Hanen Hamdi, ${ }^{1}$ Ekhard K. H. Salje, ${ }^{2}$ Philippe Ghosez, ${ }^{1}$ and Eric Bousquet ${ }^{1}$
${ }^{1}$ Theoretical Materials Physics, Q-MAT, CESAM, Université de Liège, B-4000 Sart Tilman, Belgium
${ }^{2}$ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, England, United Kingdom
(Received 2 August 2016; published xxxxxx)

Abstract

Using first-principles calculations, we analyze the structural properties of tungsten trioxide WO_{3}. Our calculations rely on density functional theory and the use of the B1-WC hybrid functional, which provides very good agreement with experimental data. We show that the hypothetical high-symmetry cubic reference structure combines several ferroelectric and antiferrodistortive (antipolar cation motions, rotations, and tilts of oxygen octahedra) structural instabilities. Although the ferroelectric instability is the largest, the instability related to antipolar W motions combines with those associated to oxygen rotations and tilts to produce the biggest energy reduction, yielding a $P 2_{1} / c$ ground state. This nonpolar $P 2_{1} / c$ phase is only different from the experimentally reported $P c$ ground state by the absence of a very tiny additional ferroelectric distortion. The calculations performed on a stoichiometric compound so suggest that the low-temperature phase of WO_{3} is not intrinsically ferroelectric and that the experimentally observed ferroelectric character might arise from extrinsic defects such as oxygen vacancies. Independently, we also identify never observed $R 3 m$ and $R 3 c$ ferroelectric metastable phases with large polarizations and low energies close to the $P 2_{1} / c$ ground state, which makes WO_{3} a potential antiferroelectric material. The relative stability of various phases is discussed in terms of the anharmonic couplings between different structural distortions, highlighting a very complex interplay.

DOI: 10.1103/PhysRevB.00.005100

I. INTRODUCTION

Tungsten trioxide, WO_{3}, has been extensively studied due to its very attractive and rich properties for technological applications. WO_{3} and its derivatives $\mathrm{H}_{x} \mathrm{WO}_{3}$ and WO_{3-x} are electrochromic [1-6], thermochromic [7,8], and superconducting [$3,8-14]$. It has been envisaged that WO_{3} may become one of the best materials for electrochromic applications such as in energy-efficient windows, smart glasses, antiglare automobile rear-view mirrors, sunroofs, displays, or even tunable photonic crystals [15] and to reduce photocorrosion [16]. The wide variety of the underlying electronic instabilities for these properties is mirrored by a multitude of related structural instabilities, which have been investigated ever since 1975 [17,18] and refined later [19-24].

All known WO_{3} phases are characterized by very large distortions of the archetypal perovskite structure so that even the notion of octahedra tilts is to be taken with some caution. The WO_{6} octahedra are so largely distorted that the variance of W-O distances in any observed structure is far greater than in most other known perovskite structures [25-29]. In this paper we make the fundamental connection between the electronic and structural structure properties of WO_{3} and show that most, if not all, structural instabilities can be derived from a careful analysis of its intrinsic cubic phonon instabilities, despite these large deformation amplitudes.

The structural properties can be summarized as follows: WO_{3} shows no proper melt; surface melting of crystalline material occurs at 1746 K . Crystal growth proceeds typically by sublimation and gas transport at temperatures below 1400 K . At the highest temperatures the structure is tetragonal (space group $P 4 / \mathrm{nmm}$) with strong antiferrodistortive cation movements so that the WO_{6} octahedra are strongly distorted [30] in an antipolar pattern. Additional rotational octahedral distortions condense in addition to the initial tetragonal displacements when lowering the temperature. They
further reduce the symmetry from tetragonal to orthorhombic, ${ }_{57}$ monoclinic, triclinic, and finally to a second monoclinic phase. ${ }_{58}$ A structural sequence, which contains phases stabilized by 59 temperature, is given in Fig. 1. A monoclinic phase $\left(P 2_{1} / n\right) 60$ [21] and a triclinic phase $P \overline{1}$ exist at room temperature 61 [25,26]. At higher temperatures, Vogt et al. [22] and Locherer 62 et al. [19] concluded a transition from Pbcn to the $P 4 / n c c{ }_{63}$ phase and Howard et al. [23] observed an intermediate $P 2_{1} / c{ }_{64}$ phase. Lochereret al. [19] and Woodward et al. [26] found 65 an additional transition from $P 4 / n c c$ to $P 4 / n m m$ at 980 to 66 1200 K. Below room temperature, Salje et al. [20] reported 67 a transition from the triclinic $P \overline{1}$ phase to a polar phase $(P c){ }_{68}$ with no further transitions down to 5 K .
WO_{3} occurs (almost) always as oxygen deficient $\mathrm{WO}_{3-x} 70$ with a metal-insulator transition to a metallic phase for high ${ }_{71}$ concentrations of oxygen vacancies or doping with alkali 72 metals. Superconductivity occurs in the metallic phase [9] ${ }_{73}$ even if the reduced regions are restricted to nanoscale twin 74 boundaries. Bulk superconductivity in WO_{3-x} was found 75 in a tetragonal phase with space group $P \overline{4} 2{ }_{1} m$ [10]. ($\mathrm{Bi}-$) ${ }_{76}$ polaronic electron transport is a characteristic property of 77 WO_{3-x} [31-34].

Numerous first-principles studies were performed on $\mathrm{WO}_{3} 79$ in order to characterize its electronic structure (bulk, thin films, 80 and cluster phases [35-41]), the role of oxygen vacancies 81 [42-45], and cation doping [46-53]. In this paper we do not 82 only focus on the electronic structure but also extensively 83 study the structural stabilities and metastabilities of the 84 various phases. We show that the hybrid functional B1-WC 8 is preferable for the study of the electronic and structural 8 properties of WO_{3} over previous approaches. In the first ${ }_{87}$ section we check the validity of the B1-WC functional against ${ }_{88}$ six known crystallographic phases. The sole disagreement ${ }_{8}$ exists for the crystallographic ε phase $(P c)$, which yields 90 a higher symmetric $P 2_{1} / c$ structure. In the second section 9 we analyze metastable phases starting from the phonon 9

FIG. 1. Schematic summary of the temperature phase diagram WO_{3} as reported by three main experimental sources (Vogt et al. from Ref. [22], Locherer et al. from Ref. [21], and Howard et al. from Ref. [23].
dispersions of the hypothetic cubic phase, identifying the main phonon instabilities. We then condense various possible combinations of these unstable modes in order to reproduce all experimentally observed structures. This procedure also reveals two new polar phases that are close in energy to the ground-state.

II. COMPUTATIONAL DETAILS

Our first-principles calculations have been performed in the context of density functional theory, using the B1-WC hybrid functional [54] as implemented in the CRYSTAL code [55]. We have used the all-electron double- ζ basis sets for the oxygen atoms and small core Detlev Figgen pseudopotentials [56], associated with double- ζ valence basis sets for tungsten. We performed full structural relaxations with a convergence criteria on the root-mean square of the gradient and displacements smaller than 5×10^{-4} hartree/bohr and 5×10^{-4} bohrs, respectively. The electronic self-consistent calculations were converged until the difference of the total energy was smaller than 10^{-9} hartree. The phonon frequencies and Born effective charges were computed using frozen phonon numerical differences $[57,58]$ and the electric polarization through the Berry phase technique [59]. The integration in the Brillouin zone has been performed with a $8 \times 8 \times 8$ grid of k points for the cubic unit cell and a $4 \times 4 \times 4$ grid for cells doubled in the three directions with respect to the cubic one.

Our choice of a hybrid functional is in line with the results of Wang et al. [44], who have shown that hybrid functionals, and especially HSE06, provide good description of the structural and electronic properties of WO_{3}. In our study, we selected the B1-WC functional that was specially designed for perovskite oxides [54] and was already successfully applied to a variety of other compounds [60-63].

III. ANALYSIS OF THE EXPERIMENTAL PHASES

Several density functional theory (DFT) studies of WO_{3} have been performed previously [37,38,41-44,46-52,64] essentially focusing on the main and most common phases and on the electronic structure analysis with and without oxygen vacancies. A detailed analysis of the complex structural phase diagram of WO_{3} is thus missing while a microscopic
knowledge of the origin of these different phases would ${ }_{132}$ be extremely valuable to understand the unique properties ${ }^{133}$ of WO_{3}.

134
In this section we start by characterizing the different phases ${ }_{135}$ of WO_{3} observed experimentally to validate our approach and ${ }^{136}$ we will discuss the possible origin of the $P c$ phase. We will ${ }^{137}$ also analyze the electronic structure of these phases and we will ${ }_{138}$ discuss how the B1-WC compares with the previous studies. 139 Further analysis of these phases and other never observed 140 metastable phases (comparison of relative internal energies, 141 symmetry mode analysis of the distortions, coupling of modes) ${ }_{142}$ will be reported in Sec. IV B).

A. Structural and crystallographic analysis

In Table I we compare our calculated crystallographic data ${ }_{145}$ of the $P 4 / n m m, P 4 / n c c, P b c n, P 2_{1} / n, P \overline{1}$, and $P 2_{1} / c{ }^{146}$ phases against the experimental measurements. Because the ${ }_{147}$ $P 2_{1} / c$ phase is not observed experimentally at low tempera- ${ }_{148}$ ture, we compare it with the closely related experimental Pc ${ }^{149}$ phase.

Our calculations of the $P 4 / \mathrm{nmm}$ phase are in very good ${ }_{151}$ agreement with the observed cell parameters and the atomic ${ }_{152}$ positions. The $P 4 / n m m$ phase is antipolar and consists ${ }_{153}$ of highly distorted WO_{3} octahedra where the W-O bonds ${ }_{154}$ dimerize in opposite direction along the [110] perovskite ${ }_{155}$ direction. This W-O dimerization forms local dipole moments ${ }_{156}$ that are aligned along the [001] direction and antialigned along ${ }^{157}$ the [110] direction, so that the total dipole moment cancels. ${ }_{158}$ The crystallographic unit cell is elongated along the [001] 159 direction and compressed along the [100] and [010] directions. 160 This antipolar distortion remains present in all the phases ${ }_{161}$ discussed below in this section.

The $P 4 / n c c$ phase shows additional octahedra rotations ${ }_{163}$ around the z axis $\left(a^{0} a^{0} c^{-}\right.$in the Glazer notation [65]), 164 which induces a cell doubling along the [001] direction. The ${ }_{165}$ calculated c cell parameter and the z component of the atomic ${ }_{166}$ positions are in good agreement with experiments while the 167 in-plane displacements are less well reproduced (Table I). ${ }_{168}$ The calculated a and b cell parameters are smaller than in 169 experiments by $0.1 \AA$ and the deviation from the tetragonal 170 O_{2} position is about two times larger than observed. We 171 clearly overestimate the amplitude of the $a^{0} a^{0} c^{-}$distortion ${ }_{172}$ (rotation angle of 13° instead of 7°; see also Fig. 7 further ${ }_{173}$ discussed in Sec. IV B). Although this could be partly intrinsic 174 to the functional [66], it is worth noticing that our calculations 175 ignore thermal effects while experiments were performed at ${ }_{176}$ high temperatures at which distortions might be reduced [67]. 177 Although such a reduction does not seem to appear for the ${ }_{178}$ antipolar motions in the $P 4 / n m m$ and $P 4 / n c c$ phases, it 179 might be more substantial for the rotations and we observe 180 that the computed amplitudes of out-of-phase rotations are 181 in much better agreement with experimental data for the ${ }_{182}$ low-temperature phases (see further discussed in Sec. IV B). ${ }_{183}$

The orthorhombic Pbcn phase can be characterized by 184 an additional in-phase octahedra rotation about the crystal- ${ }_{185}$ lographic y axis, yielding a rotation pattern $a^{0} b^{+} c^{-}$. We ${ }_{186}$ find a similar overestimate of the octahedra distortions as 187 for the $P 4 / n c c$ phase while the calculated cell parameters ${ }_{188}$ are underestimated with respect to experiments. We note that

TABLE I. Calculated lattice parameters in \AA and Wyckoff positions of distorted WO_{3} phases fully relaxed with the B1-WC functional. For each phase, we specify the space group and the experimental parameters are reported for comparison.

P4/nmm	Present			Exp. [23]		
	a	b	c	a	b	c
	5.299	5.299	3.930	5.297	5.297	3.929
	x	y	z	x	y	z
W_{1} (2c)	1/4	1/4	-0.0640	1/4	1/4	-0.0660
$\mathrm{O}_{1}(2 \mathrm{c})$	1/4	1/4	0.4900	1/4	1/4	0.4900
$\mathrm{O}_{2}(4 \mathrm{~d})$	0	0	0	0	0	0
P4/ncc	Present			Exp. [23]		
	a	b	c	a	b	c
	5.168	5.168	7.870	5.278	5.278	7.849
	x	y	z	x	y	z
$\mathrm{W}_{1}(4 \mathrm{c})$	1/4	1/4	0.2849	1/4	1/4	0.2832
$\mathrm{O}_{1}(4 \mathrm{c})$	1/4	1/4	0.0057	1/4	1/4	0.0030
$\mathrm{O}_{2}(8 \mathrm{f})$	0.0570	-0.0570	1/4	0.0250	-0.0250	1/4
Pbcn	Present			Exp. [22]		
	a	b	${ }^{\text {c }}$	${ }^{\text {a }}$	b	${ }^{c}$
	7.284	7.528	7.684	7.333	7.573	7.740
	x	y	z	x	y	z
W_{1} (3d)	0.2510	0.0260	0.2800	0.2520	0.0290	0.2830
$\mathrm{O}_{1}(3 \mathrm{~d})$	-0.0010	0.0430	0.2150	-0.0020	0.0320	0.2210
$\mathrm{O}_{2}(3 \mathrm{~d})$	0.2930	0.2590	0.2590	0.2830	0.2690	0.2590
$\mathrm{O}_{3}(3 \mathrm{~d})$	0.2870	0.0100	0.0060	0.2800	0.0130	0.0020
$P 2_{1} / n$	Present			Exp. [23]		
	a	b	c	a	b	c
	7.359	7.486	7.544	7.303	7.538	7.692
	α	β	γ	α	β	γ
	90°	91.311°	90°	90°	90.855°	90°
	x	y	z	x	y	z
W_{1} (4e)	0.2720	0.0074	0.2790	0.2528	0.0260	0.2855
W_{2} (4e)	0.2270	0.0133	0.7750	0.2497	0.0344	0.7805
$\mathrm{O}_{1}(4 \mathrm{e})$	0.0043	0.0410	0.2165	0.0003	0.0337	0.2122
$\mathrm{O}_{2}(4 \mathrm{e})$	-0.0056	0.4576	0.2170	-0.0011	0.4632	0.2177
$\mathrm{O}_{3}(4 \mathrm{e})$	0.2883	0.2534	0.2924	0.2843	0.2598	0.2852
$\mathrm{O}_{4}(4 \mathrm{e})$	0.2029	0.2530	0.7198	0.2080	0.2588	0.7332
$\mathrm{O}_{5}(4 \mathrm{e})$	0.2795	0.0385	0.0059	0.2856	0.0410	0.0041
$\mathrm{O}_{6}(4 \mathrm{e})$	0.2790	0.4630	-0.0047	0.2841	0.4868	-0.0056

$P \overline{1}$	Present			Exp. [25]		
	a	b	c	a	b	c
	7.334	7.446	7.612	7.309	7.522	7.678
	α	β	γ	α	β	γ
	88.652°	91.022°	91.012°	88.810°	90.920°	90.930°
	x	y	z	x	y	z
$\mathrm{~W}_{1}(2 \mathrm{i})$	0.2603	0.0172	0.2826	0.2566	0.0259	0.2850
$\mathrm{~W}_{2}(2 \mathrm{i})$	0.2540	0.5210	0.2183	0.2502	0.5280	0.2158
$\mathrm{~W}_{3}(2 \mathrm{i})$	0.2397	0.0228	0.7793	0.2438	0.0313	0.7817
$\mathrm{~W}_{4}(2 \mathrm{i})$	0.2456	0.5268	0.7216	0.2499	0.5338	0.7190
$\mathrm{O}_{1}(2 \mathrm{i})$	0.0015	0.0395	0.2074	0.0007	0.0386	0.2100
$\mathrm{O}_{2}(2 \mathrm{i})$	0.5022	0.5406	0.2115	0.5038	0.5361	0.2181
$\mathrm{O}_{3}(2 \mathrm{i})$	0.0026	0.4582	0.2897	0.0076	0.4660	0.2884
$\mathrm{O}_{4}(2 \mathrm{i})$	0.5012	-0.0398	0.2906	0.4972	-0.0362	0.2878
$\mathrm{O}_{5}(2 \mathrm{i})$	0.2892	0.2571	0.2836	0.2851	0.2574	0.2870
$\mathrm{O}_{6}(2 \mathrm{i})$	0.2081	0.7575	0.2174	0.2204	0.7630	0.2223
$\mathrm{O}_{7}(2 \mathrm{i})$	0.2098	0.2569	0.7232	0.2186	0.2627	0.7258

TABLE I. (Continued.)

$P \overline{1}$		Present		Exp. [25]		
$\mathrm{O}_{8}(2 \mathrm{i})$	0.2927	0.7575	0.7772	0.2840	0.7583	0.7679
$\mathrm{O}_{9}(2 \mathrm{i})$	0.2911	0.0383	0.0060	0.2943	0.0422	-0.0002
$\mathrm{O}_{1} 0$ (2i)	0.2889	0.5389	0.4941	0.2971	0.5446	0.4982
$\mathrm{O}_{1} 1$ (2i)	0.2108	0.4767	-0.0061	0.2096	0.4820	-0.0072
$\mathrm{O}_{1} 2$ (2i)	0.2090	-0.0242	0.5063	0.2088	0.9830	0.5051
$P 2_{1} / \mathrm{c}$	Present			Exp. (Pc) [20]		
	a	b	c	a	b	c
	5.263	5.150	7.618	5.278	5.156	7.663
	α	β	γ	α	β	γ
	90°	91.787°	90°	90°	91.759°	90°
	x	y	z	x	y	z
$\mathrm{W}_{1}(2 \mathrm{a})$	-0.0093	-0.0173	0.6843	-0.0099	-0.0200	0.6743
$\mathrm{W}_{2}(2 \mathrm{a})$	0.5011	0.4827	0.7530	0.5000	0.4710	0.7500
$\mathrm{O}_{1}(2 \mathrm{a})$	0.4975	0.5769	-0.0245	0.4920	0.5780	-0.0230
$\mathrm{O}_{2}(2 \mathrm{a})$	0.2087	0.2891	0.1794	0.2130	0.2890	0.1830
$\mathrm{O}_{3}(2 \mathrm{a})$	0.2830	0.7891	0.2580	0.2830	0.7860	0.2590
$\mathrm{O}_{4}(2 \mathrm{a})$	0.6999	0.2090	0.1795	0.7050	0.2070	0.1820
O_{5} (2a)	0.7918	0.7090	0.2579	0.7960	0.7110	0.2610
$\mathrm{O}_{6}(2 \mathrm{a})$	-0.0058	0.0769	0.4630	-0.0058	0.0730	0.4616

the antipolar distortions along the z axis compare well with 190 experiments for $P 4 / n m m, P 4 / n c c$, and $P b c n$.

191
The $P 2_{1} / n$ structure still contains an additional octahedra 192 rotation around the crystallographic x axis, yielding a rotation 193 pattern $a^{-} b^{+} c^{-}$. The calculated cell volume is slightly too 194 small ($+0.7,-0.7$, and -1.9% for a, b and c cell parameters ${ }_{195}$ respectively) and the oxygen motions related to the octahedra 196 tilt are overestimated (Table I).

The $P \overline{1}$ phase is similar to the $P 2_{1} / n$ phase if one replaces ${ }_{198}$ the in-phase rotation by an out-of-phase rotation, yielding a 199 rotation pattern $a^{-} b^{-} c^{-}$. The distortions are anisotropic in all 200 three directions, which causes the cell to be triclinic with the 201 angles α, β, and γ close to 90°. The calculated a, b, and $c{ }^{202}$ cell parameters deviate from experiments by $+0.4,-1.1$, and ${ }^{203}$ -0.8%, respectively.

The $P 2_{1} / c$ differs from the $P \overline{1}$ by the fact that two ${ }_{205}$ out-of-phase rotations have the same amplitudes, yielding a ${ }_{206}$ rotation pattern $a^{-} a^{-} c^{-}$. This phase was never reported at ${ }_{207}$ low temperatures but is closely related to the experimental $\varepsilon{ }_{208}^{208}$ $(P c)$ phase, which only differs from the $P 2_{1} / c$ phase by an 209 additional polar distortion along the c axis. While relaxing ${ }_{210}$ the low-temperature $P c$ phase, we observed that the system 211 always comes back in to the higher $P 2_{1} / c$ symmetry. Wijs et al. ${ }^{212}$ using local-density approximation and generalized gradient ${ }^{213}$ approximation exchange-correlation functionals [38] found a 214 similar effect. To further assess the dynamical stability of the ${ }_{215}$ $P 2_{1} / c$ phase with respect to a potential $P c$ ground state, we ${ }_{216}$ computed the zone-center phonons and did not observe any ${ }^{217}$ unstable mode: the lowest polar mode has a frequency of 218 $158 \mathrm{~cm}^{-1}$ and is far from being unstable. We also checked ${ }_{219}$ whether a soft polar mode can be induced by increasing the 220 cell volume but did not observe any possibility to generate ${ }^{221}$ a polar instability. From our calculations, the ground-state ${ }_{222}$ structure of intrinsic WO_{3} corresponds therefore to a $P 2_{1} / c{ }^{223}$ phase. Following the argument by Wijs et al. [38], we suggest ${ }^{224}$

TABLE II. Electronic band gap (in eV) of different phases of WO_{3} as calculated in the present work with the B1-WC hybrid functional. We compare our results with previous hybrid functional calculations (PBE0, HSE06, and B3LYP), $G W$ calculations, and experimental measurements.

Ref	B1-WC	$G W$	PBE0 PBEO	HSE06	B3LYB	Exp1	Exp2	Exp3
Cubic	1.50		2.25	1.67	1.89			
P4/mbm	1.27							
$14 / \mathrm{mcm}$	1.48							
P4/nmm	2.12		2.28	1.71	1.85			1.75
P4/ncc	2.15							
Pcnb	2.65		3.35	2.57	2.89		3.21	2.35
$P 2_{1} / n$	2.85	2.90	3.67	2.80	3.13	2.75	3.25	2.60
$P \overline{1}$	2.98	3.00	3.67	2.94	3.17			
$\mathrm{P} 2_{1} / \mathrm{c}$	3.28	3.30						

that the polarity in the experimental $\varepsilon(P c)$ phase may be stabilized by the presence of oxygen vacancies or by another extrinsic parameter.

In Table I we compare our calculated atomic positions and cell parameters of the $P 2_{1} / c$ phase with the experimentally determined $P c$ phase. The deviations are surprisingly small for lattice parameters $(+0.2,-0.2$, and -0.5% for a, b, and $c)$ and even smaller for the atomic positions. Comparing the structural parameters obtained with other hybrid functionals PBE0, B3LYP, and HSE06 reported by Wang et al. [42], we find close agreement with a typical smaller error margin for B1-WC. B1-WC gives a much better agreement for the $P 2_{1} / c$ phase with experimental data than using the three hybrid functionals tested by Wang et al. : HSE06, B3LYP, and PBE0 with errors of $+0.6,+1.3$, and $+0.2 \%$ on $a ;+2.1$, +2.5 , and $+0.6 \%$ on b; and $+0.1,+3.0$, and $+1.7 \%$ on the c parameter. We notice, however, that the B1-WC often underestimates cell parameters while the three other hybrid functionals overestimate the cell parameters of WO_{3}.

B. Electronic structure

In Table II we compare the calculated electronic structures for the hypothetical cubic, $P 4 / n m m, P 4 / n c c, P b c n, P 2_{1} / n$, $P \overline{1}$, and $P 2_{1} / c$ phases and compare them with the experiments and previous DFT calculations using PBE0, HSE06, and B3LYP hybrid functionals and $G W$. For the $P 2_{1} / n$ and $P \overline{1}$ phases, experimental data coincide with the B1-WC band gaps. The B1-WC results are similar to those obtained with the HSE06 functional while the PBE0 gives a slightly smaller gap energy and B3LYP larger values. The B1-WC band gap is closest to the results of $G W$ calculations, an agreement also observed for the $P 2_{1} / c$ phase.

Comparing the trend of band gaps between the different phases, we find that both the appearance of antipolar motions in the $P 4 / \mathrm{nmm}$ phase and out-of-phase rotations in the $I 4 / \mathrm{mcm}$ significantly open the band gap with respect to the cubic phase. Only the in-phase rotations in the $P 4 / \mathrm{mbm}$ phase seem to play a more minor role and slightly close the band gap. The calculated electronic gaps are in reasonable agreement with the experimental values for the three low-temperature structures:

FIG. 2. Calculated density of states of the $P \overline{1}, P 2_{1} / n$, and $P 2_{1} / c$ phases with the B1-WC functional.
$\mathrm{Eg}=2.85 \mathrm{eV}$ for the room-temperature monoclinic phase ${ }^{264}$ $P 2_{1} / n, \mathrm{Eg}=2.98 \mathrm{eV}$ for the triclinic phase $P \overline{1}$, and $\mathrm{Eg}={ }^{265}$ 3.28 eV for the monoclinic phase $P 2_{1} / c$. Figure 2 shows the ${ }^{266}$ density of states of these three phases to demonstrate their ${ }^{267}$ similarity.

268

IV. ORIGIN OF THE WO 3 PHASES

269
The results presented so far give us confidence that ${ }_{270}$ the B1-WC functional reproduces well the experimental 271 measurements so that we can now focus on the structural 272 instabilities of the hypothetical $\operatorname{Pm} \overline{3} m$ cubic parent phase ${ }^{273}$ and explain how their condensation gives rise to the various ${ }^{274}$ known phases of WO_{3}. This also allows us to identify novel ${ }_{275}$ ferroelectric metastable phases. In each case, we analyze ${ }_{276}$ the crystallographic structure through a decomposition of the 277 distortions with respect to the cubic parent phase in terms of ${ }_{278}$ symmetry-adapted modes.

A. Unstable modes of the cubic reference

280
Figure 3 shows the calculated phonon dispersion curves 281 of hypothetical cubic WO_{3}. Two branches of instabilities 282 (imaginary frequencies plotted as negative numbers in Fig. 3) ${ }_{283}$ coexist in the Brillouin zone.

284
The first unstable branch has its largest imaginary value ${ }_{285}$ at Γ. The Γ unstable mode has the irreducible representation ${ }^{286}$ (irrep) Γ_{4}^{-}and corresponds to a polar mode. It suggests that the ${ }_{287}$ cubic phase of WO_{3} is mostly unstable via this polar instability ${ }_{288}$ and might be ferroelectric, which we will see later is not exactly ${ }^{289}$ the case. The polar instability at Γ propagates toward the $\mathrm{X}{ }_{290}$ and M points with weak dispersion while it strongly disperses 291 towards the R point. Aside from Γ, the modes of this branch are 292 antipolar. The dispersion of this unstable branch is very similar ${ }^{293}$ to the one reported in BaTiO_{3} and corresponds to a ferroelectric ${ }_{294}$ instability requiring a chainlike correlation of displacements 295 in real space [70].

The second branch of unstable modes appears between M ${ }_{297}$ and R points with smaller amplitudes and a nearly absent ${ }_{298}$ dispersion between these two points. The labels of the M 299 and R point unstable phonon modes are M_{3}^{+}and R_{4}^{+}and 300

FIG. 3. Phonon dispersion curves of cubic WO_{3} (negative frequencies refer to imaginary frequencies, i.e., to unstable modes). The coordinates of the high-symmetry points are as follows: $\Gamma(0,0,0)$, $\mathrm{X}\left(\frac{1}{2}, 0,0\right), \mathrm{M}\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, and $\mathrm{R}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Thanks to the band2eps postprocessing script of ABINIT [69], the color of the bands is assigned to each point through the contribution of each atom type to the corresponding eigenvector: red for the tungsten atom and blue for the oxygens.
they correspond to rotations of the oxygen octahedra. The dispersion of this branch is comparable to what is observed for similar modes in SrTiO_{3} or PbTiO_{3} and linked to a planar character of the correlations of the atomic displacements in real space [70].

Figure 4 represents a schematic view of the eigenvectors related to the main instabilities of cubic WO_{3}. The polar mode at $\Gamma\left(\Gamma_{4}^{-}, 373 \mathrm{icm}^{-1}\right)$ shows motion of W against the O atoms, which is the source of a large electrical polarization. The antipolar modes at the $\mathrm{X}\left(\mathrm{X}_{5}^{-}, 256 i \mathrm{~cm}^{-1}\right)$ and M points $\left(\mathrm{M}_{3}^{-}, 147 i \mathrm{~cm}^{-1}\right)$ are associated to opposite displacements from unit cell to unit cell along the [100] and [110] directions, respectively [71]. The $\mathrm{M}_{3}^{+}\left(62 \mathrm{i} \mathrm{cm}{ }^{-1}\right)$ and $\mathrm{R}_{4}^{+}\left(69 \mathrm{i} \mathrm{cm}^{-1}\right)$ unstable modes correspond rotations of the oxygen octahedra about the central W atom with consecutive octahedra along the rotation direction moving, respectively, in the same or opposite directions. Using the Glazer notation [65], the M_{3}^{+} mode corresponds to $a^{0} a^{0} a^{+}$and the R_{4}^{+}mode corresponds to $a^{0} a^{0} a^{-}$.

B. Condensation and coupling of modes

Starting from the previous unstable modes, we now investigate how their individual and combined condensations in the hypothetical cubic structure give rise to various phases. We then compare their energies and analyze the amplitudes of distortions.

1. Condensation of modes of the unstable polar branch

We first consider the condensation of unstable $\Gamma_{4}^{-}, \mathrm{X}_{5}^{-}$, and M_{3}^{-}modes. Figure 5 shows the energy gain of the corresponding relaxed phase with respect to the cubic phase. We tested several condensation schemes: (i) condensation of the polar Γ_{4}^{-}mode along one ($P 4 \mathrm{~mm}$), two (Amm 2), and three ($R 3 m$) directions; (ii) condensation of the X_{5}^{-}along one ($P m m a$) and two ($P 2_{1} / m$) directions; and (iii) condensation of the M_{3}^{-}mode along one direction ($\mathrm{P} 4 / \mathrm{nmm}$).

FIG. 4. Schematic view of the most important modes contributing to the distortions of WO_{3}. Small red spheres represent the oxygens, and large blue spheres represent the tungsten atoms. All the modes are unstable but the X_{5}^{+}mode, which is discussed in Sec. IV B 4.

We observe that the energy gain of the polar instabilities ${ }_{335}$ is large and that the Γ_{4}^{-}polar mode drives a larger gain of ${ }^{336}$ energy (red columns in Fig. 5) than the antipolar X_{5}^{-}and $\mathrm{M}_{3}^{-}{ }^{337}$ modes (green columns in Fig. 5). The space group related to ${ }_{338}$ the condensation of the M_{3}^{-}mode corresponds to the high- ${ }^{339}$ temperature phase observed experimentally ($\mathrm{P} 4 / \mathrm{nmm}$). ${ }_{340}$

Condensation of the Γ_{4}^{-}mode along two and three direc- ${ }_{341}$ tions produces energy gains larger than its condensation in a ${ }_{342}$ single direction so that the Γ_{4}^{-}mode alone will drive the system ${ }^{343}$ polar along the [111] direction with an energy difference ${ }_{344}$ between the $A m m 2$ and $R 3 m$ phases of 6 meV . We calculated ${ }_{345}$ the polarization amplitude in the three $P 4 \mathrm{~mm}, A m m 2$, and ${ }^{346}$ $R 3 m$ phases using the Berry phase technique and obtain 54, ${ }^{347}$ 69 , and $69 \mu \mathrm{C} \mathrm{cm}^{-2}$. These polarization values are comparable ${ }^{348}$ to those observed in robust ferroelectrics such as PbTiO_{3}. ${ }^{349}$ They can be explained by the opposite motions of W and ${ }_{350}$ O atoms, associated with strongly anomalous Born effective ${ }_{351}$ charges (11.73 e for W and $-8.78 /-1.62$ e for $\mathrm{O}_{\|} / \mathrm{O}_{\perp}$ in ${ }_{352}$ good agreement with previous calculations in Ref. [72]).

FIG. 5. Calculated energy gain (in meV/f.u.) with respect to the cubic phase of different phases of WO_{3}. Red columns are the FE phases arising for the condensation of the polar unstable mode, blue columns are the phases arising from the condensation of the oxygen octahedral rotation unstable modes, green columns are the phases arising from the condensation of antipolar modes, the magenta column represents a phase combining FE and antipolar modes, and cyan columns represent phases combining oxygen octahedral rotations and antipolar modes. For clarity, the exact value of the energy gain is written in each case.

2. Condensation of modes of the oxygen rotation unstable branch

Figure 5 (blue columns) shows the energy gain given by the condensation of the M_{3}^{+}and R_{4}^{+}modes along one direction ($I 4 / \mathrm{mbm}$ and $I 4 / \mathrm{mcm}$), the R_{4}^{+}mode in three directions $(R \overline{3} c)$, and the orthorhombic Pnma phase where the R_{4}^{+}mode is condensed in two directions and the M_{3}^{+} mode in one direction $\left(a^{-} a^{-} c^{+}\right)$. These distortions lower the energy much less than the polar and antipolar motions. This observation is in line with the modest amplitude of the related phonon instabilities: the energy curvatures at the origin are less negative for the octahedral rotations than for the polar motion. Nevertheless the amplitudes of octahedral rotations are 10.7 and 11.7 deg in $I 4 / \mathrm{mbm}$ and $I 4 / \mathrm{mcm}$, respectively. Such large distortions associated to a weak instability highlight relatively small anharmonicities, which might be explained by the absence of the A cation with respect to regular $A B O_{3}$ perovskites [73].

3. Combinations of modes

Beside the $P 4 / \mathrm{nmm}$ phase, none of the previous single irrep mode condensations correspond to observed phases. Thus, we now explore the condensation of combined octahedral rotations and polar/antipolar modes. We depict in Fig. 5 the energy gain given by the joint condensation of polar and oxygen rotation modes along three directions ($R 3 c$, in purple color) and of antipolar and oxygen rotation modes ($P 4 / n c c$, $P b c n, P 2_{1} / n, P 2_{1} / c$, and $P \overline{1}$, in cyan color).

Combining the polar distortion of the low-energy $R 3 m 380$ phase with additional oxygen rotation modes does not further ${ }_{381}$ reduce the energy. Instead, it yields a $R 3 c$ phase slightly 382 higher in energy but with a slightly amplified polarization ${ }^{383}$ of $71 \mu \mathrm{Ccm}^{-2}$ and a slightly reduced oxygen rotation (with ${ }^{384}$ respect to the $R \overline{3} c$). This emphasizes an unusual competition ${ }^{385}$ between these two types of distortions in WO_{3} with respect to ${ }^{386}$ regular perovskite compounds, where in WO_{3} the $R 3 c$ phase ${ }^{387}$ forms a local minimum between the $R \overline{3} c$ and $R 3 m$ phases. ${ }^{388}$

At the opposite, the mixing of the antipolar mode M_{3}^{-}with ${ }_{389}$ oxygen rotation modes can drive larger energy gains so that ${ }_{390}$ the ferroelectric $R 3 m$ phase is not the ground state. This is in 391 agreement with experimental observations where the observed ${ }^{392}$ phases at all temperatures contain antipolar motions. Among 393 investigated phases, the $P 2_{1} / c$ phase appears as the most stable ${ }_{394}$ but only marginally, as we observe that the $P 2_{1} / n, P 2_{1} / c$, ${ }_{395}$ and $P \overline{1}$ phases are all extremely close in energy (energy ${ }_{396}$ gains of 153,155 , and 155 meV , respectively, see Fig. 5). ${ }_{397}$ Consequently, within the precision of our calculations, we 398 cannot unambiguously assess which one is the ground state. ${ }^{399}$ Nevertheless, as discussed in Sec. III A and further exemplified 400 in the next section, the $P 2_{1} / c$ phase is in excellent agreement 401 with the experimental $P c$ ground state, except for a tiny 402 polar distortion. Our calculations highlight that, in fact, the ${ }_{403}$ $P 2_{1} / n$ and $P \overline{1}$ phases observed at higher temperatures are 404 also extremely close in energy.

We further notice that the ferroelectric $R 3 m$ phase, although 406 never observed experimentally, is also relatively close in 407 energy to the ground state (about $11 \mathrm{meV} /$ f.u.). Following 408 Rabe [74], the nonpolar (or eventually weakly polar in the 409 experimental $P c$ phase) ground state of WO_{3} combined 410 with an alternative low-energy ferroelectric phase obtained 411 by polar distortions of the same high-symmetry reference ${ }_{412}$ structure makes it a potential antiferroelectric compound. 413 Indeed, applying an electric field, it might be possible to ${ }_{414}$ open a typical double hysteresis loop from a field-induced ${ }_{415}$ first-order transition from the $P 2_{1} / c$ ground state to the $R 3 m \quad{ }_{416}$ polar phase. Estimating the critical electric field required ${ }_{417}$ to stabilize the $R 3 m$ phase from $\mathcal{E}_{c} \sim \Delta E / \Omega_{0} P_{S}$ [75], 418 where ΔE is the energy difference between the two phases 419 ($11.43 \mathrm{meV} /$ f.u.), P_{s} is the spontaneous polarization of the ${ }_{420}$ polar phase ($69 \mu \mathrm{Ccm}^{-2}$), and Ω_{0} is its unit-cell volume ${ }_{421}$ ($55 \AA$), we get the relatively modest value $\mathcal{E}_{c} \sim 480 \mathrm{kV} / \mathrm{cm}$. ${ }_{422}$ For the polar phase $R 3 c$ we need to apply a greater electric ${ }_{423}$ field $\mathcal{E}_{c} \sim 638 \mathrm{kV} / \mathrm{cm}$ to stabilize this phase. This allows us ${ }_{424}$ to estimate that the critical field has similar value with respect ${ }_{425}$ to other antiferroelectric material, $\mathcal{E}_{c} \sim 470 \mathrm{kV} / \mathrm{cm}$ for $\mathrm{ZrO}_{2}{ }_{426}$ [75] and $\mathcal{E}_{c} \sim 239 \mathrm{kV} / \mathrm{cm}$ for PbZrO_{3} [76]. Although this ${ }_{427}$ might not be easy to check experimentally on real samples ${ }_{428}$ that are typically oxygen deficient and highly conductive, the ${ }_{429}$ calculations reveal that stoichiometric WO_{3} exhibits all the ${ }_{430}$ features of an antiferroelectric compound.

4. Symmetry adapted mode analysis of the distorted phases

To quantify the distortions that appear in the various phases ${ }_{433}$ we project the structural distortions onto symmetry adapted ${ }^{434}$ modes of the cubic phase using AMPLIMODE software [77]. 435 The results in Fig. 6 show the amplitudes of the modes in the ${ }_{436}$ fully relaxed phases from the calculations but nonobserved

FIG. 6. Symmetry adapted mode decomposition of distorted phases of WO_{3} explored in our study but not observed experimentally.
experimentally. In Fig. 7 we show the amplitudes of modes in both the fully relaxed and observed phases, which can be compared.

In the following we discuss the competition or cooperation character of the mode distortions. In perovskite oxides, it is established that the oxygen rotations are in competition with the ferroelectric displacements but less attention has been given to the combinations of other types of mode. Often, this cooperation or competition comes from the biquadratic energy term in the free-energy expansion with respect to two order parameters. In WO_{3}, we observe that the combination between the Γ_{4}^{-}mode and the R_{4}^{+}mode along the [111] direction in the $R 3 c$ phase has the tendency to reduce the amplitude of the oxygen rotations with respect to the $R \overline{3} c$ phase (the R_{4}^{+} mode is 13% smaller in the $R 3 c$ phase than in the $R \overline{3} c$ phase, see Fig. 6) while the polar mode is unaffected. As discussed in the previous section, the combination of the Γ_{4}^{-}and R_{4}^{+} modes forms a local minimum ($R 3 c$ phase) of higher energy than the $R 3 m$ phase. This means that the polar distortions are in competition with the oxygen rotations as reported for perovskite oxides, with the difference that the polar mode amplitude is unaffected and that the $R 3 c$ phase is locally

FIG. 7. Symmetry adapted mode decomposition of distorted phases WO_{3}; comparison between experiments and our calculations with the B1-WC functional are shown.
stable (the system does not relax into the lowest-energy $R 3 m \quad 460$ phase). The strain can also play an important role [78], but 461 when performing the same calculations at fixed cell parameters 462 (fixed to the cubic ones), we find that the $R 3 c$ phase still forms ${ }_{463}$ a local minimum of higher energy than the $R 3 m$ phase. This ${ }_{464}$ unusual energy landscape can come from the marginal gain 465 of energy of the oxygen rotations while large amplitudes of ${ }_{466}$ rotations are present.

On the other hand, the association of the oxygen rotations ${ }_{468}$ with the antipolar \mathbf{M}_{3}^{-}mode is cooperative. When we compare ${ }_{469}$ the amplitude of the R_{4}^{+}and M_{3}^{-}modes of the $P 4 / n m m, 470$ $I 4 / \mathrm{mcm}$, and $P 4 / \mathrm{ncc}$ (Figs. 6 and 7) we find that when both 471 the R_{4}^{+}and M_{3}^{-}modes are present together in the $P 4 / n c c \quad 472$ phase, their amplitude is slightly higher (4% larger) than ${ }^{473}$ when condensed alone ($P 4 / \mathrm{nmm}$ and $I 4 / \mathrm{mcm}$ phases). Their ${ }_{474}$ combination, however, drives a sizable gain of energy: the 475 $P 4 / n c c$ phase is 63 and 126 meV lower in energy than the ${ }_{476}$ $P 4 / \mathrm{nmm}$ and the $I 4 / \mathrm{mcm}$ phases, respectively. This means 477 that the combination of the oxygen rotations with the antipolar 478 M_{3}^{-}mode is much more cooperative than the combination with ${ }_{479}$ the polar mode Γ_{4}^{-}.

The Pbcn phase can be understood as a distorted $P 4 / n c c \quad{ }_{481}$ phase with additional M_{3}^{+}oxygen rotations along [010]. The ${ }_{482}$ resulting tilt pattern is $a^{0} b^{+} c^{-}$with a small energy gain of $2{ }_{483}$ meV with respect to the $P 4 / n c c$ phase and a reduction of mode ${ }_{484}$ amplitudes $\mathrm{M}_{3}^{-}, \mathrm{R}_{4}^{+}$, and M_{3}^{+}(16, 7 , and 22% reduction of the ${ }_{485}$ $\mathrm{M}_{3}^{-}, \mathrm{R}_{4}^{+}$, and M_{3}^{+}modes with respect to the phases where they ${ }_{486}$ are condensed alone, i.e., $P 4 / \mathrm{nmm}, I 4 / \mathrm{mcm}$, and $P 4 / \mathrm{mbm}$, 487 respectively). The M_{3}^{+}mode competes with the R_{4}^{+}and $\mathrm{M}_{3}^{-}{ }_{488}$ modes in the sense their combination reduces their amplitude, 489 but they cooperate to lower the energy of the system.

In the case of the monoclinic $P 2_{1} / n, P 2_{1} / c$, and triclinic 491 $P \overline{1}$ phases, the combination of the M_{3}^{-}mode with several ${ }_{492}$ oxygen rotations $\left(a^{-} b^{+} c^{-}\right.$for $P 2_{1} / n, a^{-} a^{-} c^{-}$for $P 2_{1} / c$, ${ }_{493}$ and $a^{-} b^{-} c^{-}$for $\left.P \overline{1}\right)$ lowers the energy of the crystal and with 494 an increase of the mode amplitude with respect to the phases 495 where these modes are condensed independently. For example, 496 the antipolar M_{3}^{-}mode has his amplitude increased by $11,10,497$ and 19% in the $P 2_{1} / n, P 2_{1} / c$, and $P \overline{1}$ phases, respectively. ${ }_{498}$ This means that the dominant R_{4}^{+}oxygen rotations cooperate 499 with the antipolar M_{3}^{-}mode to promote the ground state 500 of WO_{3}.

We note that in the $P 4 / n m m, P 4 m m, A m m 2, R 3 m,{ }_{502}$ $I 4 / \mathrm{mcm}, I 4 / \mathrm{mbm}, R \overline{3} c, P 4 / n c c$, and $R 3 c$ phases the 503 mode decomposition shows only the primary modes we have 504 condensed. This is different with the Pnma phase in which ${ }_{505}$ an additional mode X_{5}^{+}appears with a small amplitude in the ${ }_{506}$ mode projections while we have condensed only the primary 507 R_{4}^{+}and M_{3}^{+}modes (see Fig. 6). This additional mode appears ${ }_{508}$ by anharmonic coupling between the R_{4}^{+}and M_{3}^{+}modes such ${ }_{509}$ that the symmetry of the Pnma structure allows the X_{5}^{+}mode ${ }_{510}$ to develop even though the X_{5}^{+}mode is not unstable by itself ${ }_{511}$ [79]. Similarly, we observe the apparition of several additional $\quad 512$ modes in the $P b c n, P 2_{1} / n, P 2_{1} / c$, and $P \overline{1}$ phases, which we ${ }_{513}$ discuss in the next section.

5. Energy invariants

515
The different phases arise from the condensation of one or 516 several unstable modes (primary modes) of the cubic parent ${ }_{517}$

TABLE III. Symmetry adapted modes decomposition and linear couplings of modes of the $P n m a, P b c n, P 2_{1} / n, P 2_{1} / c$, and $P \overline{1}$ phases. From the left to right columns, we show the mode label (Irrep.) of the symmetry adapted mode, the direction of the mode condensation, the corresponding subgroup, the amplitude of the distortion in the calculated and in the experimental cases (the modes with an amplitude lower than $0.005 \AA$ are not shown), and the linear coupling invariants of the most relevant modes where the letters correspond to the one given in the direction column (we highlight in bold the primary modes).

Space group	Irrep.	Direction	Subgroup	Amplitudes (A)		Linear invariants
				Calc.	Exp.	
Pnma	\mathbf{R}_{4}^{+}	(a,a,0)	I4/mma	0.61		
	\mathbf{M}_{3}^{+}	$(0,0, \mathbf{c})$	P4/mbm	0.38		abc
	X_{5}^{+}	(0,a,0,0,0,0)	Cmcm	0.06		
Pbcn	\mathbf{R}_{4}^{+}	$(0,0, \mathbf{a})$	$14 / \mathrm{mcm}$	0.47	0.35	
	M_{3}^{+}	(0,b,0)	P4/mbm	0.39	0.30	abe, adce
	\mathbf{M}_{3}^{-}	(c, $0, \mathbf{d}$)	Ibam	0.23	0.25	abf, adcf
	X_{5}^{-}	(0,0,e,-e, 0,0)	Pmma	0.22	0.25	
	X_{5}^{+}	(0,0,0,0,f,f)	Pmma	0.07	0.06	
$P 2_{1} / n$	\mathbf{R}_{4}^{+}	$(0, \mathbf{a , b})$	C2/m	0.60	0.48	aeg+bdf
	M_{3}^{+}	(c, 0,0)	P4/mbm	0.34	0.37	ach+aci-bch+bci
	M_{3}^{-}	$(0, d, e)$	Ibam	0.27	0.25	acdg-bcef
	X_{5}^{-}	(f,-f, $0,0, \mathrm{~g}, \mathrm{~g}$)	Pmmn	0.09	0.26	adeh+adei+bdeh-bdei
	X_{5}^{+}	(0,0,h,i,0,0)	$P 2_{1} / m$	0.06	0.08	
$P 2{ }_{1} / c$	Γ_{4}^{+}	(a,-a,-b)	Cm	0	0.07	
	\mathbf{R}_{4}^{+}	(-b,a,-a)	C2/c	0.73	0.72	acd+bed
	\mathbf{M}_{3}^{-}	(c, 0,0)	P4/nmm	0.27	0.30	
	X_{5}^{-}	(0,0,0,-d, 0,0)	Cmcm	0.10	0.14	

structure but, in some cases, also include the further condensation of stable modes (secondary modes) with significant amplitudes. Often, the appearance of such secondary modes of large amplitude can be traced back in their linear coupling with the primary modes [80,81]. This can be rationalized from the existence in the energy expansion of the $P m \overline{3} m$ phase of invariant terms of the form $\gamma Q_{s} \prod_{i=1}^{N} Q_{p}^{i}$ where Q_{s} is the amplitude of the secondary mode s and Q_{p}^{i} is the amplitude of the primary mode i. Depending of the number of primary mode involved, these coupling terms can be bilinear, trilinear, quadrilinear, etc.

To clarify the origin of secondary modes in several lowsymmetry phases of WO_{3}, we restrict ourself here to the search of such multilinear invariant terms in the energy expansion around its cubic phase by using the INVARIANTS software [82]. In the last column of Table III we report these linear invariants up to the fourth order obtained for the Pnma, Pbcn, $P 2_{1} / n$, and $P 2_{1} / c$ phases. The letters represent the mode amplitudes (Q^{i}) in the directions specified in the third column where the bold letters refer to the primary modes in the structure $\left(Q_{p}^{i}\right)$ and the normal letters refer to secondary modes (Q_{s}^{i}).

In the Pnma phase, we find that the X_{5}^{+}mode appears through a trilinear coupling with the oxygen rotations modes R_{4}^{+}and M_{3}^{+}(abc invariant in Table III). This additional X_{5}^{+} mode is also found in Pnma of ABO_{3} perovskites [83,84] where the eigenvector corresponds to antipolar motions of the A cation. In WO_{3} the A cation is absent and X_{5}^{+}corresponds
to similar antipolar motions but of oxygen instead of the A site ${ }_{546}$ (see Fig. 4).

In Pbcn the primary M_{3}^{-}mode condenses along z, the $\mathrm{R}_{4}^{+}{ }_{548}$ mode condenses along z, and the M_{3}^{+}mode condenses along ${ }_{549}$ y and four additional secondary modes: X_{5}^{-}and X_{5}^{+}with a ${ }_{550}$ large amplitude and M_{5}^{+}and M_{4}^{+}with a small amplitude as 551 well as an additional component of the M_{3}^{-}mode about the ${ }_{552}$ x direction. If we restrict ourself to the strongest X_{5}^{-}and $\mathrm{X}_{5}^{+}{ }^{553}$ modes we find that both are coupled with the R_{4}^{+}and $\mathrm{M}_{3}^{+}{ }_{554}$ modes through a trilinear coupling (abe and abf invariants in 555 Table III) but also through a quadrilinear coupling with the $\mathrm{R}_{4}^{+} \quad{ }_{556}$ mode and the two components of the M_{3}^{-}mode (adce and adcf ${ }_{557}$ invariants in Table III). We can thus explain the appearance of ${ }_{558}$ the X_{5}^{+}and X_{5}^{-}modes through a trilinear coupling with the 559 oxygen octahedral rotations and the appearance of the second 560 x component of the antipolar M_{3}^{-}mode through a coupling 561 with the secondary X_{5}^{+}and X_{5}^{-}modes and the primary $\mathrm{R}_{4}^{+}{ }_{562}$ mode. The final structure can thus be seen as antipolar through ${ }_{563}$ the M_{3}^{-}mode along z with a canting of its direction toward ${ }_{564}$ the x axis and through the X_{5}^{-}mode along the y direction, the ${ }_{565}$ whole distortions being associated with the $a^{-} b^{+} c^{-}$pattern of ${ }_{566}$ oxygen rotation distortions.

567

The transition from Pbcn to $P 2_{1} / n$ can be seen as 568 being induced by the condensation of the R_{4}^{+}mode along ${ }_{569}$ the remaining direction for the oxygen rotation octahedral 570 distortions to $a^{-} b^{+} c^{-}$. This means that we find the same mode 571 coupling as in the Pbcn phase plus some extra ones due to 572 the additional mode condensation. Because we do not induce ${ }^{573}$
a new irrep, the couplings are the same (i.e., trilinear and quadrilinear between the primary $\mathrm{R}_{4}^{+}, \mathrm{M}_{3}^{+}$, and M_{3}^{-}modes and the secondary X_{5}^{-}and X_{5}^{+}modes) but in different directions from the Pbcn phase: we observe the X_{5}^{-}and X_{5}^{+}modes in two directions instead of one. Other modes also appear in the symmetry adapted mode analysis but with smaller amplitudes $\left(\mathrm{M}_{4}^{+}, \mathrm{M}_{5}^{-}, \mathrm{M}_{5}^{+}\right.$, and $\left.\mathrm{M}_{2}^{+}\right)$, which we do not include in the invariant analysis.
$P \overline{1}$ and $P 2_{1} / c$ are very similar in the sense that for both structures we can envisage the condensation of R_{4}^{+}modes in three directions and the M_{3}^{-}mode in one direction. The difference is that in the $P 2_{1} / c$ phase the R_{4}^{+}mode is primary with the same amplitude in two directions and a different amplitude in the third direction $\left(a^{-} a^{-} c^{-}\right.$where the M_{3}^{-}mode is primary in the z direction) while in the $P \overline{1}$ phase the condensation of the R_{4}^{+}mode has different amplitudes in three directions $\left(a^{-} b^{-} c^{-}\right)$. In $P 2_{1} / c$ the presence of the X_{5}^{-}and M_{5}^{-} secondary modes can be explained by trilinear coupling with the R_{4}^{+}and M_{3}^{-}primary modes (acd+bed and abe invariants in Table III) in a similar way as in the $P 2_{1} / n$ phase.

This analysis shows that the low-symmetry phases of WO_{3} are complex and involve numerous multilinear couplings of modes if one expands the energy with respect to the cubic phase. We note that, among possible couplings, the coupling with the secondary X_{5}^{-}mode is most important in all lowsymmetry phases.

Going further, in order to test whether symmetry arguments can lead to the polar Pc phase using anharmonic couplings, we have tested if there exists any bi-, tri-, or quadri-linear coupling involving a polar mode at the Γ point. We did not find any couplings with the $\mathrm{R}_{4}^{+}, \mathrm{M}_{3}^{+}$, or M_{3}^{-}modes. We thus conclude that it is not possible to generate polarity in WO_{3} in the limit to these primary modes, which are the ones appearing in other experimental phases.

V. CONCLUSIONS

In this study, we have performed a first-principles study of WO_{3} using the $\mathrm{B} 1-\mathrm{WC}$ hybrid exchange-correlation functional which appears to yield good overall agreement with experiments regarding electronic and structural properties together.

Starting from the inspection of the phonon dispersion curves of a hypothetical cubic structure taken as reference, we have identified two main branches of instabilities and characterized various phases arising from the condensation of one or more unstable modes. Although the dominant phonon
instability is associated to a zone-center polar mode, we found 618 a nonpolar $P 2_{1} / c$ ground state arising from the combination 619 of cooperative antipolar distortions and oxygen octahedra 620 rotations. This phase is very similar to the experimentally 621 reported polar Pc ground state, except for the absence of a 622 tiny polar distortion. Our calculations do not show, however, ${ }^{623}$ any tendency of the $P 2_{1} / c$ phase to evolve to a $P c$ phase ${ }_{624}$ suggesting that WO_{3} is likely not intrinsically ferroelectric. ${ }^{625}$ Instead the ferroelectric character might arise from extrinsic ${ }_{626}$ defects such as oxygen vacancies. The $P 2_{1} / c$ phase is an- ${ }_{627}$ tipolar and defects could easily produce a slightly unbalanced ${ }_{628}$ antidipole structure, yielding a weak net polarization. In this 629 sense, off-stoichiometric WO_{3} might be better described as a 630 ferrielectric compound [85]. The ground state is determined by 631 two antiparallel movements of W off-centerings which exactly 632 compensate each other in the $P 2_{1} / c$ phase. The displacements ${ }_{633}$ are almost identical in the $P c$ phase, but the two displacements 634 do not fully compensate each other. We suspect that such 635 weak ferrielectricity can be induced by defects such as oxygen ${ }^{636}$ vacancies.

637
At the level of our calculations, the $P 2_{1} / c$ ground state ${ }_{638}$ is almost degenerated in energy with the $P 2_{1} / n$ and $P \overline{1}{ }_{639}$ phases observed at higher temperature. Also, we discovered 640 the existence of a never observed and low-energy ferroelectric 641 $R 3 m$ phase with a large polarization. Although this might 642 not be of direct interest due to the conductive character ${ }_{643}$ of usual off-stoichiometric samples, the proximity with the ${ }_{644}$ $P 2_{1} / c$ ground state of this structurally unrelated $R 3 m$ polar ${ }_{645}$ phase toward which the system could be switched through ${ }_{646}$ a first-order transition under moderate electric fields makes 647 WO_{3} a potential antiferroelectric material.

ACKNOWLEDGMENTS

649
We thank Julien Varignon for his helpful guidance with the ${ }_{650}$ CRYSTAL code and Emilio Artacho for interesting discussions. 651 The work was supported by the ARC project AIMED and 652 the F.R.S-FNRS PDR projects HiT4FiT and MaRePeThe. ${ }^{653}$ Calculations have been performed within the PRACE project 654 TheDeNoMo and relied on the Céci facilities funded by 655 F.R.S-FNRS (Grant No. 2.5020.1) and Tier-1 supercomputer ${ }_{656}$ of the Fédération Wallonie-Bruxelles funded by the Walloon ${ }^{657}$ Region (Grant No. 1117545). E.K.H.S. is grateful for sup- ${ }_{658}$ port to EPSRC and the Leverhulme trust. H.H. thanks the 659 AVERROES-ERASMUS Mundus project.
[1] E. Salje, Opt. Commun. 24, 231 (1978).
[2] G. A. Niklasson and C. G. Granqvist, J. Mater. Chem. 17, 127 (2007).
[3] S. K. Deb, Solar Energy Materials and Solar Cells 92, 245 (2008), selected Papers from the Seventh International Meeting on Electrochromism (IME-7) Seventh International Meeting on Electrochromism.
[4] R. Baetens, B. P. Jelle, and A. Gustavsen, Solar Energy Materials and Solar Cells 94, 87 (2010).
[5] S.-H. Lee, R. Deshpande, P. Parilla, K. Jones, B. To, A. Mahan, and A. Dillon, Adv. Mater. 18, 763 (2006).
[6] A. Subrahmanyam and A. Karuppasamy, Solar Energy Materials and Solar Cells 91, 266 (2007).
[7] C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard, and Y. Sampeur, Surf. Coat. Technol. 98, 1477 (1998), papers presented at the Fifth International Conference on Plasma Surface Engineering.
[8] Y. Zhao, Z. C. Feng, Y. Liang, and H. W. Sheng, Appl. Phys. Lett. 71, 2227 (1997).
[9] A. Aird and E. K. H. Salje, J. Phys.: Condens. Matter 10, L377 (1998).
[10] A. Aird, M. C. Domeneghetti, F. Mazzi, V. Tazzoli, and E. K. H. Salje, J. Phys.: Condens. Matter 10, L569 (1998).
[11] E. Salje, Ferroelectrics 12, 215 (1976).
[12] A. Shengelaya, S. Reich, Y. Tsabba, and K. Müller, The European Physical Journal B 12, 13 (1999).
[13] V. Barzykin and L. P. Gorkov, Phys. Rev. Lett. 89, 227002 (2002).
[14] Y. Kim, M. Alexe, and E. K. H. Salje, Appl. Phys. Lett. 96, 032904 (2010).
[15] C. G. Granqvist, Solar Energy Materials and Solar Cells 60, 201 (2000).
[16] Dane T. Gillaspie, Robert C. Tenent, and Anne C. Dillon, J. Mater. Chem. 20, 9585 (2010).
[17] E. Salje and K. Viswanathan, Acta Crystallographica A 31, 356 (1975).
[18] E. Salje, Acta Crystallographica A 31, 360 (1975).
[19] K. R. Locherer, I. P. Swainson, and E. K. H. Salje, J. Phys.: Condens. Matter 11, 4143 (1999).
[20] E. K. H. Salje, S. Rehmann, F. Pobell, D. Morris, K. S. Knight, T. Herrmannsdörfer, and M. T. Dove, J. Phys.: Condens. Matter 9, 6563 (1997).
[21] K. R. Locherer, I. P. Swainson, and E. K. H. Salje, J. Phys.: Condens. Matter 11, 6737 (1999).
[22] T. Vogt, P. M. Woodward, and B. A. Hunter, J. Solid State Chem. 144, 209 (1999).
[23] C. J. Howard, V. Luca, and K. S. Knight, J. Phys.: Condens. Matter 14, 377 (2002).
[24] M. Boulova, N. Rosman, P. Bouvier, and G. Lucazeau, J. Phys.: Condens. Matter 14, 5849 (2002).
[25] R. Diehl, G. Brandt, and E. Salje, Acta Crystallographica B 34, 1105 (1978).
[26] P. Woodward, A. Sleight, and T. Vogt, Journal of Physics and Chemistry of Solids 56, 1305 (1995).
[27] P. Woodward, A. Sleight, and T. Vogt, J. Solid State Chem. 131, 9 (1997).
[28] S. Tanisaki, J. Phys. Soc. Jpn. 15, 573 (1960).
[29] B. O. Loopstra and P. Boldrini, Acta Crystallogr. 21, 158 (1966).
[30] W. L. Kehl, R. G. Hay, and D. Wahl, J. Appl. Phys. 23, 212 (1952).
[31] O. Schirmer and E. Salje, Solid State Commun. 33, 333 (1980).
[32] O. F. Schirmer and E. Salje, J. Phys. C 13, L1067 (1980).
[33] E. Salje, A. Carley, and M. Roberts, J. Solid State Chem. 29, 237 (1979).
[34] E. Salje and B. Güttler, Philosophical Magazine B 50, 607 (1984).
[35] P. P. González-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera, C. Persson, G. A. Niklasson, C. G. Granqvist, and A. Ferreira da Silva, Appl. Phys. Lett. 96, 061909 (2010).
[36] M. B. Johansson, G. Baldissera, I. Valyukh, C. Persson, H. Arwin, G. A. Niklasson, and L. Österlund, J. Phys.: Condens. Matter 25, 205502 (2013).
[37] Y. Ping, D. Rocca, and G. Galli, Phys. Rev. B 87, 165203 (2013).
[38] G. A. de Wijs, P. K. de Boer, R. A. de Groot, and G. Kresse, Phys. Rev. B 59, 2684 (1999).
[39] A. C. Tsipis and C. A. Tsipis, J. Phys. Chem. A 104, 859 (2000).
[40] M. G. Stachiotti, F. Corà, C. R. A. Catlow, and C. O. Rodriguez, Phys. Rev. B 55, 7508 (1997).
[41] F. Corà, A. Patel, N. M. Harrison, R. Dovesi, and C. R. A. Catlow, J. Am. Chem. Soc. 118, 12174 (1996).
[42] F. Wang, C. D. Valentin, and G. Pacchioni, J. Phys. Chem. C 115, 8345 (2011).
[43] D. B. Migas, V. L. Shaposhnikov, V. N. Rodin, and V. E. Borisenko, J. Appl. Phys. 108, 093713 (2010).
[44] F. Wang, C. Di Valentin, and G. Pacchioni, Phys. Rev. B 84, 073103 (2011).
[45] S. Karazhanov, Y. Zhang, A. Mascarenhas, S. Deb, and L.W. Wang, Solid State Ionics 165, 43 (2003), fifth International Meeting on Electrochromism.
[46] A. D. Walkingshaw, N. A. Spaldin, and E. Artacho, Phys. Rev. B 70, 165110 (2004).
[47] S. Tosoni, C. D. Valentin, and G. Pacchioni, J. Phys. Chem. C 118, 3000 (2014).
[48] A. Hjelm, C. G. Granqvist, and J. M. Wills, Phys. Rev. B 54, 2436 (1996).
[49] B. Ingham, S. C. Hendy, S. V. Chong, and J. L. Tallon, Phys. Rev. B 72, 075109 (2005).
[50] M. N. Huda, Y. Yan, S.-H. Wei, and M. M. Al-Jassim, Phys. Rev. B 80, 115118 (2009).
[51] F. Corá, M. G. Stachiotti, C. R. A. Catlow, and C. O. Rodriguez, J. Phys. Chem. B 101, 3945 (1997).
[52] M. N. Huda, Y. Yan, C.-Y. Moon, S.-H. Wei, and M. M. AlJassim, Phys. Rev. B 77, 195102 (2008).
[53] B. Chen, J. Laverock, L. F. J. Piper, A. R. H. Preston, S. W. Cho, A. DeMasi, K. E. Smith, D. O. Scanlon, G. W. Watson, R. G. Egdell, P.-A. Glans, and J.-H. Guo, J. Phys.: Condens. Matter 25, 165501 (2013).
[54] D. I. Bilc, R. Orlando, R. Shaltaf, G. M Rignanese, J. Íñiguez, and Ph. Ghosez, Phys. Rev. B 77, 165107 (2008).
[55] M. Causà, R. Dovesi, C. Pisani, R. Colle, and A. Fortunelli, Phys. Rev. B 36, 891 (1987).
[56] D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll, J. Chem. Phys. 130, 164108 (2009).
[57] F. Pascale, C. M. Zicovich-Wilson, F. López Gejo, B. Civalleri, R. Orlando, and R. Dovesi, J. Comput. Chem. 25, 888 (2004).
[58] C. M. Zicovich-Wilson, F. Pascale, C. Roetti, V. R. Saunders, R. Orlando, and R. Dovesi, J. Comput. Chem. 25, 1873 (2004).
[59] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
[60] M. Goffinet, P. Hermet, D. I. Bilc, and Ph. Ghosez, Phys. Rev. B 79, 014403 (2009).
[61] A. Prikockyte, D. Bilc, P. Hermet, C. Dubourdieu, and Ph. Ghosez, Phys. Rev. B 84, 214301 (2011).
[62] J. Varignon and Ph. Ghosez, Phys. Rev. B 87, 140403 (2013).
[63] N. C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and Ph. Ghosez, Nat. Commun. 6, 6677 (2015).
[64] R. Chatten, A. V. Chadwick, A. Rougier, and P. J. D. Lindan, J. Phys. Chem. B 109, 3146 (2005).
[65] A. M. Glazer, Acta Cryst. B 28, 3384 (1972).
[66] P. García-Fernández, S. Ghosh, N. J. English, and J. A. Aramburu, Phys. Rev. B 86, 144107 (2012).
[67] R. A. Cowley, Integrated Ferroelectrics 133, 109 (2012).
[68] H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011).
[69] X. Gonze et al., Comput. Phys. Commun. 180, 2582 (2009).
[70] Ph. Ghosez, E. Cockayne, U. V. Waghmare, and K. M. Rabe, Phys. Rev. B 60, 836 (1999).
[71] In the cubic cell, the [100], [010], and [001] directions are degenerate. The same applies for the [110], [101], and [011] directions.
[72] F. Detraux, Ph. Ghosez, and X. Gonze, Phys. Rev. B 56, 983 (1997).
[73] N. A. Benedek and C. J. Fennie, J. Phys. Chem. C 117, 13339 (2013).
[74] K. M. Rabe, in Functional Metal Oxides (Wiley, New York, 2013), pp. 221-244.
[75] S. E. Reyes-Lillo, K. F. Garrity, and K. M. Rabe, Phys. Rev. B 90, 140103 (2014).
[76] Value calculated from the energies and polarization reported for the $R 3 m$ and Pbam phase by S. Amisi, Ph.D. thesis, University of Liége, Belgium, 2013.
[77] D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato, J. Appl. Crystallogr. 42, 820 (2009).
[78] The volume of the cubic, $R \overline{3} c, R 3 m$, and $R 3 c$ phases are $54.01 \AA^{3}, \quad 50.89 \AA^{3}, \quad 55.35 \AA^{3}$, and $52.71 \AA^{3}$.
[79] J. Young, A. Stroppa, S. Picozzi, and J. M. Rondinelli, J. Phys.: Condens. Matter 27, 283202 (2015).
[80] E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and Ph. Ghosez, Nature (London) 452, 732 (2008).
[81] N. A Benedek, J. M Rondinelli, H. Djani, Ph. Ghosez, and Ph. Lightfoot, Dalton Trans. 44, 10543 (2015).
[82] D. M. Hatch and H. T. Stokes, J. Appl. Crystallogr. 36, 951 (2003).
[83] N. A. Benedek, A. T. Mulder, and C. J. Fennie, J. Solid State Chem. 195, 11 (2012).
[84] S. Amisi, E. Bousquet, K. Katcho, and Ph. Ghosez, Phys. Rev. B 85, 064112 (2012).
[85] C. F. Pulvari, Phys. Rev. 120, 1670 (1960).

