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Summary

I investigate the K2 groups of the quotients of Fermat curves given in projective

coordinates by the equation Fn : Xn + Y n = Zn. On any quotient where

the number of known elements is equal to the rank predicted by Beilinson’s

Conjecture I verify numerically that the determinant of the matrix of regulator

values agrees with the leading coefficient of the L-function up to a simple rational

number.

The main source of K2 elements are the so-called “symbols with divisorial

support at infinity” that were found by Ross in the 1990’s. These consist of

symbols of the form {f, g} where f and g have divisors whose points P all satisfy

XY Z(P ) = 0. The image of this subgroup under the regulator is computed

and is found to be of rank predicted by Beilinson’s Conjecture on eleven non-

isomorphic quotients of dimension greater than one. The L-functions of these

quotients are computed using Dokchitser’s ComputeL package and Beilinson’s

Conjecture is verified numerically to a precision of 200 decimal digits.

In chapter five, with careful analysis of a certain 2 × 2 determinant it is

shown that a particular hyperelliptic quotient of all the Fermat curves has K2

group of rank at least two.

In the last chapter of the dissertation, a computational method is used in

order to discover new elements ofK2. These elements are rigorously proven to be

tame and allow for the full verification of Beilinson’s Conjecture on the Fermat

curves F7 and F9. Also the method allows us to verify Beilinson’s Conjecture on

certain hyperelliptic quotients of F8 and F10. Quotients where a similar method

might be successful are also suggested.
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Chapter 1

Introduction

Let k be a number field with r1 real embeddings and r2 complex embeddings so

that [k : Q] = r1+2r2. It is well known that if Ok is the ring of integers of k that

O×
k is a finitely generated abelian group of rank r = r1 + r2 − 1. If u1, . . . , ur

are a basis of O×
k modulo torsion and σ1, . . . , σr+1 are the embeddings of k into

C up to complex conjugation then define integers Nj to equal 1 if σj is a real

embedding and 2 otherwise. Now consider the r × (r + 1) matrix













N1 log |σ1(u1)| · · · Nr+1 log |σr+1(u1)|
...

...

N1 log |σ1(ur)| · · · Nr+1 log |σr+1(ur)|













Since the (ui) are units, each row of the matrix sums to zero and from this we

can see that the absolute value R of the determinant of the submatrix formed

by removing any single column is independent of the column chosen.

The value R, called the regulator, is independent of the choice of the (ui)

and we have the class number formula which states that

Ress=1 ζk(s) =
2r1 (2π)r2 hR

w
√
∆

Here ζk is the Dedekind zeta function of the number field k, h is the class number
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of Ok, w is the number of roots of unity in k and ∆ is the absolute value of the

discriminant of k.

Much later, Borel [5] found a generalisation of the above formula that relates

the value of a certain regulator on the higher K-group K2n−1(Ok) to the values

of ζk(n) at integers with n ≥ 2. Inspired by this, Bloch [4] (also see Rohrlich [20])

considered K2 of elliptic curves over Q with complex multiplication and showed

that there is a regulator defined on K2E which relates to the value of L(E, 2).

Beilinson proposed a very general extension of these ideas. We give a sketch of

the full conjecture before describing the case that concerns this thesis in more

detail.

1.1 Beilinson’s Conjecture

Beilinson’s Conjecture relates the special values of the L-functions of a proper

smooth variety X to the covolume of the image of a certain regulator map [2],

[3]. We denote Λ(n) = (2πi)nΛ whenever Λ is a subring of C.

Themotivic cohomology group ofX is defined to beHi
M(X,Q(j)) = K

(j)
2j−i(X).

This is a certain eigenspace of K2j−i(X) ⊗ Q under the action of the Adams

operators.

We define the real Deligne cohomology Hi
D(XC,R(j)) of X to be the coho-

mology of the complex

R(j) → OXC
→ Ω1

XC
→ · · · → Ωj−1

XC
→ 0

and define Hi
D(XR,R(j)) to be the subspace which is invariant under the action

of complex conjugation on the pair (XC,Ω
·). See [24] for more details.

Using the Chern class map of K-theory Beilinson constructed a regulator

map

reg : Hi
M(X,Q(j)) → Hi

D(XR,R(j))

and conjectured that for i+1 < 2j the regulator map is injective when restricted
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to the “integral” part of Hi
M(X,Q(j)) and its image gives a Q-structure of

Hi
D(XR,R(j)).

Further, assuming that the Hasse-Weil conjectures are true for L(X, s) if

necessary, he conjectured that up to a rational multiple the covolume of the

image of the integral part in Hi
D(XR,R(j)) is equal to the first non-vanishing

term of L(Hi−1(X), i− j).

1.1.1 The Conjecture for K2 of curves over Q

When X is a smooth projective curve defined over Q there is a simpler definition

of the regulator map. In the case we are interested in i = j = 2 and we have

that H2
D(XR,R(2)) is isomorphic to H1(X(C),R(1))+ where the + denotes the

subspace fixed under the action of complex conjugation on both X(C) and R(1).

We will define the regulator to be a map

reg : K2X → H1(X(C),R(1))+

and interpret the Beilinson conjecture in this case. Note that the dimension

over R of H1(X(C),R(1))+ is equal to the genus of X .

When F is a field, Matsumoto’s Theorem [15] gives K2F ∼= (F× ⊗ F×)/R,

where R is the subgroup of F×⊗F× generated by tensors of the form f⊗(1−f)

with f 6= 0, 1. We denote the image of f ⊗ g in K2F by {f, g}.

The localisation sequence of K-theory gives rise to the exact sequence

∐

P∈X(Q̄)

K2Q(P ) → K2X → K2Q(X)
τ−→

∐

P∈X(Q̄)

Q(P )×

where τ is a map from K2Q̄(X) defined by τ =
∐

P∈X(Q̄)
τP , with τP being

the tame symbol at P:

τP {f, g} = (−1)(ordP f)(ordP g) f
ordP g

gordP f
(P )
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By Garland’s theorem [9], K2 of a number field is torsion and hence we have

that ker τ ∩ K2Q(X) and K2X agree up to torsion. We use this to identify

(ker τ ∩K2Q(X))⊗Q and K2X⊗Q and we will speak of an element of K2Q(X)

“being tame” or “being an element of K2X” almost interchangeably.

The exposition of the regulator given here is largely based on that in [8].

Define a map from Q̄(X)× × Q̄(X)× to the group of almost everywhere defined

1-forms on the Riemann surface X(C) by

ω(a, b) =
1

2πi
(log |a|d arg b− log |b|d arg a) (1.1)

where arg a is the argument of a. This is a well-defined and smooth 1-form

on the complement of the set of zeros and poles of a and b. It is clear that ω

induces a map on Q̄(X)× ⊗ Q̄(X)× and that ω(a, b) is closed since dω(a, b) =

1
2πi Im (d log a ∧ d log b).

For any smooth 1-form η defined on the complement of a finite set S ⊂ X(C)

and any smooth oriented loop γ in X(C) \ S, we have a pairing

(γ, η) =

∫

γ

η

which depends only on the homology class of γ in X \ S. As γ moves across a

point x in S, the value of (γ, η) jumps by (Cx, η) where Cx denotes a small circle

around x. A simple calculation shows that (Cx, ω(a, b)) = −i log |Tx({a, b})|

where Tx is the tame symbol at x. It follows that if α =
∑

i ai⊗bi is an element

of ker τ then (·, ω(α)) is a well-defined map from H1(X(C),Z) to R(1) = 2πiR.

Furthermore, from the fact that ω(a, 1 − a) = dD(a) where D(z) is the

Bloch-Wigner dilogarithm we see that the pairing vanishes on elements of the

form a⊗ (1− a) and so we end up with a pairing

H1(X(C),Z) × ker τ −→ R(1)

(γ, α) 7−→
∫

γ

ω(α)
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Equivalently, by viewing the space H1(X(C),C) as the space of C-valued func-

tionals on H1(X(C),Z), we have the regulator map

reg : ker τ −→ H1(X(C),R(1))

When restricting to K2X we can say slightly more. The composition of com-

plex conjugation onR(1) and complex conjugation onX(C) acts onH1(X(C),R(1))

and we see that the image of the regulator is invariant under this action: conju-

gation on R(1) sends i to −i while conjugation on X(C) sends d arg to −d arg.

We denote this subspace by H1(X(C),R(1))+ and so we can say that the reg-

ulator is a map

reg : K2X −→ H1(X(C),R(1))+

Let X be a regular proper flat model of X over SpecZ. The canonical

morphism X → X induces a map K2X → K2X , the image of which is, up to

torsion, independent of X . Composing this with the regulator we obtain a map

K2X → H1(X(C),R(1))+, which we shall also denote by reg. Further, if JacX

has everywhere potentially good reduction, then K2X and K2X agree up to

torsion.

When X is over Q the L-function can be defined as Dirichlet series that

converges in the half-plane Re s > 3
2 as follows. For primes l such that the

reduction of X modulo l is non-singular over Fl we define the local zeta function

Z(X,Fl, T ) by

Z(X,Fl, T ) = exp

(

∞
∑

n=1

#X (Fln)

n
· T n

)

From part of the Weil conjectures we know that if X is of genus g that

Z(X,Fl, T ) is a rational function of the form Pl(T )/ ((1− T )(1− lT )) where Pl

is a polynomial with integer coefficients having degree 2g and constant term

equal to 1. Except for a finite number of primes the L-function of X is defined

by

L(X, s) =
∏

l

Pl(p
−s)−1
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and we have the Hasse-Weil conjecture that predicts a functional equation for

L(X, s).

Conjecture 1.1.1 (Hasse-Weil). With the definitions above there exists an in-

teger N called the conductor and an integer w ∈ {+1,−1} called the root number

such that the function defined by

L∗(X, s) =
Ns/2

(2π)
gsΓ(s)

gL(X, s) (1.2)

extends to an entire function of s and satisfies L∗(X, s) = w · L∗(X, 2− s).

In this case the Beilinson conjecture states that

1. reg(K2X ) is a lattice in H1(X(C),R(1))+

2. Denote the volume of a lattice L by ΛgL and define c ∈ R×/Q× by

Λg [(regK2X )⊗Q] = c · ΛgH1(X(C),Q(1))+

Then c ≡ L(g)(X, 0) mod Q×.

Note that because of the appearance of the Gamma function in equation

(1.2) we would have L(X, 0) = L′(X, 0) = . . . = L(g−1)(X, 0) = 0 and

L(g)(X, 0)

g!
= lim

s→0

L(X, s)

sg
= L∗(X, 0) = wL∗(X, 2) =

wN

(2π)2g
L(X, 2) 6= 0.

and so we could state Beilinson’s conjecture without any dependence on the

conjecture of Hasse-Weil. It turns out that the L-functions of Fermat curves

can be defined in terms of Hecke L-functions that have a known functional

equation (see Chapter 4) and so the difference is moot for this thesis.
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Chapter 2

Introducing Fermat Curves

2.1 Quotients of Fermat Curves

The nth Fermat curve is defined in projective coordinates by the equation

Xn + Y n = Zn

It is a non-singular curve of genus (n − 1)(n − 2)/2. Let ζ = e
2πi
n and ξ =

e
πin′

n where n′ is the largest odd factor of n. Let Γn denote a subgroup of

automorphisms of Fn over C generated by the elements A, B, σ and η defined

as follows:

A : (x, y) 7→ (ζx, y) (2.1)

B : (x, y) 7→ (x, ζy) (2.2)

σ : (x, y) 7→ (y, x) (2.3)

η : (x, y) 7→
(

1

y
,
ξx

y

)

(2.4)

Then Γn is isomorphic to the semi-direct product of (Z/nZ)2 and the symmetric

group S3. Each element has a unique representation of the form AaBbηjσǫ with

0 ≤ a, b < n, 0 ≤ j < 3 and ǫ = 0, 1.
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The subgroup Γn would be the same if we had chosen any ξ such that

ξn = −1. The specific definition chosen above will be beneficial later since it is

desirable to have the degree of ξ over Q as small as possible. For example, when

n is odd we have ξ = −1 so that the map η is in fact defined over Q. Generally,

ξ is defined over the field Q(µ2n/n′) of degree n/n′.

Define the path γ : [0, 1] −→ Fn(C) by

γ(t) =
(

t1/n, (1− t)1/n
)

and the loop κ in H1(Fn(C),Z) by κ = γ −Aγ +ABγ −Bγ. Then in [10] it is

proven that H1(Fn(C),Z) is a cyclic Z[A,B] module generated by κ. Through-

out this thesis will denote κa,b = AaBbκ.

Define an admissible triple (r, s, t) to be a triple of positive integers such

that r+s+ t = n. Then as shown in [10] a basis of the regular differential forms

on Fn is given by the elements

ωr,s,t = xr−1yn−sdx

where (r, s, t) is any admissible triple. The ωr,s,t are eigenforms for the action

of A and B on the regular differentials since it is easy to check that

AaBbωr,s,t = ζar+bsωr,s,t

The periods of the ωr,s,t with respect to the loops κa,b are determined in [10] as

given here.

Lemma 2.1.1. Let B(x, y) be the classical beta function defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt
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then we have

∫

κa,b

ωr,s,t =
1

n
ζar+bs (1− ζr) (1− ζs)B

( r

n
,
s

n

)

Proof. Integrating ωr,s,t on the loop κ gives

∫

κ

ωr,s,t =
(

1− ζr + ζr+s − ζs
)

∫ 1

0

t(r−1)/n(1− t)(s−n)/n d
(

t1/n
)

=
1

n
(1− ζr) (1− ζs)

∫ 1

0

tr/n−1(1− t)s/n−1 dt

=
1

n
(1− ζr) (1− ζs)B

( r

n
,
s

n

)

and we establish the result for non-zero a and b since

∫

κa,b

ωr,s,t =

∫

κ

(

AaBb
)∗
ωr,s,t = ζar+bs

∫

κ

ωr,s,t

�

Thus the period lattice L of Fn relative to our chosen basis of regular differ-

entials is spanned by the vectors

va,b =

(

. . . ,
1

n
ζar+bs (1− ζr) (1− ζs)B

( r

n
,
s

n

)

, . . .

)

0<r,s,t<n
r+s+t=n

for all 0 ≤ a, b < n.

Now write 〈x〉 for the unique integer congruent to x modulo n satisfying

0 ≤ x < n. Define an equivalence relation on admissible triples by saying that

(r, s, t) ∼ (r′, s′, t′)

if and only if (r′, s′, t′) = (〈hr〉 , 〈hs〉 , 〈ht〉) for some h ∈ (Z/nZ)
×
. Put n0 =

n/ gcd(r, s, t) and define

Hr,s,t =
{

h ∈ (Z/n0Z)
×
: 〈hr〉 + 〈hs〉+ 〈ht〉 = n

}
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Note that for all h ∈ (Z/n0Z)
× we have 0 < 〈hr〉 + 〈hs〉 + 〈ht〉 < 3n and

〈hr〉 + 〈hs〉 + 〈ht〉 ≡ 0 (mod n). Therefore 〈hr〉 + 〈hs〉 + 〈ht〉 ∈ {n, 2n}. From

this we see that if h ∈ (Z/n0Z)
× then Hr,s,t either contains h or n0 − h and so

has size φ(n0)/2.

In [10] Rohrlich states that L is contained with finite index in the product

of certain lattices Lr,s,t. We state the result here and give a sketch of its proof.

Proposition 2.1.2. For any admissible triple (r, s, t) define the lattice Lr,s,t =

{wr,s,t(z) : z ∈ Z[ζn0 ]} ⊂ Cφ(n0)/2 where

wr,s,t(z) =

(

. . . ,
1

n
zσh

(

1− ζrh
) (

1− ζsh
)

B

( 〈rh〉
n

,
〈sh〉
n

)

, . . .

)

h∈Hr,s,t

Then, after making appropriate identifications, the period lattice L is contained

with finite index in the product of lattices Lr,s,t where the product contains one

admissible triple (r, s, t) per equivalence class.

Proof. It is clear that L is contained in the product of the Lr,s,t since we can

obtain the vector va,b by choosing z = ζar+bs in each lattice Lr,s,t.

To prove that L is contained in the product of the Lr,s,t with finite index we

must show that there is an integer N such that for any vector w in Lr,s,t there

exists a vector v in L such that v is equal to Nw on those components that are

equivalent to (r, s, t) and equal to zero elsewhere.

When n is prime the method of achieving this is relatively simple to describe.

When n is composite however, we must use an inclusion-exclusion type argument

that is quite unwieldy. Instead of giving a full proof in this case we simply give

a sketch of how the inclusion of lattices works when n = 12. F12 is the most

complicated Fermat curve that will be explicitly mentioned in this thesis.

So assume that n is prime. In that case any admissible triple is equivalent

to a triple of the form (1, s′, t′) for some 1 ≤ s′ ≤ n− 2.

Omitting the repeated term 1
n (1− ζr) (1− ζs)B

(

r
n ,

s
n

)

, the component at
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index (r, s, t) of the vector
n
∑

l=1

va+ls′,−l

is equal to

n
∑

l=1

ζ(a+ls′)r−ls = ζar
n
∑

l=1

(

ζs
′r−s

)l

=















nζar if s′r ≡ s (mod n)

0 otherwise

But s′r ≡ s (mod n) if and only if (r, s) = (〈r〉 , 〈s′r〉) so

n
∑

l=1

va+ls′,−l = n ·w1,s′,t′ (ζ
a)

and we have the inclusions 1
n

∏Lr,s,t ⊂ L ⊂∏Lr,s,t.

For the case n = 12 we shall show that the lattice 72 · L1,1,10 is contained

in L and hope that this gives the reader confidence that the statement of the

proposition is true in general.

First of all, for integers a and b define ua,b by

ua,b =

12
∑

l=1

val,−bl

Then the value of ua,b at the component with index (r, s, t) is equal to

(1− ζr) (1− ζs)B
( r

n
,
s

n

)

if ar ≡ bs (mod 12) and is equal to 0 otherwise. For example, u1,1 is non-zero

at components (r, s) ∈ {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. Since H1,1,10 = {1, 5}

the vector u1,1 can be used to make w1,1,10(1) provided we can find a method

to “turn off” the components at (2, 2), (3, 3) and (4, 4).

The component at (3, 3) is the easiest to isolate: the only non-zero compo-

nent of the vector u1,1 + u1,5 + u1,9 + u9,1 − u3,3 is at the index corresponding

to (r, s, t) = (3, 3, 6). In fact the vector is equal to 36 ·w3,3,6(1).
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The componentsw2,2 andw4,4 are slightly trickier. Define vectors x0, . . . ,x3

by

x0 = u2,2 + u2,8 + u8,2 − u4,4

x1 = u1,1 + u1,7 − u2,2

x2 = u1,4 + u1,10 − u2,8

x3 = u4,1 + u10,1 − u8,2

then it can be checked that

x0 = 24 (w4,4(1) +w2,2(1) +w2,8(1) +w8,2(1))

x1 = 24 (w4,4(1)−w2,2(1) +w2,8(1) +w8,2(1))

x2 = 24 (w4,4(1) +w2,2(1) +w2,8(1)−w8,2(1))

x3 = 24 (w4,4(1) +w2,2(1)−w2,8(1) +w8,2(1))

and from these vectors each of w4,4(1),w2,2(1),w2,8(1) and w8,2(1) may be

obtained. We can get the other vectors w1,1,10(ζ
k) by making analogous defini-

tions

ua,b,k =
12
∑

l=1

vk+al,−bl

and proceeding in the same manner. �

Proposition 2.1.3. There are varieties Ar,s,t defined over Q and isomorphic to

Cφ(n0)/2/Lr,s,t such that the Jacobian of the Fermat curve Fn is isogenous over

Q to the product of varieties Ar,s,t, taking one admissible triple per equivalence

class.

Proof. The preceding proposition shows that the Jacobian of Fn is isogenous

over C to the product of varieties Cφ(n0)/2/Lr,s,t and we must show that this

isogeny can be defined over Q.
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First of all note that if gcd(r, s, t) = d then dLr,s,t = Lr/d,s/d,t/d so we can

assume that gcd(r, s, t) = 1.

Let Cr,s,t (note that we will often omit the third subscript t if the value of

r + s+ t = n is understood) be the curve defined by the affine equation

vn = ur(1− u)s

then we have the rational map

ϕr,s,t : Fn −→ Cr,s,t

(x, y) 7−→ (xn, xrys)

For any m dividing n there is an obvious map

Fn −→ Fn/m

(x, y) 7−→ (xm, ym)

and so we obtain a map on Jacobians:

JacFn/m −→ JacFn −→ JacCr,s,t.

Define the variety Jr,s,t to be the subvariety of JacCr,s,t generated by the im-

ages of the above maps for all proper divisors m of n and define Ar,s,t to be

the quotient of JacCr,s,t by Jr,s,t. We will show that Ar,s,t is isogenous to

Cφ(n)/2/Lr,s,t.

It is easy to check that the regular differential ωr′,s′,t′ on Fn/m pulls back to

m · ωmr′,ms′,mt′ on Fn and so a differential ωr′,s′,t′ on Fn is the pull back of a

differential from some Fn/m if and only if gcd(r′, s′, t′) > 1.

Next we examine the behaviour of differentials ωr′,s′,t′ on Fn under the

pushforward ϕr,s,t∗. If ϕr,s,t(x, y) = (u, v) with x, y 6= 0 then the other pre-

images of (u, v) are given by
(

ζjx, ζ−ky
)

where j and k are integers such that
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jr ≡ ks (mod n).

Since gcd(r, s, t) = 1 we can find integers a and b such that ar + bs ≡ 1

(mod n). If jr ≡ ks (mod n) then we can compute directly that

(ak + bj)s = aks+ bjs

≡ ajr + bjs

= j(ar + bs)

≡ j (mod n)

and similarly

(ak + bj)r = akr + bjr

≡ akr + bks

= k(ar + bs)

≡ k (mod n).

Therefore the pairs (j, k) satisfying jr ≡ ks (mod n) are precisely the pairs

(〈hs〉 , 〈hr〉) for 0 ≤ h < n. The push-forward ϕr,s,t∗ωr′,s′,t′ can now be com-

puted as

ϕr,s,t∗ωr′,s′,t′ =

n−1
∑

h=0

ζh(sr
′−rs′)xr

′−1ys
′−ndx

=















n · xr′−1ys
′−ndx if sr′ ≡ rs′ (mod n)

0 otherwise.

We see that the ωr′,s′,t′ mapping to a non-zero differential under ϕr,s,t∗ are

precisely those differentials of the form ω〈hr〉,〈hs〉,〈ht〉. If we write 〈hr〉 = hr+ l1n

and 〈hs〉 = hs+ l2n then remembering that u = xn, 1 − u = yn and v = xrys

it is in fact easy to verify that

ϕr,s,t∗ω〈hr〉,〈hs〉,〈ht〉 = ul1−1 (1− u)l2−1 vh du
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Altogether we see that those differentials on Cr,s,t that survive after taking

the quotient by Jr,s,t are those differentials of the form ϕr,s,t∗ω〈hr〉,〈hs〉,〈ht〉 with

h coprime to n. But these differentials give period vectors of the form

(

. . . ,
1

n
zσh

(

1− ζrh
) (

1− ζsh
)

B

( 〈rh〉
n

,
〈sh〉
n

)

, . . .

)

h∈Hr,s,t

and so Ar,s,t is isogenous to Cφ(n)/2/Lr,s,t. �

Remark 2.1.4. If n is prime then every admissible triple (r, s, t) is equivalent

to a triple of the form C1,s,n−s−1 for some s with 1 ≤ s ≤ n − 2. When n

is prime the subvariety Jr,s,t is obviously trivial so Ar,s,t = JacCr,s,t and the

genus of Cr,s,t is equal to (n−1)/2. We see that the Jacobian of Fn is isogenous

to the product of n− 2 Jacobians of dimension (n− 1)/2.

The following lemma tells us about the genus of the curves Cr,s,t in the

general case.

Lemma 2.1.5. If gcd(r, s, t) = 1 then the genus of the curve Cr,s,t is equal to

n− gcd(r, n)− gcd(s, n)− gcd(t, n)

2
+ 1

Proof. We prove the formula by counting the number of regular differentials on

Cr,s,t. In the proof of the previous proposition we saw that the regular differen-

tials on Cr,s,t were the push-forwards of differentials of the form ω〈hr〉,〈hs〉,〈ht〉

that satisfy 〈hr〉 , 〈hs〉 , 〈ht〉 6= 0 and 〈hr〉+ 〈hs〉+ 〈ht〉 = n.

Let a = gcd(r, n), then it is clear that 〈hr〉 = 0 if and only if h is a multiple

of n/a. Similarly if b = gcd(s, n) then 〈hs〉 = 0 if and only if h is a multiple

of n/b. Because gcd(r, s, t) = 1 we know that a and b are coprime and we can

prove that multiples of n/a and multiples of n/b are distinct modulo n except

at 0:











(n/a) | m

(n/b) | m











⇐⇒











n | am

n | bm











⇐⇒ n | m ⇐⇒ m ≡ 0 (mod n)
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If we similarly define c = gcd(t, n) then we see that there will be (n− 1) −

(a− 1)− (b− 1)− (c− 1) values of h that guarantee 〈hr〉 , 〈hs〉 , 〈ht〉 6= 0. Half

of them will have 〈hr〉+ 〈hs〉+ 〈ht〉 = n, the other half 〈hr〉+ 〈hs〉+ 〈ht〉 = 2n

and so the result is as claimed. �

Remark 2.1.6. The previous result could also be obtained by considering the

rational map

Cr,s,t −→ P1

(u, v) 7−→ u

which is ramified at the points 0, 1 and infinity. Above 0 there are gcd(r, n)

branches and the ramification index is n/ gcd(r, n). Similar things happen above

the points 1 and infinity and the result in the lemma can be obtained by using

the Riemann-Hurwitz formula.

2.2 Isomorphisms between the Ar,s,t

Proposition 2.2.1. For all admissible triples (r, s, t) we have that Cr,s,t is

birationally equivalent to Cs,r,t and birationally equivalent to Ct,s,r if s is even

or if r + s+ t is odd.

Proof. To prove the first claim we see that Cr,s,t and Cs,r,t are isomorphic via

the map

Cr,s −→ Cs,r

(u, v) 7−→ (1− u, v)
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If s is even then Cr,s,t and Ct,s,r are isomorphic via the map

Cr,s,t −→ Ct,s,r

(u, v) 7−→
(

1

u
,
v

u

)

It is easy to check that this really is a map between the specified curves: for a

point (u, v) on Cr,s,t we have

( v

u

)n

=
vn

ur+s+t
=
ur (1− u)

s

ur+s+t
=

(

1

u

)t(
1

u
− 1

)s

=

(

1

u

)t(

1− 1

u

)s

Finally, if n = r+ s+ t is odd then Cr,s,t is isomorphic to Ct,s,r via the map

Cr,s,t −→ Ct,s,r

(u, v) 7−→
(

1

u
, (−1)s · v

u

)

The calculation to check this is almost exactly the same as above but relies on

the fact that (−1)sn = (−1)s when n is odd. �

Corollary 2.2.2. If n has fewer than three prime factors then any variety Ar,s,t

with gcd(r, s, t) = 1 is isomorphic to a variety of the form A1,s,n−s−1.

Proof. If r is coprime to n then set h equal to r−1 mod n. We see that

A〈hr〉,〈hs〉,〈ht〉 is isomorphic to Ar,s,t and of the desired form.

If s is coprime to n then since Ar,s,t is always isomorphic to As,r,t we can

set h equal to s−1 mod n and operate as above.

If t is coprime to n then we must consider two separate cases. If n is odd

then Ar,s,t is isomorphic to At,s,r and we may proceed as previously. If n is

even then t is necessarily odd and so one of r and s must be even. Again we

see that Ar,s,t is isomorphic to At,s,r and we get a variety of the desired form

by inverting t modulo n.

Therefore, if the variety Ar,s,t is not isomorphic to any variety of the desired

form, we must have that r, s and t all share a common factor with n. Since
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gcd(r, s, t) = 1 these factors must be coprime and so n must have at least three

prime factors. �

Remark 2.2.3. Perhaps the simplest case when Ar,s,t is not isomorphic to any

variety of the form A1,s,n−s−1 is when n = 30 and (r, s, t) = (2, 3, 25). Generally,

if s is invertible modulo n then A1,s,n−s−1 is isomorphic to A1,s′,n−s′−1 where s′

satisfies ss′ ≡ 1 mod n. If n is odd then A1,s,n−s−1 is isomorphic to A1,n−s−1,s.

With these isomorphisms in mind we give a table detailing the primitive

quotients of the Fermat curves for n up to 10 and for n = 12. The second column

gives a list of all s such that A1,s,n−s−1 is not isomorphic to any A1,s′,n−s′−1 with

s′ smaller than s and the third column gives a list of all inequivalent admissible

triples that give varieties isomorphic to A1,s,n−s−1. The fourth column gives

the number of such triples.
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n s r, s, t #N

3 1 (1,1,1) 1

4 1 (1,1,2) 1

2 (1,2,1), (2,1,1) 2

5 1 (1,1,3), (1,2,2), (1,3,1) 3

6 1 (1,1,4) 1

2 (1,2,3), (2,1,3), (2,3,1) 3

3 (1,3,2), (3,1,2), (3,2,1) 3

4 (1,4,1), (4,1,1) 2

7 1 (1,1,5), (1,3,3), (1,5,1) 3

2 (1,2,4), (1,4,2) 2

8 1 (1,1,6) 1

2 (1,2,5), (2,1,5) 2

3 (1,3,4) 1

4 (1,4,3), (4,1,3) 2

5 (1,5,2) 1

6 (1,6,1), (6,1,1) 2

9 1 (1,1,7), (1,4,4), (1,7,1) 3

2
(1,2,6), (1,3,5), (1,5,3)

(1,6,2), (3,1,5), (6,1,2)
6

n s r, s, t #N

10 1 (1,1,8) 1

2
(1,2,7), (2,1,7),

(1,6,3), (6,1,3)
4

3 (1,3,6), (1,7,2) 2

4
(1,4,5), (4,1,5),

(4,5,1), (5,4,1)
4

5 (1,5,4), (5,1,4) 2

8 (1,8,1), (8,1,1) 2

12 1 (1,1,10) 1

2
(1,2,9), (2,1,9),

(2,9,1), (9,2,1)
4

3 (1,3,8), (3,1,8) 2

4 (1,4,7), (4,1,7) 2

5 (1,5,6) 1

6 (1,6,5), (6,1,5) 2

7 (1,7,4) 1

8
(1,8,3), (8,1,3),

(8,3,1), (3,8,1)
4

9 (1,9,2), (9,1,2) 2

10 (1,10,1), (10,1,1) 2
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Chapter 3

On a subgroup of K2Fn

3.1 Symbols with divisorial support at infinity

In this chapter we introduce the main elements of K-theory that we are going

to be working with. Initial work in this direction was done by Ross [22]. There

he considered the so-called symbols with support at infinity and showed that

they were a good source of elements of K2Fn. In the case where n was an odd

prime p he proved that the rank of the subgroup generated by these symbols

and defined over Q was less than or equal to 3(p− 1). Eventually we will show

that this bound can be reduced to 3(p− 3).

By a point at infinity we mean points on Fn such thatXY Z(P ) = 0. Keeping

the definitions ζ = e
2πi
n and ξ = e

πin′

n from the previous chapter, these are the

3n points given in projective coordinates by (0, ζj , 1), (ζj , 0, 1) and (ξζj , 1, 0)

for 0 ≤ j < n.

Let D∞ be the group of divisors of degree zero consisting of points at infinity.

This group has rank 3n− 1. It can be shown that the divisors of the functions

x, y and

x− ζj , y − ζj x− ξζjy 0 ≤ j < n (3.1)
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span a subgroup of D∞ which also has rank 3n − 1. Thus the quotient is

finite and modulo constants any function supported on D∞ is a root of some

product of the above functions. In his paper [19] Rohrlich computes exactly

which functions occur in this way but we do not need the exact details here.

Let k = Q(µ2n) and choose an embedding ι : Fn →֒ JacFn defined over Q

that sends some point at infinity to the origin. Also from [19] we see that ι(P ) is

torsion when P is any point at infinity. Using this fact Ross uses Bloch’s trick [4]

to define a certain subgroup N of K2k(Fn) ∩ ker τ using symbols consisting of

the functions x, y and those in (3.1). The exact definition of N depends on

the choices made when invoking Bloch’s trick but for the Fermat curves Ross

conjectures that the differences are trivial. See his paper [22] for more details.

Let G = Gal(k/Q) and Σ =
∑

σ∈G σ then the image of N under the trace

map Tr : K2k(Fn) → K2Q(Fn) is equal to NΣ. Since Σ commutes with τ we

can identify this with a subgroup of K2Fn ⊗ Q which Ross calls the subgroup

of K2Fn ⊗Q with divisorial support at infinity.

Ross also gives a more concrete description of N which is what we will be

dealing with in the rest of this chapter. First of all he discovered that (a suitable

power of) the symbol α = {1−x, 1−y} lies in the kernel of the tame symbol and

and hence defined an element of K2Fn. Recall the group Γn of automorphisms

of Fn introduced in the previous chapter that was generated by the elements

A : (x, y) 7→ (ζx, y) (3.2)

B : (x, y) 7→ (x, ζy) (3.3)

σ : (x, y) 7→ (y, x) (3.4)

η : (x, y) 7→
(

1

y
,
ξx

y

)

(3.5)

and define S = Q[Γn] · α. Then Ross shows that N ⊗Q = S.

In the next section we prove upper bounds for the rank of SΣ for odd values

of n. Later in the chapter we consider even values of n but we only give upper

bounds for the rank of SΣ after projection under the regulator.
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3.2 Bounding the rank of SΣ for odd n

Firstly, note that because {x, y} = −{y, x} we have σα = −α and hence S is

generated by the 3n2 elements

AaBbηjα 0 ≤ a, b < n 0 ≤ j < 3

Remember that when n is odd we have ξ = −1. To ease notation let us define

β = ηα = {1− 1/y, 1 + x/y}

δ = η2α = {1 + y/x, 1− 1/x}

For odd n we have Gal(k/Q) ∼= (Z/nZ)
×
. Let σd ∈ G be such that σd(ζ) =

ζd then notice that if c ∈ Z/nZ× that

(AacBbcα)Σ =
∑

d∈Z/nZ×

{1− ζacx, 1− ζbcy}σd

=
∑

d∈Z/nZ×

{1− ζadcx, 1− ζbdcy}

=
∑

d∈Z/nZ×

{1− ζadx, 1 − ζbdy}

= (AaBbα)Σ

An equivalent result holds for β and δ so, for example, if n is an odd prime p

then the subgroup is generated by the 3(p+ 2) elements

α (Bα)Σ (ABjα)Σ 0 ≤ j < p (3.6)

β (Bβ)Σ (ABjβ)Σ 0 ≤ j < p (3.7)

δ (Bδ)Σ (ABjδ)Σ 0 ≤ j < p (3.8)
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Note that because of the calculation

p−1
∑

j=0

{

1− x, 1− ζjy
}

=







1− x,

p−1
∏

j=0

(

1− ζjy
)







= {1− x, 1− yp}

= {1− x, xp}

= 0

we have (Bα)Σ = −α. The relations (Aα)Σ = −α and
∑

(ABjα)Σ = 0 can be

proved in the same fashion. Also there are analogous results for β and δ so that

the maximum possible rank of the subgroup is 3(p− 1). These were the results

obtained by Ross and allowed him to conclude that the symbols supported at

infinity could not generate the whole of K2Fp for all odd primes greater than 7

if Beilinson’s conjectures are to be true.

Note that because the Jacobian of the Fermat curves (and all of the quo-

tients Ar,s,t) have complex multiplication they have potentially good reduction

everywhere and so by the remark in the introduction K2Fn agrees up to torsion

with K2Fn where Fn is any regular proper flat model of Fn.

The rest of this section will be devoted to proving the following proposition

which shows that the rank of SΣ for odd n is at most three times the number

of equivalence classes of admissible triples.

Proposition 3.2.1. For odd n the subgroup SΣ is generated by the elements

ϕ∗
r,s,tϕr,s,t∗α, ϕ∗

r,s,tϕr,s,t∗β, ϕ∗
r,s,tϕr,s,t∗δ

where

α = {1− x, 1− y}, β = {1− 1/y, 1 + x/y}, δ = {1 + y/x, 1− 1/x}

and the (r, s, t) take on one element per equivalence class of admissible triples.
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In particular if n is a prime p we know that there are only p− 2 inequivalent

admissible triples. Therefore the maximum rank of SΣ is at most 3(p−2). This

is already an improvement on Ross’ bound.

We have shown that SΣ is generated by the symbols (ArBsα)Σ, (ArBsβ)Σ

and (ArBsδ)Σ for 0 ≤ r, s < n and that if d is coprime to n then (AdrBdsα)Σ =

(ArBsα)Σ.

Let us denote

Sr,s
n = (ArBsα)Σ =

∑

d∈(Z/nZ)×

{1− ζdrx, 1 − ζdsy}

Now since Cr,s is the quotient of Fn by the group of automorphisms generated

by AsB−r we see that ϕ∗
s,−rϕs,−r∗α is equal to

∑

d∈Z/nZ

{1− ζdrx, 1− ζdsy}

which we shall denote Rr,s
n .

Given the similarity of the definitions of Rr,s
n and Sr,s

n it is not surprising

that they both span the same subgroup as the following “Moebius inversion”

type argument shows. Equivalent results hold for(ArBsβ)Σ and (ArBsδ)Σ so

this will complete the proof of Proposition 3.2.1.

Proposition 3.2.2. The subgroup generated by the elements Sr,s
n as r and s

range through the integers modulo n is the same as that spanned by the equivalent

elements Rr,s
n .

Proof. The idea is to find a relation expressing the R’s in terms of the S’s and

then to use induction on the value of gcd(r, s, n) to show that these relations

allow us to express the S’s in terms of the R’s.

Let Zn,f denote the set {d ∈ Z : 0 ≤ d < n, gcd(d, n) = f}. This set is in
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bijection with (Z/(n/f)Z)× via the map

Zn,f −→ (Z/(n/f)Z)×

d 7−→ d/f

On the other hand, the map

(Z/nZ)× −→ Zn,f

d 7−→ df

is a surjective map for which every element of Zn,f has φ(n)/φ(n/f) preimages

in (Z/nZ)×.

Note that Z/nZ =
⋃

f |n Zn,f so that

Rr,s
n =

∑

d∈Z/nZ

{1− ζdrx, 1 − ζdsy}

=
∑

f |n

∑

d∈Zn,f

{1− ζdrx, 1− ζdsy}

But, by our previous observation, we see that as d runs through (Z/nZ)×, df

runs through Zn,f φ(n)/φ(n/f) times so we get

Rr,s
n =

∑

f |n

φ(n/f)

φ(n)

∑

d∈(Z/nZ)×

{1− ζdfrx, 1− ζdfsy}

=
∑

f |n

φ(n/f)

φ(n)
Sfr,fs
n

From this we can see that the subgroup generated by the R’s is a subgroup of

that generated by the S’s. An inductive argument on the value of gcd(r, s, n)

allows us to prove the reverse inclusion.

First of all we need to investigate the behaviour of Sfr,fs
n . If gcd(r, s, n) =

n/k and gcd(f, k) = 1 then define integers r′ and s′ by r = r′n/k and s = s′n/k.
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We see that

Sfr,fs
n =

∑

d∈(Z/nZ)×

{1− ζdfrx, 1− ζdfsy}

=
∑

d∈(Z/nZ)×

{1− ζdfr
′n/kx, 1 − ζdfs

′n/ky}

But ζn/k is a kth root of unity so that the sum only depends on d modulo k.

We get:

Sfr,fs
n =

φ(n)

φ(k)

∑

d∈(Z/kZ)×

{1− ζdfr
′n/kx, 1− ζdfs

′n/ky}

But f is coprime to k so that as d runs through (Z/kZ)×, so does df . Hence we

get:

Sfr,fs
n =

φ(n)

φ(k)

∑

d∈(Z/kZ)×

{1− ζdr
′n/kx, 1− ζds

′n/k}

=
∑

d∈(Z/nZ)×

{1− ζdr
′n/kx, 1− ζds

′n/ky}

=
∑

d∈(Z/nZ)×

{1− ζdrx, 1 − ζdsy}

= Sr,s
n

Now we are ready for the induction. Assume that all Sr,s
n such that n

gcd(r,s,n)

strictly divides k can be expressed in terms of the R’s. This is clearly satisfied

when k is prime since R0,0
n and S0,0

n are both multiples of α. Now if we are given

a pair (r, s) satisfying gcd(r, s, n) = n
k we already know that

Rr,s
n =

∑

f |n

φ(n/f)

φ(n)
Sfr,fs
n

Those f which satisfy gcd(f, k) = 1 have that Sfr,fs
n = Sr,s

n while those f which

share a common factor with k result in gcd(fr, fs, n) being a strict multiple of

gcd(r, s, n). Therefore Sr,s
n can be expressed in terms of Rr,s

n and those S such
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that their values of r and s have a greater value of gcd(r, s, n). By induction,

these S could already be expressed in terms of the R and so the induction is

complete. �

3.3 Expressions for the regulators

We start this section with a lemma that allows us to express integrals of the

regulator defined by equation (1.1) in a more convenient form.

Lemma 3.3.1. Suppose we have a curve X and functions f , g in Q(X)× with

zeroes contained in a finite set S. Suppose that γ is a loop in X(C)\S based at a

point P0 ∈ X and choose fixed branches of log f and log g on some neighbourhood

of γ. Then with ω{f, g} defined as in equation (1.1) we have

∫

γ

ω{f, g} =
1

2πi
Im

[∫

γ

log f d log g − log |g (P0)|
∫

γ

d log f

]

(3.9)

Proof. From the definition of ω and expanding out the logarithms in terms of

their real and imaginary parts we can compute

∫

γ

ω{f, g} − 1

2πi
Im

∫

γ

log fd log g

=
1

2πi

∫

γ

[

log |f | d arg g − log |g| d arg f
]

−
[

log |f | d arg g + arg fd log |g|
]

=
−1

2πi

∫

γ

[

log |g| d arg f + arg fd log |g|
]

=
−1

2πi

∫

γ

d
(

log |g| · arg f
)

which gives our result. �

Recall our definitions γ : t 7→
(

t1/n, (1− t)1/n
)

and κ = γ−Aγ+ABγ−Bγ

from chapter 2. The following calculation up to equation (3.10) is due to Ross

in [22]. He showed that when calculating
∫

κ regα that the second integral in

equation (3.9) is equal to zero. Using the Beta function identity B(u + 1, v) =
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u
u+vB(u, v) he calculates the first integral as follows

Im

∫

γ

log(1− ζax)d log(1− ζby) = Im

∫ 1

0

log(1− ζa(1− t)1/n)d log(1− ζbt1/n)

= Im

∫ 1

0

∞
∑

j=1

−1

j
ζaj(1− t)j/nd

(

∞
∑

k=1

−1

k
ζbktk/n

)

=
1

n
Im

∫ 1

0

∞
∑

j=1

∞
∑

k=1

1

j
ζaj+bk(1− t)j/ntk/n−1dt

=
1

n
Im

∞
∑

j=1

∞
∑

k=1

1

j
ζaj+bk

∫ 1

0

(1− t)j/ntk/n−1dt

=
1

n
Im

∞
∑

j=1

∞
∑

k=1

1

j
ζaj+bkB

(

j

n
+ 1,

k

n

)

=
1

n
Im

∞
∑

j=1

∞
∑

k=1

1

j + k
ζaj+bkB

(

j

n
,
k

n

)

So that

∫

κ

regAaBbα =

∫

γ

reg
(

AaBb −Aa+1Bb +Aa+1Bb+1 −AaBb+1
)

α

=
1

2πin
Im

∞
∑

j=1

∞
∑

k=1

1

j + k
ζaj+bk(1 − ζj)(1 − ζk)B

(

j

n
,
k

n

)

(3.10)

If for x, y > 0 we define

F (x, y) =

∞
∑

j,k=0

B (x+ j, y + k)

x+ j + y + k

then we can write

∫

κa,b

reg{1−x, 1− y} = 1

2πin2
Im

n
∑

j,k=1

ζaj+bk(1− ζj)(1− ζk)F
(

j

n
,
k

n

)

(3.11)

First of all note that all terms with j or k equal to n in (3.11) are zero and

because of complex conjugation and the fact that F (x, y) = F (y, x) we see that
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the sum of all terms with j + k = n is also equal to zero:

Im
∑

j+k=n

ζaj+bk(1 − ζj)(1 − ζk)F

(

j

n
,
k

n

)

= Im
∑

j+k=n

ζ−ak−bj(1− ζ−j)(1− ζ−k)F

(

n− j

n
,
n− k

n

)

= Im
∑

j+k=n

ζ−ak−bj(1− ζ−j)(1− ζ−k)F

(

k

n
,
j

n

)

=− Im
∑

j+k=n

ζaj+bk(1− ζj)(1− ζk)F

(

j

n
,
k

n

)

In similar fashion, conjugating all terms with j + k > n allows us to write the

regulator purely using terms with j + k < n:

∫

κa,b

regα =
1

2πin2
Im

∑

j+k<n

ζaj+bk(1−ζj)(1−ζk)
(

F

(

j

n
,
k

n

)

− F

(

1− j

n
, 1− k

n

))

(3.12)

In what follows, for ω ∈ H1(X(C),C) we will understand Imω to mean (ω − ω̄) /2.

From Lemma 2.1.1 we will have

∫

κa,b

Imωr,s,t =
i

n
Im ζar+bs(1− ζr)(1 − ζs)B

( r

n
,
s

n

)

(3.13)

and so after making the convenient definition

G(x, y) =
F (x, y)− F (1− x, 1 − y)

B(x, y)

we can compare equations (3.12) and (3.13) to obtain

regα =
−1

2πn

∑

j+k<n

G

(

j

n
,
k

n

)

· Imωj,k,n−j−k (3.14)
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3.3.1 Action of η on the ωr,s,t

The action of η on ωr,s,t is as follows:

η ωr,s,t = η(xr−1ys−ndx) =

(

1

y

)r−1(
ξx

y

)s−n(

− 1

y2

)

dy

= ξs−nyn−r−s+1xs−n−1

y2
dy

= ξsyt−1xs−ndy

Now from the fact that xn + yn = 1 we see that

dy = −
(

x

y

)n−1

dx

Hence

η ωr,s,t = −ξsxs−1yt−ndx = −ξsωs,t,r

After checking carefully that

η2ωr,s,t = −ξsη ωs,t,r = ξs+tωt,r,s = ξn−rωt,r,s = −ξ−rωt,r,s

then since the G
(

j
n ,

k
n

)

are real-valued in equation (3.14) we get the following

expressions for reg ηα and reg η2α

reg ηα =
1

2πn

∑

j+k<n

G

(

j

n
,
k

n

)

· Im ξkωk,n−j−k,j (3.15)

reg η2α =
1

2πn

∑

j+k<n

G

(

j

n
,
k

n

)

· Im ξ−jωn−j−k,j,k (3.16)

Note when n is even η is not defined over Q and so we do not expect that the

above two expressions should be members of H1(X(C),R(1))+.
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3.3.2 Projection on to the quotients

Let ϕr,s,t be the canonical projection

ϕr,s,t : Jac(Fn) −→ Ar,s,t

and remember that the ωr,s,t on Fn that do not vanish under this projection are

of the form ω〈hr〉,〈hs〉,〈ht〉 for h ∈ Hr,s,t. To compute expressions for regϕr,s,tη
lα

for l ∈ 0, 1, 2 we must use equations (3.14), (3.15) and (3.16) and remove all

differentials that vanish under the projection.

The differentials that remain from equation (3.14) will come from indices

(j, k) of the form (〈hr〉 , 〈hs〉) for h in Hr,s,t. Similarly, for equations (3.15)

and (3.16) the relevant indices will be of the form (〈ht〉 , 〈hr〉) and (〈hs〉 , 〈ht〉)

respectively. Namely we will have

regϕr,s,tα =
−1

2πn

∑

h∈Hr,s,t

G

( 〈hr〉
n

,
〈hs〉
n

)

· Imω〈hr〉,〈hs〉,〈ht〉

regϕr,s,tηα =
1

2πn

∑

h∈Hr,s,t

G

( 〈ht〉
n
,
〈hr〉
n

)

· Im ξ〈hr〉ω〈hr〉,〈hs〉,〈ht〉

regϕr,s,tη
2α =

1

2πn

∑

h∈Hr,s,t

G

( 〈hs〉
n

,
〈ht〉
n

)

· Im ξ−〈hs〉ω〈hr〉,〈hs〉,〈ht〉

More generally, for any integers a and b we have

regϕr,s,tA
aBbα =

−1

2πn

∑

h∈Hr,s,t

G

( 〈hr〉
n

,
〈hs〉
n

)

· Im ζahr+bhsω〈hr〉,〈hs〉,〈ht〉

regϕr,s,tA
aBbηα =

1

2πn

∑

h∈Hr,s,t

G

( 〈ht〉
n
,
〈hr〉
n

)

· Im ξ〈hr〉ζahr+bhsω〈hr〉,〈hs〉,〈ht〉

regϕr,s,tA
aBbη2α =

1

2πn

∑

h∈Hr,s,t

G

( 〈hs〉
n

,
〈ht〉
n

)

· Im ξ−〈hs〉ζahr+bhsω〈hr〉,〈hs〉,〈ht〉

We would like to investigate how these regulators behave under the trace Tr :

Ar,s,t ⊗Q(µ2n) −→ Ar,s,t. Note that when c ∈ Q(µ2n) and ω is defined over Q

we have Tr (Im c ω) = Tr c · Imω.

The case of regϕr,s,tA
aBbα is easiest to deal with. Since h is coprime to n we
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see that the map ζ 7−→ ζh is in Gal(Q(ζ)/Q) and so Tr(ζh(ar+bs)) = Tr(ζar+bs).

The projection is therefore

−1

2πn
Tr(ζar+bs)

∑

h∈Hr,s,t

G

( 〈hr〉
n

,
〈hs〉
n

)

· Imω〈hr〉,〈hs〉,〈ht〉

and no matter what values are taken by a and b we will always end up with an

element of H1(Ar,s,t(C),R(1)) that is linearly equivalent to the case a = b = 0.

The character of the expressions for regϕr,s,tA
aBbηα and regϕr,s,tA

aBbη2α

are very similar and we will only explicitly deal with the former. The behaviour

of this expression when projected onto Q is quite different when n is odd com-

pared to when n is even. Let us assume that n is odd first of all.

In that case n′ = n and so ξ = −1. Therefore, very similarly to before, we

have

Tr
(

ξ〈hr〉ζahr+bhs
)

= (−1)〈hr〉Tr
(

ζh(ar+bs)
)

= (−1)〈hr〉Tr
(

ζar+bs
)

and the projection onto Q is

1

2πn
Tr
(

ζar+bs
)

∑

h∈Hr,s,t

G

( 〈ht〉
n
,
〈hr〉
n

)

· (−1)〈hr〉 Imω〈hr〉,〈hs〉,〈ht〉.

Again we see that nothing is gained by letting a and b vary and that everything

is covered by the case a = b = 0.

When n is even taking the transfer to Q is more problematic. The following

lemma will show that if n is even and r is odd then taking the transfer to Q of

regϕr,s,tA
aBbηα yields zero.

Lemma 3.3.2. If j is any integer, k is odd and n is even then

Tr
(

ξkζj
)

= 0
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Proof. Let θ = ξkζj , then for any odd integer l we see that

θ2l =
(

ξkζj
)2l

= ζ(n
′k+2j)l 6= 1

since (n′k+2j)l is odd and n is even. Therefore 4 divides the order of θ. Suppose

the order of θ is 4l then the map θ 7−→ θ2l+1 = −θ is a member of Gal(Q(θ)/Q)

and so Tr θ = 0. �

If n is even then all members of Hr,s,t are odd. Therefore if r is odd then

the above lemma can be applied to all terms of the form ξ〈hr〉ζar+bs in the

expression for regϕr,s,tA
aBbηα which therefore maps to zero when transferred

to Q. Similarly if s is odd then all elements of the form regϕr,s,tA
aBbη2α vanish

after transferring to Q.

If n is even then primitive triples (r, s, t) have two odd elements and one

even element amongst the three. Thus in one-third of the cases we will have

r and s both odd and both ηα and η2α will yield trivial results. In the other

cases we can hope to find non-trivial elements from ηα or η2α but never both.

From now on let us assume that r and n are both even. Since ξ〈hr〉−hr is

rational (in fact it is equal to (−1)⌊hr/n⌋ where ⌊·⌋ denotes the integer part) and

the map ζ 7−→ ζh is a member of Gal(Q(ζ)/Q) we see that

Tr
(

ξ〈hr〉ζahr+bhs
)

= Tr
(

ξ〈hr〉−hr · ζh(ar+bs+n′r/2)
)

= (−1)⌊hr/n⌋ · Tr
(

ζar+bs+n′r/2
)

and so the projection of regϕr,s,tA
aBbηα is

1

2πn
Tr
(

ζar+bs+n′r/2
)

∑

h∈Hr,s,t

G

( 〈ht〉
n
,
〈hr〉
n

)

(−1)⌊hr/n⌋ Imω〈hr〉,〈hs〉,〈ht〉

(3.17)

These expressions are linearly related no matter what values are taken by a

and b thus we can only hope to get a single independent element of K2 from

elements of this form.
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If we are dealing with a primitive triple and r is even then we must have s

odd. Since n/(2n′) is an integer with no odd factors we can define a = 0 and b

by

b = n′ · [−r/(2s) mod (n/(2n′))]

so that ar + bs+ n′r/2 is some multiple of n/2 and we are taking the trace of

±1 in equation (3.17).

The preceding work is summarised by the following proposition.

Proposition 3.3.3. Suppose we have a primitive triple (r, s, t) with r + s +

t = n. Let n′ be the largest odd factor of n and define the rational element

α = {1− x, 1− y} in K2Fn.

If n is odd then the image of SΣ under the regulator is generated by regα,

reg ηα and reg η2α.

If n is even and r and s are odd then the image of SΣ under the regulator

in H1(Ar,s,t(C),R(1)) is generated by only regα.

If one of r and s is even then without loss of generality we may assume

that it is r and that s is odd. Define b = n′ · [−r/(2s) mod (n/2n′)] then the

automorphism Bb is defined over the field Q(µn/n′). Define β in K2Fn by

β = Tr
Q(µ2n/n′)/QB

bηα

then the image of SΣ under the regulator in H1(Ar,s,t(C),R(1)) is generated by

regα and reg β.

Now that the fields of definition of all our elements are known we can write

concrete and final expressions for the regulators. For any n we have

regϕr,s,tα =
−1

2πn

∑

h∈Hr,s,t

G

( 〈hr〉
n

,
〈hs〉
n

)

· Imω〈hr〉,〈hs〉,〈ht〉. (3.18)

36



For odd n we have

regϕr,s,tηα =
1

2πn

∑

h∈Hr,s,t

G

( 〈ht〉
n
,
〈hr〉
n

)

· (−1)〈hr〉 Imω〈hr〉,〈hs〉,〈ht〉 (3.19)

regϕr,s,tη
2α =

1

2πn

∑

h∈Hr,s,t

G

( 〈hs〉
n

,
〈ht〉
n

)

· (−1)〈hs〉 Imω〈hr〉,〈hs〉,〈ht〉 (3.20)

and when r and n are both even we have (up to sign at least)

regϕr,s,t TrB
bηα =

1

2πn′

∑

h∈Hr,s,t

G

( 〈ht〉
n
,
〈hr〉
n

)

(−1)⌊hr/n⌋ Imω〈hr〉,〈hs〉,〈ht〉.

(3.21)

3.4 Some further relations

The following proposition details some relations between the stated elements

when projecting onto the curves A1,1,n−2, A1,n−2,1 and An−2,1,1 (which is iso-

morphic to A1,(n−1)/2,(n−1)/2 when n is odd). This means that the rank of the

images will be one less than we could hope for based on the previous proposition.

Proposition 3.4.1. For n odd we have

regϕ1,1,n−2

(

ηα− η2α
)

= 0

regϕ1,n−2,1

(

α+ η2α
)

= 0

regϕn−2,1,1 (α+ ηα) = 0

And for n even we have

n regϕn−2,1,1α = n′ regϕn−2,1,1β

up to sign.

Proof. The first identity follows from equations (3.19) and (3.20) and the sym-

metry of G. For the remaining identities we note that H1,n−2,1 and Hn−2,1,1

consist of those numbers h that are prime to n and satisfy 0 < h < n
2 . This
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observation leads to the fact that

(−1)〈h(n−2)〉 = (−1)n−2h = −1

when n is odd and

(−1)⌊h(n−2)/n⌋ = (−1)⌊h−2h/n⌋ = (−1)h−1 = 1

when n is even since all h are odd in that case.

From these calculations the claimed identities easily follow from equations

(3.18)-(3.21). �

3.4.1 Calculating traces in K2

Once we have explained how to compute traces in K2, the relations given in

Proposition 3.4.1 for odd values of n can actually be proven in terms of K-

theory instead of just on the regulator level. Suppose E ⊂ F is a finite field

extension and let

Tr : K2(F ) → K2(E)

be the trace map. By Matsumoto’s theorem it is possible to express the trace

of any symbol in K2(F ) as a sum of symbols in K2(E). In [23] Rosset and Tate

describe a reciprocity law which gives rise to an algorithm for computing such

an expression.

Before describing the algorithm let us first introduce some notation. If a

polynomial p can be written as

p(T ) = anT
n + an−1T

n−1 + · · ·+ amT
m

38



with n ≥ m and aman 6= 0 then we let

p∗(T ) = (amT
m)−1p(T )

c(p) = (−1)nan

Given these definitions we have the following proposition

Proposition 3.4.2 (Rosset and Tate). Let E ⊂ F be a finite extension of fields

and let x, y ∈ F×.

Let g(T ) ∈ E[T ] be the monic irreducible polynomial with root x and let

f(T ) ∈ E[T ] be the polynomial of smallest degree such that NF/E(x)y = f(x).

Finally, let g0, g1, . . ., gm 6= 0, gm+1 = 0 be the sequence of polynomials of

strictly decreasing degree defined by

g0 = g g1 = f

and for i ≥ 1 by

gi+1 ≡ g∗i−1 mod gi (3.22)

provided gi 6= 0. Then we have that

1 ≤ m ≤ deg g = [E(x) : E] ≤ [F : E]

and

TrF/E{x, y} = −
m
∑

i=1

{c(g∗i−1), c(gi)}

3.4.2 Proof that ϕ1,1η α = ϕ1,1η
2α

We are now ready to prove the relation that we are seeking.

Proposition 3.4.3. For odd n we have ϕ1,1η α = ϕ1,1η
2α up to torsion in

C1,1,n−2.

Proof. Let us recall that ηα = {1− 1/y, x+ y} and η2α = {x+ y, 1− 1/x}, thus

39



we are given the task of proving that ϕ1,1∗{x+ y, x−1
x

y−1
y } is torsion in K2C1,1.

The function field of the Fermat curve Fn is given by Q(x, y), while the func-

tion field of the quotient curve C1,1 under the natural inclusion induced by ϕ1,1

is given by Q(xn, xy). The proof that the aforementioned trace is torsion hinges

on the fact that the minimal polynomial of x+ y over the subfield Q(xn, xy) is

actually contained in Q(xy)[T ]. This can be seen as follows.

First, observe that

xk+1 + yk+1 = (x+ y)(xk + yk)− xy(xk−1 + yk−1)

Thus, if we define polynomials hk ∈ Q(xy)[T ] by h0(T ) = 2, h1(T ) = T and for

k ≥ 1 by

hk+1(T ) = Thk(T )− xyhk−1(T )

then by induction we have that xk + yk = hk(x + y). Since xn + yn = 1 and

hn(T ) is monic of degree n we see that x+ y satisfies the polynomial hn(T )− 1.

We can show that this is the minimal polynomial of x + y as follows. The

minimal polynomial will not change when we extend scalars to C. Since C(x, y)

contains the n-th roots of unity the extension C(x, y) over C(xy, xn) is a Kum-

mer extension having Galois group Z/nZ, with j ∈ Z/nZ mapping x + y to

ζjx + ζ−jy, which is never equal to x + y for j 6= 0 since x/y is non-constant.

Therefore x+ y has degree n over C(xy, xn) and thus hn(T )− 1 is its minimal

polynomial.

We want to compute the trace of the element {x+y, 1−(x+y)+xy
xy }. The poly-

nomial f ∈ Q(xn, xy)[T ] of minimal degree satisfying f(x+ y) = 1−(x+y)+xy
xy is

clearly 1−T+xy
xy . Thus f also belongs to Q(xy)[T ] and so all polynomials encoun-

tered during the Rosset-Tate algorithm will be in Q(xy)[T ] too. Consequently

all symbols in the representation of the result will lie in Q(xy). Therefore the

result can be expressed as a pull-back from an element of K2P
1 which is known

to be torsion. �
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Applying the transformation η to the relation in previous proposition will

yield the other relations from the first part of Proposition 3.4.1. In the case of

an odd prime p this will reduce our upper bound for the rank of SΣ to 3(p− 3)

so for n = 7 the maximum possible rank of SΣ is equal to 12 – three less than

the rank of 15 that is predicted by Beilinson’s conjecture.

3.4.3 An aside on ϕ1,1α

While we are computing traces let us try to find an expression for ϕ1,1α. It will

turn out that this has a useful application in the next section.

Proposition 3.4.4. ϕ1,1α = 3n{1− xy, x} up to torsion in K2C1,1.

Proof. Under the natural inclusion induced by ϕ1,1, the function field of C1,1

sits as E = Q(xn, xy) inside the field F = Q(x, y) that is the function field of

Fn.

Using the fact that {1−x, x} = 0 we see that {1−x, 1−y} = {1−x, x−xy}

and it will be easier for us to compute the trace of this symbol.

The minimal polynomial of 1 − x over E is given by g(T ) = (T − 1)n −

(−1)nxn. Thus E(1− x) = F and so we require f ∈ E[T ] to be the polynomial

of smallest degree satisfying f(1 − x) = x − xy. Clearly we must have f(T ) =

1− T − xy.

41



We are now ready to begin the algorithm. We have

g0(T ) = (T − 1)n − (−1)nxn

g∗0(T ) =
(−1)n

1− xn
g0(T ) =

(−1)n

yn
g0(T )

g1(T ) = 1− T − xy

g∗1(T ) =
−T

1− xy
+ 1

g2(T ) = g∗0 mod g1 =
(−1)n

yn
((−xy)n − (−1)nxn) =

(xy)n − xn

yn
=

−x2n
yn

g∗2(T ) = 1

g3(T ) = g∗1 mod g2 = 0

Thus m = 2 and

Tr{1− x, 1− y} = −{c(g∗0), c(g1)} − {c(g∗1), c(g2)}

= −{ 1

yn
, 1} − { 1

1− xy
,
−x2n
yn

}

= {1− xy,
−x3n
(xy)n

}

= 3n{1− xy,−x}

which clearly gives the desired result up to torsion. �

Remark 3.4.5. The element {1 − xy, x} was actually already known in the

literature. Even before Ross introduced the element {1− x, 1 − y} he gave the

element {1 − xy, x} in [21] and proved that its regulator was non-zero. Later

on, Kimura [13] used this element together with another to numerically confirm

Beilinson’s conjecture on the genus 2 quotient C1,1,3 of F5. After taking the

trace from F5 down to C1,1,3 he proved that those two elements spanned a rank
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2 subgroup of C1,1,3 and that the determinant of the change of basis matrix

involved was equal, up to a simple rational number, to the value of the leading

coefficient of the L-function of C1,1,3 at s = 2 to 12 or so decimal places.

Now that we know that {1 − xy, x} is just an expression for the projection

of {1− x, 1− y} under the map ϕ1,1 it is clear that we cannot use it to increase

the known rank of K2Fn. On the positive side the above calculation gives us

some insight for how to evaluate the regulators on a computer as we shall now

see.

3.5 Evaluating the regulators on computer

Following Ross’ calculation of the regulator of {1− xy, x} in [21] we have

Im

∫

γ

log(1 − ζaxy) dlog x = Im

∫ 1

0

log(1 − ζat1/n(1 − t)1/n) dlog(1− t)1/n

=
1

n
Im

∫ 1

0

∞
∑

j=1

−1

j
ζajtj/n(1− t)j/n

−1

1− t
dt

=
1

n
Im

∞
∑

j=1

1

j
ζajB

(

j

n
+ 1,

j

n

)

=
1

2n
Im

∞
∑

j=1

1

j
ζajB

(

j

n
,
j

n

)

which results in

∫

κa,b

reg{1− xy, x} =
1

4πin
Im

∞
∑

j=1

1

j
ζ(a+b)j(1 − ζj)2B

(

j

n
,
j

n

)

(3.23)

But from the previous proposition we know that 3n{1 − xy, x} is equal to

ϕ∗
1,1ϕ1,1∗α. Since C1,1 is the quotient of Fn by the group of automorphisms

generated by AB−1 we have

ϕ∗
1,1ϕ1,1∗α =

n−1
∑

l=0

AlB−1α
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and using equation (3.10) we can compute

∫

κa,b

reg{1− xy, x} =
1

3n

∫

κ

reg
n−1
∑

l=0

Aa+lBb−lα

=
1

6πin2

n−1
∑

l=0

∞
∑

j,k=1

1

k + j
B

(

k

n
,
j

n

)

(1− ζk)(1− ζj)ζ(a+l)k+(b−l)j

=
1

6πin2

∞
∑

j,k=1

1

k + j
B

(

k

n
,
j

n

)

(1 − ζk)(1− ζj)ζak+bj
n−1
∑

l=0

ζl(k−j)

=
1

6πin

∑

k≡j (mod n)

1

k + j
B

(

k

n
,
j

n

)

(1− ζk)(1 − ζj)ζak+bj

The fact that this equation and equation (3.23) are equivalent but feature a

two dimensional sum and a one dimensional sum respectively was intriguing.

Eventually a series identity was discovered that could be used to prove their

equivalence in a direct manner.

Proposition 3.5.1. For x, y > 0

∞
∑

k=0

B(x, y + k)

x+ y + k
=
B(x, y)

x

Proof. Let ck = B(x,y+k)
x+y+k = Γ(x)Γ(y+k)

Γ(x+y+k+1) . Then

ck+1

ck
=

Γ(x)Γ(y + k + 1)

Γ(x + y + k + 2)

(

Γ(x)Γ(y + k)

Γ(x+ y + k + 1)

)−1

=
y + k

x+ y + k + 1

Therefore we have a hypergeometric series and

∞
∑

k=0

B(x, y + k)

x+ y + k
= c0 · 2F1(y, 1;x+ y + 1; 1)

However, Gauss’ Hypergeometric Theorem [1] gives

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

44



for Re (c− a− b) > 0 so we see that

∞
∑

k=0

B(x, y + k)

x+ y + k
=
B(x, y)

x+ y
· Γ(x+ y + 1)Γ(x)

Γ(x+ 1)Γ(x+ y)
=
B(x, y)

x

�

The benefit of this identity is that we can use it to write the function F in

such a way that it can be computed as an exponentially decreasing sum.

If we define

K(x, y) =

∞
∑

j=0

∞
∑

k=j

B (x+ j, y + k)

x+ j + y + k

then we have

F (x, y) =

∞
∑

j,k=0

B (x+ j, y + k)

x+ j + y + k

=
∑

k≥j

B (x+ j, y + k)

x+ j + y + k
+
∑

k<j

B (x+ j, y + k)

x+ j + y + k

= K(x, y) +
∑

j−1≥k

B (x+ j, y + k)

x+ j + y + k

= K(x, y) +K(y + 1, x)

but using our series identity we see that

K(x, y) =

∞
∑

j=0

∞
∑

k=j

B (x+ j, y + k)

x+ j + y + k

=

∞
∑

j=0

∞
∑

k=0

B (x+ j, y + j + k)

x+ j + y + j + k

=

∞
∑

j=0

B (x+ j, y + j)

x+ j

The first term in the sum for K(x, y) is 1
xB(x, y) and the ratio of the subsequent

45



Beta terms is given by

B(x+ j + 1, y + j + 1)

B(x+ j, y + j)

=
Γ(x+ j + 1)Γ(y + j + 1)

Γ(x+ y + 2j + 2)

Γ(x+ j + 2j)

Γ(x+ j)Γ(y + j)

=
(x+ j)(y + j)

(x+ y + 2j + 1)(x+ y + 2j)

which tends to 1
4 as j tends to infinity.

In terms of computer code we can write

K(x, y, tolerance) {

s = beta(x,y);

t = 0;

while(abs(s) > tolerance,

t += s / x;

s *= x * y / ((x+y+1) * (x+y));

x += 1;

y += 1;

);

return t;

}

which is both simple and quickly convergent.

3.5.1 Determining the rank of K2 numerically

Now that we can easily compute the regulator values we can determine the rank

of SΣ for small values of n. Remember that Proposition 3.3.3 states that for n

odd the rank of SΣ on each quotient is at most 3. When n is even and one of r

and s is even it is at most 2 and when both r and s are odd it is at most 1.

Proposition 3.4.1 shows that on quotients of the form A1,1,n−2, A1,n−2,1 and

An−2,1,1, the rank of the projection of SΣ is at most 2 when n is odd. Also

it shows that when n is even, the rank for quotients of the form An−2,1,1 and

A1,n−2,1 is at most 1.

For all primitive triples (r, s, t) with n = r + s + t ≤ 100 we computed

regulator values for the elements stated in Proposition 3.3.3. Except for the

relations outlined in Proposition 3.4.1 no other relations were found between
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any of the K2 elements except for when n = 3 and n = 6.

When n = 3 the only quotient is the curve C1,1,1 of genus 1. The relations

stated in Proposition 3.4.1 are actually all taking place under the projection by

ϕ1,1,1 and we evidently have the relations reg ηα = reg η2α = − regα.

When n = 6 we might expect that there can be two independent elements on

the quotient A2,1,3. If we actually compute expressions for the projections using

equations (3.18) and (3.21) we get 1
6G
(

2
6 ,

1
6

)

· Imω2,1,3 and 1
3G
(

3
6 ,

2
6

)

· Imω2,1,3

respectively. It is clear that these will be related over R but in fact they appear

to be related over Q due to the apparent identity G
(

2
6 ,

1
6

)

/G
(

3
6 ,

2
6

)

= 3. This

appears to be a non-trivial identity of hypergeometric functions.

In table 3.1 we detail the rank of the subgroups SΣ for all values of n up

to 12. The first column gives the value of n; the second column gives the

dimension of the primitive quotients of Fn; the third column gives the number

of primitive quotients; the fourth column gives the rank of SΣ that comes from

the primitive quotients; the fifth column gives the rank of SΣ that comes from

any other quotients; the sixth column gives the total rank of SΣ; and the seventh

column gives the rank of K2Fn predicted by Beilinson’s conjecture.

If n is odd and greater than 5 there should be three independent elements for

each primitive quotient except for the three special cases given by Proposition

3.4.1: indeed we see that Rkprim = 3 · (Nprim − 1) in all cases.

If n is even then primitive quotients (r, s, t) must have one even element

and two odd elements amongst the three. In other words, exactly one third

of the primitive quotients are of the form (r, s, t) with r and s both odd. On

these quotients we expect to find just one independent element of K2 and on

the others (except for A1,n−2,1 and An−2,1,1) we expect to find two. Indeed,

checking the table we see that the formula Rkprim = 5
3Nprim − 2 is satisfied by

all even n greater than 6.

On any quotient Ar,s,t such that the known rank of K2 is equal to the dimen-

sion ϕ(r+s+t)/2 predicted by Beilinson we can attempt a numerical verification

of Beilinson’s conjecture by comparing the determinant of the regulator values
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n g Nprim Rkprim Rkother Rktotal Rkpred
3 1 1 1 0 1 1
4 1 3 3 0 3 3
5 2 3 6 0 6 6
6 1 9 9 1 10 10
7 3 5 12 0 12 15
8 2 9 13 3 16 21
9 3 9 24 1 25 28
10 2 15 23 6 29 36
11 5 9 24 0 24 45
12 2 21 33 3 + 10 46 55

Table 3.1: Details of the ranks of the subgroups SΣ for n up to 12

to the value of the L-function. This will be attempted in the next chapter.

Ignoring elliptic curves, we are able to find enough independent elements of K2

in the following non-isomorphic cases:

• A1,1,3 a genus 2 quotient of F5.

• A1,2,4 a genus 3 quotient of F7.

• A1,2,5 and A1,4,3 genus 2 quotients of F8.

• A1,2,6 a genus 3 quotient of F9.

• A1,2,7 and A1,4,5 genus 2 quotients of F10.

• A1,2,9, A1,4,7, A1,6,5 and A1,8,3 genus 2 quotients of F12.

(It should be noted that A1,6,3, the quotient of F10, is isomorphic to A1,2,7

via A1,6,3 −→ A3,6,1 −→ A21,42,7 −→ A1,2,7)

3.5.2 Comparison to previous work

As already mentioned, Beilinson’s conjecture was verified numerically on the

quotient A1,1,3 by Kimura in [13]. In this thesis we repeat the numerical verifi-

cation but to a much higher precision.

More recently the same subgroup SΣ of K2Fn was studied by Otsubo in [17]

and [18]. When n is odd our results are identical but when n is even the results

given in this thesis are more complete.
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Instead of the automorphism η that we defined by η(x, y) = (1/y, ξx/y),

Otsubo uses an automorphism η′ of order 2 defined by

η′(x, y) =

(

ζ

x
,
ξ′y

x

)

where ξ′ = e
iπ
n . Otsubo considers the elements Tr η′α but does not examine

elements of the form TrBbη′α. Due to these differences Otsubo only finds

potentially non-trivial elements of K2 on the quotient Ar,s,t when r is congruent

to −2 modulo n/n′.

If n is divisible by 2 but not 4 (for example on F10) then n/n′ = 2 and

Otsubo finds just as many elements as in this work. When n is divisible by 4

he misses some elements that are non-zero.

For example, when n = 12 we have n/n′ = 4 and Otsubo is able to find

two independent elements of K2 on the quotients A1,2,9 and A1,6,5 (on the

quotient A1,10,1 there is only one known element due to Proposition 3.4.1). He

numerically verifies Beilinson’s conjecture in these cases but is unable to do the

same for the quotients A1,4,7 and A1,8,3.

When n = 8 we have n/n′ = 8 and unfortunately for Otsubo the only

quotient with r ≡ −2 (mod 8) is A6,1,1. By Proposition 3.4.1 we know that

there can only be a single element there. As a result Otsubo is unable to verify

the conjecture on quotients A1,2,5 and A1,4,3.

Remark 3.5.2. Some historical details are perhaps worth mentioning. I first

verified Beilinson’s conjecture on A1,2,4 in 2005 and on A1,2,6 in 2012. Both of

these were before Otsubo’s publication. My work with n even took place later

than Otsubo’s publication but was almost completely independent. I found

the elements in Proposition 3.3.3 that have b = 0 in late 2015 and very soon

afterwards became aware of Otsubo’s second paper. The differences between

our approaches urged me to investigate elements of the form Bbηα and the full

version of Proposition 3.3.3 was then proved.
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Chapter 4

L-functions of Fermat

Curves

The L-function of the variety Ar,s,t has an Euler product of the form

Lr,s,t(s) =
∏

l

Pl(l
−s)−1

where Pl is a polynomial with integral coefficients of degree φ(n) = 2g. The

complete description of Pl(T ) is given by Davenport-Hasse [6] and Weil [28]. To

begin with we restrict ourselves to primes l that do not divide n and explain

what happens at the other primes later. If l is a prime in Q(µn) dividing l, let

χl be the n-th power residue symbol given by

χl(a) = ζk ⇐⇒ a
Nl−1

n ≡ ζk (mod l).

The Jacobi sum

τr,s,t(l) = −
∑

a∈O/l

χr
l (a)χ

s
l (1− a)

is an integer in Q(µn) with absolute value (N l)1/2 in a any complex embedding
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and we have the basic formula

Pl(T ) =
∏

l|l

(

1− τr,s,t(l)T
f
)

where f is the order of l mod n.

If we let

Λr,s,t(s) = Lr,s,t(s)N
s/2
r,s,t

(

(2π)−sΓ(s)
)g

where Nr,s,t is the conductor of Jr,s,t then we will show that Λ satisfies the

functional equation

Λr,s,t(s) =Wr,s,tΛr,s,t(2 − s)

where Wr,s,t ∈ {±1} is the root number.

If we define m =
∑

h∈Hr,s,t

〈

h−1
〉

then it is shown in [11] that when n is a

prime p that

Nr,s,t =















pp−1 if p | m

pp otherwise

Wr,s,t =















(

2
p

)

if p | m

(−1)m
(

−m
p

)

otherwise

We are interested in computing the conductor and root number in cases where

n is not prime and to achieve this goal we need to investigate the L-function’s

interpretation as a Hecke L-function.

Another remark is that if f is even and n is prime then Gross and Rohrlich

show that

Pl(T ) =
(

1 + lf/2T f
)(n−1)/f

If we replace n−1 with φ(n) then this equation appears to be true for composite

values of n provided lf/2 ≡ −1 (mod n) although I do not have a proof.
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4.1 Introducing Hecke L-functions

In this section we follow the exposition of Hecke L-functions in [25]. Let K

be a number field of over Q with r1 real embeddings and r2 pairs of complex

conjugate embeddings of K into C. For an element α ∈ K denote the conjugates

of α by

α1, . . . , αr1 , αr1+1, αr1+1, . . . , αr1+r2 , αr1+r2

where αj ∈ R for 1 ≤ j ≤ r1.

Let f be an integral ideal in K and denote by I(f) the multiplicative group

generated by all ideals coprime to f. Define the principal ray class P(f) to be the

subgroup of I(f) consisting of all principal ideals of the form (α/β) satisfying

• 0 6= α, β ∈ OK;

• α ≡ β (mod f);

• α/β is totally positive, i.e. all of its real conjugates are positive.

Suppose we have numbers aj and νk satisfying

• aj ∈ 0, 1 for 1 ≤ j ≤ r1 and aj ∈ Z for r1 < j ≤ r1 + r2;

• νk ∈ R for 1 ≤ k ≤ r1 + r2 and ν1 + · · ·+ νr1+r2 = 0.

Then we define a function χ∞ : K× → C× by

χ∞(α) =

r1+r2
∏

k=1

∣

∣

∣α(k)
∣

∣

∣

iνk
r1+r2
∏

j=1

(

α(j)

∣

∣α(j)
∣

∣

)aj

Suppose that χ∞(ǫ) = 1 for all units ǫ ≡ 1 (mod f) that are totally positive,

then χ∞ induces a character on P(f).

If a non-trivial homomorphism χ : I(f) → C× agrees with χ∞ on P(f) i.e.

χ(a) = χ∞(α)

for all a = (α) ∈ P(f) then χ is said to be a grossencharacter modulo f. If f ⊂ f∗

then I(f) ⊂ I(f∗) and if χ∗ is a grossencharacter modulo f∗ and χ∗ = χ on I(f)
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then χ is said to be induced by χ∗, otherwise we say that χ is primitive and f

is its conductor.

Next we define the Hecke L-function associated with a grossencharacter χ

by

L(s, χ) =
∏

p

(

1− χ(p) (Np)
−s
)−1

(4.1)

where the product is taken over all prime ideals p coprime to f.

Hecke in [12] proved that L(s, χ) extends to an entire function and satisfies

a functional equation of the usual type if χ is primitive. Define

γ(χ) =

r1+r2
∏

k=r1+1

2iνk/2, A(f) =

( |discK|N(f)

πr1+2r2

)
1
2

· 2−r2 ,

Γ(s, χ) =

r1
∏

j=1

Γ

(

s+ aj − iνj
2

) r1+r2
∏

j=r1+1

Γ

(

s+
|aj| − iνj

2

)

and

Λ(s, χ) = γ(χ)A(f)s Γ(s, χ) L(s, χ)

Then

Λ(1− s, χ) = ω(χ)Λ(s, χ)

where ω(χ) is a complex number of magnitude 1 depending only on χ.

4.2 Jacobi sums as Grossencharacter

Let us fix K as Q(µn) of degree φ(n) = 2g over Q. This field has no real

embeddings and g pairs of complex conjugate embeddings into C. Define the

element σt ∈ Gal(Q(µn)/Q) by σt : ζ 7→ ζt and the group-ring element

ωr,s,t =
∑

t∈(Z/nZ)×

⌊〈tr〉 + 〈ts〉
n

⌋

σ−1
−t

where the ⌊.⌋ denotes the integer part. If we extend the definition of τr,s,t

multiplicatively to non-prime ideals then we have the so-called Stickelberger
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relation [26] which is a prime ideal decomposition of the Jacobi sum τr,s,t(a) in

terms of the above group-element:

(τr,s,t(a)) = aωr,s,t

In Weil’s 1952 paper [29] he goes further by proving that

τr,s,t((α)) = αωr,s,t (4.2)

when α ≡ 1 (mod n2).

Looking at the definition of ωr,s,t more closely we notice that each integer

part is either 0 or 1 and that

〈tr〉 + 〈ts〉
n

+
〈−tr〉+ 〈−ts〉

n
= 2.

Therefore if σ−1
−t appears in the sum then σ−1

t will not (and vice versa).

Numbering the complex embeddings of Q(µn) carefully we will be able to

write

τr,s,t((α)) =

g
∏

j=1

αj

when α ≡ 1 (mod n2) so that

(Nα)
− 1

2 τr,s,t((α)) =

g
∏

j=1

αj

|αj |

and thus (Na)
− 1

2 τr,s,t(a) is a grossencharacter modulo (n2) in the notation of

the previous section. Suppose that the conductor of the grossencharacter is f and

denote Nr,s,t = |discQ(µn)|N f. The functional form of the Hecke L-function

will be

Λ(s, χ) =

(

Nr,s,t

(2π)g

)
s
2

Γ

(

s+
1

2

)g

L(s, χ).
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If we define

Λr,s,t(s) =

(

Nr,s,t

π2g

)
s
2
[

Γ
(s

2

)

Γ

(

s+ 1

2

)]g

Lr,s,t(s)

then using the identities

Lr,s,t(s) = L(s− 1
2 , χ) and Γ

(s

2

)

Γ

(

s+ 1

2

)

=
√
π · 21−s · Γ(s)

we can easily verify that the functions Λr,s,t(s) and Λ(s− 1
2 , χ) are different by

a constant:

Λr,s,t(s) = 2
g
2N

1
4
r,s,t Λ(s− 1

2 , χ)

and as a consequence the functional equation

Λr,s,t(2− s) = ω(χ)Λr,s,t(s)

is satisfied.

4.3 Finding the conductors

In order to find the conductor Nr,s,t in the functional equation we need to be

able to find the largest defining ideal f for our grossencharacter. That is we

must find the largest ideal f such that equation

τr,s,t((α)) = αωr,s,t (4.3)

holds for all α ≡ 1 (mod f). As previously mentioned we know that n2OK ⊂ f.

For simplicity we stick to the case when Q(µn) is a principal ideal domain

which is true for n < 23 at least. Suppose we can factor n2 into a product of

primes

n2 = πe1
1 · πe2

2 · . . . · πek
k

Then our task is, when given a prime πl and a number f such that πlfOK
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satisfies the equation (4.3), to determine if the same also holds for fOK.

For an element α ∈ OK define Oα to be the multiplicative subgroup of the

field of fractions of OK with elements whose support is disjoint from that of

α. Define Dα to be the fractions of OK having denominator coprime to α and

define the map µ : Oπlf → K× by

µ(α) = α−ωr,s,tτr,s,t((α)).

We know that the subgroup 1+πlfDπlf lies inside kerµ. Let A be the subgroup

Oπl
∩ (1 + fDf ). If we can find a set of elements in Oπlf that span the quotient

A / (1 + πlfDπlf ) then we can determine whether equation (4.3) is valid on A

by calculating µ on this set of elements. The following lemma shows that there

are two distinct cases to consider when analysing the quotient group.

Lemma 4.3.1. If πl divides f then

A / (1 + πlfDπlf )
∼−→ OK/πlOK

otherwise

A / (1 + πlfDπlf )
∼−→ (OK/πlOK)

×

Proof. In the first case (1 + fDf ) ⊂ Oπl
and we have the map

1 + fDf −→ OK/πlOK

x 7−→ (x− 1)/f + πlOK

This is a well-defined homomorphism since if x, y ∈ 1 + fDf then because

xy − 1 = (x− 1)(y − 1) + (x− 1) + (y − 1)

and πlf divides f2 which divides (x − 1)(y − 1) we see that (x − 1)(y − 1)/f

is zero in OK/πlOK. The homomorphism is surjective with kernel 1 + πlfDπlf
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and so we have proved the first claim.

In the second case we have the map

A −→ (OK/πlOK)
×

x 7−→ x+ πlOK.

The fact that the kernel of this map is (1 + πlfDπlf ) comes directly from the

Chinese Remainder Theorem. �

The second case in the lemma can be especially interesting. Suppose πl

and f are coprime and that (4.3) is satisfied by all elements congruent to 1

(mod f). Choose an element θ that is congruent to πl modulo f and that is

not a multiple of πl. Then we can extend the definition of µ (and hence of

τr,s,t) to πl by defining µ(πl) = µ(θ). It is easy to check that this definition is

independent of the choice of θ, that it extends µ to Of and that the kernel of µ

contains 1 + fDf .

In fact this does occur in a couple of the cases that we are interested in, both

times when n = 12. Let ζ be a primitive 12-th root of unity then 1 + ζ3 is the

unique prime above 2. When (r, s, t) = (1, 4, 7) it turns out that the conductor

is the ideal generated by 3. One can check that 1 + ζ3 ≡ (1 + ζ)3 (mod 3) and

that ω1,4,7 = σ1 + σ7. Since 1 + ζ is a unit we have τ1,4,7((1 + ζ)) = 1 and we

get τ1,4,7((1 + ζ3)) =
[

(1 + ζ3)/(1 + ζ)3
]σ1+σ7

= −2.

When (r, s, t) = (1, 8, 3) the conductor is the ideal generated by 1+ζ2 of norm

9. One can check that 1+ζ3 ≡ 1−ζ (mod (1+ζ2)), that ω1,8,3 = σ1+σ5 and that

1− ζ is a unit. We end up with τ1,8,3((1+ ζ3)) =
[

(1 + ζ3)/(1− ζ)
]σ1+σ5

= −2.

Looking at the definition of the Hecke L-function from (4.1) we have an

Euler factor of

1 +
2

4s

in both cases since the norm of 1 + ζ3 is equal to 4. For the curves we looked

at, these proved to be the only occasions that non-trivial Euler factors were
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discovered at primes with bad reduction.

4.4 Implementation on Computer

As a practical consideration it takes time proportional to N l to evaluate the

Jacobi sum

τr,s,t(l) = −
∑

a∈O/l

χr
l (a)χ

s
l (1 − a).

when l is a prime ideal and therefore it is preferable if our elements generating

A factor into elements of small norm.

We implemented these calculations in PARI/GP which automatically calcu-

lates an LLL reduced basis for OK. Denote such a basis by z1, z2, . . . , z2g and

consider the set of elements

S =

{

1 + f ·
(

2g
∑

k=1

akzk

)

: ak ∈ Z, |ak| ≤ 2

}

Then it was always possible in the cases we considered to find a set of generators

for A consisting of elements of S that factor into primes of norm less than or

equal to 104. In this way the computational time was very reasonable and the

conductors for n ≤ 12 and ϕ(n) ∈ {4, 6} are shown in table 4.1.

Note that the numbers in the column Wr,s,t are the root numbers in the

functional equation and were computed with the ComputeL package as we shall

now describe.

4.5 The ComputeL package

Dokchitser [7] has implemented a PARI/GP [27] package which computes values

of L-functions numerically to high precision. Required as input to the package

are the sign of the functional equation, the conductor, the weight of the L-

function, a description of the Gamma factors in the functional equation, together

of course with as many terms of the L-series required to calculate the value of
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n g r, s, t |discQ(µn)| N f Nr,s,t Wr,s,t

5 2 1,1,3 53 52 55 1

7 3 1,1,5 75 72 77 1

7 3 1,2,4 75 71 76 1

8 2 1,1,6 28 28 216 1

8 2 1,2,5 28 26 214 1

8 2 1,3,4 28 28 216 -1

8 2 1,4,3 28 24 212 1

8 2 1,5,2 28 28 216 -1

8 2 1,6,1 28 26 214 1

9 3 1,1,7 39 36 315 -1

9 3 1,2,6 39 34 313 1

10 2 1,1,8 53 28 · 52 28 · 55 1

10 2 1,2,7 53 24 · 52 24 · 55 1

10 2 1,3,6 53 28 · 52 28 · 55 -1

10 2 1,4,5 53 24 · 51 24 · 54 1

10 2 1,5,4 53 28 · 51 28 · 54 -1

10 2 1,8,1 53 24 · 52 24 · 55 -1

12 2 1,1,10 24 · 32 28 · 34 212 · 36 -1

12 2 1,2,9 24 · 32 26 · 32 210 · 34 1

12 2 1,3,8 24 · 32 28 · 32 212 · 34 1

12 2 1,4,7 24 · 32 20 · 34 24 · 36 1

12 2 1,5,6 24 · 32 28 · 32 212 · 34 1

12 2 1,6,5 24 · 32 26 · 32 210 · 34 -1

12 2 1,7,4 24 · 32 28 · 34 212 · 36 1

12 2 1,8,3 24 · 32 20 · 32 24 · 34 1

12 2 1,9,2 24 · 32 28 · 32 212 · 34 -1

12 2 1,10,1 24 · 32 26 · 34 210 · 36 1

Table 4.1: Conductors of all quotients with n ≤ 12 and ϕ(n) ∈ {4, 6}. The root
numbersWr,s,t in the final column were computed with the ComputeL package.
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the L-function to the current precision.

Actually, if the L-function is known to obey a functional equation with a

certain value for the conductor, then ComputeL can be used to find the root

number from the binary choice {±1} by checking a certain equality based on

theta series. We take advantage of this feature as the easiest way for finding the

root number.

The remaining task is therefore to compute enough values of the Dirichlet

series in order for ComputeL to be able to compute our L-values.

To compute the Jacobi sum

τr,s,t(l) = −
∑

a∈O/l

χr
l (a)χ

s
l (1− a)

in the general case, we first note that O/l is isomorphic to the finite field of lf

elements where l is the rational prime above l and f is the order of l modulo n.

We begin by searching for a primitive element a modulo l and compute the

n-th power residue symbol χl(a) with a search for equality modulo l between

the value a(l
f−1)/n and the n values 1, ζ, . . . , ζn−1.

Next we determine a bijection between O/l and the integers 0, 1, . . . , lf − 1.

To help with this PARI/GP provides a convenient function that gives generators

of the ideal l in terms of the integral basis of O and in Hermite Normal Form.

A table of size lf is allocated and we proceed to fill this table with values of

χl using the obvious equality χl

(

ak
)

= χl(a)
k.

Once all the values for χl have been determined the Jacobi sum can be

evaluated in straightforward fashion.

It should be noted that if we require all of the terms of the Dirichlet series

up to index N then primes l where f > 1 will make no contribution if l2 > N .

Therefore the bulk of the work is taken up by determining the coefficient of T

in the expression

Pl(T ) =
∏

l|l

(

1− τr,s,t(l) T
f
)
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when f = 1 and l >
√
N . In that case we must have l ≡ 1 (mod n) and the

coefficient of T is going to be given by

∑

x∈Fl\{0,1}

Tr (χr
l (x)χ

s
l (1 − x))

This expression is so simple that it was possible to program directly in the

low-level computer language “C” giving a great speed advantage.

4.6 Fast modular arithmetic on a computer

For reasonably small primes l we describe a method to perform multiplication

of an arbitrary integer modulo l by a fixed integer modulo l in just three fast

instructions on modern computer hardware. It is inspired by Montgomery mul-

tiplication [16] but has been further optimised according to our specific needs.

Let l be an odd positive integer and suppose that a = −y/232 mod l where

ly < 232. Define z := y/l mod 232. If 0 ≤ x < l then compute w := xz

mod 232 and define q and r with 0 ≤ r < 232 by

232q + r = lw.

Then q < l (since w < 232) and r satisfies

r ≡ lw ≡ lzx ≡ xy (mod 232).

But xy < ly < 232 so r is precisely equal to xy and we see that

q =
lw − r

232
≡ −r

232
=

−xy
232

≡ ax (mod l).

Thus if the 32-bit value z has been pre-computed we can compute q := ax

mod l very quickly on a computer with the operations

w := x * z mod 2^32;
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q := (l * w) // 2^32;

where // represents the operation “divide and round down to nearest integer”.

For all primes l less than 36 million it was possible to find y satisfying

yl < 232 and −y/232 being a primitive root modulo l, therefore we could use

the above multiplication trick when computing our table of values for each χl.

In fact, the multiplication operation is so fast that the limiting factor of the

program’s speed was the time required to write the χl values into the table.

4.7 The results

With the computational methods outlined in previous sections we were able to

compute L-values for all quotients mentioned at the end of section 3.5.1 to a

precision of 200 decimal digits. The most difficult value to compute was on the

quotient A1,2,6 of genus 3 and conductor 313. Roughly 23 million terms of the

Dirichlet series were required which took around 24 hours of CPU time.

L
(2)
1,1,3(0) =

3.9044666224382301406864995150031685591095140398523

222713454587777300823329670234928205093659253019576

212520371734060626609899047059517799317906004136057

531764120452506961029939912046439066735224068634

L
(3)
1,2,4(0) =

10.590031668633318742244645498163991186904708544985

401984039171033430170202561524939650304520192251498

070926360472831923604952776070681037913665805692357

350157697877977480567432482416937545494345289060

L
(2)
1,2,5(0) =

22.172122239977660314764280156454627467594809129906
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494994918804153823719729902774472084256236009674597

581704153585743598113427921784464774855267331039165

307054455694409589146919959996750830406295056721

L
(2)
1,4,3(0) =

5.2172818564081939178064977263799176954883549978614

713574137277682984662111611274834399476192074954021

227803304147572566911180114474383433188877888541419

569989928896150810215065540432782139727745260828

L
(3)
1,2,6(0) =

158.08487420273125120081107516291898934764854087401

974765964325145996785542977682236515199498604103724

679168249281646834059704074014619968898789928291385

953692392493474430660535999464776467315360789548

L
(2)
1,2,7(0) =

65.222342356362598081358890537868167550811563016704

820563497513135668465956984156267451712773496359724

893203653153773248079890809508006666010012312630445

132023282319039879079909630941229361699650036122

L
(2)
1,4,5(0) =

13.143417042986172127876620474551928103156692503849

235530275498889649612689775490460124956432568867765

451991377471532513328899905762053891163674529958552

283404421555672258513604180255389494342730299433

L
(2)
1,2,9(0) =

108.40886795116844195660279639760193315805969644739

464535181442894276932699661874899946651241395904217

401854552424494401476572055226078059157740847945490

996441316925791893353480930687356337511113761853
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L
(2)
1,4,7(0) =

13.946845434271244783299827284784853858026054773931

316221681237864761313284308863474711771696913608900

743732532561181586136784637166149560564164072088070

198411526552919213368411779818327736712185089043

L
(2)
1,6,5(0) =

-98.54375979662883319498886837229679891145729330188

188954459068265832110950172076996809677431850456933

821600713573894345263576026088527975816024432292317

0605728459475911005020577930315219045864737621912

L
(2)
1,8,3(0) =

1.4290849735590211764158865890319632422693139268297

145420204941078860672491886976414500889706540248102

930816184589527342161153835040656617716565598026264

201639594430775845491482912515178885818615696944

4.8 Comparisons to the regulator values

With regard to the elements of K2 outlined in Proposition 3.3.3 and formulas

(3.18)-(3.20) let α1, α2, . . . , αk be a list of elements inK2(Fn), let κa1,b1 , . . . , κak,bk

be a list of loops in H1(Fn,Z). Define

Det(Ar,s,t; α1, . . . , αk; κa1,b1 , . . . κak,bk)

to be the absolute value of the determinant of the matrix whose (i, j)-th element

is the integral of regαi along the loop κaj ,bj when pushed down to the variety

Ar,s,t.

A small note on which loops to choose is necessary. Let c denote complex

conjugation on a curve X . Then for α ∈ K2X and γ ∈ H1(X(C),Z) and invari-
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ant under c we have that
∫

γ
regα = 0 on account of the following calculation:

∫

γ

regα =

∫

c◦γ

regα =

∫

γ

c∗ (regα) = −
∫

γ

regα

Therefore the loops chosen should be generators ofH1(X(C),Z)/H1(X(C),Z)+.

For example, the loops could be chosen as generators of the eigenspaceH1(X(C),Z)−

if one was motivated to do so.

Then the following equalities, which give good evidence that Beilinson’s

conjecture is true for these curves, hold up to a precision of around 200 decimal

digits.

L
(2)
1,1,3(0) / Det(A1,1,3; α, ηα; κ0,0, κ0,1) =

8

25

L
(3)
1,2,4(0) / Det(A1,2,4; α, ηα, η

2α; κ0,0, κ0,3, κ0,4) =
48

73

L
(2)
1,2,5(0) / Det(A2,1,5; α, β; κ0,0, κ0,2) = 4

L
(2)
1,4,3(0) / Det(A4,1,3; α, β; κ0,0, κ0,1) = 1

L
(3)
1,2,6(0) / Det(A1,2,6; α, ηα, η

2α; κ0,0, κ0,1, κ0,4) =
16

3

L
(2)
1,2,7(0) / Det(A2,1,7; α, β; κ0,0, κ0,1) = 16

L
(2)
1,4,5(0) / Det(A4,1,5; α, β; κ0,0, κ0,1) = 4

L
(2)
1,2,9(0) / Det(A2,1,9; α, β; κ0,0, κ0,1) = 48

L
(2)
1,4,7(0) / Det(A4,1,7; α, β; κ0,0, κ0,2) =

32

9

L
(2)
1,6,5(0) / Det(A6,1,5; α, β; κ0,0, κ0,1) = −24

L
(2)
1,8,3(0) / Det(A8,1,3; α, β; κ0,0, κ0,1) =

8

9
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Chapter 5

On the curves C1,1,n−2

In this chapter we specifically discuss the hyperelliptic curves C1,1,n−2. The

main result will be to prove that for all odd primes n ≥ 5 the two elements α

and ηα are independent elements ofK2 when projected on to the curve C1,1,n−2.

We do this by analysing a particular 2 × 2 matrix of regulator values so let us

begin by gathering the formulas required.

5.1 Defining a certain determinant

Lemma 5.1.1. For integers a and b we have

∫

κa,b

ω̂r,s,t =
−4i

n
· sin π

n [(2a+ 1)r + (2b+ 1)s] · sin πr
n · sin πs

n ·B
(

r
n ,

s
n

)

Proof. Going back to formula (3.13) we have the straightforward computation

∫

κa,b

ω̂r,s,t =
i

n
Im ζar+bs (1− ζr) (1− ζs)B

(

r
n ,

s
n

)

=
i

n
Im ζ

(

a+
1
2

)

r+
(

b+
1
2

)

s
(

ζ−
r
2 − ζ

r
2

)(

ζ−
s
2 − ζ

s
2

)

· B
(

r
n ,

s
n

)

=
−4i

n
Im ζ

(

a+
1
2

)

r+
(

b+
1
2

)

s
sin πr

n · sin πs
n ·B

(

r
n ,

s
n

)

=
−4i

n
· sin π

n [(2a+ 1)r + (2b+ 1)s] · sin πr
n · sin πs

n ·B
(

r
n ,

s
n

)
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In the course of the proof we only need the case a = n−1
2 where we have

∫

κ(n−1)/2,b

ω̂r,s,t =
−4i

n
· sin π

n (nr + (2b+ 1)s) · sin πr
n · sin πs

n · B
(

r
n ,

s
n

)

=
−4i

n
· sin π

n (2b+ 1)s · sin πr
n · sin πs

n ·B
(

r
n ,

s
n

)

· (−1)r

To ease the notation slightly, define P (b, n) and Q(b, n) by

P (b, n) = 2πin

∫

κ(n−1)/2,b

regϕ1,1,n−2α

Q(b, n) = −2πin

∫

κ(n−1)/2,b

regϕ1,1,n−2η α

The relevant formulas for computing the projection were (3.18) and (3.19)

which we repeat here.

regϕr,s,tα =
−1

2πn

∑

h∈Hr,s,t

G

( 〈hr〉
n

,
〈hs〉
n

)

· ω̂〈hr〉,〈hs〉,〈ht〉

regϕr,s,tηα =
1

2πn

∑

h∈Hr,s,t

G

( 〈ht〉
n
,
〈hr〉
n

)

· (−1)〈hr〉ω̂〈hr〉,〈hs〉,〈ht〉

Remember that H1,1,n−2 is the set of all integers that are coprime to n

and less than n
2 . When n is prime this just means all integers in the range

1, . . . , (n− 1)/2. With (r, s, t) = (1, 1, n− 2) and integers h in this range we will

have 〈hr〉 = 〈hs〉 = h and 〈ht〉 = n− 2h giving

P (b, n) = − 4

n

n−1
2
∑

h=1

G
(

h
n ,

h
n

)

· sin(2b+ 1)πhn · sin2 πh
n · B

(

h
n ,

h
n

)

· (−1)h (5.1)

and

Q(b, n) = − 4

n

n−1
2
∑

h=1

G
(

1− 2h
n ,

h
n

)

· sin(2b+ 1)πhn · sin2 πh
n · B

(

h
n ,

h
n

)

(5.2)

Note that two occurrences of (−1)h cancelled each other out in equation (5.2).
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The rest of this chapter will be devoted to proving the following proposition.

Proposition 5.1.2. For odd primes n greater than 5 we have that P (0, n),

P (1, n) and Q(0, n) are positive while Q(1, n) is negative so that the determinant

of the matrix






P (0, n) P (1, n)

Q(0, n) Q(1, n)







is negative and so α and ηα are independent elements of K2 after the projection

onto C1,1,n−2.

5.2 Analysing P (b, n)

The summand in the expression for P (b, n) is actually a Riemann-integrable

function evaluated the points h
n but multiplied by the alternating factor (−1)h

and so we expect P (b, n) to tend towards 0 as n tends to infinity. Nonetheless we

can prove that P (b, n) will be positive for b ∈ {0, 1} with some careful analysis.

With n being odd it can be checked that the expression

sin(2b+ 1)πhn · sin2 πh
n · (−1)h (5.3)

is negated under the substitution h −→ n − h. Therefore, after recalling the

definition of the function G

G(x, y) =
F (x, y)− F (1− x, 1 − y)

B(x, y)

we can “unfold” the sum in equation (5.1) and obtain the following more con-

venient form

P (b, n) = − 4

n

n−1
∑

h=1

F
(

h
n ,

h
n

)

· sin(2b+ 1)πhn · sin2 πh
n · (−1)h

In fact we can use Proposition 3.5.1 to find a simpler expression for F when
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both of its arguments are equal:

F (x, x) =
3

2

∞
∑

k=0

B(x+ k, x+ k)

x+ k

so we get the even simpler form

P (b, n) = − 6

n

∞
∑

h=1

n
h · B

(

h
n ,

h
n

)

· sin(2b+ 1)πhn · sin2 πh
n · (−1)h (5.4)

since expression (5.3) is invariant under the substitution h −→ n+h. From here

we are ready to analyse this expression using the Euler-Maclaurin formula.

5.2.1 The Euler-Maclaurin Formula

Suppose f : [0, 1] → R is differentiable and x ∈ [0, 1]. Define g : [0, 1] → R by

g(t) =















t− x+ 1
2 , 0 ≤ t < x

t− x− 1
2 , x < t ≤ 1.

When g′(t) is defined it is equal to 1 so integration by parts gives

∫ 1

0

f(t) dt =

∫ x

0

f(t) dt+

∫ 1

x

f(t) dt

=

[

f(t)

(

t− x+
1

2

)]x

0

−
∫ x

0

f ′(t)

(

t− x+
1

2

)

dt

+

[

f(t)

(

t− x− 1

2

)]1

x

−
∫ 1

x

f ′(t)

(

t− x− 1

2

)

dt

= f(x)−
(

x− 1

2

)

(f(1)− f(0))−
∫ 1

0

f ′(t)g(t) dt

So that

f(x) =

∫ 1

0

f(t) dt+

(

x− 1

2

)

(f(1)− f(0)) +

∫ 1

0

f ′(t)g(t) dt (5.5)
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Let us introduce the Bernoulli polynomials Bj(x) defined by

tetx

et − 1
=

∞
∑

j=0

Bj(x)

j!
tj

This gives B0(x) = 1, B1(x) = x − 1
2 , B2(x) = x2 − x + 1/6 and so on. It

follows easily from the definition of Bj(x) that the Bernoulli numbers Bj satisfy

Bj = Bj(0) and that the following identities hold:

Bj(1 − x) = (−1)jBj(x) (5.6)

B′
j(x) = jBj−1(x) (5.7)

Also let the Bernoulli periodic functions Bj(x) be functions of period 1 defined

by

Bj(x) = Bj(x), 0 ≤ x < 1

Note that g(t) = −B1(x − t) so we can rewrite equation (5.5) as

f(x) =

∫ 1

0

f(t) dt+B1(x) (f(1)− f(0))−
∫ 1

0

f ′(t)B1(x− t) dt (5.8)

Using equation 5.6 we see that Bj(0) = Bj(1) for all even j. Moreover, since

Bj = 0 for all odd j > 1 we in fact see that Bj(0) = Bj(1) for all j ≥ 1 and

hence that Bj(x) is continuous for j ≥ 1. In view of equation 5.7 we have that

the derivative of Bj(x−t) with respect to t is −jBj−1(x−t), thus if f ∈ CJ [0, 1]

then integration by parts applied to equation 5.8 leads to the following formula

∫ 1

0

f ′(t)B1(x− t) dt =
[

f ′(t).
(

−B2(x− t)
)]1

0
−
∫ 1

0

f ′′(t)
(

−B2(x− t)
)

dt

= −B2(x) (f
′(1)− f ′(0)) +

∫ 1

0

f ′′(t)B2(x− t) dt
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and applying the same process inductively gives

f(x) =

∫ 1

0

f(t)dt+

J
∑

j=1

Bj(x)

j!

(

f (j−1)(1)− f (j−1)(0)
)

−
∫ 1

0

BJ (x− t)

J !
f (J)(t)dt

For any integer k we clearly also have the identity

f(k + x) =

∫ k+1

k

f(t) dt+

J
∑

j=1

Bj(x)

j!

(

f (j−1)(k + 1)− f (j−1)(k)
)

−
∫ k+1

k

BJ(x− t)

J !
f (J)(t) dt

Summing this expression over all a ≤ k < b gives the Euler-Maclaurin formula

Theorem 5.2.1. For a, b ∈ Z, x ∈ [0, 1] and f ∈ CJ [a, b] we have

∑

a≤k<b

f(k + x) =

∫ b

a

f(t) dt+
J
∑

j=1

Bj(x)

j!

(

f (j−1)(b)− f (j−1)(a)
)

−
∫ b

a

BJ(x− t)

J !
f (J)(t) dt

And we also have the following scaled version as a simple corollary

Corollary 5.2.2. For n a positive integer, x ∈ [0, 1] and f ∈ CJ [a, b] we have

1

n

n−1
∑

k=0

f

(

k + x

n

)

=

∫ 1

0

f(t) dt+

J
∑

j=1

Bj(x)

j!nj

(

f (j−1)(1)− f (j−1)(0)
)

−
∫ 1

0

BJ(x− Jt)

J !nJ
f (J)(t) dt

Applying Euler-Maclaurin to P (b, n)

If we define f : C → C by

f(z) =
1

z
· B(z, z) · sin(2b+ 1)πz · sin2 πz
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then we can write equation (5.4) in the form

P (b, n) = − 6

n

∞
∑

h=0

[

f

(

2h

n

)

− f

(

2h+ 1

n

)]

Define the partial sum PK(b, n) by

PK(b, n) =
1

n/2

nK−1
∑

h=0

[

f

(

h

n/2

)

− f

(

h+ 1
2

n/2

)]

and note that P (b, n) = −3 limK→∞ PK(b, n). Then applying Euler-Maclaurin

gives

PK(b, n) =

J
∑

j=1

Bj(0)−Bj

(

1
2

)

j! (n/2)j

(

f (j−1)(K)− f (j−1)(0)
)

−
∫ K

0

BJ(−Jt)−BJ

(

1
2 − Jt

)

J ! (n/2)J
· f (J)(t) dt (5.9)

We would like to take the limit as J tends to infinity in the above expression.

To do that we examine the Fourier expansion of the Bernoulli polynomials and

then prove some bounds on the entire function f .

Proposition 5.2.3. The Fourier expansion of Bj(x) is given by

Fj(x) = −j!
∞
∑′

l=−∞

1

(2πil)j
e2πilx

where the prime indicates the omission of the term corresponding to l = 0. The

equality Bj(x) = Fj(x) holds for all x ∈ R and j ∈ Z except for when j = 1 and

x ∈ Z.

Proof. After checking by hand the validity of this expansion for j = 1 the

expansion can be seen to be valid for j > 1 by observing the following

• Fj(0) = Bj(0) since for j odd Fj(0) = 0 = Bj(0) and for j even Fj(0) =

− 2j!
(2πi)j ζ(j) = Bj = Bj(0) by the famous formula of Euler.

• F ′
j(x) = jFj−1(x)
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Therefore the equality Fj(x) = Bj(x) holds whenever Bj is continuous at x.

This applies to all x ∈ R and j ∈ Z except for when j = 1 and x ∈ Z. �

By bounding this series in the obvious way and using the fact that ζ(j) < 2

for j ≥ 2 we obtain the following corollary.

Corollary 5.2.4. For all x ∈ R and j ≥ 2

∣

∣

∣

∣

Bj(x)

j!

∣

∣

∣

∣

<
4

(2π)j
(5.10)

Proposition 5.2.5. Let ∆ = 2 log 2 then for all z we have

|f(z)| ≤ A|z|− 1
2 e−∆Re z+(2b+3)π| Im z|

for some constant A.

Proof. We know that

f(z) =
1

z
· Γ(z)

2

Γ(2z)
· sin(2b+ 1)πz · sin2 πz

By Stirling’s formula we know that

log Γ(z) =

(

z − 1

2

)

log z − z +O(1)

for Re z > 0. Some easy manipulation shows that

log

(

Γ(z)2

Γ(2z)

)

= 2 log Γ(z)− log Γ(2z)

= − 1
2 log z − 2 log 2 · z +O(1)

Therefore |B(z, z)| is bounded above (and as will soon become relevant, bounded

below) by some multiple of |z|−
1
2 e−∆Re z. Together with the obvious bound

|sin z| ≤ e|Im z| we get the claimed result in the region Re z > 0.

To get the result in the left half-plane we can use some Gamma identities to
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write

Γ(z)2

Γ(2z)
· sin2 πz = π

1− 2z

Γ(2− 2z)

Γ(1− z)2
· sin 2πz

=
π

1− 2z
· B(1− z, 1− z)−1 · sin 2πz

and the result follows in the region Re z ≤ 0 by making use of the remark in the

previous discussion. �

Proposition 5.2.6. Let σ =
(

∆2 + (2b+ 3)2π2
)

1
2 then

∣

∣

∣f (j)(z)
∣

∣

∣ ≤ Cσjeσ|z|

for some constant C.

Proof. First of all, from the Cauchy-Schwarz inequality and the previous propo-

sition we see that

|f(z)| ≤ A |z|−
1
2 e−∆Re z+(2b+3)π|Im z| ≤ A |z|−

1
2 eσ|z|

It can be seen that f is an entire function. Let us assume that it has Taylor

series given by

f(z) =

∞
∑

n=0

an
n!
zn

For r > 0 we know from the Residue Theorem that

∣

∣

∣

an
n!

∣

∣

∣ =

∣

∣

∣

∣

∣

1

2πi

∫

|z|=r

f(z)

zn+1
dz

∣

∣

∣

∣

∣

≤ 1

2π

∫

|z|=r

∣

∣

∣

∣

f(z)

zn+1

∣

∣

∣

∣

dz ≤ 2πr

2π
· Ar

−
1
2 eσr

rn+1
= A

eσr

rn+
1
2

Setting r = n
σ gives

|an| ≤ A
n!en

nn+ 1
2

σn+ 1
2

Hence by Stirling’s formula we see that |an| ≤ Cσn for some constant C.
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An expression for f (j)(z) is given by

f (j)(z) =

∞
∑

n=0

an+j

n!
zn

and the above bound for |an| allows us to give the following bound for |f (j)(z)|

when |z| ≤ r

|f (j)(z)| ≤
∞
∑

n=0

|an+j |
n!

|z|n ≤ Cσj
∞
∑

n=0

(σr)n

n!
= Cσjeσr

�

Now we can go all the way back to equation (5.9) where we had the remainder

term

−
∫ K

0

BJ (−Jt)−BJ

(

1
2 − Jt

)

J ! (n/2)J
· f (J)(t) dt.

Using corollary 5.2.4 and the previous proposition we see that this remainder

tends to zero in the limit J → ∞ provided σ < πn. It is not difficult to see that

this is satisfied when n > 2b+ 3.

In conclusion we have the expression

PK(b, n) =
∞
∑

j=1

Bj(0)−Bj

(

1
2

)

j! (n/2)j

(

f (j−1)(K)− f (j−1)(0)
)

The next step in our analysis involves replacing the values of the Bernoulli

polynomials with their Fourier expansions. Since f(0) = f(K) = 0 we can ignore

the term corresponding to j = 1 and thus all sums are absolutely convergent in

the following calculation:

PK(b, n) =

∞
∑

j=2

f (j−1)(K)− f (j−1)(0)

j! (n/2)j

∞
∑

l=−∞

−j!
(2πil)j

(

1− eπil
)

= 2
∑

l odd

∞
∑

j=2

f (j−1)(0)− f (j−1)(K)

(πiln)j

= 4
∑

l odd
l>0

Re

∞
∑

j=2

f (j−1)(0)− f (j−1)(K)

(πiln)j
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It turns out that
∞
∑

j=2

f (j−1)(K)

(πiln)j
(5.11)

can be expressed in terms of the Borel transform of f which we now describe.

5.2.2 The Borel Transform

If f(z) is an entire function with Taylor series given by

f(z) =

∞
∑

n=0

an
n!
zn

then the Borel Transform of f is defined by

Bf (w) =

∞
∑

n=0

an
wn+1

If |f(z)| is bounded by some multiple of eσ|z| then this series is convergent for

|w| > σ but the function Bf can be potentially analytically continued inside this

disc. This can be seen by observing an integral representation of Bf which we

now explain.

Proposition 5.2.7. If w = reiθ then

Bf(w) = e−iθ

∫ ∞

0

f(te−iθ)e−rt dt
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Proof. We compute directly

e−iθ

∫ ∞

0

f(te−iθ)e−rt dt = e−iθ

∫ ∞

0

∞
∑

n=0

an
n!
tne−inθe−rt dt

=
∞
∑

n=0

an
n!
e−i(n+1)θ

∫ ∞

0

tne−rt dt

=

∞
∑

n=0

an
n!
e−i(n+1)θ

∫ ∞

0

(

t

r

)n

e−t d

(

t

r

)

=

∞
∑

n=0

an
n!

1

wn+1

∫ ∞

0

tne−t dt

=

∞
∑

n=0

an
wn+1

= Bf (w)

�

In our situation it is a fact that f(K + z) can be written

f(K + z) =

∞
∑

j=0

f (j)(K)

n!
zj

hence we get that the sum in (5.11) is given by

∞
∑

j=2

f (j−1)(K)

(πiln)j
=

∫ ∞

0

−if(K − it)e−πlnt dt. (5.12)

Summing this expression over odd positive values of l gives

∑

l odd
l>0

∞
∑

j=2

f (j−1)(K)

(πiln)j
=

∫ ∞

0

−if(K − it)
∑

l odd
l>0

e−πlnt dt

=

∫ ∞

0

−if(K − it)
e−πnt

1− e−2πnt
dt

= − i

2

∫ ∞

0

f(K − it)

sinhπnt
dt

Now because of Proposition 5.2.5 we see that the integrand decays like 4−K

independently of t. We conclude that the limit of the expression as K → ∞ is
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zero. In other words

lim
K→∞

PK(b, n) = 4Re lim
K→∞

−i
2

∫ ∞

0

f(−it)− f(K − it)

sinhπnt
dt

= 2

∫ ∞

0

Im f(−it)
sinhπnt

dt

or after remembering the factor of −3 that disappears when moving from P (b, n)

to PK(b, n) we see that we have proved the following.

Proposition 5.2.8. For n > 2b+ 3 we have

P (b, n) = 6

∫ ∞

0

Im f(it)

sinhπnt
dt

Now we need a couple of lemmas before finishing the proof.

Lemma 5.2.9. In the case b = 0 we have

∣

∣Im f(it)− 2π3t
∣

∣ ≤ 4
3π

5t3 cosh 3πt

and when b = 1 we have

∣

∣Im f(it)− 6π3t
∣

∣ ≤ 12π5t3 cosh 5πt

Proof. We will outline a proof of the first inequality that relies on being able to

find explicit constants A and C from Propositions 5.2.5 and 5.2.6.

Suppose that the expression Im f(it)− 2π3t has a Taylor series of the form

∞
∑

n=0

an
n!
tn

As in the proof of Proposition 5.2.6 we can show that there exists C such that

|an| ≤ Cσn where σ =
(

∆2 + 9π2
)

1
2 . Assume that it safe to take C = 100

(computer calculations suggest that C could be made much lower).

Both sides of the inequality are odd functions so that only odd powers occur

in the Taylor series of both sides. Furthermore, the right hand side has only

78



positive Taylor coefficients and it is possible to check that these are at least

|an/n!| for 1 ≤ n ≤ 19. We can bound the terms in the Taylor series of the left

hand side when n ≥ 21 and t ≤ 2 as follows:

∣

∣

∣

∣

∣

∞
∑

n=21

an
n!
tn

∣

∣

∣

∣

∣

≤
∞
∑

n=21

Cσn

n!
· tn ≤ C · σ21t21

21!

∞
∑

n=0

(

2σ

21

)n

≤ 104 · t21

But the Taylor coefficient of the t21 term in the right hand side is 4
3π

5 (3π)
18
/18! ≥

2·104 so we have proven the inequality for t ≤ 2 provided we accept the constant

C = 100.

We expect that the inequality is true for large t since by Proposition 5.2.5 we

see that the left hand side is O
(

e3πt
)

. But already for t = 2 the ratio between

the two sides of the inequality is greater than 2 · 104 so an explicit version of

Proposition 5.2.5 would not need to be at all tight to give a complete proof. �

Lemma 5.2.10. We have the following definite integrals:

∫ ∞

0

t

sinhπt
dt =

1

4

∫ ∞

0

t3 cosh πt
3

sinhπt
dt =

1

3

Proof. We need the Hurwitz Zeta function which is defined by

ζ(s, q) =

∞
∑

k=0

1

(k + q)s

Other properties we need are that ζ(s, 1) = ζ(s) and the following “multiplica-

tion formulas” that can be obtained via elementary manipulations.

ζ
(

s, 12
)

+ ζ(s, 1) = 2sζ(s)

ζ
(

s, 13
)

+ ζ
(

s, 23
)

+ ζ(s, 1) = 3sζ(s)

For q < 1 it is easy to check that

∫ ∞

0

tn · eqπt
sinhπt

dt =
2n!

(2π)n+1
· ζ
(

n+ 1,
1− q

2

)
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Now remembering that ζ(2) = π2/6 and ζ(4) = π4/90 will give the required

results after some further computation. �

Finally we get

∣

∣

∣

∣

P (0, n)− 6

∫ ∞

0

2π3t

sinhπnt
dt

∣

∣

∣

∣

≤ 6

∫ ∞

0

4π5t3 cosh 3πt

3 sinhπnt
dt

Substituting t→ t/n gives

∣

∣

∣

∣

P (0, n)− 12π3

n2

∫ ∞

0

t

sinhπt
dt

∣

∣

∣

∣

≤ 8π5

n4

∫ ∞

0

t3 cosh 3π t
n

sinhπt
dt

and so when n ≥ 9 we have 3πt/n ≤ πt/3 and we can use the previous lemma

to write
∣

∣

∣

∣

P (0, n)− 3π3

n2

∣

∣

∣

∣

≤ 8π5

n4
· 1
3
≤ 8π5

243n2

which implies that P (0, n) is positive.

Very similarly for P (1, n) we see that if n ≥ 15 then

∣

∣

∣

∣

P (1, n)− 9π3

n2

∣

∣

∣

∣

≤ 24π5

n4
≤ 8π5

75n2

showing that P (1, n) is positive in this region.

5.3 Analysing Q(b, n)

Remember all the way back to equation (5.2) for the following expression for

Q(b, n)

Q(b, n) = − 4

n

n−1
2
∑

h=1

G
(

1− 2h
n ,

h
n

)

· sin(2b+ 1)πhn · sin2 πh
n ·B

(

h
n ,

h
n

)

Define the function g : (0, 12 ) → R by

g(x) = 4 ·G(1 − 2x, x) · sin(2b+ 1)πx · sin2 πx ·B(x, x)
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Then Q(b, n) is simply the Riemann-type sum

Q(b, n) = − 1

n

n−1
2
∑

h=1

g

(

h

n

)

The function g is well-behaved near x = 0. Near x = 1
2 the term

4 · sin(2b+ 1)πx · sin2 πx · B(x, x)

approaches 4π(−1)b. We now show that G(1 − 2x, x) has a simple pole at

x = 1
2 by manipulating the problematic term F (1 − 2x, x) inside G and using

Proposition 3.5.1.

G(1 − 2x, x) =
F (1− 2x, x)− F (2x, 1− x)

B(1 − 2x, x)

= B(1− 2x, x)−1

(

∞
∑

k=0

B(1− 2x, x+ k)

1− 2x+ x+ k
+ F (2− 2x, x)− F (2x, 1− x)

)

= B(1− 2x, x)−1

(

B(1− 2x, x)

1− 2x
+ F (2− 2x, x)− F (2x, 1− x)

)

=
1

1− 2x
+
F (2− 2x, x)− F (2x, 1− x)

B(1− 2x, x)

The second fraction in the above expression is bounded near x = 1
2 therefore if

we define g∗(x) by

g∗(x) = g(x)− 4π(−1)b

1− 2x

then g∗ extends to a continuous function on all of [0, 12 ] and we have

Q(b, n) =
1

n

n−1
2
∑

h=1

(

g∗
(

h

n

)

+
4π(−1)b

1− 2h/n

)

Lemma 5.3.1. Let γ denote the Euler-Mascheroni constant then for n ≥ 3 we

have
n−1
2
∑

h=1

1

n− 2h
≥ log(2n− 2) + γ

2
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Proof. We will need the Digamma function that is defined by

ψ(x) =
Γ′(x)

Γ(x)

By taking the logarithmic derivative of the identity Γ(z + 1) = zΓ(z) we see

that

ψ(x+ 1)− ψ(x) =
1

x

Using this we can compute

n−1
2
∑

h=1

1

n− 2h
=

1

2

n−1
2
∑

h=1

1
n
2 − h

=
1

2

n−1
2
∑

h=1

(

ψ
(

n
2 − h+ 1

)

− ψ
(

n
2 − h

))

=
1

2

(

ψ
(n

2

)

− ψ

(

1

2

))

Finally it can be seen that ψ
(

1
2

)

= −γ− 2 log 2 and that the inequality ψ(x) ≥

log
(

x− 1
2

)

holds for x > 1
2 . Together these give the claimed result. �

Proposition 5.3.2. For n ≥ 3 we have Q(0, n) > 0 and for n ≥ 97 we have

Q(1, n) < 0.

Proof. In the case b = 0 we have g∗(x) ≥ −4π for all x ∈ [0, 12 ] (in fact g∗

appears to map [0, 12 ] bijectively onto the interval [−4π, 8π log 2]). Therefore we

have

Q(0, n) =
1

n

n−1
2
∑

h=1

(

g∗
(

h

n

)

+
4π

1− 2h/n

)

≥ −4π

2
+ 4π · log(2n− 2) + γ

2

which is positive for n ≥ 3.

In the case b = 1 we can see from computer plot (!) that g∗(x) ≤ 73.25 and
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we have

Q(1, n) =
1

n

n−1
2
∑

h=1

(

g∗
(

h

n

)

− 4π

1− 2h/n

)

≤ 73.25

2
− 4π · log(2n− 2) + γ

2

which is negative for n ≥ 97. �

So far we have proved Proposition 5.1.2 in all but a finite number of cases.

The remaining cases can be checked with the help of a computer.
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Chapter 6

New tame elements

Since the curves F7 and F9 are missing only a single independent element of

K2 on the three quotients isomorphic to C1,1 it is natural to wonder where the

other element could be hiding.

When n is odd, using the Rosset-Tate algorithm it is possible to find expres-

sions for the two elements that are already known. The equation of the curve

C1,1 is given by u(1− u) = vn and we already have the elements {1− x, 1− y}

and {1− 1/y, 1 + x/y} in K2(Fn).

The norm of the first element is basically {u, 1 − v} while the norm of the

second is
{

u− (−v)(n−1)/2, u(1 + v)
}

+ {u, 1 + v}

It is interesting to understand why these elements are tame. It is fairly easy

to see that both are tame when u = 0. When v = 1 the function 1 − v has a

zero and u satisfies u(1 − u) = vn = 1. This actually implies that u is a sixth

root of unity and so a multiple of the first element is tame.

Seeing that the second element is tame is not much more difficult. When

u = (−v)(n−1)/2 we have u2 = (−v)n−1 = vn−1 since n is odd. Therefore

u (1 + v) = u

(

1 +
vn

vn−1

)

= u

(

1 +
u(1− u)

u2

)

= 1
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When v = −1 the tame symbol is (u− 1) · u = −vn = −(−1)n = 1.

These calculations led to thoughts about what other kinds of symbols might

be useful in finding new tame elements. For example I found the identity

(

u+ vk
) (

1− u− vn−k
)

= u(1− u)− vn + vk
(

1− u− uvn−2k
)

= vk
(

1− u
(

1 + vn−2k
))

which implies that the symbol

{

v−k
(

u+ vk
) (

1− u− vn−k
)

, u
(

1 + vn−2k
)}

is zero as an element of K2. I wondered if a linear combination of symbols of a

similar form could be used to make new tame elements.

6.1 A computer search for new tame elements

Suppose we have a curve C of genus g and that g − 1 independent elements

α1, α2, . . . , αg−1 of K2C are already known. Suppose we have list of candidate

symbols β1, β2, . . . , βk which can be used to make some unknown new tame

element αg = Σλiβi. By Beilinson’s conjecture we would expect that the deter-

minant of the matrix formed by the integrals of the g elements (αi) along each

of g loops forming a basis of H1(C,Z)
− was equal to some rational multiple of

L(g)(C, 0).

Let us treat the curve C, the basis of H1(C,Z)
− and the elements (αi)1≤i<g

as fixed entities and view the resulting determinant solely as a function of αg

and denote this V (αg). By linearity of the determinant we will have

b1V (β1) + b2V (β2) + . . .+ bkV (βk) = cL(g)(C, 0)

where b1, b2, . . . , bk and c are all integers.

The idea is to compute L(g)(C, 0) and all of the V (βi) numerically to high
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precision and use an integer relation algorithm to find approximate equalities

between them having hopefully small integer coefficients. With any luck these

relations would give insight on how new tame elements could be formed.

Suppose we have a set of real numbers x1, x2, . . . , xk. Choose a precision

d and define integers Xi by Xi = ⌊10dxi⌋. One method to find small integer

relations between the (xi) is to form the (k + 1)× k matrix



























1 0 . . . 0

0 1 0

...
. . .

...

0 0 1

X1 X2 . . . Xk



























and then apply the LLL lattice reduction algorithm [14] on its columns. If there

really was a linear relationship between the (xi) and the precision was high

enough then it is very likely that such a relation would be obtained by reading

the first column of the resulting matrix.

Luckily all of this has already been implemented by the function lindep in

the computer algebra package PARI/GP. For example the following command

recovers the well-known identity ζ(2) = π2/6:

? lindep([log(zeta(2)), log(Pi), log(2), log(3)])

%1 = [1, -2, 1, 1]~

All that remains is to decide upon the set of symbols (βi) and find a basis

for H1(C,Z).
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6.2 A basis for H1(C1,1,n−2,Z)
−

Proposition 6.2.1. Define the path γk on C1,1,n−2 by

γk : [0, 1] −→ C1,1,n−2

t 7−→
(

t, ζk [t(1− t)]
1
n

)

where ζ = e
2πi
n . Then the loops γk − γ−k for k satisfying 1 ≤ k < n

2 are a basis

of H1(C1,1,n−2,Z)
−.

Proof. Recall thatH1(Fn,Z) is spanned by paths of the form t 7→
(

ζjt
1
n , ζk(1− t)

1
n

)

.

These paths map onto the paths γk under the projection ϕ : Fn → C1,1,n−2 given

by ϕ(x, y) = (xn, xy).

The paths γk all start at the point (u, v) = (0, 0) and end at the point

(u, v) = (1, 0) therefore the projection of any loop in Fn can be written as a

combination of loops of the form γk1 − γk2 . These in turn can be written in

terms of loops of the form γk − γ0 for 1 ≤ k < n.

When n is even we have the equality
∑n−1

k=1 (−1)k (γk − γ0) =
∑n−1

k=0 (−1)kγk.

On account of the fact that regular differentials on C1,1,n−2 are spanned by

differentials of form vkdu and because of the identity
∑n−1

k=0 (−ζ)
k
= 0 it is easy

to show that this loop is trivial in H1(C1,1,n−2,Z).

When n is odd the number of independent loops is n− 1 and when n is even

it is n− 2. Therefore if we omit the loop γn/2 − γ0 when n is even, loops of the

form γk − γ0 form a basis of H1(C1,1,n−2,Z) for all values of n.

The loop γk − γ0 maps to γn−k − γ0 under complex conjugation so any loop

belonging to the −1 eigenspace of H1(C1,1,n−2,Z) will require the coefficient of

γk − γ0 to be the negative of the coefficient of γn−k − γ0 and so we see that

loops of the form γk − γ−k with 1 ≤ k < n
2 are a basis for H1(C1,1,n−2,Z)

−. �
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6.3 Choosing which symbols to use

After much experimentation it was decided to use symbols of the following form

{

u, 1 + v2k
}

,
{

u, 1± v2k+1
}

{

u± vj , u
}

,
{

u± vj , v
}

{

u± vj , 1 + v2k
}

,
{

u± vj , 1± v2k+1
}

It is easy to verify that all of the above symbols are tame for (u, v) ∈

{(0, 0), (1, 0)} (More correctly, the tame symbols are equal to ±1 at those

points.) This means that when performing the integration, any zeros of the

above functions at those points are relatively easy to deal with. Throughout

the rest of this chapter it means that there is no need to check the value of

the tame symbol when v = 0. Also, except for when u and vj have the same

order at infinity (this happens when n is even and j = n
2 ), we can find a local

parameter, f , such that all functions used in the above symbols behave like ±1

multiplied by some power of f at infinity. This means that tameness at infinity

is automatic unless we use the functions u± v
n
2 or introduce any functions with

leading coefficient different to ±1.

Note that u is always real on the paths of integration and so the functions

u± vj can only have a zero on path γk if ζjk ∈ R. For example, this can never

happen if n is prime. Nevertheless, care was taken to properly handle zeros on

the path of integration in the cases where they occurred.

If the integer relation algorithm produced a relation between the V (βi) that

did not include the term L(g)(0) then the “most complicated” symbol that

appeared in the relation would be dismissed and the process repeated with a

smaller set of symbols.
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6.4 Verifying Beilinson’s conjecture on F7

The first target was to find the missing element of K2 on the hyperelliptic

quotient C1,1,5 of F7. Because of the transformation η available on F7 this

would yield the three missing elements of K2 on the isomorphic quotients C1,3,3

and C1,5,1 and therefore complete the verification of Beilinson’s conjecture on

F7.

The element in the following proposition came almost immediately from the

computer search even though it took some time to believe that it could actually

be tame.

Proposition 6.4.1. If n ≡ ±1 (mod 6) then the following is a tame element

on the curve u(1− u) = vn.

{

u− (−v)(n−3)/2, u(1 + v3)
}

+ 4 {u, 1 + v} − 3
{

u, 1 + v3
}

Proof. When u = (−v)(n−3)/2 we have u2 = (−v)n−3 = vn−3 since n is odd.

We see that the element is tame at these points with a calculation very similar

to before:

u(1 + v3) = u(1 + vn/u2) = u(1 + (1− u)/u) = 1

When v = −1 all three functions appearing on the right hand side of the symbols

have simple zeros. The tame symbol at these points is therefore

(

u− (−v)(n−3)/2
)

· u4 · u−3 = (u− 1) · u = −vn = −(−1)n = 1

From now on we only need to deal with points where v3 = −1 but v 6= −1.

This implies that v2 − v + 1 = 0. The tame symbol at these points is

u− (−v)(n−3)/2

u3

If we assume that n ≡ 1 (mod 6) then it is clear that vn = v and not much more

difficult to check that (−v)(n−3)/2 = v2. Using the fact that u2 = u−vn = u−v
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we can prove the identity vu3 = u− v2 as follows

vu3 = vu(u − v) = v(u2 − uv) = v(u − v − uv) = u(v − v2)− v2 = u− v2

so that

u− (−v)(n−3)/2

u3
=
u− v2

u3
=
vu3

u3
= v

which is a root of unity.

When n ≡ −1 (mod 6) we can check that vn = v−1 and (−v)(n−3)/2 = v−2

so the calculations go exactly the same as before but with v replaced by its

conjugate 1/v. �

Corollary 6.4.2. The element

{

u− v2, u(1 + v3)
}

+ 4 {u, 1 + v} − 3
{

u, 1 + v3
}

is a member of K2C1,1,5. It is independent of the two elements that were pre-

viously known and completes the verification of Beilinson’s conjecture on the

Fermat curve F7.

6.5 Verifying Beilinson’s conjecture on F9

The Fermat curve F9 has genus 28 and consists of the Fermat curve F3 of genus

1 together with 9 quotients of genus 3. Six of the quotients are isomorphic to

C1,2,6 for which we have already verified Beilinson’s conjecture, while the other

three are isomorphic to the quotient of the hyperelliptic curve C1,1,7 by C1,1,1.

We will now verify Beilinson’s conjecture on the genus 4 hyperelliptic curve

C1,1,7 defined by the equation u(1− u) = v9. Since the curve is not “primitive”

the L-value will be the product of the L-values from the sub-curves: L′
1,1,1(0)×

L
(3)
1,1,7(0).

Again the element below came almost directly from computer search. The

third symbol was adjusted by hand in order to make the element tame without
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altering the lattice after projection under the regulator.

Proposition 6.5.1. K2(C1,1,7) contains the following four independent ele-

ments and their images under the regulator generate a lattice having volume

consistent with Beilinson’s conjecture.

{u, 1− v} ,
{

u, 1− v3
}

,
{

u− v4, u(1 + v)
}

+ {u, 1 + v} ,

2

{

u+ v3,
(1 + v)2(1− v)3

(

1 + v2
)

v2 (1− v3)

}

+ 4

{

u,
1 + v

1 + v2

}

−
{

3u,
(1− v)3

1− v3

}

Proof. The first and third elements in this list are the norms of {1 − x, 1 − y}

and η{1−x, 1−y} respectively from K2(F9) to K2(C1,1,7). The second element

is the norm of {1− x, 1− y} from K2(F3) to K2(C1,1,7). The fourth element is

new and we proceed to show that it is in the kernel of the tame symbol.

Note that we have introduced the function 3u in the third symbol. This does

not present any problem at infinity because the function on the right hand side

of the symbol is of order 0 there.

At points where u = −v3 but v 6= 0 we can use the equation of the curve to

show that v satisfies v6 + v3 + 1 = 0. Now it is possible to verify that

(1 + v)2(1− v)3(1 + v2) + v2(1− v3)

= (1− v)
[

(1 + v)2(1− v)2(1 + v2) + v2(1 + v + v2)
]

= (1− v)
[

(1− v2)2(1 + v2) + v2(1 + v + v2)
]

= (1− v)
[

1− 2v2 + v4 + v2 − 2v4 + v6 + v2 + v3 + v4
]

= (1− v)(v6 + v3 + 1)

= 0

so that when u = −v3 6= 0 we have

(1 + v)2(1− v)3(1 + v2)

v2(1− v3)
= −1

(Note that the denominator cannot be zero since the polynomial X2(1−X3) is
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coprime to X6 +X3 + 1).

When v = −1 it is easy to see that the element is tame:

(

u+ v3
)4 · u4 = (u − 1)4u4 = v36 = 1

When v2 = −1 the tame symbol can be seen to be equal to 1 as follows

(

u+ v3
)2

u4
=

(

u+ v2 · v
u− v9

)2

=

(

u− v

u− v

)2

= 1

Last of all we look at the places where v3 = 1. At these points u satisfies

u(1 − u) = v9 = 1 and the function (1−v)3

1−v3 either has a zero of order two or a

pole. Regardless, the tame symbol will be equal to 1 at these points because of

the following calculation:

(

u+ v3
)2

3u
=

(u+ 1)2

3u
=
u2 + 2u+ 1

3u
=

3u− u(1− u) + 1

3u
=

3u

3u
= 1

�

6.6 Verifying Beilinson’s conjecture on C1,1,6

The same method was used on the hyperelliptic curve C1,1,6 of genus 3. Since

the curve C1,1,6 is not primitive (it has the genus 1 curve C1,1,2 as a quotient) the

correct L-value is L′
1,1,2(0)×L

(2)
1,1,6(0). A new tame element was found without

any major difficulty.

Proposition 6.6.1. The following three elements are independent elements of

K2(C1,1,6) whose image under the regulator generates a lattice having volume

consistent with Beilinson’s conjecture.

{u, 1− v} , {u, 1 + v} ,

2

{

u− v3,
(1− v)(1 + v)2

u2(1 + v3)

}

+ 3
{

u, 1 + v3
}

+

{

1 + v,
1 + v3

1 + v

}
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Proof. The equation of the curve is u(1 − u) = v8. This implies that when

u = v3 6= 0 we have v5 = 1 − v3. We use this identity a couple of times in the

following calculation

u2(1 + v3) = v6(1 + v3) = v · v5(1 + v3) = v(1 − v3)(1 + v3) = v(1− v6)

= v(1− v2)(1 + v2 + v4) = (1 − v2)(v + v3 + v5)

= (1− v2)(1 + v) = (1− v)(1 + v)2

So the element is tame when u = v3.

When v = 1 the tame symbol is (u − 1)2. Since u(1 − u) = v8 = 1 this is a

root of unity and so some multiple of the given element is tame. Alternatively

we could add the symbol 2{u, 1− v} to make the element tame.

When v = −1 the first symbol gives (u+1)2 to the tame symbol, the second

gives u3 while the third gives 1
3 since the left side has a simple zero while the

right side is equal to 3. Similar to what we have seen before this implies the

tame symbol is

1

3
(u + 1)2u3 =

1

3
u3(u2 + 2u+ 1) =

1

3
u3(3u+ u2 − u+ 1) = u4

Again this is a root of unity or it could be made tame by subtracting the symbol

4{u, 1 + v}.

Finally, when v3 = −1 with v 6= −1 we can verify that the element is tame

by using the identities v2 − v + 1 = 0, the identity u2 = u− v2 and some fairly
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tedious algebra:

u3(1 + v) = u(u− v2)(1 + v)

= (u2 − uv2)(1 + v)

= (u − v2 − uv2)(1 + v)

= u(1− v2)(1 + v)− v2(1 + v)

= u(1 + v − v2 − v3)− v2 − v3

= 3u+ 1− v2

= 3u+ 1− (u− u2)

= u2 + 2u+ 1

= (u + 1)2

= (u − v3)2

�

Remark 6.6.2. Since the previous calculation is not very enlightening we can

try to explain why this kind of thing should not be totally unexpected.

When v3 = −1 and u(1−u) = v8 the field Q(u) is of degree 4 with 2 complex

embeddings and so has unit group of rank 1. We can see that u is a unit since

it divides v8. The roots of unity are generated by v and it turns out out that

the group of all units is generated by u and v together.

The norm of u− v3 from Q(u) down to Q(v) is (u− v3)(1− u− v3) which is

equal to v8 − v3 + v6 = v2 + 2 = 1 + v. In turn, one finds that 1 + v has norm

3. There is a unique prime above 3 since one can check that (u − v)4 = −3u2

therefore
(

u− v3
)2
/(1+v) is a unit and so it has to be expressible as a product

of powers of u and v. It is a little surprising that no power of v occurs in this

instance but, even if it did, v is a root of unity in this situation and so we could

take some multiple of the element instead.
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6.7 Verifying Beilinson’s conjecture on C1,1,8

The curve C1,1,8 defined by the equation u(1 − u) = v10 is a curve of genus 4

having the curve C1,1,3 defined by u(1−u) = v5 as a genus 2 quotient. We have

two independent elements of K2 on the variety A1,1,3 but only one on A1,1,8 so

that we are missing a single element of K2 on C1,1,8. The correct L-value will

be L
(2)
1,1,3(0) × L

(2)
1,1,8(0) and we are ready to apply our computational method

again. We managed to find a new element but it is so unwieldy that the proof

of its tameness relies on computer algebra in a couple of places.

Proposition 6.7.1. The following three elements are independent elements of

K2(C1,1,8) and together with a complicated element to be described in the proof

their image under the regulator generates a lattice having volume consistent with

Beilinson’s conjecture.

{u, 1− v} , {u, 1 + v} ,
{

u− v4, u
(

1 + v2
)}

+
{

u, 1 + v2
}

Proof. The first element in the list is just the norm of {1− x, 1 − y} from F10

down to C1,1,8. Similarly the norm of {1−x, 1−y} from F5 via F10 is {u, 1−v2}.

Clearly {u, 1 + v} is just the difference of {u, 1− v} and {u, 1− v2}. The third

element is the other element of K2 that comes from C1,1,3.

A computer search showed that there was a linear relationship between the

L-value and the determinant of the regulators of the above elements together

with the following element which we will denote by α.

α = −7
{

u, 1− v3
}

+

{

u− v,
(1 + v)(1− v5)(1 + v5)

1 + v3

}

+

{

u− v3,
(1− v)5(1 + v)7(1 + v5)3

v38(1 + v3)5(1− v5)2

}

It is possible to see that the above is tame when u = v 6= 0. At these points
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we have

(

1− v5
) (

1 + v5
)

= 1− v10 = 1− u(1− u) = 1− v + v2 =
1 + v3

1 + v

Incredibly, the element is tame when u = v3 but I can only offer a brief

explanation of the situation at these points before relying on some computer

algebra to complete the proof.

We can say that when u = v3 with v 6= 0 that v satisfies the polynomial

v7+ v3− 1 = 0. The number field Q(v) has degree 7 with 1 real embedding and

3 complex embeddings so the group of units has rank 3.

It turns out that v, 1 − v and 1 − v5 are units that generate the units of

Q(v) modulo ±1. Meanwhile the expression (1+v)7(1+v5)3

(1+v3)5 turns out to be a unit

in Q(v) and so it has a unique expression in terms of v, 1− v and 1− v5. The

fact that v appears with exponent 38 is obviously a surprise. Here is computer

input that shows that the symbol really is tame at these points:

? f = v^7 + v^3 - 1;

? g = (1-v)^5 * (1+v)^7 * (1+v^5)^3;

? h = v^38 * (1+v^3)^5 * (1-v^5)^2;

? print(g / h % f);

1

Continuing, it was found that α is not tame when the various factors on the

right hand side of the symbols are zero. Instead we need to make use of the

transformation σ : v 7→ −v that is available on the quotient curves when n is

even.

Consider integrating the regulator of a symbol β along path γk. Then it is

fairly simple to prove that

∫

γk

reg β = −
∫

γn/2−k

reg σβ

The first two of our elements ofK2 map to each other under σ while the third
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is invariant under σ. This means that the first three columns of the matrices

we form will look something like this:



















a −d e

b −c f

c −b −f

d −a −e



















The matrices that we form when including the elements α and σα will look like

the following two matrices respectively:



















a −d e g

b −c f h

c −b −f i

d −a −e j





































a −d e −j

b −c f −i

c −b −f −h

d −a −e −g



















Flipping the second matrix from top to bottom (which is an even permutation

of the rows) and then swapping the first two columns will give a matrix that is

the negative of the first one and hence it will have the same determinant. The

fact that we used an odd number of swaps means that the original two matrices

have determinants that are negatives of each other.

Using this property it is far easier to study the element α − σα which will

give a determinant twice as big as previous but will still have an apparent

relationship with the L-value.

Concretely we now study the element

−7

{

u,
1− v3

1 + v3

}

+

{

u− v,
(1 + v)(1− v5)(1 + v5)

1 + v3

}

−
{

u+ v,
(1 − v)(1− v5)(1 + v5)

1− v3

}

+

{

u− v3,
(1− v)5(1 + v)7(1 + v5)3

v38(1 + v3)5(1− v5)2

}

−
{

u+ v3,
(1 + v)5(1− v)7(1− v5)3

v38(1− v3)5(1 + v5)2

}
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Because of the symmetry under σ we only need to show that this element

is tame (or can be made tame) at points where v5 = 1, where v3 = 1 and then

separately where v = 1.

First of all suppose that v5 = 1 with v 6= 1. At these points u(1−u) = v10 = 1

and so u is a sixth root unity and the field Q(u, v) is the 15-th cyclotomic field

Q(µ) having degree 8. Indeed, let us suppose that u = −µ5 and v = µ3. The

tame symbol at points with v5 = 1 and v 6= 1 is equal to

u− v

(u+ v) (u− v3)2 (u+ v3)3

and it is possible to check in Q(µ) that this is equal to

−v
u (1 + v)2

.

This fact allows us to subtract the element

{

−v
u (1 + v)2

,
1− v5

1− v

}

which corrects the tame symbol at the desired points while being itself tame at

all points where the left-hand side of the above symbol has zeros or poles.

Also this symbol does not affect the lattice after projection under the regula-

tor. There are three reasons for this. First, applying the substitution u 7→ 1−u

to a symbol β means that reg β maps to − reg β. This is because of the symme-

try under the transformation t 7→ 1− t in the definition of the γk. In particular

any symbols that contain only functions of v map to 0 under the regulator.

Second, the functions u and 1− v5 are always real on the paths γk so that the

integrands are always precisely zero. Finally, the symbol {u, 1 − v} is already

present in our list of elements and so it will be irrelevant once the determinant

is taken.

Now let us consider points where v3 = 1 and v 6= 1. At these points u(1−u) =
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v10 = v so Q(u, v) is a degree 2 extension of Q(µ3). The tame symbol here is

u−7(u+ v)
(

u+ v3
)5

and it is possible to check that this is equal to (v − 1)3; for example with the

following PARI/GP input:

? f = u^-7 * (u+v) * (u+v^3)^5;

? g = (v-1)^3;

? print((f - g) * Mod(1, u*(1-u) - v) * Mod(1, v^2 + v + 1))

Mod(0, -u^2 + u - v)

Therefore we can correct the tame symbol at the desired points by subtracting

the symbol

3
{

v − 1, 13
(

v2 + v + 1
)}

.

Again this is trivial under the regulator since both sides are functions of v. The

symbol is tame at points we have already examined but not at infinity. This

will be fixed shortly.

Finally the tame symbol at v = 1 is

u−7 (u− v) (u+ v)−1 (u− v3
)3 (

u+ v3
)−5

= u−7 (u− 1)4 (u+ 1)−6 =
−u
27

so that we can correct the tame symbol at these points by using the symbol

{−u
27 , 1− v}. This does not affect the tame symbol at any point already shown

to be tame, it doesn’t change the lattice after projection under the regulator

and because of the fact that 33 = 27 it is easy to check that the element has

become tame at infinity. �

6.8 On the curves u(1− u) = −vn

When n is even we have only a single independent element of K2 on the curves

C1,n−2,1. These curves are not isomorphic to C1,1,n−2 but instead isomorphic
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to a curve defined by the equation

u(1− u) = −vn

We have the projection ϕ : Fn −→ C given by

ϕ(x, y) =

(

1

yn
,
x

y2

)

Using the Rosset-Tate algorithm we can take the norm of our usual element

{1− x, 1− y} and we end up with

{

v

1− v
,
u− vn/2

u− 1

}

There are a couple of interesting things to note about this result. First, the

only zero of the function u − vn/2 is when u = v = 0. It is easiest to see this

from the factorisation

u = u2 − vn =
(

u− vn/2
)(

u+ vn/2
)

Second, we might wonder why the fraction v
1−v is required. Could we not

just get away with using 1 − v on its own? The answer appears to be “no”

because when n is even there are two branches of the function u at infinity: one

where u behaves like vn/2 and one where it behaves like −vn/2.

Indeed we can see from the identity

u− vn/2 =
u

u+ vn/2

that u − vn/2 tends to 1
2 on the branch where u ∼ vn/2. This reveals why the

ratio of v and 1− v is necessary: it is always equal to 1 at infinity.

To describe the loops on the curve C : u(1−u) = −vn we have the following

proposition.
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Proposition 6.8.1. Let ǫ = e
πi
n and ζ = e

2πi
n . Define the paths γk by

γk : [0, 1] −→ C

t 7−→
(

t, ǫζk (t(1 − t))
1
n

)

then the loops γk − γ−1−k for k satisfying 0 ≤ k < n/2 span H1(C,Z)
− with the

only relation between these loops being

n/2−1
∑

k=0

(−1)k (γk − γ−1−k) = 0

Proof. It is clear that loops of the form γk − γ−1−k belong to H1(C,Z)
−. Since

n is even we have

n/2−1
∑

k=0

(−1)k (γk − γ−1−k) =

n−1
∑

k=0

(−1)kγk

and after applying the obvious isomorphism between C and C1,1,n−2 given by

(u, v) 7→ (u, ǫv) this is exactly the same relation mentioned in the proof of

Proposition 6.2.1. �

Now we are ready to use the same technique as in the previous sections. The

following new element was found originally when n = 8. In fact it generalises to

any even n that is not a multiple of three, thus giving a verification of Beilinson’s

conjecture when n = 10 as an added bonus.

Proposition 6.8.2. When n ≡ 2, 4 (mod 6) the following is an element of K2

of the curve u(1− u) = −vn.

{

u− vn/2,
(1− v)3

1− v3

}

+

{

u,

(

1− v3
)3

1− v

}

Proof. We have already seen that u − vn/2 is only zero when u = v = 0 so

tameness there is easy to check. At infinity u− vn/2 has different behaviour on

either of the two branches but this is irrelevant because the right hand side of

101



the first symbol is equal to 1 at infinity.

When u = 0 the element is tame by design. When v = 1 the right hand

functions of both symbols have zeroes of order 2 and so the tame symbol is

(

u− vn/2
)2

u2 = (u− 1)2u2 = v2n = 1

All that remains is to check points where v3 = 1 but v 6= 1. At these points

we have v2 + v + 1 = 0. If n ≡ 2 (mod 6) then vn/2 = v so the tame symbol is

u3

u− v

Using u2 = u+ vn = u+ v2 we can compute

u3 = u(u+ v2) = u2 + uv2 = u+ v2 + uv2 = −uv + v2 = −v(u− v)

so that

u3

u− v
= −v

is a root of unity. When n ≡ 4 (mod 6) we have vn/2 = v2 = 1/v so the same

calculation will be repeated but with v replaced by its conjugate 1/v. �

Corollary 6.8.3. The following three elements are independent elements of K2

of the curve u(1 − u) = −v8 and their images under the regulator generate a

lattice having volume consistent with Beilinson’s conjecture.

{

u− v4

u− 1
,

v

v − 1

}

,

{

u− v4

u− 1
,

v

v + 1

}

,

{

u− v4,
1− v3

(1− v)3

}

+

{

u,

(

1− v3
)3

1− v

}

.

Corollary 6.8.4. The following four elements are independent elements of K2

of the curve u(1 − u) = −v10 and their images under the regulator generate a
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lattice having volume consistent with Beilinson’s conjecture.

{

u, 1 + v2
}

,
{

u− v4, u(1− v2)
}

+
{

u, 1− v2
}

,

{

u− v5

u− 1
,

v

v − 1

}

,

{

u− v5,
(1 − v)3

1− v3

}

+

{

u,

(

1− v3
)3

1− v

}

.

6.9 Summary and further possibilities

We have seen that Proposition 3.3.3 gives a set of generators of regSΣ, where

SΣ is the subgroup ofK2Fn that is generated by symbols with divisorial support

at infinity and defined over Q. For n ≤ 100 at least, computer calculations show

that the only other relations between these generators are given by Proposition

3.4.1 except for when n equals 3 or 6. We used this source of elements to verify

Beilinson’s conjecture on 11 non-isomorphic quotients of the Fermat curves as

detailed in section 4.8.

In this chapter we found new elements of K2 that allowed us to give a

full verification of Beilinson’s conjecture on the Fermat curves F7 and F9 and

also on certain hyperelliptic quotients of F8 and F10. Of course there are other

quotients of Fermat curves where the known rank of K2 is one less than the rank

predicted by Beilinson’s conjecture. It is possible that the method introduced

in this chapter will be successful there as well.

Looking back to the tables in Remark 2.2.3 we see that we have the desired

number of elements of K2 on all quotients of F8 except for A1,3,4 and A1,5,2.

Therefore the known rank of K2F8 is currently 19 from an expected 21 with

just a single element of K2 being missing from each of those genus 2 quotients.

The situation is similar on F10. There we are missing a single element of K2

on two pairs of genus 2 quotients isomorphic to A1,3,6 and A1,5,4 so that the

known rank of K2F10 is 32 from a predicted rank of 36.

The K2 groups on F12 were less well explored than I intended. A putative

relation between regulator values and the L-function on the curve C1,1,10 was

discovered but a proof that the suggested element is tame was not finalised and
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included in this thesis.

Even beyond n = 12 there are some situations where the rank of known

elements is one smaller than the rank predicted by Beilinson. The primitive

quotients of the Fermat curves F14 and F18 have genus 3. On quotients of the

form A1,2s,n−2s−1 with 1 ≤ s ≤ n
2 − 2 there are two independent elements α

and β as given in Proposition 3.3.3. It may be interesting to try the method of

this chapter on those curves. Furthermore, on account of Proposition 6.8.2, I

speculate that there are two independent elements of K2 on the quotient A1,12,1

of F14 and the method of this chapter could yield a third. Finally, all quotients

of F15 except for those isomorphic to A1,1,13 have 3 independent elements of K2

whereas Beilinson conjectures a rank of 4.
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