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Abstract Letπ be a cuspidal, cohomological automorphic representation of GLn(A).
Venkatesh has suggested that there should exist a natural action of the exterior algebra
of a certain motivic cohomology group on the π -part of the Betti cohomology (with
rational coefficients) of the GLn(Q)-arithmetic locally symmetric space. Venkatesh
has given evidence for this conjecture by showing that its ‘l-adic realization’ is a
consequence of the Taylor–Wiles formalism. We show that its ‘p-adic realization’ is
related to the properties of eigenvarieties.
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1 Introduction

Automorphic representations Let n ≥ 2 be an integer, and consider a regular
algebraic cuspidal automorphic representation π of GLn(A). This paper is about the
arithmetic structures which are (in some cases conjecturally) associated to π .

When n = 2, π can be generated by vectors which are naturally interpreted as
classical cuspidal modular forms of weight k ≥ 2. The eigenvalues of Hecke operators
acting on such vectors are algebraic numbers, and in fact all lie in a common number
field Eπ . Deligne constructed a family of p-adic Galois representations associated to
π , indexed by finite places of the number field Eπ , which can be characterized by a
relation between the characteristic polynomials of Frobenius elements and theseHecke
eigenvalues. The existence of these Galois representations suggests the existence of a
common motive M(π) giving rise to them, and this motive was constructed by Scholl
[41], using the geometry of modular curves.

When n > 2, the picture is currently incomplete. Clozel [16] showed, using the
theory of cuspidal cohomology, that the Hecke eigenvalues of π are still algebraic
numbers, belonging to a common number field Eπ . The corresponding Galois repre-
sentations were constructed more recently in [30]. It remains an open problem to show
that they are geometric (i.e. potentially semi-stable, in the sense of p-adic Hodge the-
ory). Clozel conjectures again [16] the existence of a motive M(π) whose Frobenius
elements are related to the Satake parameters of π .

Cohomology When n = 2, the arithmetic locally symmetric spaces YK associated
to the group GLn are algebraic curves. When n > 2, these spaces have no direct link
to algebraic geometry. Venkatesh [44,45] has suggested a more subtle relation, that
we now describe. For any value of n ≥ 2, the representation π contributes to cuspidal
cohomology in degrees in the interval [q0, q0 + l0], and (ignoringmultiplicities coming
from the finite places) the contribution in degree q0+ i has dimension

(l0
i

)
. The integer

l0 is given by the formula l0 = �(n − 1)/2�.
Venkatesh suggests that there should exist a natural action of the exterior algebra

∧∗ Ext1MMZ
(M(π), M(π)(1))

on the π -part of the cohomology of YK , making this π -part free over this commutative
graded ring; hereMMZ denotes a suitable category of mixed motives overZ [22,37].
The Bloch–Kato conjecture gives a prediction for the dimension of theQ-vector space
Ext1MMZ

(M(π), M(π)(1)) depending only on the zeroes and poles of Euler factors at
infinity of the adjoint motive ad M(π), and an explicit calculation then gives the value
l0 above. The conjecture of Venkatesh would therefore give an arithmetic explanation
for the above formula for the dimension of the π -part of cohomology.

This conjecture is naturally hard to attack directly. However, by applying various
realization functors frommotivic cohomology to more concrete cohomology theories,
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one can attempt to drawmore concrete consequences. Venkatesh and his collaborators
[25,39] have carried this out already for the Hodge and l-adic realizations, using
the theory of cuspidal cohomology and (assuming the existence of certain Galois
representations) the Taylor–Wiles method. Additional evidence is provided by recent
work of Balasubramanyam–Raghuram [8].

In this paper, we try to understand Venkatesh’s conjecture from a p-adic or ‘crys-
talline’ perspective. Our point of departure is the observation that the integer l0 also
plays an essential role in the theory of eigenvarieties.

Eigenvarieties Hida [28] and Coleman [19] observed that classical modular forms
of weight k ≥ 2 can naturally be put into p-adic families depending continuously
on the weight variable, whenever they have finite slope (= p-adic valuation of Tp- or
Up-eigenvalue). Coleman–Mazur [17] then systematized these families, constructing
a geometric object called the eigencurve, whose points are in bijection with finite
slope p-adic eigenforms and which locally are modelled on the families constructed
by Coleman.

Eigenvarieties for reductive groups other than GL2 have since been constructed by
a number of different authors; let us mention in particular here the work of Buzzard,
Chenevier, Emerton, and Urban [9,12,21,43]. The eigenvarieties studied in this paper
are those constructed by the first named author [27], following an earlier construction
of Ash–Stevens [3]. Let G be a split reductive group over Z, and let T ⊂ G be a
split maximal torus, B a Borel subgroup containing T. Fix a tame level subgroup
K p ⊂ G(A∞,p), and let W be the rigid space over Qp representing the functor

X 	→ Homcts(T(Zp),O(X)×).

We call this the ‘weight space’, as there is a natural injection X∗(T) ↪→ W . The
eigenvariety of tame level K p is a rigid spacew : X → W whose closed points are in
bijection with systems of Hecke eigenvalues which appear in the cohomology groups

H∗(K p I,Dλ)

of p-adic coefficient systems Dλ which are indexed by points λ ∈ W . (These groups
will be defined in the case G = GLn in Sect. 4 below.)

The morphismw is finite locally in the domain, with discrete fibers. We expect that
X is generically of dimension equal to dimW − l0, where1

l0 = rankG(R) − rank A∞K∞

is again the length of the range of degrees in which tempered cusp forms contribute
to cohomology. When l0 = 0, one expects that the map w : X → W is generically
finite, and that points of X corresponding to classical automorphic representations
are dense. However, when l0 > 0, the image of w should have positive codimension
in W , and the classical points should no longer be Zariski dense in the eigenvariety.

1 Here A∞ denotes the real points of the center of G, and K∞ is a maximal compact subgroup of G(R).
Note again that G is assumed to be split.
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The goals of this paper We can now discuss what we aim to achieve in this paper.
We take G = GLn/Q with n ≥ 2, and study the geometry of the eigenvariety in a
neighbourhood of a point corresponding to a regular algebraic, cuspidal automorphic
representation π of GLn(A) together with a chosen refinement t (i.e. t is a choice of
ordering of the eigenvalues of the Satake parameter of πp). We assume that the pair
(π, t) satisfies the following conditions:

A1. The representation π is unramified at p, and the Satake parameter of πp is regular
semi-simple.

A2. The refinement t has ‘small slope’, in a sense which generalizes the sufficient
condition ‘val(ap) < k − 1’ of Coleman’s classicality criterion [18]. (See Theo-
rem 4.7 for the precise condition we impose; this condition depends on a choice
of isomorphism ι : Qp

∼= C.)
A3. The infinite component π∞ satisfies the parity condition (4.3). (This condition is

less essential and could probably be removed at the cost of more notation.)

We then study the eigenvariety X of tame level K1(N ), where N is the conductor
of π . Under the above conditions, we construct a point x ∈ X (L) corresponding to
(π, t), for some finite extension L/Qp. Let Tx = ÔX ,x denote the completed local
ring at the point x , and let � = ÔW ,λ denote the completed local ring at the point
λ = w(x); these are both complete local Noetherian L-algebras, and Tx is naturally
a finite �-algebra. Our first main result is as follows.

Theorem 1.1 [Theorem 4.9] Under the assumptions above, we have dimTx ≥
dimW − l0, and if equality holds then the following are true:

1. The natural map � → Tx is surjective, and Tx is a complete intersection ring.
2. Let Vx = ker(� → Tx ) ⊗� L, so dimL Vx = l0. Let Lλ,L be the algebraic

coefficient systemofweightλ, and letMbe themaximal ideal of the classicalHecke
algebra corresponding to the systemofHecke eigenvalues ofπ and the refinement t .
Then the graded vector space H∗(K1(N ; p),Lλ,L )[M] has a canonical structure
of free module of rank 1 over the commutative graded ring ∧∗

LVx .2

Our second main result builds upon this using the conjectural relation to Galois
representations. To this end, we state below Conjecture 4.11. This is an R = T type
conjecture which (roughly speaking) asserts that Tx carries a family of trianguline
Galois representations deforming the representation ρπ : GQ → GLn(L), and that
this family is universal in a precise sense. Our theorem is then as follows.

Theorem 1.2 [Theorem 4.13] Let x be a closed point of X associated to a regular
algebraic, cuspidal automorphic representation π of GLn(A) equipped with a small
slope refinement t , as above. Assume Conjecture 4.11 and the equality dimTx =
dim� − l0. Then:

1. The Bloch–Kato Selmer groups of ad ρπ and ad ρπ(1) have dimensions

dimL H1
f (Q, ad ρπ) = 0, dimL H1

f (Q, ad ρπ(1)) = l0,

2 This structure of∧∗
LVx -module respects the grading up to sign, in the sense thatmultiplication by elements

of ∧i
L Vx takes H j to H j−i . See Theorem 4.9 for a precise statement.
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and there is a canonical exact sequence

H1
f (Q, ad ρπ(1)) → m�/m2

� → mTx /m
2
Tx

→ 0.

2. Suppose moreover that X is smooth at the point x. Then the above sequence is
also left exact, and induces an isomorphism H1

f (Q, ad ρπ(1)) ∼= Vx (notation as
in Theorem 1.1). Consequently, the graded vector space H∗(K1(N ; p),Lλ,L )[M]
has a canonical structure of free module of rank 1 over the commutative graded
ring

∧∗
L H

1
f (Q, ad ρπ(1)).

Since H1
f (Q, ad ρπ(1)) should be exactly the p-adic realization of the group

Ext1MMZ
(M(π), M(π)(1))

(see [31, Sect. 6]), this is the desired result.

Remark 1. As will be clear to the reader, everything we do here could be done with
Q replaced by a general number field F .3 We restrict our attention to the case
F = Q for clarity, since all of the main new ideas already appear here.

2. According to a conjecture of the first author [27, Conj. 1.2.5/6.2.3], our main
results should hold under a much weaker assumption than the conditionA2 above:
it should suffice to assume that the refinement t corresponds to a “noncritical”
refinement of Dcrys(ρπ |GQp ).

3. The assumption dimTx = dim� − l0, conjectured by Hida in the ordinary case
[29] and Urban in the general finite-slope case [43], is a non-abelian analogue of
the Leopoldt conjecture, and seems to be of equivalent difficulty [34]. However,
when n = 3, 4, we have l0 = 1, in which case this equality follows from [27,
Theorem 4.5.1].

4. Conjecture 4.11 represents a serious assumption. However, it does not seem com-
pletely out of reach. In the ordinary (i.e. slope zero) case, the second author,
together with C. Khare, has studied the problem of proving R = T theorems
assuming only the existence of suitable families of Galois representations [34].
When the base field is Q these families have been essentially constructed by
Scholze [40] (see also [38]), so the only remaining barrier to proving some cases
of Conjecture 4.11 in this situation is establishing local-global compatibility at p.

5. In light of Theorem 1.2, it seems natural to ask the following question which is
independent of Venkatesh’s conjecture: let x ∈ X be the point of the eigenvariety
associated to a regular algebraic cuspidal automorphic representation π , which is
equipped with a small slope refinement t . Is it always true thatX is smooth at the
point x? It is true if n = 2 (in which case the small slope condition implies that
the weight map w is even étale at x , see [5, Theorem 2.16]).

3 Strictly speaking, the deformation-theoretic results proved in [4,13] which we crucially use in Sect. 3 are
only stated in the literature for GQp -representations; however, it is entirely straightforward to generalize
these results to GK -representations for any finite K/Qp , taking into account the tools developed in [33].
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The structure of this paper Wenowdescribe the organization of this paper. In Sect. 2,
we recall the canonical graded ring and module structures on Tor. In Sect. 3, we define
some crystalline and trianguline deformation rings, following [4]. Finally in Sect. 4
we make our study of eigenvarieties, prove Theorems 1.1 and 1.2, and discuss some
numerical examples using data from [1].

1.1 Notation

We will fix throughout this paper a prime p and an algebraic closure Qp. A finite
extension L/Qp inside Qp will be called a coefficient field. If Hi is a cohomology
group which is naturally an L-vector space, we will write hi = dimL Hi .

All undecorated tensor products are taken over Z. We write A for the adele ring
of Q, and A

∞ for the ring of finite adeles. All rings without grading will be assumed
commutative in the usual sense. If G is a locally profinite group (such as the group
G(A∞), whereG is a reductive group overQ) andU is an open compact subgroup, then
we writeH(G,U ) for the algebra of compactly supported functionsU\G/U → Z. It
is a free Z-module with basis the characteristic functions of double cosets [UgU ], and
multiplication [UgU ][UhU ] = ∑

i, j [αiβ jU ], where UgU = ∐
i αiU and UhU =∐

j β jU .

If F is a perfect field, then we write GF = Gal(F/F) for the absolute Galois
group of F with respect to a fixed algebraic closure. If l is a prime, then we write
Artl : Q

×
l → Gab

Ql
for theArtinmap, normalized to send l to a lift of Frobl (= geometric

Frobenius). If � is an algebraically closed field of characteristic 0 and n ≥ 1 is an
integer, then we write recTl for the Tate-normalized local Langlands correspondence
for GLn(Qp), as described in [20, Sect. 2.1].

If ρ : GQp → GLn(Qp) is a continuous representation, then we define Dcrys(ρ) =
(Bcrys ⊗Qp ρ)

GQp , as in [23, Exposé III]. If ρ : GQl → GLn(Qp) is a continuous
representation, which is de Rham if l = p, then we define a Weil–Deligne represen-
tation WD(ρ) over Qp as in [42, Sect. 1]. We note in particular that if l = p and ρ is
crystalline, then the eigenvalues of WD(ρ)(Frobp) are the same as the eigenvalues of
the crystalline Frobenius on Dcrys(ρ). We write val : Qp → Q ∪ {∞} for the unique
p-adic valuation such that val(p) = 1.

2 Ring structure of Tor

If A = ⊕n≥0An is a graded ring, we say A is commutative if the product on A satisfies
am · an = (−1)mnan · am for any am ∈ Am, an ∈ An .

The following proposition plays a key role in our main construction.

Proposition 2.1 Let R be a commutative ring, and let I, J ⊂ R be ideals.

1. The graded R-module

TorR∗ (R/I, R/J ) = ⊕∞
i=0 Tor

R
i (R/I, R/J )
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has a canonical structure of commutative graded R-algebra.
1. If M (resp. N) is an R/I - (resp. R/J -)module, then TorR∗ (M, N ) has a canonical

structure of graded TorR∗ (R/I, R/J )-module.

Proof We recall that for any pair of commutative rings R, S and any R-modules A, B
and S-modules P, Q, there is a natural product map

TorR∗ (A, B) ⊗ TorS∗(P, Q) → TorR⊗S∗ (A ⊗ P, B ⊗ Q). (2.1)

Taking R = S and A = P = R/I, B = Q = R/J , the product map gives morphisms
of rings R ⊗ R → R, R/I ⊗ R/I → R/I and R/J ⊗ R/J → R/J (because R is
commutative), so combining the map (2.1) with the usual change of ring functoriality
for Tor gives a map

TorR∗ (R/I, R/J ) ⊗ TorR∗ (R/I, R/J ) → TorR∗ (R/I, R/J ). (2.2)

By [11, Ch. XI, Sects. 1–2], this map induces the desired structure of commutative
graded R-algebra. An analogous argument with the map (2.1) in the case R = S
and A = R/I, B = R/J, P = M, Q = N gives the claimed module structure on
TorR∗ (M, N ). ��
We now want to discuss this structure in a special case. Let R be a Noetherian local
ring with residue field L , and let I ⊂ R be an ideal generated by a regular sequence.

Lemma 2.2 The isomorphism TorR1 (R/I, L) ∼= I ⊗R L induces a canonical isomor-
phism

TorR∗ (R/I, L) ∼= ∧∗(I ⊗R L)

of commutative graded L-algebras.

Proof Let x = (x1, . . . , xr ) be an R-sequence generating I , and let K•(x) be the
associated Koszul complex with its natural structure as a commutative differential
graded R-algebra. We recall that in any fixed degree n,

Kn(x) =
⊕

1≤ j1<···< jn≤r

R · e j1... jn

is a free R-module of rank
(r
n

)
, and the differential on K• is defined by d(e j1··· jn ) =∑n

i=1(−1)i+1x ji e j1··· ĵi ··· jn . Since K•(x) gives a minimal free resolution of R/I , the
induced differential on K•(x) ⊗R L is zero, and there is a canonical isomorphism

fx : TorR∗ (R/I, L) ∼= K•(x) ⊗R L ∼= ∧∗ I ⊗R L .

It follows from the discussion in [11, Ch. XI, Sect. 5] that this is in fact an isomorphism
of commutative graded algebras (and not just of R-modules). We must check that this
isomorphism is independent of the choice of regular sequence x. However, if y =
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(y1, . . . , yr ) is another choice of regular sequence, then we can write yi = ∑
j ai j xi

for some matrix A = (ai j ) with R-coefficients and det A ∈ R×. It is then clear that
A induces an isomorphism Kn(x) ∼= Kn(y) of commutative differential graded R-
algebras such that the automorphism of∧∗ I ⊗R L given by fy f −1

x is the identity. This
completes the proof. ��

3 Galois theory

In this section we recall, following [4], some simple cases of the deformation theory of
crystalline and triangulineGalois representations in characteristic 0.Wefix throughout
this section an integer n ≥ 1, a prime p, and a coefficient field L .

3.1 Recollections on (φ, �)-modules

We begin by recalling some of the theory of (φ, �)-modules. We take as given the
theory of Dcrys. We define the Robba ring R over Qp to be the ring of power series
f (z) = ∑

n∈Z
anzn with an ∈ Qp which converge in some annulus of the form

r( f ) < |z − 1| < 1. This ring has natural commuting actions of the group � = Z
∗
p

and the endomorphism φ, determined by the following formulae (γ ∈ �):

γ ( f )(z) = f (zγ ), φ( f )(z) = f (z p).

Let CL denote the category of Artinian local L-algebras with residue field L; objects
ofCL will always be considered with their natural p-adic (L-vector space) topology. If
A ∈ CL , then we defineRA = R ⊗Qp A; then � and φ act onRA by scalar extension
of their actions on R.

Definition 3.1 Let A ∈ CL . A (φ, �)-module over A is a finite RA-module D, free
over R, equipped with commuting, continuous, RA-semilinear actions of φ and �,
and satisfying the condition Rφ(D) = D. A morphism of (φ, �)-modules over A is
a morphism of underlying RA-modules which respects the actions of φ and �.

Let us write Modφ,�,A for the category of (φ, �)-modules over A. We write ModQp,A
for the category of finitely generated A-modules equipped with a continuous action
of the group GQp .

Theorem 3.2 There is an exact, fully faithful functor Drig : ModQp,A → Modφ,�,A.
If V ∈ ModQp,A is free over A, then Drig(V ) is free over RA, and conversely.

Proof This follows fromworks of Fontaine, Chebonnier–Colmez, andKedlaya, which
also allow us to characterize the essential image of the functor Drig as the full subcat-
egory of étale (φ, �)-modules. For the final statement, see [4, Lemma 2.2.7]. ��
If δ : Q

×
p → A× is a continuous character, then we can define an object

RA(δ) ∈ Modφ,�,A by taking the underlying module RA(δ) = RA and setting
φ(1) = δ(p), γ (1) = δ(γ ). It is known ([4, Proposition 2.3.1]) that any element of
Modφ,�,A which is free of rank 1 over RA is isomorphic to RA(δ) for a uniquely
determined continuous homomorphism δ : Q

×
p → A×.
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Definition 3.3 Let D ∈ Modφ,�,A be free of rank n over RA. A triangulation of D
is an increasing filtration � = (�i )

n
i=0 by direct summand RA-submodules, stable

under φ, � and such that �i is free over RA of rank i .
A representation V ∈ ModQp,A is trianguline if Drig(V ) admits a triangulation.

If D ∈ Modφ,�,A is free of rank n over RA, then a choice of triangulation deter-
mines a tuple δ = (δ1, . . . , δn) of homomorphisms δi : Q

×
p → A×, by the formula

gri � = �i/�i−1 ∼= RA(δi ). This is called the parameter of the triangulation (cf. [4,
Sect. 2.3.2]).

We now describe the relation between crystalline representations and trianguline
representations.

Theorem 3.4 Let V ∈ ModQp,L be crystalline with dimL V = n.

1. There is an isomorphism Drig(V )[1/t]� ∼= Dcrys(V ) of finite free L-modules
equipped with φ-action.

2. The assignment �i 	→ �i [1/t]� defines a bijection between the set of triangula-
tions of Drig(V ) and the set of filtrations F = (Fi )

n
i=0 of Dcrys(V ) such that Fi is

φ-stable and dimL Fi = i .
3. The representation V is trianguline.

Proof The first part is a theorem of Berger [6, Théorème 0.2], who also shows how to
recover the filtration on Dcrys(V ). The second part is deduced from this by Bellaïche–
Chenevier [4, Proposition 2.4.1]. The third part is an immediate consequence of the
second. ��
Following [4],we refer to aφ-stable filtrationF = (Fi )

n
i=0 ofDcrys(V ) as a refinement.

The above theorem shows that giving a refinement of V is the same as giving a
triangulation ofDrig(V ). It is shown in [4, Sect. 2.4] that the parameter δ = (δ1, . . . , δn)

of the triangulation corresponding to a refinement F can be described explicitly as
follows: we can associate to F a sequence α = (α1, . . . , αn) of elements of L , where
αi is the eigenvalue of φ on gri F . We can also associate a sequence s = (s1, . . . , sn)
of integers, where s1, . . . , si are the jumps in the induced filtration (Hodge) filtration
of Fi ⊂ Dcrys(V ). The character δi : Q

×
p → L× is then determined by the formulae

δi (p) = αi p
−si , δi |Z×

p
= χ−si ,

where χ : Z
×
p → L× is the identity character (which corresponds to the restriction of

the cyclotomic character to inertia under our normalization of local class field theory).
Finally, we wish to single out a few particularly pleasant classes of refinements.

Definition 3.5 Let V ∈ ModQp,L be crystalline with pairwise distinct Hodge–Tate
weights k1 < k2 < · · · < kn . Let F = (Fi )

n
i=0 be a refinement of V , and let

α = (α1, . . . , αn), s = (s1, . . . , sn) be the tuples defined above.

1. We say that the refinement F is non-critical if we have s1 < s2 < · · · < sn .
2. We say that F is numerically non-critical if for each i = 1, . . . , n − 1, we have

val(α1) + · · · + val(αi ) < k1 + · · · + ki−1 + ki+1.
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(In the case i = 1, we interpret k0 = 0.)

A numerically non-critical V is non-critical (as follows from the fact that Dcrys(V )

is weakly admissible), but the converse does not hold.

Definition 3.6 Let V ∈ ModQp,L be crystalline with pairwise distinct Hodge–Tate
weights k1 < k2 < · · · < kn . Let F = (Fi )

n
i=0 be a refinement of V , with α =

(α1, . . . , αn) the associated ordering on the eigenvalues of crystalline Frobenius. We
say F is very generic if the following conditions hold:

1. The refinement F is non-critical.
2. For each 1 ≤ i < j ≤ n, we have αiα

−1
j /∈ {1, p−1}.

3. We have H0(Qp, ad V (−1)) = 0.

3.2 Galois deformations

Let S be a finite set of primes containing p, let QS/Q denote the maximal extension in
a fixed algebraic closure unramified outside S, and let GQ,S = Gal(QS/Q). Consider
a continuous representation ρ : GQ,S → GLn(L) satisfying the following conditions:

• The representation ρ is absolutely irreducible.
• The restricted representation ρ|GQp

is crystalline, with pairwise distinct Hodge–
Tate weights and pairwise distinct crystalline Frobenius eigenvalues which all lie
in L .

• For each complex conjugation c ∈ GQ,S , we have tr ρ(c) ∈ {−1, 0, 1} (in other
words, ρ is odd).

We write Defρ,crys : CL → Sets for the functor which assigns to A ∈ CL the set of
strict equivalence classes of homomorphisms ρA : GQ,S → GLn(A) satisfying the
following condition:

C1. The representation ρA lifts ρ, in the sense that ρA mod mA = ρ.
C2. For each prime l ∈ S, l �= p, there is an (unspecified) isomorphism of IQl -

representations ρA|IQl
� ρ ⊗L A|IQl

.
C3. The restricted representation ρA|GQp

is crystalline (as an L-representation, for-
getting the A-structure).

(Two such ρA, ρ′
A are said to be strictly equivalent if they are conjugate under the

action of the group ker GLn(A) → GLn(L).)

Proposition 3.7 1. The functor Defρ,crys is pro-represented by a complete Noethe-
rian local L-algebra Rρ,crys.

2. There is a canonical isomorphism

Defρ,crys(L[ε]) ∼= H1
f (Q, ad ρ),

where

H1
f (Q, ad ρ) = ker

⎡

⎢⎢
⎣H1(QS/Q, ad ρ) → H1(Qp, ad ρ)

H1
f (Qp, ad ρ)

⊕
⊕

l∈S
l �=p

H1(Qnr
l , ad ρ)

⎤

⎥⎥
⎦
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is the usual Bloch–Kato Selmer group.

Proof This is standard Galois deformation theory; we briefly sketch the proof. Let
Defρ : CL → Sets denote the functor of strict equivalence classes of liftings ρA :
GQ,S → GLn(A) of ρ (with no local conditions). The representability of Defρ by
a complete Noetherian local L-algebra Rρ is a consequence of Mazur’s theory and
standard finiteness properties of Galois cohomology [35].

For each prime l ∈ S, let Defρ,l : CL → Sets denote the functor of strict equiv-
alence classes of liftings ρA : GQl → GLn(A) of ρ|GQl

. For any prime l ∈ S with
l �= p (resp. for l = p), condition C2. (resp. C3.) defines a subfunctor Defnrρ,l ⊂ Defρ,l

(resp. Defcrysρ,p ⊂ Defρ,p). We claim these subfunctors in fact define local deforma-
tion problems [36, Sect. 23], and hence are relatively representable. For Defnrρ,l , this

is proved in e.g. [4, Propositions 7.6.3 and 7.8.5]. For Defcrysρ,p , we recall that by a
classical theorem of Fontaine, the category of crystalline representations of GQp on
finite-dimensional L-vector spaces is closed under passage to subobjects, quotients,
and direct sums; in particular, Defcrysρ,p satisfies the conditions of Ramakrishna’s crite-
rion [36, Sect. 25, Proposition 1], and therefore defines a local deformation problem.
Since

Defρ,crys = Defρ ×∏
l∈S Defρ,l

⎛

⎜⎜
⎝Defcrysρ,p ×

∏

l∈S
l �=p

Defnrρ,l

⎞

⎟⎟
⎠ ,

the first part of the theorem follows as usual.
The second part follows from [36, Sect. 26, Proposition 2] together with the iden-

tifications

Defnrρ,l(L[ε]) = H1
nr(Ql , ad ρ) := ker

(
H1(Ql , ad ρ) → H1(Qnr

l , ad ρ)
)

and

Defcrysρ,p (L[ε]) = H1
f (Qp, ad ρ) := ker

(
H1(Qp, ad ρ) → H1(Qp, ad ρ ⊗ Bcrys)

)
,

since these are exactly the local conditions defining the global H1
f . ��

By our assumption that the crystalline Frobenius ϕ has no repeated eigenvalues on
Dcrys(ρ|GQp

), choosing a refinement F = (Fi )
n
i=0 of ρ|GQp

is equivalent to choosing
an ordering α = (α1, . . . , αn) of these eigenvalues. Let us now fix an ordering α such
that the associated refinement F(α) is very generic, and let δ = (δ1, . . . , δn) be the
parameter of the triangulation corresponding to F(α). We write Defρ,α : CL → Sets
for the functor which assigns to A ∈ CL the set of strict equivalence classes of
homomorphisms ρA : GQ,S → GLn(A) satisfying the following conditions:

T1. The representation ρA lifts ρ, in the sense that ρA mod mA = ρ.
T2. For each prime l ∈ S, l �= p, there is an (unspecified) isomorphism of IQl -

representations ρA|IQl
� ρ ⊗L A|IQl

.
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T3. The (φ, �)-module Drig(ρA|GQp
) admits a triangulation with parameter δA

lifting δ.

We write Defδ : CL → Sets for the functor of continuous lifts λA : (Z×
p )n → A×

of the character λ = δ|(Z×
p )n . Our assumptions imply that if [ρA] ∈ Defρ,α(A),

then there is exactly one triangulation of Drig(ρA|GQp
) lifting the fixed triangulation

of Drig(ρ|GQp
), and hence the parameter δA of [ρA] is well-defined. (It is clearly

independent of the choice of representative in the strict equivalence class.) In this
way, we obtain a natural transformation Defρ,α → Defδ, [ρA] 	→ δA|(Z×

p )n .

Proposition 3.8 1. The functorDefρ,α is pro-represented by a complete Noetherian
local L-algebra Rρ,α .

2. There exists a subspace H1
α (Qp, ad ρ) ⊂ H1(Qp, ad ρ) and an isomorphism

Defρ,α(L[ε]) ∼= H1
α (Q, ad ρ),

where we define

H1
α (Q, ad ρ)= ker

⎡

⎢⎢
⎣H1(QS/Q, ad ρ) → H1(Qp, ad ρ)

H1
α (Qp, ad ρ)

⊕
⊕

l∈S
l �=p

H1(Qnr
l , ad ρ)

⎤

⎥⎥
⎦ .

Proof For the first part, it again suffices to show that the natural transformation
Defρ,α → Defρ is relatively representable. This is exactly analogous to the proof
of Proposition 3.7, except we need to know that a suitable local trianguline defor-
mation functor Defαρ,p ⊂ Defρ,p is relatively representable; this follows from [4,
Proposition 2.5.8].

For the second part, we simply define H1
α (Qp, ad ρ) as the image of

Defαρ,p(L[ε]) ⊂ Defρ,p(L[ε]) ∼= H1(Qp, ad ρ).

Having made this definition,4 the result again follows as in the proof of Proposition
3.7. ��

Wenow discuss the relation between the functors Defρ,crys andDefρ,α . Let us write
� for the representing object of Defδ; it is a formally smooth L-algebra, and there
is a canonical augmentation � → L , corresponding to the constant homomorphism
λ ⊗L A. This choice of base point determines a natural isomorphism Defδ(A) ∼=
Homcts((Z

×
p )n, 1 + mA), λA 	→ λA(λ ⊗L A)−1, hence a canonical isomorphism

Defδ(L[ε]) ∼= Homcts((Z
×
p )n, L) ∼= Ln,

which sends a character λL[ε] = λ · (1+εμ) to the point− log(μ(1+ p))/ log(1+ p).

4 There is a natural description of H1
α (Qp, ad ρ) in terms of Fontaine–Herr cohomology [13, Proposition

3.6. ii], but we don’t need this description in the present paper.
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Proposition 3.9 We have Defρ,crys ⊂ Defρ,α as subfunctors of Defρ , and this inclu-
sion leads to an identification

Defρ,crys = Defρ,α ×Defδ {δ}. (3.1)

Dually, there is a canonical surjection Rρ,α → Rρ,crys, which factors through an
isomorphism Rρ,α ⊗� L ∼= Rρ,crys, and (taking L[ε]-points) an exact sequence of
L-vector spaces:

0 H1
f (Q, ad ρ) H1

α (Q, ad ρ) Ln . (3.2)

Proof The inclusion Defρ,crys ⊂ Defρ,α is a consequence of [4, Proposition 2.5.8].
The identification (3.1) then follows by [4, Proposition 2.3.4]. (We invite the reader to
compare the exact sequence (3.2) with the exact sequence appearing in the statement
of [4, Theorem 2.5.10].) ��

Finally, we discuss the information about these deformation functors given by the
Euler characteristic formula and Poitou–Tate duality. Let us write H1

f (Q, ad ρ(1))

and H1
α (Q, ad ρ(1)) for the dual Selmer groups of H1

f (Q, ad ρ) and H1
α (Q, ad ρ),

respectively (defined by local conditions for ad ρ(1) which are the the annihilators
under Tate local duality of the conditions for ad ρ).

Proposition 3.10 1. We have

h1f (Q, ad ρ) = h1f (Q, ad ρ(1)) − �(n − 1)/2�

and

h1α(Q, ad ρ) = h1α(Q, ad ρ(1)) + n − �(n − 1)/2�.

2. The exact sequence of Proposition 3.9 can be extended to an exact sequence

0 → H1
f (Q, ad ρ) → H1

α (Q, ad ρ) → Ln → H1
f (Q, ad ρ(1))∨

→ H1
α (Q, ad ρ(1))∨ → 0.

3. There exists a presentation Rρ,α
∼= L�x1, . . . , xg�/( f1, . . . , fr ), where g − r =

n − �(n − 1)/2�.
Proof By the (p-adic version of the) Greenberg–Wiles Euler characteristic formula,
we have for any collection of subspaces L = {Ll}l∈S,Ll ⊂ H1(Ql , ad ρ), a formula

h1L(Q, ad ρ) − h1L⊥(Q, ad ρ(1)) = 1 −
∑

l∈S
[dimL Ll − h0(Ql , ad ρ)] − h0(R, ad ρ).

In our case this formula simplifies to become
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h1L(Q, ad ρ) − h1L⊥(Q, ad ρ(1)) = 1 − [dimL Lp − h0(Qp, ad ρ)] −
{

n2
2 n even;
n2+1
2 n odd.

(This calculation is the only part in this section where we actually use the assumption
that ρ is odd.) The first part now follows from the calculation of dimL Lp in each case,
as in [4, Theorem 2.5.10]. The second part is a consequence of Poitou–Tate duality
these theorems are most often stated for torsion coefficients, but it is easy to extend
them to the case of L-coefficients by an argument of passage to the limit; compare
the argument of [32, Lemma 9.7]). For the third part, a standard argument shows the
existence of a surjection

L�x1, . . . , xg� → Rρ,α

inducing an isomorphism on Zariski tangent spaces, where

g = h1α(Q, ad ρ) = dimL Defρ,α(L[ε]).

To bound the number of relations, we use the fact (see [4, Theorem 2.5.10] again)
that the functor of trianguline lifts of ρ|GQp

is formally smooth over L . This implies

that H1
α (Q, ad ρ(1))∨ forms an obstruction space, so the existence of the desired

presentation follows from the first part of the proposition. (For a similar argument in
the torsion context, see [14, Corollary 2.2.12] and [14, Lemma 2.3.4].) ��

4 Eigenvarieties and Venkatesh’s conjecture

In this section we discuss arithmetic locally symmetric spaces and their cohomology.
We then introduce the eigenvariety for GLn , following [27]. Having done this, we will
be able to state and prove our main result.

4.1 Cohomology of GLn

Fix an integer n ≥ 1, a prime p, and a coefficient field L . Let G = GLn , an algebraic
group over Z, and fix a maximal compact subgroup K∞ ⊂ G(R). If K ⊂ G(Ẑ) is an
open compact subgroup, we have an associated topological space defined as a double
quotient

YK = G(Q)\G(A)/K · R>0K∞.

If K is neat (in the sense that the associated arithmetic groups gKg−1 ∩ G(Q) (g ∈
G(A∞)) are all neat), then YK is a topological manifold of dimension d = 1

2 (n −
1)(n + 2). If N ≥ 1 is an integer prime to p, then we write K1(N ) for the usual
mirabolic congruence subgroup consisting of matrices in GLn(Ẑ) whose last row is
congruent to (0, . . . , 0, 1) modulo N .

Let T ⊂ B ⊂ G denote the standard diagonal torus and upper-triangular Borel
subgroup, respectively, and let N ⊂ B denote the unipotent radical. Let B denote
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the opposite Borel subgroup. We write I ⊂ G(Zp) for the standard Iwahori sub-
group (pre-image in G(Zp) of B(Fp) under reduction modulo p), and also define
K1(N ; p) = K1(N )p I .

Let Sn denote the Weyl group of T, which we identify with the symmetric group
on {1, . . . , n}. For any w ∈ Sn and any λ ∈ X∗(T) we set w ∗ λ = (λ + ρ)w − ρ,
with ρ ∈ 1

2 X
∗(T) the usual half-sum of B-positive roots.

We define abstract Hecke algebras

T(N ) = H(G(A∞,Np),G(ẐNp))

and

T(N ),p = T(N ) ⊗ Z[X∗(T)−],

where X∗(T)− ⊂ X∗(T) is the subset of anti-dominant cocharacters. These are com-
mutative rings. If A is any ring then we define T(N )

A = T(N ) ⊗ A and T(N ),p
A =

T(N ),p ⊗ A. There is an injective algebra homomorphism (see [29, Sect. 4])

Z[X∗(T)−] → H(G(Qp), I ), μ 	→ Uμ := [Iμ(p)I ]. (4.1)

We write Up,i for the operator associated with the cocharacter

μi : t 	→ diag

⎛

⎝1, . . . , 1, t, . . . , t︸ ︷︷ ︸
i

⎞

⎠ ,

and we set Up = Up,1 · · · · ·Up,n−1.
Let us now fix an integer N ≥ 1 prime to p. Let �p ⊂ G(Qp) denote the monoid

�p =
∐

μ∈X∗(T)−
Iμ(p)I.

If M is anyQ[�p]-module, and K = ∏
l Kl is a neat open compact subgroup ofG(Ẑ)

such that Kp ⊂ I , then we can define an associated locally constant sheaf M on YK

as the sheaf of sections of the map

G(Q)\G(A) × M/K · R>0K∞ → YK ,

where G(Q) acts trivially on M and K acts via projection to Kp. Similarly, if M is a
Q[G(Q)]-module, then we can define an associated locally constant sheaf M on YK

as the sheaf of sections of the map

G(Q)\G(A) × M/K · R>0K∞ → YK ,
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where K acts trivially on M . If M is aQ[G(Qp)]-module then it has natural structures
both ofQ[�p]- and ofQ[G(Q)]-module, and the associated sheavesM are canonically
isomorphic.

We will be interested only in cohomology at level K1(N ; p). If M is a Q[�p]- or
Q[G(Q)]-module, then we define the groups

H∗(K1(N ; p), M) = H∗(YK , M)K1(N ;p),

where K ⊂ K1(N ; p) is any neat, normal open compact subgroup. This is canonically
independent of the choice of subgroup K , and the cohomology groups have a canonical
structure of T(N ),p-module. If M is a Q[G(Qp)]-module, then the two different ways
of defining the Hecke action (via �p and G(Q)) are the same.

If X is any T(N )
A -module then we write T(N )

A (X) for the image

T(N )
A (X) = im(T(N )

A → EndA(X)),

and similarly for T(N ),p
A . If X is finitely generated as an A-module, then T(N )

A (X) is a
finite A-algebra.

We now introduce algebraic coefficient systems. If λ ∈ X∗(T)+ is a dominant
weight, and E is a field of characteristic 0, then we define

Lλ,E = IndG
B

λ = { f ∈ E[G] | ∀g ∈ G, b ∈ B, f (bg) = λ(b) f (g)}.

This is the abelian group of E-points of the algebraic representation of G of highest
weight λ; it is an absolutely irreducible E[G(E)]-module. Any character λ ∈ X∗(T)

determines a character �p → Q
×
p , by the formula Iμ(p)I 	→ p〈λ,μ〉, and we will

also use the twisted L[�p]-modules Lλ,L ⊗L L(λ)−1. It is helpful to note at this point
that ifμ ∈ X∗(T)−, then the element μ(p) ∈ �p has eigenvalues onLλ,L ⊗L L(λ)−1

of non-negative valuation, and acts trivially on the highest weight space.
For any field E of characteristic 0, the Hecke action is defined over Q in the sense

that there is a canonical isomorphism

H∗(K1(N ; p),Lλ,E ) ∼= H∗(K1(N ; p),Lλ,Q) ⊗Q E (4.2)

which respects the isomorphism T(N ),p
E

∼= T(N ),p
Q

⊗Q E .

Definition 4.1 Letπ = ⊗′
lπl be an irreducible admissibleC[GLn(A

∞)]-module such
that πl is unramified if l � Np, and let

N = ker
(
T(N )

C
→ EndC

(
⊗′

l�Np

(
π
GLn(Zl )
l

)))
,

a maximal ideal of T(N )
C

with residue field C. If M is a T(N )
C

-module, we say that π

contributes to M if the localization MN is non-zero.

We set l0 = � n−1
2 � and q0 = (d − l0)/2.
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Proposition 4.2 Let π be a regular algebraic, cuspidal automorphic representation
of GLn(A) of conductor dividing N satisfying the following parity condition: if n =
2m+1 is odd, then the central character of π∞ has the form x ∈ R

× 	→ |x |asgn(x)ε ,
and we require

ε ≡ a mod 2. (4.3)

(Note that this condition can always be achieved after perhaps replacing π with a
twist by a quadratic character.)

1. There exists a uniqueλ ∈ X∗(T)+ such thatπ contributes to H∗(K1(N ; p),Lλ,C).
Moreover, these groups are non-zero exactly in the range [q0, q0 + l0].

2. Let N ⊂ T(N )
C

be the maximal ideal associated to π∞ by Definition 4.1. Then we
have

H∗(K1(N ; p),Lλ,C)N = H∗(K1(N ; p),Lλ,C)[N]

and hence

T(N )
C

(H∗(K1(N ; p),Lλ,C))N = C.

3. Suppose that N equals the conductor of π . Then for each i = 0, . . . , l0 we have

dimC Hq0+i (K1(N ; p),Lλ,C)N = n!
(
l0
i

)
.

4. Suppose that the Satake parameter of πp is regular semi-simple. Then there are

exactly n!maximal ideals Ñ ofT(N ),p
C

lying aboveN, which are in natural bijection
with the set of orderings of the eigenvalues of the Satake parameters of πp, and
for each one we have

dimC Hq0+i (K1(N ; p),Lλ,C)Ñ =
(
l0
i

)

for each i = 0, . . . , l0.

Proof Letm = Lie SLn(R)⊗R C. According to the theory of Eisenstein cohomology,
there is for any μ ∈ X∗(T)+ a canonical decomposition

H∗(K1(N ; p),Lμ,C) ∼= ⊕{P}∈C ⊕ϕ∈�μ,{P} H
∗(m, K∞; AK1(N ;p)

μ,{P},ϕ ⊗C Lμ,C)(χμ),

(4.4)
where C is the set of associate classes of parabolic subgroups, �μ,{P} is a set of
finite sets ϕ = {ϕP}P∈{P} of cuspidal automorphic representations of the Levi factors
of elements of the class {P} satisfying certain conditions, and Aμ,{P},ϕ is a space
of automorphic forms on G defined in terms of Eisenstein series. The cohomology
on the right-hand side is relative Lie algebra cohomology. See [24, Sect. 1] for a
precise statement. The final (χμ) represents a character twist in the Hecke action
which depends only on the central character of Lμ,C [24, Sect. 2.1].
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In particular, the summand corresponding to G is the ‘cuspidal cohomology’

H∗
cusp(K1(N ; p),Lμ,C) = ⊕π∈�μ,{G}(π

∞)K1(N ;p)

⊗CH
∗(m, K∞;π∞ ⊗C Lμ,C)(χμ),

where �μ,{G} is now just the set of cuspidal automorphic representations of GLn(A)

with the same infinitesimal character asL∨
μ,C

. We first claim that for anyμ ∈ X∗(T)+,
we have

H∗(K1(N ; p),Lμ,C)N = H∗
cusp(K1(N ; p),Lμ,C)N.

In other words, the other summands in the decomposition (4.4) all vanish after local-
ization atN. This follows immediately from [24, Proposition 4.1], which relies on the
Jacquet–Shalika classification of automorphic representations of GLn(A). The first
part of the proposition now follows. Indeed, there is exactly one λ ∈ X∗(T)+ such
that L∨

λ,C
has the same infinitesimal character as π∞, which is a necessary condition

for the relative Lie algebra cohomology to be non-zero [10, Ch. II, Proposition 3.1].
On the other hand, one knows ( [16, Lemme 4.9]) that π∞ is essentially tempered, and
[16, Lemme 3.14] then shows that when the parity condition (4.3) holds, the groups
Hi (π∞ ⊗C Lλ,C) are non-zero if and only if i ∈ [q0, q0 + l0], in which case they have
dimension

( l0
i−q0

)
. (If the parity condition does not hold, then the groups are 0.) This

also shows the third part of the proposition. (Note that πp is generic, since π is cuspi-
dal, and so πp is equal to a full parabolic induction and therefore has dimC π I

p = n!.)
The second part simply asserts that

H∗
cusp(K1(N ; p),Lμ,C)N ∼= (π∞)K1(N ;p) ⊗C H∗(m, K∞;π∞ ⊗C Lμ,C)(χμ)

is a semi-simple T(N )
C

-module, which follows from the existence of this isomorphism.
The fourth part of the proposition is equivalent to the local statement that π I

p splits
as a direct sum of n! 1-dimensional Z[X∗(T)−]-modules. Let α : Z[X∗(T)−] →
Z[T(Qp)] be the homomorphism given on elements μ ∈ X∗(T)− by the formula

μ 	→ μ(p). If we write πp = n-Ind
G(Qp)

B(Qp)
χ , for some unramified character χ :

T(Qp) → C
×, then a standard calculation (see [12, Lemma 4.8.4]) shows that π I

p is
isomorphic as Z[X∗(T)−]-module to the direct sum

π I
p

∼= ⊕w∈Sn (χ
wδ

1/2
B ) ◦ α,

where δB : T(Qp) → C
×, t 	→ | det(AdG(t)|LieN)|p, is the standard modulus char-

acter. This completes the proof. ��
Definition 4.3 If π is an irreducible admissible C[GLn(A

∞)]-module, then for any
σ ∈ Aut(C) we can define the conjugated representation πσ = π ⊗C,σ C. We write
Q(π) for the fixed field of the stabilizer in Aut(C) of the isomorphism class of π , and
call it the field of definition of π .
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It is known ( [16, Proposition 3.1]) that π can be defined over its field of definition. In
particular, if π is unramified outside N then the homomorphismT

(N ) → C describing
the Hecke eigenvalues of π takes values in Q(π). If π is the finite part of a regular
algebraic, cuspidal automorphic representation of GLn(A), then Q(π) is a number
field [16, Théorème 3.13].

Corollary 4.4 Let π be a regular algebraic, cuspidal automorphic representation of
GLn(A). Suppose that πp is unramified, that π has conductor N, and that the Satake
parameter of πp is regular semi-simple. Fix an isomorphism ι : Qp

∼= C and an order-

ing t = (t1, . . . , tn) of the eigenvalues of the Satake parameter of πp. Let Ñ ⊂ T(N ),p
C

be the maximal ideal associated to the pair (π, t) by Proposition 4.2, and suppose
that ι(L) contains the image of the natural homomorphismT(N ),p → T(N ),p

C
/Ñ. (This

condition can always be achieved, after possibly enlarging the coefficient field L.) Let
M = ι−1Ñ ∩ T(N ),p

L .

1. We have

H∗(K1(N ; p),Lλ,L )M = H∗(K1(N ; p),Lλ,L )[M]
and

T(N ),p
L (H∗(K1(N ; p),Lλ,L ))M = L .

We have ι(Up,i mod M) = tn . . . tn−i+1 p
∑i

j=1(n−1)/2−( j−1).
2. For each i = 0, . . . , l0 we have

dimL Hq0+i (K1(N ; p),Lλ,L )M =
(
l0
i

)
,

and Hi (K1(N ; p),Lλ,L )M = 0 if i /∈ [q0, q0 + l0].
Proof The corollary follows from Proposition 4.2, the isomorphism (4.2), and the fact
that everything is defined over a common algebraic subfield of L and C. ��

By twisting, we deduce a trivial variant of Corollary 4.4 for the coefficient system
Lλ,L ⊗L L(λ)−1.

4.2 Recollections on the eigenvariety

We have described the cohomology of the group K1(N ) with coefficients in algebraic
local systems; we now discuss its cohomology in p-adic coefficient systems and intro-
duce the eigenvariety. We write W for the rigid space over L which represents the
functor

W : X 	→ Homcts(T(Zp),O(X)×).

According to [27, Theorem 1.1.2], one can associate canonically to the pair
(G, K1(N )) the following data:
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• A separated rigid space X = XG,K1(N ) over L equipped with a morphism w :
X → W .

• A homomorphism T(N ),p
L → O(X ) of L-algebras.

These data will satisfy the following conditions:

• The morphism w has discrete fibers and is finite locally on the domain.
• For any point λ ∈ W (Qp), there is a canonical bijection between points in the

fiber w−1(λ) and the set of finite-slope eigenpackets (see below) of weight λ and
level K1(N ), realized by sending the point x to the composite homomorphism

φX ,x : T(N ),p
L → O(X ) → k(x).

The spaceX is what we call the eigenvariety of tame level N . We now explain what
is meant by a ‘finite slope eigenpacket of weight λ’. We must first write down certain
Qp[�p]-modules, whose definition we recall from [27, Sect. 2.2].

If � ⊂ W is any affinoid open subset, then there exists an integer s[�] ≥ 1 such
that the universal character χ� : T(Zp) → O(�)× becomes analytic after restriction
to the group ker(T(Zp) → T(Zp/(ps[�])). If s ≥ 1, thenwe define a normal subgroup
of the Iwahori subgroup I by

I s = {g ∈ I ∩ (1 + psMn(Zp))}.
We then define, for any integer s ≥ s[�],

As
� = [IndIB(Zp)

χ�]I s -an,

where the superscript indicates that we are considering functions f : I → O(�) that
are analytic on each left I s-coset, considered as the set of Qp-points of an affinoid

subspace ofGrig
Qp

. The spaceAs
� is naturally a BanachO(�)-module ([27, p. 18]). We

then define

A� = lim
s→∞As

�,

a topological O(�)-module equipped with the direct limit topology, and

D� = Homcts,O(�)-linear(A�,O(�)).

It has a natural structure of O(�)[�p]-module. If λ ∈ W (Qp) is a closed point
with residue field k(λ), then we define Dλ = D� ⊗O(�) k(λ) for some choice of �

containing λ (this is independent of the chosen �). If λ is in the image of the natural
embedding X∗(T)+ → W (Qp), then there is ( [27, Sect. 2.2]) a canonical surjection

of L[�p]-modules iλ : Dλ → Lλ,L⊗L L(λ−1), hence amorphism ofT(N ),p
L -modules

H∗(K1(N ; p),Dλ) → H∗(K1(N ; p),Lλ,L ⊗L L(λ−1)),

and Dλ should in this case be viewed as the ‘overconvergent’ version of Lλ,L .
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We recall ([27, Proposition 3.1.5]) that for any rational number h, there is a canonical
decomposition of T(N ),p-modules

H∗(K1(N ; p),Dλ) = H∗(K1(N ; p),Dλ)≤h ⊕ H∗(K1(N ; p),Dλ)>h, (4.5)

where Up acts with eigenvalues of slope (i.e. p-adic valuation) at most h on the first
summand, and eigenvalues of slope strictly greater than h on the second. Moreover,
the subspace H∗(K1(N ; p),Dλ)≤h is finite-dimensional.

Definition 4.5 A finite-slope eigenpacket of weight λ and tame level N is a homomor-
phism φ : T(N ),p

L → Qp such that the maximal ideal M = ker φ ⊂ T
(N ),p
L appears

in the support of H∗(K1(N ; p),Dλ)≤h for some rational number h.
The eigenpacket φ is called classical if the ideal M in fact appears in the support

of H∗(K1(N ; p),Lλ,L ⊗L L(λ−1)), and a classical eigenpacket is noncritical if the
natural map

H∗(K1(N ; p),Dλ)M → H∗(K1(N ; p),Lλ,L ⊗L L(λ−1))M

is an isomorphism.

We next give a convenient (and optimally general) numerical criterion for a finite-slope
eigenpacket to be noncritical. This result is well-known to experts, and amounts to a
special case of [43, Prop. 4.3.10]; for the convenience of the reader, we give a fairly
detailed sketch of the proof.

Before stating the noncriticality criterion, we recall the following lemma, which
plays a crucial role in the proof.

Lemma 4.6 For any weight λ ∈ W (Qp) and any μ ∈ X∗(T)−, the eigenvalues of
Uμ on H∗(K1(N ; p),Dλ)≤h are all p-integral.

Proof (Sketch) We use the notation of [27]. By [27, Proposition 3.1.5], it suffices to
prove the same for

H∗(K1(N ; p),Ds
λ)

for any s � 0. Lifting Uμ to Ũμ acting on a suitable Borel–Serre complex
C•(K1(N ; p),Ds

λ), one shows that anyUμ-eigenvalue on H∗ is also a Ũμ-eigenvalue
on C•. On the other hand, C•(K1(N ; p),Ds

λ) is naturally a Qp-Banach space, with
unit ball C•(K1(N ; p),Ds,◦

λ ); one concludes by noting that the latter is preserved
by Ũμ. ��
Theorem 4.7 Fix a weight λ = (k1 ≥ k2 ≥ · · · ≥ kn) ∈ X∗(T)+, and fix an algebra
homomorphism φ : T(N ),p

L → Qp with kernelM. We say φ is numerically noncritical
for λ if it satisfies one of the following equivalent conditions:

1. For each non-trivial element w ∈ Sn, we have val(φ(Uμ)) < 〈w ∗ λ − λ,μ〉 for
some μ ∈ X∗(T)−.
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2. For each simple reflection w ∈ Sn, we have val(φ(Uμ)) < 〈w ∗ λ − λ,μ〉 for
some μ ∈ X∗(T)−.

3. val(φ(Up,i )) < 1 + kn−i − kn+1−i for each 1 ≤ i ≤ n − 1.

If φ is numerically noncritical, then the map

H∗(K1(N ; p),Dλ)M → H∗(K1(N ; p),Lλ,L ⊗L L(λ−1))M

is an isomorphism; in particular, if φ occurs in the target of this map, then φ is
automatically a noncritical finite-slope eigenpacket of weight λ.

Proof We first prove the equivalence of the conditions 1–3. The implication 1 ⇒ 2
is trivial. For the implication 2 ⇒ 1, choose an arbitrary non-trivial element w ∈ Sn ,
and a reduced expression w = s1 . . . sk , where the si = sαi are simple reflections
(with respect to the set �+ of positive roots and root basis B corresponding to our
fixed choice of Borel subgroup B). Thus l(w) = k, where l : Sn → Z is the length
function associated to the root basis B. We then have formulae

w ∗ λ = λw + ρw − ρ = λw +
∑

α∈�+
αw∈�−

αw

and

s1 ∗ λ = λs1 + ρs1 − ρ = λs1 − α1.

Define a partial ordering on X∗(T) by the formula λ1 ≥ λ2 if λ1 − λ2 = ∑
α∈B mαα,

where the mα are non-negative integers. The formula l(s1w) < l(w) implies −α1 ∈
w(�+). The equation s1 ≤ w in the Bruhat ordering of W implies that λs1 ≥ λw. We
find that s1∗λ ≥ w∗λ. Choosingμ ∈ X∗(T)− such that val(φ(Uμ)) < 〈s1∗λ−λ,μ〉,
we find

val(φ(Uμ)) < 〈s1 ∗ λ − λ,μ〉 ≤ 〈w ∗ λ − λ,μ〉,

as desired.
Letwi denote the transposition (n−i, n−i+1) ∈ Sn . To establish the equivalence

2 ⇔ 3, we show that for each i = 1, . . . , n−1, we have val(φ(Uμ)) ≥ 〈wi ∗λ−λ,μ〉
for all μ ∈ X∗(T)− if and only if val(φ(Up,i )) ≥ 1 + kn−i − kn−i+1. The monoid
X∗(T)− is generatedby the cocharactersμ1, . . . , μn , so thefirst statement is equivalent
to asking that for each j = 1, . . . , n, we have val(φ(Uμi )) ≥ 〈wi ∗ λ − λ,μ j 〉, or
equivalently

val(φ(Up,i )) ≥ 〈λwi − λ − αi , μ j 〉, (4.6)

where αi (t1, . . . , tn) = tn−i/tn−i+1. The left-hand side is always non-negative, by
Lemma 4.6. The right-hand side is 0 if i �= j , and if i = j it equals kn−i −kn−i+1 +1,
which shows the desired equivalence.
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We now return to the theorem. By [43, Theorem 4.4.1], there is a natural Hecke-
equivariant second-quadrant spectral sequence

Ei, j
1 =

⊕

w∈Sn
l(w)=−i

H j (K1(N ; p),Dw∗λ)
fs ⊗L L(w ∗ λ · λ−1)

⇒ Hi+ j (K1(N ; p),Lλ,L ⊗L L(λ−1))fs,

where the superscript ‘fs’ denotes the union of all finite slope subspaces. By Lemma
4.6, we see that all the eigenvalues of Uμ acting on the w-summand of the E1-page
are of slope ≥ 〈w ∗λ−λ,μ〉, so localizing the spectral sequence at the maximal ideal
M associated with an eigenpacket as in the theorem kills all the terms on the E1-page
except those withw = 0. Therefore the localized spectral sequence degenerates to the
claimed isomorphism, and the theorem is proved. ��

We now discuss the ‘completion of the eigenvariety at a point’. Let x ∈ X (L) be
a closed point with residue field L , and let λ = w(x) ∈ W (L). We set Tx = ÔX ,x
and � = ÔW ,λ.

Proposition 4.8 Let notation be as above.

1. The rings Tx and � are complete Noetherian local L-algebras with residue field
L, and Tx is a finite �-algebra.

2. There exists canonical data of a faithful graded Tx -module H∗
x , finite over � and

concentrated in degrees [0, d], and a spectral sequence

Ei, j
2 = Tor�−i (H

j
x , L) ⇒ Hi+ j (K1(N ; p),Dλ)(ker φX ,x ).

Proof In [27, Sect. 3.1], it is defined what it means for a pair (�, h) consisting of
an affinoid open subset � ⊂ W and a rational number h to be a slope datum. This
implies in particular that the cohomology groups with coefficients in D� admit a
decomposition as T(N ),p

O(�)
-modules

H∗(K1(N ; p),D�) = H∗(K1(N ; p),D�)≤h ⊕ H∗(K1(N ; p),D�)>h

in a sense generalizing that of the decomposition (4.5). Given such a slope datum
(�, h) we define T�,h as the image of T(N ),p

O(�)
in EndO(�)

(
H∗(K1(N ; p),D�)≤h

)
.

This is a finite O(�)-algebra, so in particular is an affinoid L-algebra. The space X
is constructed by gluing affinoids of the form SpT�,h .

On the other hand, [27, Theorem 3.3.1] implies that for any slope datum (�, h)

and for any closed point ν ∈ �(Qp), there is a natural Hecke-equivariant spectral
sequence

Ei, j
2 = TorO(�)

−i (H j (K1(N ; p),D�)≤h, k(ν)) ⇒ Hi+ j (K1(N ; p),Dν)≤h . (4.7)

Let us now return to our closed point x ∈ X (L), and its image λ = w(x) in W (L).
By the above remarks, we can find a slope datum (�, h) such that x has an affinoid
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open neighbourhood of the form SpT�,h . We can moreover assume that the restriction
of the weight map to w : SpT�,h → � is finite. It follows from [7, 7.3.2/7] that the
completed local ring Tx = ÔX ,x is Noetherian, and it fact can be calculated as the
completion of T�,h at the maximal ideal corresponding to the closed point x . The
same remark applies to �, and this implies the first part of the proposition.

For the second part, we observe that passage to the flat extension O(�) → �

implies the existence of a spectral sequence of T�,h ⊗O(�) �-modules:

Ei, j
2 = Tor�−i (H

j (K1(N ; p),D�)≤h ⊗O(�) �, L) ⇒ Hi+ j (K1(N ; p),Dλ)≤h .

(4.8)
The finite �-algebra T�,h ⊗O(�) � splits as a direct product of its localizations at
its finitely many maximal ideals, one of which is canonically identified with Tx . The
second part of the proposition now follows on taking

H j
x = H j (K1(N ; p),D�)≤h ⊗O(�) � ⊗T�,h⊗O (�)� Tx

and taking the projection of the spectral sequence (4.8) to this factor. ��

4.3 The eigenvariety at classical points of small slope

We now come to the main point of this paper. Let π be a regular algebraic, cuspidal
automorphic representation of GLn(A), of weight λ = (k1 ≥ k2 · · · ≥ kn) and
conductor N ≥ 1 prime to p, and satisfying the parity condition (4.3).We suppose that
the Satake parameter of πp is regular semisimple. We fix an isomorphism ι : Qp

∼= C

and an ordering t = (t1, . . . , tn) of the eigenvalues of the Satake parameter of πp.
Fix a coefficient field L which is large enough that Corollary 4.4 applies, and

let M′ ⊂ T(N ),p
L be the maximal ideal associated there with the pair (π, t). Let

φ : T(N ),p
L → L be the algebra homomorphism describing the action of T(N ),p

L on
the line Hq0+l0(K1(N ; p),Lλ,L )M′ ⊗L L(λ−1), and letM = ker φ. We shall assume
that φ is numerically noncritical in the sense of Theorem 4.7, so the homomorphism
φ : T(N ),p

L → L is a classical and noncritical finite-slope eigenpacket, and therefore
determines a closed point x = x(π, t) ∈ X (L). Let Tx and � be the completed
local rings associated with this point, and H∗

x the graded module whose existence is
asserted by Proposition 4.8.

According to Corollary 4.4, the groups Hi (K1(N ; p),Lλ,L ⊗L L(λ−1))M are zero
if i /∈ [q0, q0 + l0], and have dimension

( l0
i−q0

)
if i ∈ [q0, q0 + l0].

Theorem 4.9 Let assumptions be as above.

1. We have dimTx ≥ dim� − l0.
2. If dimTx = dim� − l0, then

(a) The module Hi
x vanishes for i �= q0 + l0.

(b) The module Hx := Hq0+l0
x is free of rank one over Tx , and there exist com-

patible isomorphisms Tx ⊗� L � L and

Tor�i (Hx , L) ∼= Hq0+l0−i (K1(N ; p),Lλ,L ⊗L L(λ−1))[M].
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(c) The map � → Tx is surjective and the ring Tx is a complete intersection.

Proof It follows from the construction of the spectral sequence (4.7) in [27] (see in
particular the proof of [27, Proposition 3.1.5]) and Theorem 4.7 that we can find a
complex C• of finite free �-modules such that H∗

x
∼= H∗(C•) and H∗(C• ⊗� L) ∼=

H∗(K1(N ; p),Lλ,L ⊗L L(λ−1))M. Of course, the existence of this complex is what
underlies the spectral sequence constructed in Proposition 4.8.

It follows then from [26, Theorem 2.1.1] that dim� H∗(C•) = dim� H∗
x ≥

dim� − l0, with equality if and only if H∗
x is concentrated in the single degree

H∗
x = Hq0+l0

x . Since H∗
x is a faithful Tx -module and Tx is a finite�-algebra, we have

dimTx = dim� H∗
x . The first part of the theorem follows.

For the second part, we can now assume that H∗
x = Hx = Hq0+l0

x . The spectral
sequence of Proposition 4.8 degenerates to a series of isomorphisms

Tor�i (Hx , L) ∼= Hq0+l0−i (K1(N ; p),Lλ,L ⊗L L(λ−1))[M].

In particular Hx ⊗� L ∼= Hq0+l0(K1(N ; p),Lλ,L ⊗L L(λ−1))[M] is 1-dimensional,
so Nakayama’s lemma implies that Hx is a cyclic �-module, hence a cyclic Tx -
module. A choice of generator determines an isomorphism Hx � �/Ix for some ideal
Ix ⊂ � and then we see Tx � �/Ix and Hx is free over Tx of rank one. We have
isomorphisms

Hq0+l0−1(K1(N ; p),Lλ,L ⊗L L(λ−1))[M]
∼= Tor�1 (Hx , L) � Tor�1 (Tx , L) ∼= Ix ⊗� L ,

and so by Nakayama’s lemma again Ix can be generated by l0 elements. The equality
dimTx = dim� − l0 now implies that the ring Tx is a complete intersection. This
completes the proof of the theorem. ��
Corollary 4.10 Let assumptions be as above, and suppose that dimTx = dim�− l0.
Let Vx = ker(� → Tx ) ⊗� L. Then H∗(K1(N ; p),Lλ,L ⊗L L(λ−1))[M] has a
canonical structure of free module of rank 1 over the commutative graded ring ∧∗

LVx .

Proof This follows immediately from Theorem 4.9, Proposition 2.1, and Lemma 2.2.
��

To go further, we need Galois representations. We recall that the main theorem of
[30] shows the existence (after possibly enlarging L) of a continuous, semi-simple
representation ρπ : GQ → GLn(L) satisfying the following conditions:

• The representation ρπ is unramified outside primes dividing Np.
• For each prime l � Np, the characteristic polynomial of ρπ(Frobl) is given by

ι−1 det(X − l(n−1)/2tl), where tl ∈ GLn(C) is the Satake parameter of πl .

Moreover, it is now known that ρπ is odd, in the sense of Sect. 3.2 [15].

Conjecture 4.11 The representation ρπ satisfies the following further conditions:

1. The representation ρπ is absolutely irreducible.



D. Hansen, J.A. Thorne

2. The restriction ρπ |GQp
is crystalline with Hodge-Tate weights kn, kn−1 +

1, . . . , k1 + n − 1. For every prime l, we have ιWD(ρπ |GQl
)F-ss ∼= recTl πl .

3. There is an isomorphism

Rρπ ,α
∼= Tx

of�-algebras, where Rρπ ,α is the trianguline deformation ring of Proposition 3.8.

Assuming thefirst twoparts of the conjecture,we see that the eigenvalues of the crys-
talline Frobenius on Dcrys(ρπ |GQp

) are α = (α1, . . . , αn) = ι−1 p(n−1)/2(tn, . . . , t1);
the triple (π, t, ι) therefore determines a refinement of ρπ |GQp

. The appearance of the
ring Rρπ ,α in the third part of this conjecture is then justified by the following lemma.

Lemma 4.12 The first two assumptions of Conjecture 4.11 imply that ρ|GQp
is numer-

ically non-critical (in the sense of Definition 3.5) and very generic (in the sense of
Definition 3.6).

Proof This is a calculation. Let si = kn−i+1 + (i − 1). Then s1 < s2 < · · · < sn are
the Hodge–Tate weights of ρπ |GQp

. We first observe that according to Corollary 4.4,

we have ι(Up,i mod M′) = tn . . . tn−i+1 p
∑i

j=1(n−1)/2−( j−1), hence

ι(Up,i mod M) = tn . . . tn−i+1 p
∑i

j=1(n−1)/2−( j−1)−kn− j+1,

hence

val(φ(Up,i )) = val(α1) + · · · + val(αi ) − (s1 + · · · + si ).

The ‘small slope’ condition of Theorem 4.7 is therefore equivalent to the equation (for
each i = 1, . . . , n):

val(α1) + · · · + val(αi ) < s1 + · · · + si−1 + si+1.

This is exactly the condition that the representation ρπ |GQp
with its given refinement is

numerically non-critical. To check that the representation with its refinement is ‘very
generic’,wemust show that H0(Qp, ad ρπ(−1)) = 0 and that for each 1 ≤ i < j ≤ n,
we have αiα

−1
j /∈ {1, p−1}. In fact we have αiα

−1
j = ι−1(ti t

−1
j ) /∈ {1, p±1} for any

1 ≤ i �= j ≤ n because t is regular semi-simple and πp is unramified and generic.
��

Theorem 4.13 Let assumptions be as above. Suppose that dimTx = dim�− l0, and
assume Conjecture 4.11.

1. We have H1
f (Q, ad ρπ) = 0, and there is a canonical exact sequence

0 H1
α(Q, ad ρπ (1)) H1

f (Q, ad ρπ (1))
μα

m�/m2
� mTx /m

2
Tx

0.
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2. Suppose further that eigenvarietyX is smooth at x (in other words,Tx is a regular
local ring). Then the map μα determines an isomorphism

μα : H1
f (Q, ad ρπ(1)) ∼= ker(m�/m2

� → mTx /m
2
Tx

) ∼= ker(� → Tx ) ⊗� L ,

and consequently the graded L-vector space H∗(K1(N ; p),Lλ,L )[M]⊗L L(λ−1)

has a canonical structure of free module of rank 1 over the commutative graded
ring ∧∗

L H
1
f (Q, ad ρπ(1)).

Proof If Rρπ ,α
∼= Tx , then Proposition 3.9 implies that we have

Rρπ ,crys ∼= Rρπ ,α ⊗� L ∼= Tx ⊗� L ∼= L ,

and hence H1
f (Q, ad ρπ), which can be interpreted as the (dual) Zariski tangent space

of Rρπ ,crys, is trivial. Proposition 3.10 then asserts the existence of an exact sequence

0 → H1
α (Q, ad ρ(1)) → H1

f (Q, ad ρ(1)) → (Ln)∨ → H1
α (Q, ad ρ)∨ → 0.

To finish the proof of the first part of the theorem, we must show that we can identify
the morphism (Ln)∨ → H1

α (Q, ad ρ)∨ with the morphism m�/m2
� → mTx /m

2
Tx
, or

equivalently thatwe can identify themorphism H1
α (Q, ad ρ) → Ln with themorphism

(mRρπ ,α /m2
Rρπ ,α

)∨ → (m�/m2
�)∨.

This follows from Propositions 3.8 and 3.9.
If Tx ∼= Rρπ ,α is regular, then h1α(Q, ad ρπ) = dim Rρπ ,α = dim� − l0, and

Proposition 3.10 then implies h1α(Q, ρπ (1)) = 0 and h1f (Q, ρπ (1)) = l0. We deduce
that the maps

H1
f (Q, ad ρπ(1)) → m�/m2

�

and

ker(� → Tx ) ⊗� L → m�/m2
�

are injective. Both maps have source of dimension l0, and the image of the first is
contained in the image of the second (because of the exactness of the sequence in
the first part of the theorem). We deduce that μα defines an isomorphism between
H1

f (Q, ad ρπ(1)) and ker(� → Tx )⊗� L . The last statement of theorem now follows
from Corollary 4.10. ��
Remark 1. When the triple (π, t, ι) is ordinary (i.e. φ(Up,i ) is a p-adic unit for

each i = 1, . . . , n), the isomorphism Rρπ ,α
∼= Tx can often be proved using

a generalization of the Taylor–Wiles method, once it is known that the Galois
representations carried by Tx satisfy local-global compatibility at p; see [34].
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2. The condition dimTx = dim� − l0 is a non-abelian analogue of the Leopoldt
conjecture, and seems out of reach at present. However, it follows from [27, Theo-
rem 4.5.1] that we at least have dimTx ≤ dim�−1when l0 ≥ 1. In particular, the
equality dimTx = dim� − l0 holds unconditionally when l0 = 1 (in the present
context, this is equivalent to n = 3 or 4).

Example In [1], the authors show the existence of a regular algebraic cuspidal auto-
morphic representation π of GL3(A) with the following properties:

• π is not essentially self-dual.
• π has conductor 89 and contributes to cohomology in weight λ = 0 (see Theorem

4.2).
• For each prime l = 2, . . . , 19, the eigenvalue al of the unramified Hecke operator

Tl = [GL3(Zl) diag(l, 1, 1)GL3(Zl)] is the algebraic integer in Z[i] ⊂ C given
by the following table (see [1, p. 433]):

l 2 3 5 7 11 13 17 19

al −1 − 2i −1 − i 2 + 2i −7 − 14i −3 + 10i −1 + 4i −6 − 8i 11 + i

If p = 7, then the Satake parameter equals (−1,−i,−i). It is therefore not regular
semi-simple, and there is no numerically non-critical refinement of π7. For each value
p �= 7 in this range, the Satake parameter tp is regular semi-simple and for any
isomorphism ι : Qp

∼= C, there is a unique ordering of the eigenvalues of tp for
which the corresponding finite slope eigenpacket is ordinary. In this case, we conclude
that the p-adic eigenvariety for GL3 of level K1(89) has dimension 2 and is a local
complete intersection at the point corresponding to this ordering. Based on Theorem
4.13, it seems reasonable to guess that it is even smooth at this point. If p = 3, then
[2, Theorem 9.4] shows that in any sufficiently small affinoid neighbourhood of this
point, the Zariski closure of the classical points has dimension 1.

For a non-ordinary example, we refer again to [1]. The authors also show the
existence of a regular algebraic cuspidal automorphic representation π ′ of GL3(A)

with the following properties:

• π ′ is not essentially self-dual.
• π ′ has conductor 53 and contributes to cohomology in weight λ = 0.
• For each prime l = 2, . . . , 29, the eigenvalue al of the unramified Hecke operator

Tl is an algebraic integer in Z[ω] ⊂ C, where ω2 − ω + 3 = 0. We have a3 =
2(ω − 1).

The characteristic polynomial of the Satake parameter of π ′
3 is given by

X3 − 2

3
(ω − 1)X2 − ω

3
X − 1.

It has pairwise distinct roots. The prime 3 splits in Q(
√−11) = Q(ω) as (ω)(ω − 1),

and it is easy to check (using the formula in the statement of Corollary 4.4) that for
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each isomorphism ι : Q3
∼= C, there are exactly two orderings of the eigenvalues of the

Satake parameter of π ′
3 giving rise to finite-slope eigenpackets which are numerically

non-critical, and that these are all non-ordinary.
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