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Abstract We prove that the pseudoisotopy stable range for manifolds of dimension
2n can be no better than (2n − 2). In order to do so, we define new characteristic
classes for block bundles, extending our earlier work with Ebert, and prove their non-
triviality. We also explain how similar methods show that Top(2n)/O(2n) is rationally
(4n − 5)-connected.

For a smooth manifold M , possibly with boundary, the space of smooth pseudoiso-
topies (also known as concordances) is P(M) := Diff(M × [0, 1] relM × {0}), that
is, the space of diffeomorphisms of the cylinder M ×[0, 1] which keep one end fixed.
There is a canonical map

P(M) −→ P(M × I ) (0.1)

given by crossing with the interval I (and unbending corners), and the (smooth)
pseudoisotopy stable range is the function

φ(n) := max{k ∈ N | (0.1) is k-connected for all manifolds M of dimension ≥ n}.

The main theorem concerning this function is due to Igusa [16], and says that

φ(n) ≥ min
{ n−7

2 , n−4
3

}
.

In this note we establish the following upper bound for this function.

Theorem A φ(2n) ≤ 2n − 2 as long as 2n ≥ 6.
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To explain our approach, let Wg,1 := #gSn × Sn\int(D2n) with 2n ≥ 6, and
consider the fibration sequence

D̃iff∂ (Wg,1)

Diff∂ (Wg,1)
−→ BDiff∂ (Wg,1)

i−→ BD̃iff∂ (Wg,1) (0.2)

from the classifying space of the group of diffeomorphisms of Wg,1 to the classifying
space of the group of block diffeomorphisms of Wg,1. The rational cohomology of
BDiff∂ (Wg,1) has been computed for g � 0 by Galatius and the author in [12,13];

the rational cohomology of BD̃iff∂ (Wg,1) has been computed for g � 0 by Berglund
and Madsen in [1,2] and in a forthcoming revision of [2]. Ebert and the author have
shown in [8] that the map i is surjective on rational cohomology in the stable range.

Our approach to Theorem A is motivated by forthcoming work of Berglund and
Madsen, in which they show that the map induced by i on rational cohomology is
injective in degrees ∗ < 2n and g � 0, and more importantly for our current purpose
they show that this is sharp, in the following sense.

Proposition B (Berglund–Madsen) For g � 0,

Ker(i∗ : H2n(BD̃iff∂ (Wg,1); Q) → H2n(BDiff∂ (Wg,1); Q)) �= 0. (0.3)

This has implications for the Serre spectral sequence of (0.2), and it is this that we
shall exploit to prove Theorem A. As Proposition B is central to our argument, and
its proof is not yet available, in Sects. 2 and 3 we will give an independent proof of
it, which works for all g ≥ 1 and does not require the computation of both groups. It
consists of defining Mumford–Morita–Miller classes for block bundles, which extend
those that we have already defined with Ebert in [8], and then showing that a certain
such class—namely κ̃e2 − κ̃pn , which is easily seen to lie in the kernel (0.3)—is not
trivial. The construction of these classes and their non-triviality may be of interest
independently of Theorem A.

Finally, in Sect. 4 we show how similar methods can be used to show that the space
Top(2n)/O(2n) is rationally (4n − 5)-connected as long as 2n > 4.

1 Proof of Theorem A

By the work of Weiss–Williams [22, Theorem A], there is a certain map

D̃iff∂ (Wg,1)

Diff∂ (Wg,1)
−→ �∞(S∞+ ∧Z/2 �WhDiffs (Wg,1)) (1.1)

which is (φ(2n)+1)-connected. The (Z/2-)spectrumWhDiffs (Wg,1) is the 1-connected
cover of the (smooth) Whitehead spectrum WhDiff(Wg,1), which in turn is related to
Waldhausen’s algebraic K -theory of spaces by a (split) cofibre sequence of spectra
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�∞+ Wg,1 −→ A(Wg,1) −→ WhDiff(Wg,1). (1.2)

This identification requires the stable parameterised h-cobordism theorem [20].
Our strategy is then as follows. We use a theorem of Hsiang–Staffeldt to compute

the spectrum cohomology H∗(WhDiff(Wg,1); Q) in degrees ∗ ≤ 2n. We take care to
compute this as a representation of the mapping class group �g,1 ofWg,1, in terms of
the standard representation

Hg := Hn(Wg,1; Q)

of �g,1. The spectrum cohomology of S∞+ ∧Z/2 �WhDiffs (Wg,1) is then given
by truncating, desuspending, and taking Z/2-invariants, and the cohomology of
�∞(S∞+ ∧Z/2 �WhDiffs (Wg,1)) is the free graded-commutative algebra on the result.

We now suppose for a contradiction that φ(2n) ≥ 2n − 1, so the map (1.1) is 2n-

connected and hence we have a computation of the rational cohomology of
D̃iff∂ (Wg,1)

Diff∂ (Wg,1)

in degrees ∗ ≤ 2n − 1, as a �g,1-module. We then study the Serre spectral sequence
for (0.2), and derive a contradiction.

1.1 Rational homology of the Whitehead spectrum

We shall use Corollary 1.2 of Hsiang–Staffeldt [15], which shows that

H∗(A(Wg,1); Q) = π∗(A(Wg,1)) ⊗ Q ∼= (K∗(Z) ⊗ Q) ⊕ (� K̄ab)

where K is a minimal model for the dga C∗(�Wg,1; Q), K̄ denotes the augmentation
ideal, which inherits the structure of a graded Lie algebra with bracket given by
[x, y] := x · y − (−1)|x |·|y|y · x , and K̄ab = K̄/[K̄ , K̄ ] is the abelianisation of
this graded Lie algebra.

AsWg,1 is a suspension, the homology of�Wg,1 is the tensor algebra on the vector
space Hg[n − 1]. In particular it is a free (non-commutative) algebra, so is quasi-
isomorphic to C∗(�Wg,1; Q), and we may take K = H∗(�Wg,1; Q) with trivial
differential. It follows that K̄ab is the augmentation ideal of the free graded commu-
tative algebra on Hg[n − 1], that is

K̄ab = (Hg[n − 1]) ⊕
(
Sym2(Hg)[2n − 2] if n is odd
∧2(Hg)[2n − 2] if n is even

)

⊕ (terms of degree ≥ 3n − 3).

Let us write

U :=
{
Sym2(Hg) if n is odd

∧2(Hg) if n is even.
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Then we have

H∗(A(Wg,1); Q) ∼= (K∗(Z) ⊗ Q) ⊕ (Hg[n]) ⊕ (U [2n − 1])

in degrees ∗ ≤ 2n. Applying the cofibre sequence (1.2), we obtain

H∗(WhDiff(Wg,1); Q) ∼= (K̃∗(Z) ⊗ Q) ⊕ (U [2n − 1])

in degrees ∗ ≤ 2n. The rational homology of WhDiffs (Wg,1) is therefore the same, as
it is already 1-connected. Thus, dualising, we have

H∗(S∞+ ∧Z/2 �WhDiffs (Wg,1); Q) ∼= ((K̃∗−1(Z) ⊗ Q) ⊕ (U [2n − 2]))Z/2

in degrees ∗ ≤ 2n−1, for some involution. It follows from Farrell–Hsiang [10] (which
considers the case g = 0) that this involution acts as −1 on K̃∗−1(Z) ⊗ Q, so this
summand does not contribute to the invariants. Thus

H∗(S∞+ ∧Z/2 �WhDiffs (Wg,1); Q) ∼= (U [2n − 2])Z/2

in degrees ∗ ≤ 2n−1, for some involution onU . Taking the free graded-commutative
algebra on this, it follows that

H∗(�∞(S∞+ ∧Z/2 �WhDiffs (Wg,1)); Q) ∼= Q[0] ⊕ (U [2n − 2])Z/2

in degrees ∗ ≤ 2n − 1.

1.2 The Serre spectral sequence argument

The Serre spectral sequence for the fibration (0.2) takes the form

E p,q
1 = H p

(
BD̃iff∂ (Wg,1); Hq

(
D̃iff∂ (Wg,1)

Diff∂ (Wg,1)
; Q

))
�⇒ H p+q(BDiff∂ (Wg,1); Q).

Under the assumption that φ(2n) ≥ 2n − 1 we have identified the coefficients in
degrees q ≤ 2n − 1, to be Q for q = 0 and to be V := UZ/2 for q = 2n − 2. In order
for (0.3) to be possible, we must therefore have a non-trivial differential

d2n−1 : H1(BD̃iff∂ (Wg,1); V ) −→ H2n(BD̃iff∂ (Wg,1); Q).

In particular, the source must be non-trivial. Note that H1(BD̃iff∂ (Wg,1); V ) is a

summand of H1(BD̃iff∂ (Wg,1);U ), so the following will give a contradiction.

Proposition 1.1 H1(BD̃iff∂ (Wg,1);U ) = 0 for g � 0.
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Proof The action of�g,1 on Hn(Wg,1; Z) preserves the intersection form, determining
a homomorphism

�g,1 −→
{
Og,g(Z) if n is even

Sp2g(Z) if n is odd.

This is onto if n is even or n = 1, 3, 7, but for the remaining odd n its image is
the finite-index subgroup—often denoted �g(1, 2) ≤ Sp2g(Z) in the theory of theta
functions—of those symplectic matrices which preserve the standard quadratic form,
cf. [2, Example 4.2]. Let us write G for the algebraic group Og,g or Sp2g , depending
on the parity of n, and Ag ≤ G(Z) for the image of this homomorphism. As Sp2g and
SOg,g are connected semisimple algebraic groups defined over Q, it follows from a
theorem of Borel–Harish-Chandra [5, Theorem 7.8] that Ag is a lattice in G(R), and
hence by the Borel Density Theorem [3] that Ag is Zariski dense in G(R), so also in
G(C).

Consider the fibration sequence

BT̃org,1 −→ BD̃iff∂ (Wg,1) −→ BAg,

where BT̃org,1 is defined to be the homotopy fibre. By [2, Proposition 4.1] we have

H1(BT̃org,1; Q) ∼=
{
Hg n ≡ 3 mod 4

0 else

so if n �≡ 3 mod 4 then H1(Ag;U ) → H1(BD̃iff∂ (Wg,1);U ) is an isomorphism,
and if n ≡ 3 mod 4 then we have an exact sequence

0 −→ H1(Ag;U ) −→ H1(BD̃iff∂ (Wg,1);U ) −→ (Hg ⊗U )Ag .

In the case n ≡ 3 mod 4, n is odd and Zariski density of Ag ≤ Sp2g(C) implies
that the complexification of (Hg ⊗ Sym2(Hg))

Ag is (Hg ⊗ Sym2(Hg) ⊗ C)Sp2g(C),
which is contained in (H⊗3

g ⊗ C)Sp2g(C) and so vanishes by standard invariant theory
(for which we refer to [11, §F.2]).

It remains to show that H1(Ag;U ) = 0. The representation U is arithmetic, so a
theorem of Borel [4, Theorem 1] can be used to identify this with H1(Ag; Q) ⊗U Ag

as long as g � 0; see [9, Proposition 3.9] for a statement of this result adapted to our
situation. Hence it is enough to show the vanishing of U Ag .

If n is odd then U Ag is Sym2(Hg)
Ag , whose complexification is the same as

Sym2(Hg ⊗ C)Sp2g(C) by Zariski density, and this vanishes by standard invariant the-
ory. If n is even thenU Ag is∧2(Hg)

Ag , whose complexification is∧2(Hg ⊗C)Og,g(C),
which also vanishes by standard invariant theory (noting that Og,g(C) ∼= O2g(C)).

��
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2 Characteristic classes of block bundles

We should like to give a proof of Proposition B, as it does not require the entire corpus
[1,2,12,13] and beyond to see that the kernel (0.3) is non-trivial. We shall show that
this kernel is non-trivial by producing an explicit element in it, which will be described
in terms of generalised Mumford–Morita–Miller classes. If (π : E → |K |,A) is a
smooth oriented block bundlewith fibre a closed d-manifoldM (we refer to [8, Section
2] for this notation), in [8, Section 3] Ebert and the author have associated to it

(i) a Leray–Serre spectral sequence H p(|K |,Hq(M)) ⇒ H p+q(E), and hence a
fibre-integration map π!(−) : Hk+d(E) → Hk(|K |),

(ii) a transfer map trf∗π : H∗(E) → H∗(|K |) of Becker–Gottlieb type,
(iii) a stable vertical tangent bundle T s

π E → E ,

such that if (π : E → |K |,A) arises from a smooth fibre bundle then these data reduce
to those coming from the bundle structure. In the case d = 2n, we then employed the
following ruse: If π came from a smooth fibre bundle with 2n-dimensional fibres, so
there was an unstable vertical tangent bundle Tπ E , then we would have e(Tπ E)2 =
pn(Tπ E), and π!(e(Tπ E) · −) = trf∗π (−) : H∗(E) → H∗(|K |). Therefore, for a
monomial pI in Pontrjagin classes, if we define

κ̃pI (π) := π!(pI (T s
π E)) κ̃epI := trf∗π (pI (T

s
π E))

then these classes restrict to the usual κpI and κepI on fibre bundles, and these give all
generalised Mumford–Morita–Miller classes on fibre bundles.

By way of apology for this ruse, we add to the list above

(iv) an Euler class e(Tπ E) ∈ Hd(E; Z).

(Of course e(Tπ E) is merely notation: there is no d-dimensional bundle Tπ E of which
it is the Euler class.) Using this Euler class, we may then define

κ̃ei pI (π) := π!(e(Tπ E)i · pI (T s
π E)) ∈ H∗(|K |; Z).

The symbol κ̃epI has the same meaning as before, by Lemma 2.2 (iv) below.
The existence of this Euler class is a consequence of the Fibre Inclusion Theorem

of [7] (or rather its proof, which constructs a canonical such class), and the fact that the
homotopy fibre of π is homotopy equivalent to a Poincaré duality space of dimension
d, namely M [8, Proposition 2.8]. As the construction is quite pretty, let us describe
it.

Construction 2.1 Embed |K | into R
k for some k � 0, and let B ′ be a closed regular

neighbourhood, so that there is a retraction r : B ′ → |K |. Let B = D(B ′) be the
double of B ′, a closed smooth manifold. This has a retraction s : D(B ′) → B ′, and
let p : X → B be the Hurewicz fibration obtained by turning π into a fibration
π f : E f → |K | and pulling it back along rs. As B and the fibre of p are Poincaré
duality spaces, of dimensions k and d respectively, X is too [14], of dimension (d+k).
But X ×B X = p∗(X) → X is also a fibration over a Poincaré duality space with
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Poincaré duality fibre, so is again a Poincaré duality space, of dimension (2d + k).
Writing 	 : X → X ×B X for the fibrewise diagonal map, which admits an umkehr
map 	! as source and target are both Poincaré, we define

e(TpX) := 	∗	!(1) ∈ Hd(X; Z).

We then define e(Tπ E) by restriction along E ⊂ E f ⊂ X |B′ ⊂ X .

It is easy to see that the class so obtained is independent of all choices, and it is
shown in [7, §4] that it restricts to the Euler class on the fibre M . The definition given
in [7, §4] seems to differ by a sign, but it does not, by Lemma 2.2 (i) below.

Lemma 2.2 The Euler class defined enjoys the following properties:

(i) If d is odd then 2e(Tπ E) = 0 ∈ H∗(E; Z),
(ii) if (π : E → |K |,A) arises from a smooth fibre bundle with vertical tangent

bundle Tπ E, then e(Tπ E) agrees with the Euler class of the vertical tangent
bundle,

(iii) if there is a map r : E → M such that π × r : E → |K | × M is a homotopy
equivalence, then e(Tπ E) = r∗(e(T M)),

(iv) the equation π!(e(Tπ E) · −) = trf∗π (−) : H∗(E; Z) → H∗(|K |; Z) is satisfied.

Proof For (i), consider the involution τ of X×B X which interchanges the two factors.
Whend is odd, this has degree−1, and so τ ∗	! = −	!.On the other hand	∗τ ∗ = 	∗,
so e(Tπ E) = −e(Tπ E).

For (ii), note that if (π : E → |K |,A) arises from a smooth fibre bundle then in
Construction 2.1we do not need to replace it by a fibration. The resulting p : X → B is
a smooth fibre bundlewith vertical tangent bundle TpX , and themap	 : X → X×B X
is a smooth embedding with normal bundle TpX . Hence 	∗	!(1) is the Euler class
of TpX , which restricts to the Euler class of Tπ E .

For (iii), if such an r exists then the fibration p : X → B admits a similar fibre
homotopy trivialisation, p × ρ : X ∼→ B × M . Then X ×B X � B × M × M and
the map 	 is given by the identity map on B and the diagonal map on M . Hence
	∗	!(1) = 1 ⊗ e(T M).

For (iv), we must involve ourselves in the details of the construction of the transfer
in [7], with which we assume the reader is familiar. We begin by constructing a
commutative diagram

F W × T k D(W ) × T k

E

π

X
r

u
p

X ′
t

v

p′

X ′′
s

p′′

|K | B B B.

In this diagram, B is a Poincaré duality space and p is a Hurewicz fibration with
fibre F � Md (obtained as in Construction 2.1). W is a smooth oriented manifold
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of dimension (d + �) with boundary, which is homotopy equivalent to M , and p′ is
a smooth fibre bundle (obtained from the Closed Fibre Smoothing Theorem of [7]).
The map p′′ is obtained as the fibrewise double of p′, and is a smooth oriented fibre
bundle with closed fibres. Finally, the horizontal arrows express each left-hand space
as a (fibrewise) retract of the right-hand space.

For a fibration p : S → T with fibre homotopy equivalent to a finite CW complex,
and a fibrewise map f : S → S, let us write trf∗p, f : H∗(S) → H∗(T ) for the

associated transfer map. This is the map denoted τ f in [7]. When f = IdS , we
shorten this to trf∗p.

By the definition of the transfer in [7, §6], we have trf∗p = trf∗p′′,vutss
∗t∗. By the

construction of the transfer for smooth fibre bundles in [7, §5], if we write

δ = (IdX ′′ , vuts) : X ′′ −→ X ′′ ×B X ′′

d = (IdX ′′ , IdX ′′) : X ′′ −→ X ′′ ×B X ′′

thenwe have trf∗p′′,vuts(−) = p′′
! (δ∗(d!(1))·−). Thus themap trf∗p(−) is p′′

! (δ∗(d!(1))·
s∗t∗(−)) = (pts)!(δ∗(d!(1)) · s∗t∗(−)), which we may write as p!((ts)!(δ∗(d!(1)) ·
−), so we will be done if (ts)!(δ∗(d!(1))) is equal to the class e(TpX) defined by
Construction 2.1. Consider the homotopy cartesian squares

X ′′ ts

δ

X

(Id×vu)◦	

X ′′

ts

(ts×Id)◦d
X ×B X ′′

Id×ts

X ′′ ×B X ′′ ts×Id
X ×B X ′′ X

	
X ×B X

of Poincaré duality spaces, to which Lemma 2.3 below applies and shows that

(ts)!δ∗ = 	∗(Id × vu)∗(ts × Id)! (ts × Id)!d!(ts)∗ = (Id × ts)∗	!.

(The signs can be determined by restricting each square to a single fibre over B.) Thus,
writing 1 = (ts)∗(1), we have

(ts)!δ∗d!(ts)∗(1) = 	∗(Id × vu)∗(ts × Id)!d!(ts)∗(1)
= 	∗(Id × vu)∗(Id × ts)∗	!(1) = 	∗	!(1)

which is e(TpX), as required. ��
Lemma 2.3 Consider a homotopy cartesian square

A
g

u

C

v

B
f

D

of oriented Poincaré duality spaces. Then g!u∗ = ±v∗ f!.
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The sign ambiguity is unavoidable under the given hypotheses: changing the ori-
entation of B, say, does not change g!u∗, but changes v∗ f! by a sign.

Proof Let us write a for the formal dimension of A, and so on. We assume some
familiarity with the notion of Poincaré embeddings, for which we refer to [17] for
details. It is enough to prove the identity for the larger square

A
g

u

C
IdC×{∗}

v

C × SN

v×IdSN

B
f

D
IdD×{∗}

D × SN .

By this device, we may suppose [17, Lemma 3.1] that f admits the structure of a
Poincaré embedding, with complement K and normal spherical fibration ξ of dimen-
sion (d − b − 1). Let u∗ξ → A denote the pulled back spherical fibration, and
v∗K → C denote the homotopy pullback of the map K → D along v. There is then
a homotopy commutative cube

u∗ξ v∗K

A C

ξ K

B D

in which the bottom face is homotopy cocartesian, and the vertical faces are all homo-
topy cartesian. It follows by Mather’s Second Cube Theorem [18, Theorem 25] that
the top face is also homotopy cocartesian. We therefore have a map

C � A ∪u∗ξ v∗K −→ A/u∗ξ = Th(u∗ξ)

by collapsing v∗K , and similarly for K . This gives a homotopy commutative diagram

C

v

Th(u∗ξ → A)

Th(u)

D Th(ξ → B)

which in cohomology yields the required equation. From this point of view, the sign
ambiguity arises from the two possible choices of Thom class for u∗ξ : the one compat-
ible with the fundamental classes [C] and [A], or the pullback of the one compatible
with [D] and [B]. ��
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3 Proof of Proposition B

We can extend the definition of the classes κ̃ei pI to block bundles having fibres Wg,1
by filling in a disc in each fibre, giving a new block bundle with fibre Wg := Wg,1 ∪∂

D2n = #gSn × Sn . There are therefore defined universal characteristic classes κ̃ei pI ∈
H∗(BD̃iff∂ (Wg,1); Q), by the proof of [8, Theorem 3.4].

In particular, we have a class κ̃e2 − κ̃pn ∈ H2n(BD̃iff∂ (Wg,1); Q)which vanishes in
H2n(BDiff∂ (Wg,1); Q), because e2 = pn on the total space of a smooth fibre bundle.
Proposition B is an immediate consequence of the following.

Proposition 3.1 For each g ≥ 1 and each n ≥ 3 there is a block bundle (π : E →
|K |,A) with fibre Wg,1, such that

(i) κ̃e2(π) = 0 ∈ H2n(|K |; Q),
(ii) κ̃pn (π) �= 0 ∈ H2n(|K |; Q).

Therefore κ̃e2 − κ̃pn �= 0 ∈ H2n(BD̃iff∂ (Wg,1); Q).

Proof From Lemma 2.2 (iii) it follows that the κ̃ei vanish for all i > 0 on all fibre
homotopically trivial block bundles. We will therefore construct π to be fibre homo-
topically trivial, guaranteeing that κ̃e2(π) = 0.

We will use the (space-level) surgery fibration of Quinn [19], which following the
discussion in [1, Section 3.2], in particular equation (43), may be put in the form

(
hAut∂ (Wg,1)

D̃iff∂ (Wg,1)

)

(1)

−→ map∗(Wg,1/∂Wg,1,G/O)(1)
σ−→ L2n(Z)(1).

Thus to construct a fibre homotopically trivial block bundle over B (with some tri-
angulation) it is enough to give a map f : B → map∗(Wg,1/∂Wg,1,G/O)(1) and a
nullhomotopy of σ ◦ f .

For simplicity of exposition we restrict to the case n = 2k. We let B = Sn ×
Sn , write a, b ∈ Hn(B; Q) for a hyperbolic basis, and write e1, f1, . . . , eg, fg ∈
Hn(Wg,1, ∂Wg,1; Q) for a hyperbolic basis. Write the nth Hirzebruch L-polynomial
as Ln = Apn + Bp2n/2 modulo other Pontrjagin classes, for some constants A and
B. It is well-known that A �= 0, and less well-known but true [21, Lemma A.1] that
B �= 0.

As the composition

p : G/O
i−→ BO

∏
pi−→

∞∏

i=1

K (Z, 4i)

has homotopy fibre with finite homotopy groups, we claim that may find a map f
whose adjoint f̂ : (B × Wg,1, B × ∂Wg,1) → (G/O, ∗) composed with i gives a
class

ξ ∈ KO0(B × Wg,1, B × ∂Wg,1)
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which has pn/2(ξ) = C · (a ⊗ e1 + b ⊗ f1), pn(ξ) = − 2BC2

A · a · b ⊗ e1 · f1, and
all other rational Pontrjagin classes zero, for some constant C �= 0. To establish this
claim, let the map

ϕ : (B × Wg,1, B × ∂Wg,1) −→
( ∞∏

i=1

K (Z, 4i), ∗
)

classify the pair of relative cohomology classes L · (a ⊗ e1 + b⊗ f1) and − 2BL2

A · a ·
b ⊗ e1 · f1, for some integer L �= 0 large enough that these classes are integral. For
each N > 0 consider the map φN : ∏

i K (Z, 4i) → ∏
i K (Z, 4i) which multiplies

by Ni on K (Z, 4i). The diagram

B × ∂Wg,1
ϕ|B×∂Wg,1 ∗ G/O

p

B × Wg,1

f̂
ϕ ∞∏

i=1
K (Z, 4i)

φN
∞∏
i=1

K (Z, 4i)

then admits a dotted lift f̂ for N large enough, as the universal obstructions to finding
such a lift lie in the cohomology of

∏
i K (Z, 4i) with finite coefficients, and are

therefore annihilated (on each skeleton) by some φN . The resulting map f̂ gives
pn/2(ξ) = L · Nn/2 · (a ⊗ e1 + b ⊗ f1), pn(ξ) = − 2BL2

A · Nn · a · b ⊗ e1 · f1, and all
other Pontrjagin classes zero, as required (with C = L · Nn/2).

We must show that the composition

B = Sn × Sn
f−→ map∗(Wg,1/∂Wg,1,G/O)(1)

σ−→ L2n(Z)(1)

is nullhomotopic, but we shall allow ourselves to precompose f with self-maps kN :
Sn × Sn → Sn × Sn having degree N �= 0 on both factors (such a precomposition
preserves the form of Pontrjagin classes which has been arranged above). With this in
mind, it is enough to show that

σ ◦ f = 0 ∈ [B, L2n(Z)] ⊗ Q.

This group may be identified with H4∗(B; Q). If n ≡ 0 mod 4 then the component
of degree n = 2k = 4� is identified with the Künneth factor of
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1
8L3�(ξ) ∈ H12�(B × Wg,1, B × ∂Wg,1; Q)

in H4�(B; Q) ∼= H4�(B; Q) ⊗ H8�(Wg,1, ∂Wg,1; Q). But L3�(ξ) = 0 by observa-
tion, as only p4�(ξ) and p2�(ξ) are non-zero. Whatever the class of n modulo 4, the
component of degree 2n = 4k is identified with the Künneth factor of

1
8L2k(ξ) ∈ H8k(B × Wg,1, B × ∂Wg,1; Q)

in H4k(B; Q). But by construction

L2k(ξ) = A ·
(
− 2BC2

A · a · b ⊗ e1 · f1
)

+ B · (C · (a ⊗ e1 + b ⊗ f1))
2 = 0.

We therefore obtain amap f , with σ ◦ f nullhomotopic and i ◦ f̂ classifying a vector
bundle ξ ′ having pn/2(ξ

′) = D · (a ⊗ e1 + b⊗ f1), pn(ξ ′) = − 2BD2

A · a · b⊗ e1 · f1,
and all other Pontrjagin classes zero, for some constant D �= 0. (The constant will
have changed when we precomposed the original choice of f with the maps kN .) The
associated block bundle π : E → |K | ≈ B has T s

v E �s T E − π∗T B = ε2n + ξ ′
(see [8, Lemma 3.3]) and so

κ̃pn (π) = π!(pn(T s
v E)) = π!(pn(ξ ′)) = − 2BD2

A · a · b �= 0

as required.
It is not difficult to adapt the above argument to work for n = 2k + 1. The essential

point is that if we writeLn = Apn+Bpn−1
2

pn+1
2

modulo all other Pontrjagin classes,

then A �= 0 and again by [21, Lemma A.1] B �= 0. We then take B = S2k−1 × S2k+3

and proceed as above. ��

4 Rational connectivity of Top(2n)/O(2n)

Our goal in this section is to show how similar techniques to those we have been using
imply the following.

Theorem 4.1 π∗(BDiff∂ (D2n)) ⊗ Q = 0 for 1 ≤ ∗ ≤ 2n − 5.

This extends the analogous calculation of Farrell–Hsiang [10], which established
the same result in degrees 1 ≤ ∗ ≤ φ(2n). By smoothing theory we have a homotopy
equivalence BDiff∂ (D2n) � �2n

0 (Top(2n)/O(2n)) as long as 2n > 4, from which we
deduce that

Corollary 4.2 Top(2n)/O(2n) is rationally (4n − 5)-connected as long as n > 2.

On the other hand, it has been shown by Weiss [21] that

H4n(BTop(2n); Q) −→ H4n(BO(2n); Q)
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has nontrivial kernel for n � 0 (namely, the class e2 − pn), so Top(2n)/O(2n) is not
rationally (4n − 1)-connected.

Proof of Theorem 4.1 Let Wg = #gSn × Sn\int(D2n), with 2n ≥ 6, and choose a
collar [0, 1) × ∂Wg,1 ⊂ Wg,1 and a disc D2n ⊂ (0, 1) × ∂Wg,1. The map

D̃iff∂ (D2n)

Diff∂ (D2n)
−→ D̃iff∂ (Wg,1)

Diff∂ (Wg,1)
(4.1)

is (2n − 4)-connected, by Morlet’s lemma of disjunction [6, Corollary 3.2]. Consider
the fibration

D̃iff∂ (Wg,1)

Diff∂ (Wg,1)
−→ BDiff∂ (Wg,1)

i−→ D̃iff∂ (Wg,1).

Up to isotopy any diffeomorphism ϕ representing an element of π1(BD̃iff∂ (Wg,1))

maybe supposed to be equal to the identity on the collar: themap (4.1) is then preserved

by that induced by ϕ, and it then follows that ϕ acts trivially on H∗
(

D̃iff∂ (Wg,1)

Diff∂ (Wg,1)
; Q

)

in the range of degrees ∗ ≤ 2n − 4 where the map (4.1) is a cohomology injection.
Hence the Serre spectral sequence

H p
(
BD̃iff∂ (Wg,1); Hq

(
D̃iff∂ (Wg,1)

Diff∂ (Wg,1)
; Q

))
�⇒ H p+q(BDiff∂ (Wg,1); Q)

associated to this fibration has a product structure in this range of degrees. But
Berglund–Madsen have shown that the map

i∗ : H∗(BD̃iff∂ (Wg,1); Q) −→ H∗(BDiff∂ (Wg,1); Q)

is an isomorphism in degrees ∗ ≤ 2n − 1 as long as g � 0. This result will appear

soon in a revision of [2]. It follows that Hq
(

D̃iff∂ (Wg,1)

Diff∂ (Wg,1)
; Q

)
= 0 for 1 ≤ q ≤ 2n− 4,

and hence by the map (4.1) that Hq
(
D̃iff∂ (D2n)

Diff∂ (D2n)
; Q

)
= 0 for 1 ≤ q ≤ 2n − 5.

On the other hand, the surgery fibration sequence shows that hAut∂ (D2n)

D̃iff∂ (D2n)
is rationally

acyclic, and hAut∂ (D2n) � ∗ by the Alexander trick, so BD̃iff∂ (D2n) is rationally
acyclic. Boundary connect-sum makes this into an H -space, so it has trivial rational
homotopy groups. Thus D̃iff∂ (D2n) has finitely-many components, and each one is
rationally acyclic. The groupDiff∂ (D2n) has the same components, and so the quotient
D̃iff∂ (D2n)

Diff∂ (D2n)
is rationally homotopy equivalent to BDiff∂ (D2n)0, the classifying space of

the component of the identity in BDiff∂ (D2n). It follows from the above that its rational
cohomology, and hence rational homotopy, vanishes in degrees 1 ≤ ∗ ≤ 2n − 5. ��
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