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Abstract

Artificial phoretic particles swim using self-generated gradients in chemical species (self-

diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to

study the physics of collective motion in active matter and might have promising applications in

bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady

solution of the diffusion equation, from which chemical gradients, phoretic flows and ultimately the

swimming velocity, may be derived. Motivated by disk-shaped particles in thin films and under

confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion

equation lacks a steady state with the correct boundary conditions, Laplace transforms must be

used to study the long-time behavior of the problem and determine the swimming velocity. For

fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always

decays logarithmically in time. In the case of finite Péclet numbers, we solve the full advection-

diffusion equation numerically and show that this decay can be avoided by the particle moving to

regions of unconsumed reactant. Finite advection thus regularizes the two-dimensional phoretic

problem.
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I. INTRODUCTION

One of the most exciting recent developments in soft matter research has been the flurry

of work on the physics of active matter [1]. Originally focusing on problems in biological

physics, specifically the study of self-propelled microorganisms [2–4], active matter encom-

passes now a variety of interacting, driven systems including colloids, gels, granular flows,

and populations [5].

One category of active matter comprises artificial, small-scale swimmers [6, 7]. In order

to drive an artificial swimmer, one would typically either (a) rely on external energy sources,

e.g. two-[8] or three-dimensional [9, 10] magnetic fields, or acoustic fields [11, 12]; or (b) take

advantage of a local energy source in the form of chemical reactions. While recent work has

shown that chemistry is able to propel large active droplets via Marangoni instabilities [13,

14], the majority of the work on chemical propulsion takes advantage of self-electrophoresis

and self-diffusiophoresis mechanisms [15]. Using phoretic flows to induce swimming was first

demonstrated experimentally with Janus platinum-gold colloidal rods undergoing directed

motion in aqueous solutions of hydrogen peroxide whose reduction to water was catalyzed by

the platinum side of the rods [16]. Since this seminal study, much has been devoted to further

understanding catalytic swimming both experimentally [17–19] and theoretically [20–25].

Recent work showed how to bypass the use of catalyst gradients using solely geometry [26,

27], how to assemble phoretic crystals [28], the subtle role of electrokinetic effects [29, 30],

and the impact of solute advection [31, 32].

In the simplest continuum model of a phoretic swimmer, the solute (or reactant) satisfies

a diffusion equation with a fixed flux on a portion of the surface of the swimmer, modeling

its creation or absorption at a fixed rate. This simple chemical approach implicitly assumes

that the reactant never gets depleted. The swimming velocity is then obtained by integrating

the flow induced locally tangentially to the surface of the swimmer by the chemical gradients

[15] in a way that satisfies the force-free condition at all times [33].

This simple modeling approach works very well in three dimensions (3D), but there is a

mathematical problem with attempting to the do the same in two dimensions (2D). Indeed,

while the solution to the diffusion equation with a net flux admits a steady-state solution

decaying at infinity in 3D, it does not in 2D because the solution is logarithmically growing.

This feature is actually intrinsically tied to the recurrence properties of random walks or
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Brownian motion as a function of dimension. One mathematical way out of this conundrum

is to require the surface to not be a net source (or sink) of either solute or reactant [34], but

this is of course a restrictive assumption.

From an applied standpoint, it could be however possible to carry out phoretic experi-

ments closely mimicking two dimensions, for example with phoretic disks in a Hele–Shaw

cell or in a freely-suspended thin film. Phoretic swimming in two dimensions thus raises

some interesting questions. Can 2D Janus particles undergo steady swimming or will their

swimming speed always be time-dependent? Can solute advection regularize this apparent

2D peculiarity? Is chemical depletion and a modification of the boundary conditions the

key ingredient?

This paper attempts to address these questions. We begin, in Section II by reviewing the

theory of locomotion of a three-dimensional Janus particle. In Section III we perform an

asymptotic analysis on the two-dimensional diffusion equation for a circular Janus particle

with surface flux boundary conditions, using the Laplace transform as our primary tool.

We then determine the asymptotic swimming speed of the particle assuming infinite solute

concentration (Section III C) and finite solute concentration (Section III D). Following this

analysis, we consider solute advection numerically in Section IV. We review our numerical

approach in Sections IV A–IV C before presenting results in Section IV D. We conclude by

summarizing our findings in Section V.

II. PHORETIC SWIMMING IN THREE DIMENSIONS

We start by reviewing the classical continuum model for locomotion of three-dimensional

phoretic particles. We ignore electrophoretic effects and focus on the case of neutral solutes

for which locomotion is driven by self-diffusiophoresis [20, 21]. Let ϕ(r, t) denote the con-

centration of a reactant with diffusivity D outside an isolated spherical particle of radius a

in an infinite fluid. For a spherical particle with an axially-symmetric coating and in the

absence of advection by the flow, the concentration ϕ(r, θ, t) obeys the diffusion equation in

spherical coordinates

∂ϕ

∂t
= D∇2ϕ = D

[
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)]
, r ≥ a. (1)
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The simplest description of the chemical boundary condition at the surface of the particle is

to assume that the flux of reactant is prescribed, constant in time and spatially-dependent

as

−r̂ · ∇ϕ(a, θ, t) = a−1f(θ); (2a)

lim
r→∞

ϕ(r, θ, t) = 0 (2b)

for 0 ≤ θ ≤ π. Note that we have absorbed a factor D/a in our definition of f , so the flux

has the same units as ϕ. Wherever f(θ) < 0, the particle is absorbing the reactant ϕ. The

zero boundary condition at infinity in (2b) is a mathematical convenience; in an experiment,

there is a concentration C > 0 of some reactant at infinity, and ϕ < 0 measures the deficit

in that reactant. Note that axial symmetry implies that the third spherical coordinate (φ)

does not enter the problem, so all fields are axisymmetric and swimming is restricted to

happen on the symmetry axis of the sphere (z).

The steady-state solution to (1) with boundary conditions (2) is classically given by

ϕ(r, θ) =
∞∑
m=0

Fm (a/r)m+1 Pm(cos θ), (3)

where Pm(x) are the Legendre polynomials with the usual normalization Pm(1) = 1, and

where

Fm =
2m+ 1

2(m+ 1)

∫ 1

−1
f(θ)Pm(cos θ) d(cos θ). (4)

Note that F0 is the mean of f(θ) over the spherical particle.

The local fluid velocity at the surface of the particle is in the tangential direction and is

proportional to the reactant concentration via

u(a, θ) = µ ∂θϕ (a, θ) θ̂, (5)

where µ is the surface phoretic mobility, which could have either sign depending on the

details of the short-range interactions between the reactant and the surface [15]. Since the

particle is circular, its swimming velocity is obtained by averaging −u along its surface

(see Refs. [33, 35] for the extension to more complex shapes). The averaged component of

velocity perpendicular to the z axis vanishes by symmetry so we obtain U = Uz with

U = −2
3
µF1. (6)
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Hence, in the absence of advection of the reactant by the flow field (zero-Péclet number

limit), a spherical phoretic particle swims with the steady velocity given by (6). In the next

sections, we address how this is modified in two dimensions.

III. PHORETIC SWIMMING IN TWO DIMENSIONS: NO ADVECTION

In many hydrodynamics problems, the two-dimensional analysis is carried out before the

extension to three dimensions. In the case of phoretic swimming, we in fact go the other

way and address the subtle two-dimensional case after the easier three-dimensional analysis.

A. Parameters and dimensionless groups

As in the three-dimensional problem, there are three relevant dimensional scales: length,

time, and units of the concentration deficit, ϕ. There are five physical parameters: the

particle radius, a, the reactant diffusivity, D, the background concentration, C, the charac-

teristic reactant surface flux, F , and the phoretic mobility from Eq. (5), µ. Thus, there

are two dimensionless groups, which we take to be C/(−F ) and (−µF )/D. We shall

keep F < 0 throughout, indicating a sink of reactant. In all the numerical examples,

we will take a = D = −F = 1, so that C and µ stand in for the two dimensionless numbers

and are thus the only two parameters to be varied. In these units, the velocity U is equal

to the Péclet number, Pe = Ua/D.

B. General solution using Laplace transform

We consider a circular Janus particle in two spatial dimensions. The concentration ϕ(r, θ, t)

obeys a diffusion equation in cylindrical coordinates,

∂ϕ

∂t
= D∇2ϕ = D

[
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2

]
, r ≥ a, −π ≤ θ ≤ π. (7)

We will consider two different boundary conditions in Sections III C and III D. In either case,

unlike the three-dimensional case, Eq. (7) with accompanying boundary conditions does not

have a steady solution decaying to infinity if it is a net sink (or source) of reactant. Hence,

in order to understand the ultimate fate of two-dimensional particles we must solve the
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full time-dependent problem. Here, we will use Laplace transforms because we are mostly

interested in long-time asymptotics.

The Laplace transform of (7) gives

s ϕ̃− ϕ(r, θ, 0) = D

(
1

r

∂

∂r

(
r
∂ϕ̃

∂r

)
+

1

r2
∂2ϕ̃

∂θ2

)
, (8)

where ϕ̃(r, θ, s) is the Laplace transform of ϕ(r, θ, t). For simplicity we take ϕ(r, θ, 0) = 0.

Equation (8) has a solution in terms of modified Bessel functions of the second kind,

ϕ̃(r, θ, s) =
∞∑
m=0

Km(r
√
s/D) (Am cosmθ +Bm sinmθ), (9)

where we applied the boundary condition at infinity (2b). In the following subsections we

apply two types of boundary conditions at r = a to (9) and examine the resulting solutions.

C. Fixed flux boundary condition

In this section, we first consider the case of the inhomogeneous Neumann boundary condi-

tion, (2a), where the reactant is assumed to be consumed at a fixed flux. Using the Laplace-

transformed solution of the two-dimensional diffusion equation, we perform an asymptotic

analysis on the solution to determine the large-time behavior of the particle.

The Neumann boundary condition at r = a, adapted to two dimensions from (2a), has

Laplace transform

−r̂ · ∇ϕ̃(a, θ, s) = f(θ)/ (as) (10)

which we apply to (9) to obtain

∞∑
m=0

√
s/DK ′m(a

√
s/D) (Am cosmθ +Bm sinmθ) = −f(θ)/as, (11)

where K ′m(·) is the derivative of Km(x) with respect to x. To parallel the three-dimensional

case, we assume that f(θ) is even, which corresponds to a symmetric particle. Then we

directly obtain Bm = 0 and

Am = −
√
D/a2s3

K ′m(a
√
s/D)

Fm , (12)

with

Fm =


1

2π

∫ π

−π
f(θ) dθ, m = 0;

1

π

∫ π

−π
f(θ) cosmθ dθ, m > 0.

(13)
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In the present work we will take half of our particle (−π/2 ≤ θ ≤ π/2) to be coated with

the reactant as a simple test case (two-dimensional Janus particle). The surface flux is

f(θ) =

 F, |θ| ≤ π/2;

0, otherwise.
(14)

In that case,

F0 = F/2, F2m = 0, F2m−1 =
2

π

(−1)m−1

2m− 1
F, m > 0. (15)

Substituting for Am in (9), we finally get

ϕ̃(r, θ, s) = −
√
D/a2s3

∞∑
m=0

Fm
Km(r

√
s/D)

K ′m(a
√
s/D)

cosmθ. (16)

Instead of inverting the Laplace transform (16) in order to recover ϕ(r, θ, t) to take the

t→∞ limit, we will compute the long-time asymptotics directly by evaluating the small-s

behavior of (16).

To leading order as s→ 0, the m = 0 term in (16) is

ϕ̃0(r, θ, s) ∼ −F0 s
−1(log(r

√
s/4D) + γ), s→ 0, (17)

where γ is Euler’s constant. This is of the form

ϕ̃0(r, θ, s) ∼ s−ρ L(s−1) (18)

where ρ = 1 and

L(ξ) = −F0 (log(
√
r2/4Dξ) + γ) . (19)

A function L(ξ) is called slowly-varying at infinity if limt→∞ L(tξ)/L(t)→ 1 for every fixed ξ.

The function L(ξ) in (19) is indeed slowly-varying at infinity, so a Tauberian theorem [36,

p. 445] gives a formula for the asymptotic antiderivative as∫
ϕ0(r, θ, t) dt ∼ 1

Γ(ρ+ 1)
tρ L(t) = −F0 t (log(

√
r2/4Dt) + γ), t→∞. (20)

After taking a derivative we obtain the behavior at long times as

ϕ0(r, θ, t) ∼ 1
2
F0 (log(4Dt/r2)− 2γ + 1), t→∞. (21)

Note that this analysis is valid for fixed r, so it does not satisfy the boundary condition at

infinity. However, we are interested in the behavior near the particle, which corresponds to
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moderate r ≥ a. The term (21) is perfectly well-behaved at r = a, but it does not contribute

to the swimming velocity, since it does not vary with θ.

For small s, the terms in (16) with m > 0 are,

ϕ̃m(r, θ, s) ∼ Fm
ms

(a
r

)m
cosmθ, m > 0, s→ 0, (22)

with inverse Laplace transform

ϕm(r, θ) ∼ Fm
m

(a
r

)m
cosmθ, m > 0. (23)

The concentration at the surface of the particle for large t is therefore given by

ϕ(a, θ, t) ∼ 1
2
F0

[
(log(4Dt/a2)− 2γ + 1

]
+
∞∑
m=1

Fm
m

cosmθ, t→∞. (24)

Due to the zero flux boundary conditions (2a) we must have ϕ ≥ −C, where C is the

background reactant concentration, otherwise we will have run out of reactant. The con-

centration is lowest at the surface of the particle, and the blowup of the logarithm with

time in (24) makes this concentration become ever more negative (recall that F0 < 0). At

large times, clearly the time-independent terms in (24) can be neglected compared to the

logarithmic term. We can therefore find a time T after which the solute is depleted, given

by

T =
a2

4D
exp

(
2

∣∣∣∣ CF0

∣∣∣∣) . (25)

After this time locomotion should stop. We note that the exponential dependence should

make it possible for this term to be enormous, simply by increasing |C/F0|.

Let us assume that we are in an intermediate time regime where

1� 4Dt

a2
� exp

(
2

∣∣∣∣ CF0

∣∣∣∣) , (26)

which allows us to benefit from the large-t approximation while at the same time ensuring

that we do not run out of reactant. In the time range in (26), we can proceed with finding

the swimming velocity of the particle. The fluid velocity at the surface is given by (5) while

the swimming velocity of the particle is obtained by averaging −u along its surface. We

note that the local diffusio-osmotic result of (5) does not depend on the dimensionality of

the system and is valid in two dimensions. The thickness of the diffuse layer is assumed

to be much smaller than the radius of curvature of the particle which allows a matching
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between the near field and far field equations for the chemical field, leading to the effective

Derjaguin slip velocity of Eq. (5) [15].

The averaged y component of velocity vanishes by symmetry. The averaged x component

gives [35] (with θ̂ · x̂ = − sin θ)

U = − µ

2π

∫ π

−π
∂θϕ(a, θ, t) (− sin θ) dθ = −1

2
µF1 . (27)

Comparing this result to the 3D case (6) we observe that the prefactor in front of F1 is

smaller for the 2D case. With the surface flux f(θ) given by (14) we find

U = −µF/π. (28)

Hence, with half the surface of the particle coated, at long times but not so long that the

reactant is depleted, the particle will swim with the approximately constant steady velocity

given by (28).

D. Concentration-limited flux boundary condition

The criterion (26) tells us that ultimately the equation becomes invalid and the reactant

is depleted in the vicinity of the swimmer. It is a simple matter to modify the boundary

condition to reflect this; instead of (2a) we write

− a r̂ · ∇ϕ(a, θ, t) = f(θ)(1 + C−1ϕ(a, θ, t)). (29)

This modification of (2a) acknowledges that as ϕ(a, θ, t) becomes more negative at the

surface, the reaction rate must go to zero when ϕ(a, θ, t) = −C. The modified boundary

condition (29) is related to the classical Michaelis–Menten description of the stationary

state of first-order reaction kinetics [19, 37]. Unfortunately, this is more difficult to solve by

separation of variables, because the boundary conditions have nonconstant coefficients. The

Laplace-transformed boundary condition (29) gives

∞∑
m=0

KmAm cosmθ = −f(θ)

(
s−1 + C−1

∞∑
m=0

Am cosmθ

)
(30)

where

Am = Km(a
√
s/D)Am (31)
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and

Km = a
√
s/DK ′m(a

√
s/D)/Km(a

√
s/D). (32)

Note that again we have assumed f(θ) is even (symmetric particle) so that Bm = 0. We can

rewrite (30) as an infinite system

∞∑
m=0

MnmAm = −Fn/s , (33)

where

Mnm =


(
K0 + 1

2
C−1F0

)
δ0m + 1

2
C−1Fm, n = 0;

(
Kn + 1

2
C−1F0

)
δnm + 1

2
C−1(Fm+n + Fm−n), n > 0.

(34)

Recall that the Fourier coefficients of f(θ), Fm, are given by (13).

Clearly, the the matrix equation (33) must be inverted numerically for the Am. Once we

obtain the Am we can recover the Laplace transform of the swimming velocity from

Ũ(s) =
µ

2π

∫ π

−π
∂θϕ̃(a, θ, s) sin θ dθ = 1

2
µA1. (35)

We solve the problem numerically in the case of the same Janus particle as in Section

III C by truncating (33). Recalling that the constant asymptote of U(t) as t→∞ is sŨ(s)

as s → 0, we plot sŨ(s) as a function of 1/s in Figure 1 for C ranging from 1 to 100

(empty symbols). For large background concentration C (upper curves) the particle does

indeed keep a constant swimming velocity for a while, as predicted by Eq. (27) (horizontal red

dotted line). For lower values of C, the reactant is depleted more quickly, and eventually the

swimming speed starts to decrease. The crossover times T are consistent with equation (25):

the C = 1 curve in Fig. 1 has log10 T ∼ 0.27.

We can get a remarkably accurate approximation for Ũ(s) by retaining only the first two

modes, A0 and A1, in (33). We then just have to solve a two-by-two linear system, and we

obtain

sŨ(s) ' − µK0F1

C−2(F 2
1 − F0(2F0 + F2))− C−1(K0F2 + 2(K0 +K1)F0)− 2K0K1

· (36)

This approximate solution is also plotted in Fig. 1 (filled symbols); it coincides almost

exactly with the numerical solution over the full range of s. For C →∞, most terms vanish

in the denominator of (36), and we recover sŨ(s) ∼ −1
2
µF1 after using K1 ∼ −1.

10



100 105 1010

1/s

10−2

10−1
sŨ

C = 100: Numerics

C = 100: Approx.

C = 10: Numerics

C = 10: Approx.

C = 2: Numerics

C = 2: Approx.

C = 1: Numerics

C = 1: Approx.

FIG. 1: Laplace transform of the swimming velocity as a function of 1/s. The limit

1/s→∞ of sŨ(s) shows the limit of U(t) as t→∞. We use the step function form (14)

for f(θ) and set a = D = −F = µ = 1. Empty symbols show the numerical solution to

(33) while filled symbols show the approximate solution using only the first two modes A0

and A1. The horizontal red dotted line is the C →∞ time-asymptotic swimming speed,

Eq. (27).

The small-s form of the Km is

Km ∼


1/G(s−1) + O(s log s), m = 0;

−m+ O(s log s), m > 0,

(37)

with

G(t) = 1
2

log
(
e2γa2/4Dt

)
. (38)

From this we derive the long-time asymptotics of U(t).

U(t) ∼ −1
2
µF1
C1 + 2(C1G(t) + C2)

(C1G(t) + C2)2
, t→∞ (39)

where

C1 = C−1(C−1(F 2
1 − F0(2F0 + F2)) + 2F0), (40)

and

C2 = 2− C−1(2F0 + F2). (41)
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Hence, the swimming velocity goes to zero as 1/ log t.

IV. PHORETIC SWIMMING IN TWO DIMENSIONS: FULL PROBLEM

We have so far formulated the problem for determining the swimming speed of a two-

dimensional Janus particle by solving an unsteady diffusion equation for the concentration

of the reactant. The swimming speed was then determined by instantaneously integrat-

ing the concentration gradient around the surface of the particle. We have, to this point,

neglected however the effects of advection (small Péclet number limit). It is, however, an

approximation and we now consider in this section the potential role played by advection of

the reactant by the phoretic flow. In Section IV A, we solve for the fluid velocity field u(r, t)

corresponding to a concentration ϕ assumed to be known. The boundary condition on the

velocity field is taken to be a known function that represents the concentration at that

boundary. Following this analysis, in Section IV B the two problems are coupled together.

That is, we state the equations for a swimming Janus particle with the general boundary

conditions formulated in Section III D, but now the concentration ϕ and the velocity field

are coupled through the boundary conditions for the flow and the advection of the reactant.

We finally solve the coupled problem in Section IV D.

A. Velocity field

Consider a two-dimensional swimmer moving with velocity −U x̂. This velocity could

depend on time, but we formally leave out possible time dependence in this section, since it

only enters the problem as a parameter. We will restore time dependence in the following

sections. In the reference frame comoving with the center of the swimmer the fluid appears

to be moving past a stationary swimmer with far-field velocity U x̂. The swimmer is shaped

like a disk of radius a and the swimming is caused, as above, by an imposed velocity at

the surface of the swimmer. Moreover, we shall assume that the velocity field is determined

by the Stokes equations in which inertial effects are assumed to be negligible. This is an

excellent approximation for phoretic particles due to their small size [17–19].

The full problem for the two-dimensional flow was originally solved by Blake [38] and we
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only present the main points here. The governing equations and boundary conditions are,

η∇2u = ∇p, ∇ · u = 0; (42a)

u(a, θ) · r̂ = 0; (42b)

u(a, θ) · θ̂ = g(θ); (42c)

lim
r→∞

u(r, θ) = U x̂; (42d)

where p is the pressure, and η is the dynamic viscosity of the fluid. The flow the steady

incompressible Stokes equation, (42a). The boundary condition (42b) states that there is

no flow through the surface of the swimmer, as it should be for an impermeable boundary.

The second boundary condition (42c) is a specified tangential velocity that serves as the

propulsion mechanism for the swimmer, where the arbitrary function g(θ) is driven by

concentration gradients.

The system of equations and boundary conditions (42) can be reformulated using a

streamfunction ψ, writing the velocity field as

u = r−1∂θψ r̂ − ∂rψ θ̂, (43)

which gives the system

∇2(∇2ψ) = 0; (44a)

∂θψ(a, θ) = 0; (44b)

−∂rψ(a, θ) = g(θ); (44c)

lim
r→∞

ψ(r, θ)/r = U sin θ. (44d)

Using separation of variables, applying the boundary conditions, and assuming the boundary

velocity is given as a Fourier series by

g(θ) = g̃0 +
∞∑
m=1

(gm sinmθ + g̃m cosmθ), (45)

we find the streamfunction

ψ(r, θ) = 1
2
a (1− (r/a)2)

∞∑
m=1

gm (a/r)m sinmθ. (46)

The velocity field is then given by (43). Here we took the gm as given, but through the

phoretic boundary condition, it is of course determined by the concentration ϕ, making the

flow/concentration problem fully coupled.
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B. Swimming phoretic particle with advection

Looking back at the asymptotic solution (21) for the concentration, we see that the

reactant depletion front grows radially outward as
√

4Dt. The particle swims at speed U

so, assuming the front starts ahead, the particle catches up to the front when t ∼ 4D/U2 ∼

16D/µ2F 2
1 . Once the particle catches up to the front, it may encounter unconsumed reactant.

This has so far been neglected, since we did not consider the advection of reactant by the

flow. We should therefore solve the full advection-diffusion problem to determine the final

outcome.

The PDEs governing the full system are the Stokes equations and the advection-diffusion

equation:

η∇2u = ∇p, ∇ · u = 0; (47a)

∂tϕ+ u · ∇ϕ = D∇2ϕ. (47b)

The boundary conditions at r = a are

−ar̂ · ∇ϕ = f(θ)(1 + ϕ/C), u · r̂ = 0, u · θ̂ = µ ∂θϕ, (47c)

while the boundary conditions at r =∞ are

ϕ = 0, u = U x̂. (47d)

In Section IV A we derived an expression for u given a function g(θ, t) = µ ∂θϕ(a, θ, t).

Hence, we can use the analytic solution (46) to eliminate u in (47b). Consequently, one

only needs to solve the initial value problem (47b) numerically for ϕ(r, θ, t) which we do by

specifying a zero initial condition and time-integrating until a steady state has been reached.

Additional details on the numerics are presented in the following subsection.

C. Numerical approach

Equation (47b) is solved using second-order central differences for spatial discretization

and a first-order forward Euler method for time discretization. The simulation domain is

taken to be [0, rmax]×[0, 2π]. We use Nr grid points in the radial direction and Nθ grid points

in the azimuthal direction. The flux boundary condition at the surface is implemented via

a ghost point to preserve the second-order spatial accuracy of the method.
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The analytical expression for the streamfunction (46) together with equation (43) is used

to determine the velocity field at each time step. We perform this calculation in Fourier

space. Let (̂·)m denote the Fourier transform in the azimuthal direction corresponding to

mode m. Taking the Fourier transform of (5) for the surface swimming velocity yields

ĝm = iµmϕ̂m. (48)

The streamfunction (46) in Fourier space is

ψ̂m (r) = 1
2
a(1− (r/a)2)(a/r)m ĝm, (49)

and the velocity components are

ûm,r(r) = ir−1mψ̂m(r), ûm,θ(r) = −∂rψ̂m(r). (50)

The inverse Fourier transform of the velocity components (50) provides an exact solution

for the velocity field based upon our previously derived analytical solution (46).

All of our simulations consider a Janus particle half-coated with reactant. To avoid the

sharp transitions required by (14) in the numerics, we modify (14) to be a combination

of hyperbolic tangent functions. Therefore, our numerical surface flux boundary condition

takes the modified form,

f(θ) = 1
2
F

[
tanh

(
θ − 3π/2

δ

)
− tanh

(
θ − π/2

δ

)]
+ F, 0 ≤ θ ≤ 2π, (51)

with δ = 0.1. The derivative f ′(θ) is not periodic, but for small δ the jump from θ = 2π

to 0 is negligible (namely 10−13 for δ = 0.1).

We use Nθ = 70 grid points in the azimuthal direction unless stated otherwise. The final

time, tf was chosen to be to be sufficiently long to determine a steady swimming velocity.

The radial boundary was set based on the diffusion front so that rmax = 2
√

4Dtf . Finally,

the time step was chosen to provide sufficient temporal resolution while respecting the CFL

condition. Most of our simulations used ∆t = 2.5× 10−4 which yielded a CFL number well

below the limit for stability. We found, however, that such a small time step was necessary to

resolve the relevant dynamics of the system such as the overshoot in the swimming velocity

shown seen below in Figs. 4 and 5. In order to validate our code, we compared swimming

velocities predicted from our code to the asymptotic result derived earlier in this paper, and

found excellent agreement in the appropriate parameter regime.
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FIG. 2: Contour plots of the concentration ϕ (a) without advection and (b) with

advection, at µ = 25 and C = 10. The advective case has Pe = 3.45.

D. Results with advection

We now present results pertaining to swimming velocities of two-dimensional Janus par-

ticles in the presence of advection. Figure 2 illustrates contour plots of the concentration ϕ

without and with advection (left and right plots, respectively) in the case where µ = 25 and

C = 10. When advection is included, the particle moves into reactant-rich regions which

helps it maintain a steady swimming velocity. The advective case has Pe = 3.45.

We then compare in Figure 3 the swimming velocity of the Janus particle with and

without advection for µ = 25 and C = 10. Without advection, the swimming velocity of the

particle gradually decreases to zero according to the asymptotic law derived in Section III D

as U ∼ 1/ log t. This fact is emphasized in Figure 3 by comparing the analytical result (39)

(red dashed line) to the numerical solution without advection (triangles). In stark contrast,

when advection is taken into account the phoretic particle swims with a constant velocity.

The inset in Figure 3 shows the smooth transition from zero initial swimming velocity to

the final steady swimming velocity.

The value of this steady swimming velocity depends on µ and the concentration of the

reactant, C. We show in Figure 4 the time evolution of the velocity at µ = 50 for various

values of C. In each case, the Janus particle eventually reaches a constant swimming velocity.

We note that for larger values of C the swimming velocity exhibits a small overshoot above

the final swimming velocity ranging from 0.8% (C = 1) to 1.7% (C = 100) above the final
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FIG. 3: Time evolution of the swimming velocity in a system with (circles) and without

advection (triangles) for µ = 25 and C = 10. The dashed line indicates the asymptotically

decaying swimming velocity, U ∼ 1/ log t, t→∞ derived in the present work. The inset

shows a smooth transition to the final swimming velocity at early times.
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FIG. 4: Time evolution of the swimming velocity for various values of the C and µ = 50.

swimming velocity. This overshoot vanishes as C is decreased and is no longer present at

C = 0.1. We further note that the final swimming velocity appears to become independent

of C as C becomes large. This is to be expected since in the limit of infinite reactant the

particle has no reason to slow down.

We next consider the dependence of the swimming velocity on µ and plot the results in

the case where C = 100 in Fig. 5. The particle takes longer to reach its final swimming

velocity as µ is decreased. Once again, we observe an overshoot in the swimming velocity

(ranging from 1% to 1.7% at µ = 25 and µ = 50, respectively). Finally, we observe that the
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swimming velocity does not become independent of µ but increases with it.
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FIG. 6: Steady swimming velocity as a function of reactant concentration for several

values of µ. The swimming velocity saturates for large values of C. For small C the

swimming velocities are linear in µ whereas they become nonlinear in µ for large C.

In Figure 6 we finally plot the steady swimming velocity, Usteady, as a function of reactant

concentration, C, at various values of µ. In our dimensionless units, we recall that Usteady

is the same as the Péclet number Pesteady = Usteadya/D. For small µ, the steady swimming

velocity is very small in accordance with the low-Pe regime. Moreover, Usteady is linear in µ

for small C (e.g. compare Usteady at µ = 5 and µ = 10 for C < 1) but becomes nonlinear in

µ for large C. In all cases, Usteady saturates for large C.

18



V. CONCLUSIONS

In the present work, we studied the ability of two-dimensional phoretic (Janus) particles

to reach a steady swimming velocity. Our problem was formulated in terms of a two-

dimensional diffusion equation for the concentration of a reactant around a circular particle.

The motion of the particle was driven by reactions at the surface of the particle which were

imposed through a flux boundary condition for the concentration field. Only one half of the

particle was coated with a reactant, with the flux of reactant given by F < 0.

Our first general analytical approach was to perform an asymptotic analysis via Laplace

transforms to assess the final swimming speed of the particle when advection of the reactant

by the flow was neglected. A key step in our analysis was use of a Tauberian theorem which

provided the asymptotic antiderivative of the Laplace-transformed solution. We considered

two boundary conditions in our analysis which led to two different results. In our initial

approach, we ignored the fact that the particle is immersed in a field of finite reactant

concentration. In that case, the Janus particle reached a steady swimming velocity of

U = −µF/π, as long as it did not exhaust the reactant. We then generalized the boundary

conditions to include the effects of a finite reactant concentration. With the generalized

boundary conditions, our analysis revealed that the Janus particle has an asymptotically-

decaying swimming velocity. In particular, we found that the swimming velocity of the

particle will decay to zero as U ∼ 1/ log t. The fact that the particle eventually stops

swimming is to be expected given that it eventually runs out of reactant to consume.

Next, we generalized the study to include advective effects due to motion of the particle.

In this situation, the concentration field around the Janus particle was advected by a velocity

field given by Stokes flow. We analytically solved the Stokes equation for the velocity field.

We then solved the concentration field numerically using the analytically determined velocity

field and the concentration-limited boundary conditions. In the advective case, we found

that the Janus particle reaches a steady swimming velocity which is linked to the fact that

the Janus particle is continually moving into reactant-rich areas so that it never locally

depletes the reactant. The lack of a steady-state solution for a two-dimensional phoretic

particle is thus essentially a result of neglecting chemical advection.

In the future it would be interesting to analyze different configurations for the chemical

coating beyond the simple step function used here (Janus particles). Different particle
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geometries, such as ellipses and crescents, may provide additional insight. In particular,

and in analogy with problems in electrostatics, particles with singularities in their shapes,

such as kinks and cusps, could display interesting amplifications of local chemical gradients.

Another direction likely to be of interest would be to model weak three-dimensional effects

associated with particles in a thin film.
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