
2s,M − δ2s,M

√
l/4 > 0.
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Multiplying (6.16) by
√
s̃ yields

√
s̃‖xS0‖ ≤

√
s̃

√
1 + δ2s,M√

1− δ2
2s,M − δ2s,M

√
l/4
‖Ux‖2 +

δ2s,M

√
s̃

min
√
si

(√
1− δ2

2s,M − δ2s,M

√
l/4
)‖xSc

0
‖1

≤ τ
√
s̃ ‖Ux‖2 +

δ2s,M√
1− δ2

2s,M − δ2s,M

√
l/4

√√√√
l∑

k=1

sk
min si

‖xSc
0
‖1

≤ τ
√
s̃ ‖Ux‖2 +

δ2s,M

√
lηs,M√

1− δ2
2s,M − δ2s,M

√
l/4
‖xSc

0
‖1,

where τ =

√
1+δ2s,M√

1−δ22s,M−δ2s,M
√
l/4
. It is clear that (6.8) is satisfied if condition (6.17) holds and

(6.18)
δ2s,M

√
lηs,M√

1− δ2
2s,M − δ2s,M

√
l/4

< 1 or equivalently δ2s,M <
1√

l
(√
ηs,M + 1

4

)2
+ 1

while (6.17) is equivalent to δ2s,M < 1√
l
16

+1
. Since

1√
l
(√
ηs,M + 1

4

)2
+ 1
≤ 1√

l
16 + 1

it will suffice for (6.18) to hold, completing the proof.

6.3. Proofs of Theorems 4.5 and 4.6.

Proof of Theorem 4.5. The ideas behind the counterexample in this proof are similar to
those in Theorem 3.2 in [13]. We prove this theorem in three stages. First we shall construct
the matrix U . Next we shall show that our construction does indeed have a RIP in levels
constant satisfying (4.4). Finally, we shall explain why z1 exists.

Step I. Set n = C +C2, where the nonnegative integer C is much greater than a (we shall
give a precise choice of C later). Let x1 ∈ Cn be the vector

x1 := λ(C,C, . . . , C︸ ︷︷ ︸
C

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

).

With this definition, the first C elements of x1 have value Cλ and the next C2 elements have
value λ. Our (s,M) sparsity pattern is given by s = (1, C2) and M = (0, C, C +C2). Clearly,
by the definition of the ratio constant, ηs,M = C2 (in particular, ηs,M is finite). Choose
λ = 1√

C3+C2
so that ‖x1‖2 = 1. By using this fact, we can form an orthonormal basis of

CC+C2
that includes x1. We can write this basis as (xi)C+C2

i=1 . Finally, for a vector v ∈ CC+C2
,

we define the linear map U by

U ′v :=
C+C2∑

i=2

vixi, where v =
C+C2∑

i=1

vixi.
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In particular, notice that the nullspace of U is precisely the space spanned by x1 and that
vi =

〈
v, xi

〉
.

Step II. Let γ be an (as,M) sparse vector. Our aim will be to estimate
∣∣ ‖Uγ‖22 − ‖γ‖22

∣∣.
Clearly, ‖Uγ‖22 − ‖γ‖22 = −|γ1|2, where γ1 is the coefficient of x1 in the expansion of γ in
the basis (xi). Therefore, to show that U satisfies the RIPL we will only need to bound
|γ1| = |

〈
γ, x1

〉
|. Let S be the support of γ. Then

|
〈
γ, x1

〉
| = |

〈
γS , x

1
〉
| = |

〈
γ, x1

S

〉
| ≤ ‖γ‖2‖x1

S‖2 ≤ λ‖γ‖2
√
aC2 + C2,

where we have used Cauchy–Schwarz in the first inequality and in the second inequality we
have used the fact that x1

S has at most a elements of size λC and at most C2 elements of size

λ. From the definition of λ we get
∣∣〈γ, x1

〉∣∣ ≤
√

a+1
C+1‖γ‖2. Therefore,

∣∣ ‖Uγ‖22 − ‖γ‖22
∣∣ = |

〈
γ, x1

〉
|2 ≤ a+ 1

C + 1
‖γ‖22.

By the assumption that f(x) = o(x
1
2 ), we can find a C ∈ N sufficiently large so that a+1

C+1 ≤
1

|f(C2)| . Then δas,M ≤ 1
|f(ηs,M)| as claimed.

Step III. Let

z1 := (C, 0, 0, . . . , 0, 0︸ ︷︷ ︸
C−1

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

), z2 := (0, C, C, . . . , C, C︸ ︷︷ ︸
C−1

, 0, 0, . . . , 0︸ ︷︷ ︸
C2

).

It is clear that z1 is (s,M)-sparse. Additionally, ‖z1‖1 = C2 +C and ‖ − z2‖1 = (C − 1)C =
C2 − C. Because U(z1 + z2) = U(x1)/λ = 0, we have U(−z2) = U(z1). Since the kernel of
U is of dimension 1, the only vectors z which satisfy U(z) = U(z1) are z = z1 and z = −z2.
Moreover, ‖z1‖1 > ‖ − z2‖1. Consequently

z1 /∈ arg min ‖z‖1 such that Uz = Uz1.

Proof of Theorem 4.6. The proof of this theorem is almost identical to that of Theorem
4.5, so we shall omit details here. Again, we set x1 so that

x1 := λ(C,C, . . . , C︸ ︷︷ ︸
C

, 1, 1, . . . , 1︸ ︷︷ ︸
C2

),

where C � a. We choose λ so that ‖x1‖2 = 1. In contrast to the proof of Theorem 4.5, we
take

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2+1

), M = (0, C, C + 1, . . . , C + C2 − 1, C + C2).

This time, there are C2 + 1 levels and the ratio constant ηs,M is equal to 1. Once again, we

produce an orthonormal basis of CC+C2
that includes x1, which we label (xi)C+C2

i=1 , and we
define the linear map U by

U ′v :=
C+C2∑

i=2

vixi, where v =

C+C2∑

i=1

vixi.
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The same argument as before proves that for any (as,M)-sparse γ,

∣∣ ‖U ′γ‖22 − ‖γ‖22
∣∣ ≤ a+ 1

C + 1
‖γ‖22,

and again, taking C sufficiently large so that a+1
C+1 ≤

1
|f(C2+1)| yields δas,M ≤ 1

|f(l)| . The proof

of the existence of z1 is identical to Step III in the proof of Theorem 4.5.

6.4. Proof of Theorem 4.7.

Proof. Once again, we prove this theorem in three stages. First we shall construct the
matrix U ′. Next, we shall show that the matrix U ′ has a sufficiently small RIPL constant.
Finally, we shall explain why both z1 and z exist.

Step I. Let x1 be the vector

x1 := λ(0, 0, . . . , 0︸ ︷︷ ︸
C2

, 1, 1, . . . , 1︸ ︷︷ ︸
ω(ρ,C)+1

),

where ω(ρ, C) = ceil(2C
ρ ) for a fixed ρ ∈ (0, 1) which we will specify later, ceil(a) denotes the

smallest integer greater than or equal to a, and C is an integer greater than 1. In other words,
the first C2 elements of x1 have value 0 and the next ω(ρ, C) + 1 elements have value λ. We
choose λ so that ‖x1‖2 = 1 and C so that C2 > ω(ρ, C) and choose our (s,M) sparsity pattern
so that s = (C2, 1) and M = (0, C2, C2 +ω(ρ, C) + 1). By the definition of the ratio constant,
ηs,M = C2 (in particular, ηs,M is finite). Because ‖x1‖2 = 1, we can form an orthonormal

basis of CC2+ω(ρ,C)+1 that includes x1, which we can write as (xi)
C2+ω(ρ,C)+1
i=1 . Finally, for a

vector v ∈ CC2+ω(ρ,C)+1, we define the linear map U ′ by

U ′v :=

√
2w

τ
, where w =

C2+ω(ρ,C)+1∑

i=2

vixi and v = v1x1 + w.

In particular, notice that the nullspace of U ′ is precisely the space spanned by x1 and that
vi =

〈
v, xi

〉
.

Step II. Let γ be an (as,M) sparse vector. For the purposes of proving Theorem 4.7, it
will suffice to take τ =

√
2. Then

‖U ′γ‖22 − ‖γ‖22 = −|γ1|2,

where γ1 is the coefficient corresponding to x1 in the expansion of γ in the basis (xi). As in
the proof of Theorem 4.5, |γ1| = |

〈
γ, x1

〉
|. Let S be the support of γ. Then

|
〈
γS , x

1
〉
| = |

〈
γ, x1

S

〉
| ≤ ‖γ‖2‖x1

S‖2 ≤ λ‖γ‖2
√
a,

where we have used Cauchy–Scharwz in the first inequality and in the second inequality we
have used the fact that x1

S has at most a elements of size λ. It is easy to see that λ = 1√
ω(ρ,C)+1

.

Therefore,

∣∣ ‖U ′γ‖22 − ‖γ‖22
∣∣ = |

〈
γ, x1

〉
|2 ≤ a

ω(ρ, C) + 1
‖γ‖22 ≤

ρa

2C
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because ω(ρ, C) ≥ 2C
ρ . By the assumption that g(ηs,M) ≤ 1

A

√
ηs,M for some A > 0 and

ηs,M sufficiently large, and the fact that ηs,M = C2, we must have A
C ≤

1
g(ηs,M) . If we take ρ

sufficiently small and C sufficiently large, then

δas,M <
ρa

2C
≤ A

C
≤ 1

g(ηs,M)
,

as claimed.
Step III. Let z1 := x1 and set z to be the 0 vector in CC2+ω(ρ,C)+1. Because x1 is in the

kernel of U ′, U ′(z − z1) = 0. Furthermore, it is obvious that ‖z‖1 ≤ ‖z1‖1. Additionally,
‖z1‖2 = 1 and

σs,M(z1)1√
s̃

= λ
ω(ρ, C)√
C2 + 1

≤ ω(ρ, C)√
ω(ρ, C) (C2 + 1)

≤

√
2C + 1

ρ (C2 + 1)
≤
√

3

ρ
√
ηs,M

since ηs,M = C2 and ω(ρ, C) ≤ 2C/ρ+ 1 ≤ (2C + 1)/ρ. Because f(ηs,M) = o(η
1
4
s,M),

σs,M(z1)1√
s̃

f(ηs,M)→ 0, ηs,M →∞.

The desired result follows by taking ηs,M sufficiently large so that

‖z − z1‖2 = 1 >
σs,M(z1)1√

s̃
f(ηs,M).

Proof of part 2. The proof of part 2 follows with a few alterations to the previous case.
We now use the sparsity pattern

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2

, 1) and M = (0, 1, 2, . . . , C2, C2 + ω(ρ, C) + 1).

In this case, ηs,M = 1 and l = C2 +1. The result follows by simply employing the same matrix
U ′ with this new sparsity pattern.

6.5. Proofs of Theorem 4.9. The counterexample for Theorem 4.9 is the same as the
one used in the proof of Theorem 4.7. In that case, the matrix depended on three parameters:
C, τ , and ρ. We show that U ′ satisfies the `2 robust nullspace property of order (s,M)
with parameters ρ and τ . The existence of z1 and z is identical to Step III in the proof of
Theorem 4.7.

Proof of part 1. First, if T ⊂ S then for any v ∈ CC2+ω(ρ,C)+1, we have

‖vT ‖2 ≤ ‖vS‖2 and
ρ√
s̃
‖vT c‖1 + τ‖U ′v‖2 ≥

ρ√
s̃
‖vSc‖1 + τ‖U ′v‖2

so it will suffice to prove that U ′ satisfies (3.2) for (s,M)-sparse sets S with |S| = s̃.
As before, we set U ′v :=

√
2w/τ , where w is defined as in the proof of Theorem 4.7.

Let us consider a set S such that |S| = s̃. Because wS and wSc have disjoint support,
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by the Cauchy–Schwarz inequality applied to the vectors (1, 1) and (‖wS‖2, ‖wSc‖2) we get√
2‖w‖2 ≥ ‖wS‖2 + ‖wSc‖2. Therefore,

(6.19) τ‖U ′v‖2 ≥
√

2‖w‖2 ≥ ‖wS‖2 + ‖wSc‖2.

Furthermore, because |S| = s̃ ≥ |Sc| (recall that |S| = C2 + 1 and that C was chosen so that
C2 > ω(ρ, C) = |Sc|) and ρ ∈ (0, 1)

‖wSc‖2 ≥
1√
|Sc|
‖wSc‖1 ≥

1√
s̃
‖wSc‖1 ≥

ρ√
s̃
‖wSc‖1.(6.20)

Combining (6.19) and (6.20) gives

τ‖U ′v‖2 +
ρ√
s̃
‖vSc‖1 ≥ ‖wS‖2 +

ρ√
s̃
‖wSc‖1 +

ρ√
s̃
‖vSc‖1 ≥ ‖wS‖2 +

ρ√
s̃
‖vSc − wSc‖1

≥ ‖wS‖2 +
ρ√
s̃
‖v1x1

Sc‖1.(6.21)

We shall now aim to bound ‖v1x1
S‖2 in terms of ‖v1x1

Sc‖1. We have

(6.22) ‖v1x1
S‖2 ≤ λ|v1|

since at most one element of x1
S is nonzero and its value will be at most λ. Additionally, since

each element of x1
Sc has value λ and there are at least 2C

ρ of them

ρ‖v1x1
Sc‖1 = ρ|v1|‖x1

Sc‖1 ≥
2λC

ρ
ρ|v1| ≥ 2λC|v1|.

Therefore,

ρ√
s̃
‖v1x1

Sc‖1 ≥
2λC√
C2 + 1

|v1| ≥ λ|v1|.(6.23)

Using (6.22) and (6.23), we have ‖v1x1
S‖2 ≤

ρ√
s̃
‖v1x1

Sc‖1. We can conclude the proof that U ′

satisfies the `2 robust nullspace property by combining this result with (6.21) as follows:

‖vS‖2 ≤ ‖v1x1
S‖2 + ‖wS‖2 ≤

ρ√
s̃
‖v1x1

Sc‖1 + ‖wS‖2 ≤ τ‖U ′v‖2 +
ρ√
s̃
‖vSc‖1.

Proof of part 2. The proof of part 2 is identical. We simply adapt the sparsity pattern so
that

s = (1, 1, 1, . . . , 1︸ ︷︷ ︸
C2

, 1) and M = (0, 1, 2, . . . , C2, C2 + ω(ρ, C) + 1).

We can apply the proceeding argument with this new sparsity pattern to obtain the required
result.
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[6] J. Andersson and J. Strömberg, On the theorem of uniform recovery of random sampling matrices,
IEEE Trans. Inform. Theory, 60 (2014), pp. 1700–1710, https://doi.org/10.1109/TIT.2014.2300092.

[7] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hedge, Model-based compressive sensing, IEEE
Trans. Inform. Theory, 56 (2010), pp. 1982–2001.

[8] J. Bigot, C. Boyer, and P. Weiss, An Analysis of Block Sampling Strategies in Compressed Sensing,
arXiv:1305.4446, 2013.

[9] H. Boche, R. Calderbank, G. Kutyniok, and J. Vyb́ıral, Compressed Sensing and Its Applications,
Springer, New York, 2015.

[10] A. Bourrier, M. Davies, T. Peleg, P. Perez, and R. Gribonval, Fundamental performance limits
for ideal decoders in high-dimensional linear inverse problems, IEEE Trans. Inform. Theory, 60 (2014),
pp. 7928–7946, https://doi.org/10.1109/TIT.2014.2364403.

[11] T. T. Cai, L. Wang, and G. Xu, New bounds for restricted isometry constants, IEEE Trans. Inform.
Theory, 56 (2010), pp. 4388–4394, https://doi.org/10.1109/TIT.2010.2054730.

[12] T. T. Cai, L. Wang, and G. Xu, Shifting inequality and recovery of sparse signals, IEEE Trans. Signal
Process., 58 (2010), pp. 1300–1308, https://doi.org/10.1109/TSP.2009.2034936.

[13] T. T. Cai and A. Zhang, Sharp RIP bound for sparse signal and low-rank matrix recovery, Appl.
Comput. Harmon. Anal., 35 (2013), pp. 74–93, https://doi.org/10.1016/j.acha.2012.07.010.

[14] T. T. Cai and A. Zhang, Sparse representation of a polytope and recovery of sparse signals and low-rank
matrices, IEEE Trans. Inform. Theory, 60 (2014), pp. 122–132.

[15] E. J. Candès, An introduction to compressive sensing, IEEE Signal Process. Mag., 25 (2008), pp. 21–30.
[16] E. J. Candès, The restricted isometry property and its implications for compressed sensing, C. R. Math.

Acad. Sci. Paris, 346 (2008), pp. 589–592, https://doi.org/10.1016/j.crma.2008.03.014.
[17] E. J. Candès and D. Donoho, New tight frames of curvelets and optimal representations of objects with

piecewise C2 singularities, Comm. Pure Appl. Math., 57 (2004), pp. 219–266.
[18] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction

from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.
[19] E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005),

pp. 4203–4215, https://doi.org/10.1109/TIT.2005.858979.

D
ow

nl
oa

de
d 

04
/1

9/
17

 to
 1

31
.1

11
.1

84
.1

02
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://dx.doi.org/10.1016/B978-0-12-800146-2.00004-7
https://dx.doi.org/10.1016/B978-0-12-800146-2.00004-7
arXiv:1302.0561
https://doi.org/10.1109/LSP.2016.2550101
https://doi.org/10.1109/TIT.2014.2300092
arXiv:1305.4446
https://doi.org/10.1109/TIT.2014.2364403
https://doi.org/10.1109/TIT.2010.2054730
https://doi.org/10.1109/TSP.2009.2034936
https://doi.org/10.1016/j.acha.2012.07.010
https://doi.org/10.1016/j.crma.2008.03.014
https://doi.org/10.1109/TIT.2005.858979


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RIP IN LEVELS 369

[20] E. J. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding
strategies?, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406–5425, https://doi.org/10.1109/TIT.
2006.885507.

[21] W. R. Carson, M. Chen, M. R. D. Rodrigues, R. Calderbank, and L. Carin, Communications-
inspired projection design with application to compressive sensing, SIAM J. Imaging Sci., 5 (2012),
pp. 1185–1212.

[22] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, Variable density sampling with continuous sampling
trajectories, SIAM J. Imaging Sci., 7 (2014), pp. 1962–1992.

[23] K. Choi, J. Wang, L. Zhu, T.-S. Suh, S. Boyd, and L. Xing, Compressed sensing based cone-
beam computed tomography reconstruction with a first-order method, Medical Phys., 37 (2010),
pp. 5113–5125.

[24] A. Cohen, W. Dahmen, and R. Devore, Compressed sensing and best k-term approximation, J. Amer.
Math. Soc, 22 (2009), pp. 211–231.

[25] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41 (1988),
pp. 909–996, https://doi.org/10.1002/cpa.3160410705.

[26] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM,
Philadelphia, 1992, https://doi.org/10.1137/1.9781611970104.

[27] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, Introduction to compressed
sensing, in Compressed Sensing: Theory and Applications, Cambridge University Press, Cambridge,
UK, 2011.

[28] M. E. Davies and R. Gribonval, Restricted isometry constants where `p sparse recovery can fail for
0 � p ≤ 1, IEEE Trans. Inform. Theory, 55 (2009), pp. 2203–2214, https://doi.org/10.1109/TIT.
2009.2016030.

[29] M. N. Do and M. Vetterli, The contourlet transform: An efficient directional multiresolution image
representation, IEEE Trans. Image Process., 14 (2005), pp. 2091–2106, https://doi.org/10.1109/TIP.
2005.859376.

[30] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[31] D. L. Donoho and J. Tanner, Counting faces of randomly-projected polytopes when the projection

radically lowers dimension, J. Amer. Math. Soc., 22 (2009), pp. 1–53.
[32] Y. C. Eldar and G. Kutyniok, eds., Compressed Sensing: Theory and Applications, Cambridge

University Press, Cambridge, UK, 2012.
[33] M. Fornasier and H. Rauhut, Compressive sensing, in Handbook of Mathematical Methods in Imag-

ing, Springer, New York, 2011, pp. 187–228.
[34] S. Foucart, A note on guaranteed sparse recovery via `1-minimization, Appl. Comput. Harmon. Anal.,

29 (2010), pp. 97–103, https://doi.org/10.1016/j.acha.2009.10.004.
[35] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Applied and Nu-

merical Harmonic Analysis, Springer, New York, 2013, https://doi.org/10.1007/978-0-8176-4948-7.
[36] M. D. Guay, W. Czaja, M. A. Aronova, and R. D. Leapman, Compressed sensing electron tomog-

raphy for determining biological structure, Scientific Reports, 6 (2016), 27614, http://dx.doi.org/10.
1038/srep27614.
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