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Online abstract: 

Cellulose nanocrystal suspensions in apolar solvent spontaneously form iridescent liquid 

crystalline phases but the control of their long-range order is usually poor. We 

demonstrate how the use of electric fields can provide control on the cholesteric 

orientation and its local periodicity, allowing macroscopic sample homogeneity and 

dynamical tuning of their iridescent hues. 

 

Many examples of photonic structures found in insects,[1-5] plants[6,7] or birds[8,9] still 

challenge our capabilities to fabricate equivalent man-made materials with controlled order 

from the nanoscale to the macroscale.[10-13] While the underlying biological processes enable a 

subtle balance of order and disorder to span over different lenghtscales, the precise design of 

biomimetic materials based on self-assembly strategies relies on the variety and the quality of 

our toolbox to drive the elementary building blocks toward the targeted structure. A 

successful control of the self-assembly routes is also key to allow a scalable and low cost 

production of novel nanostructured materials with enhanced optical properties.  

Among eligible nanoparticles, cellulose nanocrystals (CNCs) provide a unique combination of 

features that offer a wide range of application prospects in high-added value functional 
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nanostructured materials.[13-17] These biosourced, lightweight and stiff nanorods, about 

100-200 nm long and 5-15 nm in cross-section when extracted from cotton or woodpulp, 

indeed form stable colloidal suspensions and are able to spontaneously self-organize into 

cholesteric liquid crystalline phases above a threshold concentration.[18,19] This cholesteric 

structure is firstly attracting a strong interest as it is generally observed in natural cellulose- 

and chitin-based tissues of plants,[7] crabs[20,21] and insects,[3] where it provides either 

enhanced mechanical properties such as both stiffness and anti-crack propagation, or optical 

properties such as structural coloration and iridescence. Secondly, this property of CNCs has 

been exploited to generate thin solid films displaying adjustable colours[22-27] and also led to 

the development of active mesoporous cellulosic or inorganic photonic sensing materials 

constructed through nanotemplating strategies.[17,28-31] Moreover, the incorporation inside the 

cholesteric structure of anisometric dopants such as plasmonic gold nanorods provides 

additional control over their positional and orientational order inducing a chiroptical response 

templated by the CNC chiral assembly.[32-35] 

However, a lack of satisfactory long-range ordering is often observed in these self-assembled 

structures. A polydomain structure with cracks, defects and misalignments between the 

domain is usually obtained, leading to pixelated and rainbow coloration rather than vivid 

optical effects.[36] 

Increasing the long-range order of CNC cholesteric suspensions has been addressed by using 

different processes and triggers: while strong hydrodynamic shear disrupts the cholesteric 

order and turns it into a nematic one[37,38], Lagerwall and co-workers[39,40] reported how mild 

circular shear applied to a drying suspension in a circular dish leads to a locally enhanced 

vertical cholesteric orientation. However, in the latter case, a gradual distorsion of the 

helicoidal ordering towards the edge was obtained. Using very strong magnetic fields (7 T), 

Sugiyama et al.[41] and Revol et al.[42] showed that CNC cholesteric domains successfully 

align and form one monodomain structure with their helicoidal axis pointing along the 
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magnetic field, due to the intrinsic diamagnetic anisotropy of the nanorods.[43] However, 

magnetic fields only allow orienting the whole cholesteric structure and involves slow 

relaxation times of several hours,[44] while not providing further control on the cholesteric 

periodicity of the phase. Local magnetic alignments in lower fields have since then been 

reported in bulk suspensions with no obvious change of the optical properties. Using electric 

fields, Bordel et al. showed that cellulose fibers in apolar solvents align parallel to the applied 

field,[45] while an oriented nematic ordering was reported by Habibi et al. on individual CNCs, 

as observed on a suspension left drying on a micron-scaled electric junction.[46] Using diluted 

CNC suspensions in apolar solvents, we revealed that this electric field coupling is due to the 

presence of both permanent and induced dipole moments on individual CNCs,[47] while 

Oulachgar et al. illustrated further their utilization as electro-optical spatial light modulator.[48] 

Electric and magnetic field alignment of other colloidal liquid crystals have been widely 

studied.[49-56] Earlier, Dogic and Fraden[57] showed that colloidal liquid crystals made of chiral 

fd-viruses present a transition from cholesteric to nematic when a continuous magnetic fields 

is applied. Interestingly, Chiba et al. reported the electro-optical behavior of aqueous solution 

of hydroxypropyl cellulose (HPC), a polymeric cellulose derivative forming lyotropic 

cholesteric phases,[58] but this effect was indirectly due to the introduction of an ionic 

concentration gradient by the applied DC electric field.[58,59] To the best of our knowledge, no 

studies of the effect of electric fields on the cholesteric suspension of CNCs or any 

comparable colloidal cholesteric suspension have been reported so far.  

 

In this work, we demonstrate that electric fields are an efficient and convenient tool to control 

the iridescence properties of concentrated CNCs in an apolar solvent. This method not only 

allows a precise tuning of the pitch but also enables sample homogeneity at the macroscopic 

scale as well as dynamical control of the structural colors. In the following, we first introduce 

the relevant quantities to consider when controlling the cholesteric phase behavior under an 
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electric field, and then justify the use of apolar solvent for this system. We utilize qualitative 

iridescence and quantitative laser diffraction observations to monitor the effect of electric 

fields on the orientation and periodicity of the cholesteric phase, as they are strongly related to 

the optical properties of the sample. We confront our observation to existing models to test 

our suggested scenario and also derive from it the twisting constants characterizing this phase. 

Finally, we address the relevance of this tool to manipulate the cholesteric order to either 

increase its ordering after field removal or by controlling it over time to dynamically tune its 

resulting iridescence.  

The cholesteric phase is characterised by a local ordering of the CNCs within cholesteric 

domains, where the rods spontaneously align along a common direction called the director, n, 

which locally rotates and describes a left-handed helix about an axis, h. The distance that 

separates rods of same orientation after a 360° rotation is commonly defined as the cholesteric 

pitch of the helix, p.[60]  

Due to CNC birefringence, light is diffracted by the cholesteric structure in the plane defined 

by the incident beam and the helix h, at an angle θ according to Bragg’s law. This causes both 

strong iridescence of the samples and the diffraction pattern from a monochromatic laser 

beam (cf. Supporting Information, Figure 1a-b and Figure S1). The diffraction pattern 

corresponds to the observation of the sample reciprocal space: the direction of the observed 

peaks corresponds to the projection of h while the radial peak position gives access to p. 

Noteworthy, this situation differs from solid cholesteric films obtained by slowly drying CNC 

suspension, as the much larger pitches involved here, prior to any pitch collapse upon drying, 

lead to the diffraction of visible light at much smaller θ angles, justifying a sample 

illumination in transmission and not in reflection. 
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Figure 1. (a-b) Schematics illustrating (a) iridescence and (b) laser diffraction as effects of the 

same light diffraction caused by the underlying cholesteric structure; the geometry of the field 

direction, an example of cholesteric monodomain and its corresponding diffraction peaks 

position is indicated in (b). (c) Iridescence evolution of a polydomain cholesteric sample upon 

first electric field application (values in rms), displaying increase of light intensity, then 
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red-shift and finally color desappearance. (d) Evolution of the laser diffraction pattern upon 

electric field increase, showing cholesteric orientation, then pitch increase and finally 

complete cholesteric unwinding. (e) Schematic of the sequential cholesteric orientation and 

unwinding upon electric field increase.  

 

The CNCs used here were dispersed in an apolar solvent (toluene), which offers a number of 

advantages over aqueous media.[61,62] First, surfactant-coated CNCs in toluene self-assemble 

into a cholesteric phase at concentrations as high as 35 wt%, whereas aqueous dispersions get 

trapped into a glassy/gel phase above ~15 wt%.[63,64] Second, a better index-matching reduces 

Rayleigh scattering, increases the transparency and enhances the light diffraction due to CNC 

intrinsic birefringence. This index-matching also minimizes the dispersion forces contributing 

to van der Waals interactions: this leads to successful stabilization with surfactants without 

the need of an extended electrostatic double-layer as required in aqueous suspension. As a 

result, the rod concentration can be increased without aggregating or jamming into a Wigner 

glass.[65] Third, the apolar solvent enables using high voltages and thus strong electric fields 

on large distances in the suspension to align the CNCs parallel to the electric field, as shown 

with CNCs extracted from tunicate.[45]  

The effect of an increasing electric field on the iridescence of a fully cholesteric CNC 

suspension is presented in Figure 1c. The sample was placed in a glass capillary held 

vertically with two metallic electrodes connected to a high AC voltage source operating at 

1 kHz, and a white light source was placed in the sample background, slightly off-centered 

vertically with respect to the viewing angle of the camera. At low field value, a clear increase 

in the light intensity is first observed, followed by a red-shift of the color. At higher fields,  

the color turned into a scattering white and finally vanished. Before turning transparent, the 

sample presented an inhomogeneous aspect due to its polydomain nature, while the 
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homogeneous aspect at the highest field indicated a total alignment of the CNCs parallel to 

the applied field into a so-called paranematic phase.  

Monochromatic laser diffraction[64,66,67] of the same sequence was then used to extract 

quantitative information about the cholesteric arrangement, as illustrated in Figure 1b-1d.  

At zero field, the diffraction pattern appears circular, indicating a multidomain structure of 

isotropically-distributed cholesteric domains of constant pitch. As the electric field is 

increased, the diffraction ring evolves towards two symmetric arches of decreasing angular 

width, in agreement with a progressive orientation of the cholesteric domains perpendicular to 

the field (ℎ ⊥ 𝐸). The alignment of the diffracting domains leads to directional iridescence, 

with an increase of light intensity, as aforementioned. At larger fields, the radius of the 

diffraction peaks decreases, indicating an increase of the pitch, p. As the field further 

increases, the peaks broaden and do not allow to define p anymore, until the whole diffraction 

pattern vanishes and only the transmitted incident beam remains visible, in agreement with 

the observed sample transparency (cf. full sequence in Figure S3). These observations 

strongly support the scenario illustrated in Figure 1e where the electric field first orients and 

then unwinds the cholesteric structure.[68-72]  

Quantitative modeling of this cholesteric unwinding can be extracted and related to the long-

lasting question of the nature of chiral interactions between CNCs.[19,73-80] Due to the lyotropic 

nature of these liquid crystals, concentration strongly impacts their final properties. We 

therefore prepared samples of increasing CNC concentrations (from 13 wt% to 38 wt%, cf. 

Table S1), covering the concentration of isotropic-anisotropic coexistence domain (cf. Figure 

S2), and we investigated their behavior under electric fields. The pitch evolution versus 

electric field is reported in Figure 2a and shows for each investigated concentration a 

divergence of the pitch when the field is increased. Data were compared to the model initially 

developped by de Gennes for the unwinding of a molecular cholesteric liquid crystal under a 

magnetic field,[68] solved for the case of negligible confinement[81] when the twist energy 
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density is smaller than the bend energy density (𝐾!! < 𝐾!!),[71] and that we adapted to electric 

fields (cf. modeling in SI, Section C). The good agreement between the model and the 

experimental data provides us with reliable values for p0, the pitch in zero field, and Ec, the 

critical electric field, extracted as fitting parameters and displayed in Figure 2b-c.  

From these parameters we can extract the ratio 𝐾!!/Δχsusp between the twist energy density 

𝐾!! of the cholesteric phase and the local anisotropic dielectric susceptibility Δχsusp of the 

suspension. From the electric field-induced birefringence of the CNC suspension in diluted 

suspension (cf. SI, Section D and Figure S4), we estimated Δχsusp and therefore the twist 

constant 𝐾!! of the cholesteric phase and its twisting power 𝐾! = 2𝜋𝐾!!/𝑝 on a range of 

CNC concentrations (Figure 2e-f; for a volume fraction 𝛷 ~ 20-35%, 𝐾!! ~ 0.02-0.07 pN,  𝐾! 

~ 0.03-0.2 pN/µm). Interestingly, our system compares well with fd-virus suspensions[57] in 

the limit of high screening charge and high rod concentration (cf. SI, Section E and Figure 

S5). This tendency does not favor the explanation of the chiral twist as an helicoidal charge 

distribution on the twisting colloids, as the dielectric constant of toluene does not allow a 

sufficient ionic dissociation and hence impedes electrostatic interactions. 

 

Figure 2. Quantitative analysis of the pitch unwinding under electric field: (a) pitch 

dependence with applied electric field (symbols) and corresponding fits from de Gennes 
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model (lines); (b-c) pitch value p0 at zero field and critical electric field Ec as extracted from 

the fits. (d) ratio K22/Δχ as extracted from de Gennes theory. (e-f) Using the Δχ estimation 

from birefringence measurements, we can estimate the twist energy K22 and twisting power Kt 

= 2πK22/p0 of the liquid crystalline phase. 

 

Beyond the control of the pitch and the possibility to frustrate thermodynamics to create a 

paranematic phase, reaching sample homogeneity at the macroscopic scale is a major 

challenge that was addressed by dynamic actuation using modulated electric fields.  

We introduce as electric field annealing a treatment corresponding to the application of an 

electric field sequence in time (Figure 3) in order to affect the final sample structure, in a 

similar way as other types of annealing such as thermal or osmotic. Starting from either an 

inhomogeneous polydomain or a more organized cholesteric CNC suspension, a strong 

electric field, i.e. above the critical Ec field, is first applied to melt the cholesteric structure 

and its existing defects, in order to obtain a fully unwound structure. Then, two different 

situations were investigated.  

First, in the fast annealing treatment, the electric field was suddently removed (Figure 3a). 

Under such conditions, the cholesteric structure rapidly reappears, as indicated by the 

observation of a uniform diffraction ring within a few minutes (Figure 3b). The sample 

obtained after such treatment thus displays disoriented cholesteric domains. This randomized 

structure is observed even when applied to a previously well oriented cholesteric sample (cf. 

SI, Section F and Figure S6-S7).  
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Figure 3. Fast annealing versus slow annealing in controlling the macroscopic structure of 

the cholesteric sample and its enhanced responsiveness: (a) Schematic of fast annealing 

method. The inserts display randomized orientation of the cholesteric domains, 

inhomogeneous iridescent texture and diffraction ring. (b) Laser diffraction recorded during 

the fast relaxation towards a polydomain cholesteric structure. (c) Schematic of slow 

annealing method. The inserts display oriented cholesteric domains, homogeneous iridescent 
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texture and monodomain diffraction peaks. (d) Laser diffraction recorded during the slow 

relaxation towards an oriented cholesteric structure. (e) Enhanced field responsiveness of the 

sample after slow annealing treatment, displaying control of the uniform iridescent texture 

with the applied field. (NB: apparent color gradient is due to parallax effects in the 

observation geometry). 

 

Second, in the slow annealing treatment, a progressive decrease of the electric field within 

~45 min was applied, as illustrated in Figure 3c. This treatment led to a much more organized 

structure as the cholesteric phase was given enough time to rewind with its helix axis 

perpendicular to the electric field (Figure 3d), breaking the symmetry of the cholesteric 

reformation. The iridescence of the sample after slow annealing appears homogeneous on the 

centimeter lengthscale and the diffraction pattern indicates a well defined orientation of the 

monodomain. The diffraction patterns observed in the decreasing sequence indicates a 

reversible pitch value with little hysteresis, while the orientation of the cholesteric is 

dramatically enhanced (cf. SI, Section G and Figure S8-S9). This slow annealing using 

electric field enables us to obtain high quality orientation and uniform iridescence across a 

centimeter large sample, which is extremely valuable for such biosourced systems made of 

highly polydisperse nanocolloids, and relevant for structuration of nanocomposites in material 

applications. Moreover, the enhanced responsiveness of our system to electric fields after 

slow annealing treatment allows us to obtain a highly homogeneous colloidal liquid crystal 

with electric field tunable iridescence, as illustrated in Figure 3e.  

The dynamic control of the iridescence using a time-modulated electric field was 

subsequently investigated, i.e. using 1 kHz AC electric field as before but combining 

sequences of two different amplitudes over time, both kept below the critical Ec value. As 

shown in Figure 4a-b, the iridescent colour of the sample can be dynamically tuned using an 

electric field amplitude modulated on the timescale of a few seconds, i.e. at modulating 
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frequencies below ~0.15 Hz (cf. Video S1). The corresponding diffraction pattern showed 

pitch oscillations with no significant broadening of the diffraction peaks (cf. Video S2), 

demonstrating the dynamic tunability of the structure and the iridescence with the electric 

field.  

 

Figure 4. Dynamic control of the sample iridescence with time-modulated electric field (AC 

1 kHz) after slow annealing: (a-b) example of steady-state dynamic pitch control when 

electric field is time-modulated. Inserts display on the left the alternated red-shift and 

blue-shift, and on the right the corresponding diffraction peaks. (c) Example of structural-

white (broadening of the iridescent colors over the full visible range) with (d) a diffraction 

line indicating no clearly defined pitch, obtained for AC fields modulated at faster pace and 

larger amplitudes.  

 

Additional conformation can be achieved using dynamic modulation of the electric field 

amplitude. When the field is suddenly increased above the critical electric field value Ec, the 

sample iridescence first turns into a transient white and eventually disappears after few 

seconds in a perfectly transparent sample. The diffraction pattern corresponding to this 
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transient white scattering is a continuous line where light is scattered across a large angular 

window perpendicular to the field. Interestingly, such structural white can be obtained in 

steady-state under a dynamic modulation of the electric field when modulated over time 

between more extreme electric field values at higher modulating frequencies, e.g. when 

alternating between E = 1.5 Ec and 0 V/cm at 0.5 Hz (Figure 4c-d). This last configuration 

provides an example of steady-state dynamic self-assembly[82] and further illustrates the high 

degree of tunability offered by utilizing electric fields on CNCs.  

 

In summary, we have shown that cellulose nanocrystals suspension in apolar solvent can be 

manipulated with electric fields to finely tailor their self-assembly into iridescent chiral 

nematic phases with a surprising effectiveness. First, we were able to control the orientation 

of the cholesteric phase at low electric field, the tuning of the iridescence at intermediate 

fields, and the formation of a purely nematic phase at higher fields. Second, we quantified the 

critical electric field at which the unwinding of the cholesteric occurs, from which we 

estimated the 𝐾!! twisting energy density of the cholesteric phase. Third, we introduced the 

effect of electric field annealing treatment using either a fast or slow field loop to produce 

highly disoriented or uniformly oriented cholesteric phases in zero field. Fourth, we showed 

that time-modulated electric fields enables dynamic color changes when the field is varied at 

low frequencies (f < 0.1 Hz), while a faster and larger electric field modulation produces a 

switchable steady-state structural-white scattering sample. The simple and effective electric-

field manipulation of colloidal liquid crystals described here provides an enhanced control 

over the structures and associated properties and adds to the self-assembly toolbox as a multi-

purpose plateform. Recently, electric control of colloidal particle arrangement immersed into 

cholesteric liquid crystals showed strong hysteresis behavior, enabling the bistability required 

for energy-saving liquid crystalline displays.[83-86] As for this example, our work paves the 
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way to applications in responsive and tunable systems, as well as in the design of ordered 

nanocomposite materials.  

 

Experimental 

Preparation of CNC suspension in water. An aqueous CNC suspension was obtained from the 

acid hydrolysis of cotton linters in 64 wt% sulfuric acid for 30 min at T = 63 °C, following the 

method[42] initially described by Revol et al. The suspensions were washed by repeated 

centrifugation/redispersion steps, dialyzed against distilled water until constant conductivity 

of the dialysis bath and ultrasonicated for 4 min (Branson Digital sonifier 450). After filtration 

(0.8 µm, cellulose nitrate membranes, Sartorius), stable aqueous suspensions of rod-like 

CNCs were obtained (cf. Figure S10). Conductometric titration[87] against NaOH was used to 

quantify the functionalization with –OSO3
- groups of the resulting CNCs and led to 

181 mmol S/kg (i.e. [S] ~ 0.58 wt%).  

Transmission Electron Microscopy (TEM) of CNCs. As described elsewhere,[88] a droplet of 

ca. 0.001 wt% CNC aqueous suspension was deposited on a freshly glow-discharged 

carbon-coated TEM copper grid. The excess liquid was blotted with filter paper and the 

remaining film was allowed to dry. The specimen was observed under low dose illumination 

in a Philips CM200 microscope (FEI) operating at 200 kV. The images were recorded using a 

F216 TVIPS digital camera. 

Preparation of CNC suspensions in toluene. CNC suspensions in toluene were obtained by 

adding Beycostat NA surfactant (BNA, CECCA-ATO Co), a phosphoric ester of 

polyoxyethylene(9) nonylphenyl ether, with a surfactant/CNC ratio of 4/1 (w/w) to the 

aqueous CNC dispersion. After freeze-drying, two cycles of redispersion in toluene followed 

by centrifugation were applied as described elsewhere[61] to yield a concentrated pellet free of 

surfactant excess.  
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To produce a 40 wt% concentrated homogeneous stock suspension, some paste was 

redispersed in toluene using a planetary centrifugal mixer (Thinky Mixer ARE-250, Poly 

Dispensing System). Investigated samples resulted from the dilution of this stock suspension. 

The CNC mass concentration c is measured in terms of dry mass residue and can be related to 

its volume fraction, Φ (cf. SI, Section A).  

Preparation of electric field cuvettes. Square profiled borosilicate glass capillaries (CM 

Scientific Rect. Boro Capillaries, #4410-100, internal dim. 100x10x1.0 (in mm), external 

width 11.5 mm) were split in two halves under acetylene flame, and a pair of stainless steel 

wires (diameter 0.9 mm) were inserted inside each half-capillary in order to be used as 

electrodes. One end was kept open while the other capillary end was sealed with acetylene 

flame. Terminal blocks connectors were mounted on the wire ends to allow easy and secure 

connection with the high voltage source.  

The cuvette was filled with the sample and sealed using fast drying epoxy resin. A small 

amount of the remaining sample was used to double-check the final sample concentration. 

The samples were left at rest in these cuvettes for at least 48 h prior to any experiment in 

order to allow phase separation to occur.  

The sample structural order was probed by its optical properties, using several different 

settings, including direct observation, observation between crossed polarizers and light 

diffraction methods, as described in Supporting Information.  

Supporting Information 

The supporting information are available free of charge on Wiley-VCH website and include:  

A. Sample preparation, phase transition properties (isotropic-cholesteric phase diagram, 

cholesteric pitch determination) and investigation methods;  

B. Sample orientation under electric field;  

C. Modeling of the cholesteric unwinding (de Gennes theory);  

D. Static Electric Birefringence in diluted suspension;  
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E. Comparison of CNC liquid crystalline properties with fd-virus suspensions;  

F. Sample relaxation under electric field fast annealing;  

G. Sample relaxation under of electric field slow annealing  

H. Transmission Electron Microscopy (TEM) image of the CNCs used 
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Cellulose nanocrystal suspensions in apolar solvent spontaneously form iridescent liquid 
crystalline phases but the control of their macroscopic order is usually poor. We 
demonstrate how the use of electric fields can provide control on the cholesteric 
orientation and its periodicity, allowing macroscopic sample homogeneity and 
dynamical tuning of their iridescent hues. 
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I. References 

A. Sample preparation, phase transition properties and investigation methods 

In this section we describe how we handle the samples and how they look like under different 

observation conditions, then we describe the phase transition behavior by showing the phase 

transition from an isotropic to a cholesteric phase as the concentration is increased. The 

different settings to probe the optical properties of the samples are also described. Finally the 

concentration dependence of the pitch of the cholesteric phase, as measured using either local 

optical microscopy observations or macroscopically averaged laser diffraction technique.  

A.1. Sample handling and macroscopic observation  

Home-made cuvettes were made from glass capillaries mounted with metallic wires used as 

electrodes, as shown on Figure S1a. The cuvettes were filled with the samples of interest and 

were left to self-assemble in absence of an electric field. When a phase separation occurred, 

an isotropic and an anisotropic phase were more easily discriminated by observing the sample 

between crossed polarizers, as shown on Figure S1b and Figure S1c.  

 

Figure S1. (a) Home-made glass cuvette made from a large glass capillary (ext. width 

11.5 mm) and two metallic wires mounted on a choc block, and used as electrodes to apply 

electric fields on the samples; (b-d) images of different views of a phase-separated sample 
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(sample A-1) observed (b) with white light backdrop background (c) and between crossed 

polarizers, or (d-e) localized white light coming from the back at different incident angles, 

displaying iridescence; (f) optical microscopy observation between crossed polarizers of a 

sample at 30 wt% showing the fingerprint pattern characteristic of the cholesteric structure 

(prepared from the batch C) .  

 

The sample reveals vivid iridescent hues in the cholesteric phase only when a localized source 

of white light is placed in the sample background. The sample color is sensitive to the angle 

of the incident light, as illustrated in the Figure S1d and Figure S1e, and to the observation 

angle. One can note that this sample displays noticeable heterogeneities as it was observed 

before any electric field was actually applied to the sample.  

The cholesteric struture is also confirmed by the direct observation of the characteristic 

fingerprint pattern as shown in Figure S1f, where thin glass capillaries have been used (CM 

Scientific Rect. Boro Capillaries, #W5010-050, internal dim. in mm: 50x2.00x0.10).  

A.2. Overview of prepared samples  

The lyotropic nature of the CNC liquid crystalline suspension justified the investigation of 

their electro-optical properties on a wilder range of CNC concentration, from 100% isotropic 

to 100% anisotropic. We reported in the Table S1 the concentration of dry matter cdry and the 

corresponding volume fraction Φ of the samples investigated in this work. The paste (A, B or 

C) refers to the batch from which the samples were prepared.  
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Table S1. List of prepared samples in electrode-containing capillaries with corresponding 

characteristics.  

Sample Paste cdry (%wt) Φ (%vol) Aniso (%vol) Pitch (µm) 

A-1 A 28.8% 21.3% 70% 4.57 

B-1 B 20.2% 14.5% 29% 4.88 

C-1 C 2.7% 1.8% 0% N/D 

C-2 C 13.6% 9.5% 0% N/D 

C-3 C 20.7% 14.8% 45% 4.40 

C-4 C 22.5% 16.2% 68% 4.75 

C-5 C 29.1% 21.5% 100% 3.00 

C-6 C 33.5% 25.1% 100% 2.63 

C-7 C 37.7% 28.8% 100% 2.38 
N/D: the pitch is not defined in a purely isotropic phase. 

The concentration were calculated as follow:  

The massic ratio of surfactant:CNC has been previously estimated to 0.58:1, equivalent to a 

massic ratio of 𝑚!"!= 1/1.58 ~ 64 wt% of CNC per mass of dry residue.[1] The average 

density of CNC@BNA is calculated as following: 

𝑐!"# =  !!"# !
!!"# !!!! !!!  

 which is equivalent to  Φ =  !! !!"#
!!"#! !!"#!!!  !!"#

 

where 𝜌!"# is defined as the average density of the CNC@BNA: 

𝜌!"# =  𝜌!"!  𝜈!"! +  𝜌!"#$(1− 𝜈!!") ~ 1.31 g/cm3 

and the volumc ratio 𝜈!"!  is obtained from the massic ratio 𝑚!"!  as: 

𝜈!"! =  
𝜌!"#$ 𝑚!"!

𝜌!"! −𝑚!"! 𝜌!"! − 𝜌!"#$  
  

Here, 𝜌!"!  = 1.6 g/cm3 is the density of cellulose, 𝜌!"#$ is taken as ~1 g/cm3 and ρs = 

0.876 g/cm3 is the density of toluene. 

A.3 Isotropic-Cholesteric Phase separation and lyotropic phase diagram  

The proportion of anisotropic phase in each sample has been measured by observing the 

samples in the capillaries in two complementary conditions. The total volume of the sample is 

measured from a direct observation of the filling level of the capillary in diffuse white light 
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(i.e. without polarizers, as in Figure S1b – note the sample-air meniscus is not visible in this 

frame) while the volume of anisotropic phase only is easily determined from an observation 

between crossed polarizers (as in Figure S1c). The ratio of the volume of anisotropic phase to 

the total sample volume is reported in Figure S2.  

 

Figure S2. Phase diagram showing proportion of sample volume that turned into an 

anisotropic phase, for various total CNC concentrations (expressed in wt% of dry matter).  

A.4 Direct observation under diffuse white light 

The capillary was photographed before applying any electric field using diffuse white light 

source as a background.  

A.5 Observation under Crossed-polarizers against diffuse white light 

The sample was inserted between crossed-polarizers oriented at +/-45° with respect to the 

vertical/horizontal axes and observed with similar observation conditions.  

A.6 Dynamic control of applied electric field on liquid crystalline samples 

 The AC electric field was generated with a function generator (Centrad, GF 265) and 

amplified with a Trek model 10/10B high voltage power amplifier. The applied electric field 

𝐸!" =  𝑉!"#/𝑒 (defined in V/cm rms) is determined from the gap e between the electrodes and 

the root-mean-square of the applied voltage Vrms. 
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A.7 Field-controlled iridescence observation 

A white light source (Leica CLS100LED, 3000K) was connected to an optical fibre placed 

behind the sample at an angle between 15° and 35° above or sideway from the viewing 

direction, at approximately 30 cm away from the sample. A RGB camera (Sony XCD-

SX90CR) was either placed at ~5 cm from the sample for an optimal picture resolution or at 

approximately 20 cm from the sample to reduce the angular size of the sample and therefore 

color variation due to parallax.  

A.8 Field-controlled laser diffraction measurement 

A linearly polarized He-Ne laser with a wavelength λ0 = 632.8 nm was first circularly 

polarized and collimated before hitting the sample in the capillary. A grid-marked paper 

screen was placed at a distance L (typically ~ 15 to 20 cm) behind the sample to form the 

diffraction pattern, whose image was recorded using an 8-bit camera (Sony XCD-SX90CR, 

monochromatic settings). The distance L was measured with +/-1 mm resolution. The 

diffraction angle 2θ’ (cf. Figure 2b) was obtained from 2θ’ = arctan(r/L), with r the radius of 

the first order diffraction peak. The images were analyzed using the ImageJ software 

(http://imagej.nih.gov/ij/).  

A.9. Cholesteric pitch determination from laser diffraction measurements 

Laser diffraction is a space-averaged technique that allows simultaneously the measurement 

of the average pitch and the visualization of helix orientation, as light is diffracted within the 

plan contained by the incident light beam and the helicoidal axis of the cholesteric domains.  

The Bragg’s law corrected by Snell’s law on the sample/air interfaces is given by[2]:  

𝜆! =  𝑛 𝑝 sin !
! arcsin

!
! sin 2𝜃′  (S1) 

where λ0 is the laser wavelength, p the pitch, 𝑛 the sample average optical index and θ’ the 

diffraction angle, measured as θ’ = arctan(r/L), where r is the radius of the diffraction peak 

and L the distance from the sample to the screen. One can note that the optical index of the 
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glass does not contribute to the Snell law correction, and the impact of the sample thickness is 

neglected.  

The average optical index of the cholesteric medium can be estimated using Bruggeman 

modeling, as we recently reported for laser diffraction of aqueous CNC suspensions.[3] 

However, due to the good index-matching of toluene and cellulose, the optical index does not 

depend much on the CNC concentration and has been taken to 𝑛 = 1.50 for all samples.  

B. Sample progressive orientation under electric field 

The initial sample orientation under electric field can be monitored using laser diffraction. 

The numerous defects in a sample that was never oriented before required slow increase of the 

electric field, as illustrated on Figure S3 from sample C-6.  However, such progression 

becomes faster after a slow annealing step, as illustrated in section E of the SI. 
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Figure S3. Laser diffraction pattern showing progressive unwinding of the cholesteric under 

increasing electric field. The duration in the bottom left corner indicated the waiting time 

from the previous picture and the AC electric field value is given in rms. 

C. Modeling of the cholesteric unwinding from de Gennes theory  

According to de Gennes modeling, the pitch dependence with the electric field value is 

obtained by introducing a variable k such as for any 𝑘 ∈ 0,1 : 

!
!!
=  !

𝑬(!)
 (S5) 

!
!!
=  !

!

!
𝑲(𝑘)𝑬(𝑘) (S6) 

with K(k) and E(k) being respectively the complete elliptic integrals of the first and the second 

kind, and not to be confused with the electric field E and the critical electric field Ec. Using 

this relations, a parametric plot with k values from 0 (E = 0) to 1 (E = Ec) allows plotting the 

𝑝(𝐸) values using just two experimental parameters, the pitch value in zero field p0 and the 

critical electric field Ec.  

The cholesteric should be totally unwound when the applied electric field E overcomes a 

critical electric field Ec given by: 

𝐸! =
!!

!!

!!!
!!!"!#

 (S7) 

where K22 is the twist energy constant of the cholesteric, and Δχsusp is the anisotropic 

dielectric susceptibility of the concentrated CNC suspension along its local nematic director.  

D. Static Electric Birefringence in diluted suspension 

D.1. Experimental measurement of field-induced birefringence on diluted samples  

The electric field is applied on the sample using a home-made Teflon-based Kerr cell with 

two glass windows sealed with Fomblin (PFPE) grease, with h = 50 mm optical path length 

and a 5mm gap between metallic electrodes, as described elsewhere[1]. A laser beam of 
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wavelength λ0 = 632.8 nm is first polarized at +45° with respect to the electric field direction, 

then passes through the sample, and again through an analyzer oriented at -45° with respect to 

the electric field direction, and the transmitted light intensity is recorded with a photodiode. 

The electric field is here generated by a DAQ-1501 acquisition card (Acquisys) and amplified 

with a Trek model 10/10B high voltage power amplifier. After each electric field pulse of 

increasing strength, the actual applied voltage and the photodiode output are measured with 

the same DAQ-card after either a DC pulse of 200 ms (DC mode) or after applying an AC 

pulse of 1 s at 1 kHz (AC mode). A second measurement is then performed to check the 

reproducibility and validate the assumption of equilibrium conditions.  

The transmitted light intensity is measured with a photodiode for various electric field values 

applied in AC or in DC configuration. From the measured intensity, the birefringence Δn is 

measured using the following formula: 

𝐼 𝐸 = 𝐼!"# + 𝐼!"# − 𝐼!"# sin! !(!)
!

 (S8) 

Δ𝑛 𝐸 = !! !(!)
!! !

 (S9) 

The birefringence is obtained from the inversion of the sine function using: 

𝛿 𝐸 =  𝜋 k+ !!! !! !

!
− 2(−1)! arcsin ! ! !!!"#

!!"#!!!"#
  (S10) 

and 𝑘 ∈  ℕ∗, an integer starting from k = 1 and incremented by 1 after each passed extremum. 

The biref set-up exists in AC and DC options, and several programs written in Delphi were 

used for data acquisition and processing. 

Hereafter, static electric birefringence measurements were performed on sample C-1 and C-2, 

i.e. in the isotropic regime at different dilutions (cf. sample C-2 on Figure S4).  
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Figure S4. Static Electric Birefringence measured in AC electric field on sample C-1. Open 

symbols refer to photodiode output (left vertical axis) and closed symbols to birefringence 

Δn(E)/Φdil (right vertical axis).  

D.2. Modeling of static electric birefringence of individual rods 

When an electric field is applied on diluted suspension of colloidal rods in a suspension, the 

orientation of each individual rod in the steady state is the result of the balance between an 

electric field torque and the thermal energy kBT. Due to the anisometric shape of cellulose 

rods and cellulose intrinsic birefringence, the suspension becomes uniaxially birefringent in 

the direction of the applied field, and allows measuring the alignment behavior of the rods in 

the electric field. Therefore, static electric birefringence is sensitive to either permanent or 

induced electric dipole components as both contribute to the measured birefringence. This 

technique can be combined to dynamic, or Transient Electric Birefringence to discriminate the 

permanent and induced components, as recently reported in.[1] 

In diluted suspensions, the birefringence of an assembly of rods under electric field can be 

written as: 

Δ𝑛 𝐸 =  𝛿𝑛!Φ!"# 𝑆!(𝐸) (S11) 

where δn0 is the specific birefringence of cellulose nanocrystals in that solvent, Φdil their 

volume fraction in the diluted suspension, and S2(E) is the quadrupolar orientational order 

parameter of the rods.  
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In low electric field (i.e. for Δαeff E2 << kBT), S2(E) can be expanded to its first order term as 

the measured birefringence can be written as: 

𝑆! 𝐸 = !!!""!!

!"!!!
 (S12) 

with Δαeff = Δαi + µp
2/kBT defined here as the effective anisotropic CNC polarizability 

containing the sum of any induced and permanent effective components.  

Because here Δαeff is an effective anisotropic polarizability of the CNC volume along their 

long axis, the anisotropic susceptibility Δχ!"!# of the suspension containing locally aligned 

rods can be simply obtained using the following expression: 

Δχ!"!# =
!!!""
!
Φ (S13) 

with V being the CNC individual volume and Φ the CNC volume fraction in the investigated 

anisotropic phase. Combining the previous expression for Ec, one can finally get an 

expression for the twist energy density K22 of the cholesteric phase: 

𝐾!! =  !!!
!!

! !
!!"#

!"
!!!!!!!

! !!(!)
! !!

 (S14) 

where the slope of Δn(E) vs. E2 is introduced.  

E. Comparison of CNC liquid crystalline properties with fd-virus suspensions 

The pitch p, the twist energy K22 and the twisting power Kt are compared to those of 

cholesteric aqueous suspension of fd-virus extracted from Dogic et al.[4]. For the sake of 

comparison, the data in Figure S5 are reported using rather the volume fraction Φ obtained 

using the Equation S4.  
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Figure S5. Comparison of the pitch p, the twist energy K22 and the twisting power Kt in 

function of the volume fraction Φ, for our system and for fd-virus suspension in 13 mM and 

68 mM, according to Dogic et al.[4] 
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F. Sample relaxation under electric field fast annealing (i.e. abrupt field removal) 

F.1. Fast annealing relaxation process monitored by laser diffraction 

Here, laser diffraction and has been recorded for an abrupt interruption of the electric field, as 

illustrated on Figure S6 with laser diffraction relaxation on sample A-1.  

 

Figure S6. Laser diffraction sequence observed on sample A-1 after abrupt removal of a 

strong electric field (Et<0 = 660 V/cm). After a transient anisotropic pattern, a diffraction ring 

appeared accounting for cholesteric domains with randomized orientation. Note the timescale 

in seconds measured from the electric field removal. 

 

The unusual diffraction pattern suggests a transient anisotropic microphase separation along 

CNC long direction (i.e., along the E direction) followed by a relaxation towards a uniform 

diffraction ring characteristic of a disoriented polycrystalline cholesterics. One can note that 



     

 34 

the diffraction ring after 2 minutes is not as sharp as in other measurements as it has not yet 

reached the final relaxed state (usually about 10-15 min.).  

F.2. Fast annealing relaxation process influence on sample iridescence 

The iridescent aspect of this sample was imaged prior and after the electric field treatment and 

is reported on Figure S7. One can see that the sample iridescence was directional at low 

electric field before this high electric field treatment; the iridescence vanishes at high electric 

fields, and is finally restored after the electric field has been interrupted. However, the 

restored iridescence lost its directionality and both light-from-top and light-from-side 

geometries produce iridescent colors. Note that the samples produced with this fast annealing 

treatment are still macroscopically inhomogeneous.  

 

Figure S7. Iridescence of the sample A-1 as observed in two incident light configurations: 

either aligned (top) or perpendicular (side) with the initial cholesteric axis h. This is compared 
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(a) prior, (b) during and (c) after application of a strong electric field in an ON-OFF cycle, 

i.e., where the electric field is applied above the Ec threshold, and quickly suppressed (abrupt 

field removal). One can see that the initially oriented cholesteric sample (iridescence 

observable only with light from top) turns transparent when a strong field is applied, and its 

iridescence is restored when the field is suddenly removed. The iridescence is visible in both 

light configurations, indicating a randomized orientation of the cholesteric domains.  

F.3. Additional notes concerning the figures S6-S7 

Cholesterics can be considered as one-dimensional Bragg crystals, i.e. the diffraction occurs 

only along the vectorial direction kd contained in the plane defined by the incident light beam 

ki and the helix axis h of the diffracting cholesteric domain. At thermodynamics equilibrium, 

the pitch p in the suspension is fixed but the orientation of the domains is not, and leads to 

polydomain samples of randomized domain orientation: this explains why the diffraction 

pattern produces diffraction peaks that merge as a ring of defined diameter (related to the 

uniform pitch) but undefined angle (leading to a diffraction ring). The same is true for the 

iridescent observation: if a light source is placed in a specific corner of the background of the 

sample, the incident light angle theta will define the observed iridescent color, while its 

azimutal angle ψ will only select the orientation of the domains that contributes to the 

observed diffraction.  

The initially aligned sample (Figure S7, 110 V/cm) contains mostly oriented domains, and as 

a result appears iridescent only when the domain helix axes h are within the plane defined by 

the incident light beam ki and the iridescence viewing direction kd. When a strong field is 

applied (Figure S7, 875 V/cm), the cholesteric is unwound and no iridescence is observed. 

After the sudden field removal (fast relaxation treatment), the cholesteric suddenly rewinds 

into many small cholesteric domains of randomized orientation and the resulting iridescence 
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can then be observed regardless of the azimutal angle ψ of the incident light (Figure S7, 

0 V/cm).  

G. Sample relaxation under of electric field slow annealing  

The sample relaxation under electric field slow annealing was monitored with laser 

diffraction, as shown on Figure S8 from sample C-7.  

 

Figure S8. Laser diffraction pattern sequence monitoring the evolution of the cholesteric 

structure as the field is progressively increased and decreased: starting from an initially 

disoriented cholesteric sample, the diffraction pattern indicates alignment of the cholesteric, 

then pitch increase until complete cholesteric unwinding when the field is maximum, 

followed by the winding of the cholesteric back to its original value, but maintaining the 

cholesteric orientation even when the field is fully removed.  
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The complete melting of the cholesteric structure is quickly obtained at fields about ~50% 

higher than the critical field Ec, and after slow field annealing, the pitch evolution is 

reproducible and shows little hysteresis (see Figure S9 on sample C-3).  

 

Figure S9. Measure of the cholesteric pitch hysteresis curve under the first electric field 

exposition (“up”) and slowly back to zero (“down”), showing good agreement with the 

corresponding fit. On the raw data used to derive the curve “up”, the diffraction peaks become 

very broad and poorly defined above the critical field Ec until complete peak disappearance. 

The pitch under field increase and decrease displayed little hysteresis for E < Ec and the 

“down” curve was used to fit the model to the data.  
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H. Transmission Electron Microscopy (TEM) of the individual CNCs used  

 

Figure S10. Transmission Electron Microscopy of a CNC suspension. The CNCs were 

imaged from the aqueous suspension, prior to their transfer into the apolar solvent, as 

described in the experimental section.  
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