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ABSTRACT 15 

Cerebral small vessel disease (SVD) is a common cause of lacunar strokes, vascular cognitive 16 

impairment and vascular dementia. SVD is thought to result in reduced cerebral blood flow, 17 

impaired cerebral autoregulation and increased blood brain barrier permeability. However, the 18 

molecular mechanisms underlying SVD are incompletely understood. 19 

 20 

Recent studies in monogenic forms of SVD, such as Cerebral Autosomal Dominant Arteriopathy with 21 

Subcortical Infarcts and Leukoencephalopathy (CADASIL), and ‘sporadic’ SVD have shed light on 22 

possible disease mechanisms in SVD. Proteomic and biochemical studies in post-mortem monogenic 23 

SVD patients, as well as in animal models of monogenic disease have suggested that disease 24 

pathways are shared between different types of monogenic disease, often involving the impairment 25 

of extracellular matrix (ECM) function.   26 

 27 

In addition, genetic studies in ‘sporadic’ SVD have also shown that the disease is highly heritable, 28 

particularly among young-onset stroke patients, and that common variants in monogenic disease 29 

genes may contribute to disease processes in some SVD subtypes. Genetic studies in sporadic 30 

lacunar stroke patients have also suggested distinct genetic mechanisms between subtypes of SVD. 31 

Genome-wide association studies (GWAS) have also shed light on other potential disease 32 

mechanisms that may be shared with other diseases involving the white matter, or with pathways 33 

implicated in monogenic disease.  34 

 35 

This review brings together recent data from studies in monogenic SVD and genetic studies in 36 

‘sporadic’ SVD. It aims to show how these provide new insights into the pathogenesis of SVD, and 37 

highlights the possible convergence of disease mechanisms in monogenic and sporadic SVD.  38 

  39 
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SUMMARY STATEMENT 40 

Recent studies in familial and ‘sporadic’ cerebral small vessel disease (SVD) have provided new 41 

insights into the pathogenesis of the disease. These suggest an important role for shared molecular 42 

pathways, particularly involving extracellular matrix proteins, in the mechanisms of SVD. 43 
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INTRODUCTION 54 

Cerebral small vessel disease  55 

Cerebral small vessel disease (SVD) is a broad term encompassing different disease subtypes – 56 

amyloid- and non-amyloid SVD. Non-amyloid cerebral small vessel disease (SVD), which is the focus 57 

of this review, refers to several clinical and radiological features which describe disease of the small 58 

perforating blood vessels supplying the white and deep grey matter of the brain. SVD accounts for 59 

up to a fifth of all strokes, typically causing ischaemic lacunar strokes, but it is also now recognised as 60 

an important pathology underlying deep intracerebral haemorrhage (ICH). SVD is the most common 61 

pathology underlying vascular dementia and vascular cognitive impairment (VCI). (1) 62 

SVD is characterised by a range of radiological features best seen on MRI including white matter 63 

hyperintensities (WMH) on T2/FLAIR MRI (corresponding to low signal or leukoaraiosis on CT), 64 

lacunar infarcts of presumed vascular origin, cerebral microbleeds, dilated perivascular spaces and 65 

brain atrophy.(2)  66 

Pathogenesis of SVD – what is already known? 67 

Despite its public health importance, the pathogenesis of SVD is incompletely understood. This has 68 

been a major limitation in developing therapies for the disease, of which there are few. 69 

Neuropathological studies show a number of abnormalities in the small perforating arteries, 70 

including both focal regions of atherosclerosis at the origin of, or in the proximal, perforating 71 

arteries, and more diffuse abnormalities affecting the small perforating vessels. These diffuse 72 

changes include thickening of the vessel wall due to the deposition of fibro-hyaline material, 73 

narrowing of the vessel lumen, and loss of smooth muscle cells in the tunica media with fibrinoid 74 

necrosis.(3) 75 

The traditional hypothesis is that these vascular changes result in reduced cerebral blood flow and 76 

cerebral autoregulation, which in turn causes hypoperfusion. Imaging studies have confirmed both 77 
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reduced cerebral blood flow(4) and impaired cerebral autoregulation.(5) Increasing evidence 78 

supports the importance of endothelial dysfunction early in the disease and this could contribute to 79 

the impaired cerebral autoregulation.(6) 80 

More recently it has been proposed that increased Blood Brain Barrier (BBB) permeability may play 81 

an important role.(7) Neuropathological studies have shown the presence of plasma proteins such as 82 

fibrinogen in the brain parenchyma, indicating that the BBB was open at some point.(8,9) Evidence 83 

of past BBB disruption is also provided by cerebrospinal fluid (CSF) studies showing the presence of 84 

plasma proteins in the CSF.(10) Further support is provided by more recent MRI studies 85 

demonstrating leakage of contrast agents such as gadolinium across the BBB.(11) It is likely that both 86 

hypoperfusion and increased BBB permeability interact, and endothelial dysfunction and activation 87 

could contribute to both. 88 

Despite these advances, the molecular mechanisms underlying these processes are poorly 89 

understood, but recent data from genetic studies in both monogenic and ‘sporadic’ SVD are 90 

providing important novel insights. These have highlighted a number of shared molecular 91 

mechanisms that may be important in the disease, including a key role for abnormalities in the 92 

extracellular matrix (ECM).  93 

94 
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Genetics of SVD 95 

The majority of lacunar strokes are ‘sporadic’, with hypertension as the major risk factor alongside 96 

other common cardiovascular risk factors such as diabetes and smoking. However, SVD is also the 97 

stroke subtype that is most likely to present as a familial disease with the early onset of strokes.(1)  98 

The most common familial form of SVD is Cerebral Autosomal Dominant Arteriopathy with 99 

Subcortical Infarcts and Leukoencephalopathy (CADASIL), caused by mutations in the NOTCH3 100 

gene.(12) An autosomal recessive form of familial SVD has also been described in consanguineous 101 

Japanese and Chinese families, and has been attributed to mutations in the HTRA1 gene.(13) This 102 

disease is known as Cerebral Autosomal Recessive Arteriopathy with Subcortical Infarcts and 103 

Leukoencephalopathy (CARASIL), and a less severe form of the disease due to heterozygous 104 

mutations in the same gene has recently been described in Caucasian and Japanese 105 

populations.(14,15) 106 

Mutations in a number of other genes have also been identified in familial SVD, and these are 107 

summarised in Table 1. Although rare, these extremes in phenotype share both clinical and 108 

radiological features with sporadic SVD, and are providing important insights into the mechanisms of 109 

the disease.  110 

Furthermore, increasing evidence suggests that genetic susceptibility is also important in ‘sporadic’ 111 

SVD. This includes both epidemiological data showing that family history of stroke is a risk factor for 112 

SVD,(16) and recent genome-wide association study (GWAS) data demonstrating a significant 113 

heritability for ‘sporadic’ SVD of the predominant lacunar ischaemic stroke sub-phenotype.(17)114 
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Table 1: Monogenic forms of SVD  115 

Disease Gene(s) Gene function(s)  Mutations Purported role in disease Key clinical features 

CADASIL  NOTCH3 Notch3 transmembrane 
receptor has roles in 
angiogenesis, vascular 
smooth muscle cell 
remodelling (18) 
 

Cysteine-changing 
mutations in 
epidermal growth 
factor-like repeat 
region (EGFr) in exons 
2 – 24 (19) 

Accumulation of NOTCH3 
ectodomain cleaved from 
mutant protein in extracellular 
spaces of small vessels.(20)  

 Migraine with aura 

 Subcortical lacunar infarcts 

 Vascular dementia 

 Psychiatric disturbances 

 Encephalopathy  

CARASIL 
(Autosomal 
dominant 
HTRA1-related 
CSVD has also 
been described) 
(14,15)  

HTRA1 High temperature 
requirement serine 
protease A1 (HtrA1)  
switches off 
transforming growth 
factor β pathway(21) 

Missense, nonsense 
and splice site 
mutations (13–15) 

 Decreased protease activity 
(14) 

 Impaired activation of wild-
type HtrA1 trimer subunits  

 Inhibition of HtrA1 trimer 
formation and stabilisation 
(13) 

 Subcortical lacunar infarcts 

 Non-neurological features – 
alopecia, spondylosis  

 Vascular dementia  

COL4-related 
SVD 

COL4A1 
COL4A2  

COL4A1/A2 encode α1 
and α2 collagen chains, 
which are the most 
abundant components 
of the extracellular 
matrix (22) 

Missense mutations - 
most of which affect 
glycine residue in 
highly conserved Gly-
X-Y repeat regions 
(23,24) 
 

 Disrupted conformation of 
α1 or α2 chains (25), or 
impaired secretion of  α1 
and α2 chains  , preventing 
formation of collagen helix 
(26), and resulting in 
basement membrane 
abnormalities (27) 

 Intracellular accumulation 
of non-secreted α1 and α2 
may contribute to disease 
via endoplasmic reticulum 
stress (28,29) 

 Porencephaly  

 Infantile hemiparesis 

 Intracerebral haemorrhage 

 Axenfeld-Rieger anomaly 

 Nephropathy 

 Muscle cramps  

Retinal 
Vasculopathy 
with Cerebral 
Leukodystrophy 

TREX1 TREX1 encodes DNase 
III (Three prime repair 
exonuclease), which has 
roles in DNA repair (30) 

Frameshift mutations 
in C-terminus (31) 

Impaired cellular localization 
of DNase III in endoplasmic 
reticulum (32) 

 Retinal vasculopathy 

 Subcortical lacunar infarcts, WMH, 
pseudotumours 

 Migraine 
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 116 
117 

and Systemic 
Manifestations 
(RVCL-S) 

  Cognitive impairment 

 Psychiatric disturbances 

 Seizures 

 Multi-organ involvement: 
Raynaud’s phenomenon, hepatic 
cirrhosis, renal dysfunction, 
osteonecrosis 

FOXC1/PITX2-
related SVD 

FOXC1 
PITX2  

 Forkhead box 
transcription factor 
C1 (Foxc1) has roles 
in blood vessel 
development (33) 

 PITX2 encodes 
Paired-like 
homeodomain 
transcription factor 
2, which determines 
left-right asymmetry 
of internal organs 
(34) 

 Deletions or 
duplications of 
6p25 (35) 

 Mutations in Foxc1 
(36) 

 FOXC1 interacts with PITX2 
(36) 

 FOXC1 involved in pericyte 
and endothelial cell 
proliferation 

 Impaired blood brain 
barrier function (37) 

 Axenfeld-Rieger anomaly 

 WMH 

 Cerebellar malformations 

 Hydrocephalus 

 Periventricular heterotopia 
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New insights from studies in monogenic SVD - the ECM and the matrisome 118 

Recent studies in in monogenic SVD have provided evidence for the involvement of key extracellular 119 

matrix (ECM) or ‘matrisome’ proteins in the pathogenesis of the disease. The ECM is the non-cellular 120 

component of tissues made up of water, proteins and polysaccharides. It provides scaffolding for 121 

cellular components by producing fibrous proteins such as collagen, laminin and elastin, and is also 122 

biochemically active, providing signals which contribute to tissue function and homeostasis. The 123 

ECM also binds and serves as a reservoir for many other biochemically active molecules.(38) The 124 

matrisome is thus defined as the ensemble of nearly 300 proteins which make up the ECM (core 125 

matrisome), or are  associated with the ECM (matrisome-associated proteins), and have been 126 

characterised by bioinformatics and proteomic methods. (39)  127 

In the blood vessels, the ECM interacts with other vascular cells to influence vascular development 128 

and remodelling. The blood vessels have ECM components in each of its three layers. The innermost 129 

layer (tunica intima) is lined with endothelial cells on a basement membrane comprising of 130 

matrisome proteins such as type IV collagen; the tunica media contains sheets of smooth muscle 131 

cells separated by ECM, while the outermost tunica adventitia contains myofibroblast cells and is 132 

rich in type I and III collagen in addition to many other matrisome proteins.(40) The reader is 133 

directed to a recent review by Joutel et al for an in-depth discussion on the role of the matrisome in 134 

the small vessels, and the evidence for the alteration of matrisome function in SVD.(41) 135 

Matrisome involvement in CADASIL  136 

The involvement of the matrisome in different monogenic forms of SVD suggests that the ECM may 137 

be the basis of shared molecular pathways in SVD. This has been illustrated in CADASIL, where the 138 

basis of ECM involvement has now been characterised at several stages - from histopathological 139 

studies in post-mortem analysis,(42) to a direct link to cerebral vasoreactivity in animal models of 140 

CADASIL. (43–45) 141 
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Post-mortem studies in patients with CADASIL have shown a possible aggregation cascade of 142 

matrisome proteins. The basis of this arose from the fact that a pathognomonic feature of CADASIL 143 

is the deposition of granular osmiophilic material (GOM) in the extracellular space of the small blood 144 

vessels systemically,(46) and the accumulation of deposits of the NOTCH3 ectodomain (NOTCH3ECD) 145 

cleaved from the mutant NOTCH3 receptor.(20) In transgenic mice expressing the human NOTCH3 146 

R90C mutation, NOTCH3ECD accumulation and GOM deposits are often the earliest pathological 147 

features of the disease. (47) This is followed by a potassium channelopathy which precedes and 148 

results in the onset of impaired cerebral vasoreactivity,(48) eventually leading to the development of 149 

white matter lesions. (49) 150 

Studies in post-mortem specimens from CADASIL patients and transgenic CADASIL mouse models 151 

suggest that increased levels of NOTCH3ECD may promote the formation of disulphide cross-linked 152 

aggregates in a protein aggregation cascade.  These aggregates sequester key matrisome proteins 153 

which have roles in maintaining the integrity and function of the ECM in the walls of the blood 154 

vessels.(42,50) A summary of these proteins and their functions is provided in Table 2.  155 

This protein aggregation cascade demonstrated by proteomic studies in CADASIL shows parallels 156 

with the progression of features in animal models of CADASIL, suggesting that each protein’s 157 

involvement may contribute to different features of the disease pathway. Decreased baseline 158 

cerebral blood flow and cerebrovascular reactivity have been demonstrated in CADASIL patients, 159 

with decreased cerebrovascular reactivity showing an association with the progression of white 160 

matter lesions.(51) A transgenic mouse model of CADASIL has recapitulated these features, showing 161 

dysfunctional cerebral vasoreactivity early in disease. This was characterised by the impaired 162 

cerebral blood flow autoregulation in response to vasodilator stimuli (hypercapnia and 163 

acetazolamide), and increased vessel resistance in the context of hypertension. (52) 164 

The impaired cerebral vasoreactivity in a transgenic CADASIL mouse model was later shown to be 165 

due to an increase in the number of voltage-gated potassium channels in the membranes of the 166 
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smooth muscle cells. These channels oppose depolarisation due to pressure, and downregulation of 167 

these channels restores normal myogenic responses to pressure. (48) 168 

In biochemical and proteomic studies of cerebral vessels from CADASIL patients, NOTCH3ECD 169 

aggregation was found to induce the co-aggregation of Tissue inhibitor of metalloproteinase 3 170 

(TIMP3), which then promotes the sequestration of another matrisome protein, vitronectin, in these 171 

aggregates.  172 

A potential mechanistic link between increased TIMP3 activity and impaired cerebral blood flow 173 

regulation has recently been demonstrated. Increased TIMP3 expression in transgenic mice were 174 

shown to promote the upregulation of potassium channel current density in the cerebral arterial 175 

myocytes, and thus the reduction of myogenic tone and cerebral autoregulation.(44,45) This process 176 

is thought to be mediated by TIMP3/ a disintegrin and metalloproteinase 17 (ADAM17) interactions.  177 

ADAM proteases cleave off the extracellular domains in the activation of membrane-bound proteins. 178 

In particular, ligands of the EGFR family, such as heparin-binding EGF-like growth factor are 179 

substrates of ADAM17.(53) The ADAM17/Heparin-binding EGF-like growth factor (HB-EGF)/EGFR 180 

(ErbB1/ErbB4) signalling axis regulates cerebral arterial tone and cerebral blood flow. (54) TIMP3 181 

inhibits this signalling axis, and restoration of this axis with the delivery of exogenous ADAM17 or 182 

HB-EGF restores cerebral blood flow autoregulation in transgenic mice.(45) 183 

TIMP3 is associated with potassium channelopathy and impaired cerebrovascular reactivity but not 184 

white matter lesion load, while the subsequent involvement of vitronectin is associated with the 185 

presence of white matter lesions but not cerebral vasoreactivity impairment. (42) The stepwise 186 

involvement of each protein in the cascade thus shows direct parallels with each stage of disease 187 

progression in the animal model. (Fig.1) 188 

The cascade of sequential recruitment and aggregation of matrisome proteins triggered by an 189 

altered NOTCH3ECD is also reminiscent of the ‘prion hypothesis’ in other neurodegenerative diseases 190 
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such as Alzheimer’s Disease and Parkinson’s Disease, where a misfolded protein acts as a ‘seed’ and 191 

triggers further misfolding and protein aggregation.(55) In these diseases, proteins such as Aβ, tau 192 

and α-synuclein adopt β-sheet-rich conformations and self-propagate.(56) Although mutant proteins 193 

in the aggregatory process in CADASIL may not necessarily act in a prion-like manner – but instead 194 

promote the aggregation of different proteins - the similarities between these processes may 195 

eventually point toward common targetable pathways. 196 

Table 2: Matrisome proteins found to co-aggregate with NOTCH3 ECD.  197 

Matrisome protein Function in ECM Involvement in CADASIL / 
CARASIL 

Models 
studied 

Thrombospondin-2 
(TSP2) 

 Interacts with 
NOTCH3(57) 

 Regulates ECM assembly 
processes, such as 
collagen fibrillogenesis 

 Regulates 
angiogenesis(58,59) 

 NOTCH3ECD deposits 
found to co-aggregate 
with thrombospondin-2. 
(60) 

Post-mortem 
human 
CADASIL 
specimens  

Latent TGFβ-
binding protein 
(LTBP-1) 

 TGFβ is secreted as an 
inactive complex with 
LTBP-1 and latency 
associated peptide (LAP) 

 LTBP-1 regulates 
bioavailability of active 
TGFβ in the ECM(61) 

 NOTCH3ECD deposits 
found to co-aggregate 
with LTBP-1.(50) 

 CARASIL mutations 
preclude physiological 
cleavage of LTBP-1 by 
HtrA1(62) 

Mouse brain 
tissue, 
embryonic 
and patient 
skin 
fibroblasts 

Tissue inhibitor of 
metalloproteinase 
3 (TIMP3) 

 Regulatory function in 
ECM remodelling – 
inhibits a disintegrin and 
metalloproteinase 17 
(ADAM17), a 
metalloprotease which 
degrades ECM. (63) 

 NOTCH3 ECD forms 
complexes with 
TIMP3(42) 

 Increase in TIMP3 activity 
contributes to vessel 
fibrosis, dysfunctional 
cerebral blood flow and 
myogenic responses to 
changes in neural activity, 
but not associated with 
white matter lesion 
load(44) 

Post-mortem 
human 
CADASIL 
specimens 
and 
transgenic 
mouse 
models  

Vitronectin  Glycoprotein in blood 
plasma and ECM 

 Roles in cell attachment, 
aggregation, 
atherosclerosis and 
thrombus formation(64) 

 NOTCH3ECD aggregation 
promotes the 
sequestration of TIMP3, 
which then promotes the 
co-aggregation of 
vitronectin.(42) 

 Reduced vitronectin 
levels associated with 
lower white matter 

Post-mortem 
human 
specimens 
and 
transgenic 
mouse 
models 
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burden in mouse model 
but not cerebral blood 
flow or GOM load(45) 

CADASIL and CARASIL: convergent disease mechanisms 198 

One of the matrisome proteins identified in NOTCH3ECD protein aggregates in CADASIL has also been 199 

identified as a key molecule in CARASIL. Latent TGFB-binding protein 1 (LTBP-1), which co-aggregates 200 

with NOTCH3ECD in CADASIL,(50)  was identified to be a target of the HtrA1 serine protease in a study 201 

of mouse brain tissue, as well as embryonic and patient skin fibroblasts.(62)  202 

TGFβ is secreted as an inactive complex together with LTBP-1 and latency associated peptide (LAP). 203 

LTBP-1, through its interactions with other matrisome proteins such as fibronectin and fibrillins, 204 

regulates the bioavailability of soluble and active TGFβ in the ECM. CARASIL-causing mutations 205 

preclude the physiological cleavage of LTBP-1 by HtrA1, disrupting its binding to fibronectin and 206 

fibrillins, resulting in the dysregulation of TGFβ release from the ECM. (62)  207 

Further evidence for the involvement of this pathway is also demonstrated with the enrichment of 208 

LAP, fibronectin and fibrillin-1 in the blood vessels of CADASIL patients. Although these did not co-209 

aggregate with the NOTCH3ECD deposits, their presence lends support to their role in downstream 210 

processes secondary to the direct involvement of LTBP-1. (50) 211 

 212 
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Figure 1: The involvement of matrisome proteins in the pathogenesis of CADASIL and CARASIL. Vitronectin and TIMP3 may serve as molecular correlates of 213 
clinical features and terminal pathways in the disease. Vitronectin levels are associated with white matter lesion load, while TIMP3 levels are associated 214 
with cerebral vasoreactivity in a transgenic CADASIL mouse model. LTBP-1, which co-aggregates with NOTCH3ECD in CADASIL, has also been identified as the 215 
proteolytic target of HtrA1 protease, the enzyme altered as a result of CARASIL mutations.  216 

 217 

 218 

  219 
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Relevance of CADASIL and CARASIL disease mechanisms in sporadic SVD  220 

The molecular pathways characterised in CADASIL may be particularly relevant in our understanding 221 

of the pathogenesis of sporadic SVD. Evidence from both CADASIL and population-based genetic 222 

studies suggest that the same pathways may contribute to sporadic disease.  223 

While GOM deposits are pathognomonic of CADASIL, other histopathological features of CADASIL 224 

recapitulate those seen in sporadic disease. These include the fibrosis of the adventitia, and the loss 225 

of endothelial and smooth muscle cells of the perforating arteries. Similar features are also seen in 226 

post-mortem studies of cerebral vasculature in CARASIL, with fibrous intimal proliferation, hyaline 227 

degeneration of the media, loss of arterial smooth muscle cells and splitting of the internal elastic 228 

lamina contributing to the narrowing of the vessel lumen. (65,66) 229 

Genetic studies in the population also hint at the possible involvement of similar matrisome-230 

associated proteins in the pathogenesis of sporadic SVD.  In a study of 888 population-based stroke- 231 

and dementia-free individuals in the Austrian Stroke Prevention Study, the association between 232 

common single nucleotide polymorphisms (SNPs) in the NOTCH3 gene region and white matter 233 

hyperintensities and lacunes was investigated. Four common variants, rs1043994, rs10404382, 234 

rs10423702 and rs1043997, which are in strong linkage disequilibrium, were found to be significantly 235 

associated with both the presence and progression of WMH, with this effect only being present in 236 

hypertensives. This suggests that the minor alterations in Notch3 receptor function may act together 237 

with, or augment the effects of hypertension to cause this association. These results were replicated 238 

in a sample of 8545 individuals from the Cohorts for Heart and Aging Research in Genomic 239 

Epidemiology (CHARGE).(67) However, the association with WMH was not replicated in meta-240 

analyses of GWAS data sets from ischaemic stroke cohorts in 3670 cases and 7397 controls, and no 241 

association was found between NOTCH3 SNPs and lacunar stroke or with WMH in stroke patients. 242 

(68) Evidence for the involvement of monogenic disease genes in sporadic SVD is summarised in 243 

Table 3.  244 
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Collagen gene mutations: involvement of the most abundant matrisome protein  245 

Collagen is the most abundant protein in the ECM, and has a characteristic triple-stranded helical 246 

structure known as tropocollagen. Tropocollagen is made up of polypeptide chains with highly 247 

conserved repetitive three-residue sequences (Gly-X-Y). As glycine is the amino acid with the 248 

smallest side chain, it allows the tight assembly of each collagen strand in a helix, with glycine 249 

forming the core of each helix. Multiple tropocollagen molecules polymerise to form collagen fibrils 250 

which provide tensile strength to tissues. (22) 251 

Type IV collagen in the basement membrane is formed with α1 and α2 collagen chains in a 2:1 ratio. 252 

These chains, encoded by the COL4A1 and COL4A2 genes respectively, are the most abundant 253 

proteins in basement membranes and surrounding smooth muscle cells in the tunica media of blood 254 

vessels.(40) The relationship between collagen mutations and vessel fragility is well described in 255 

diseases such as osteogenesis imperfecta (COL1A1 or COL1A2 mutations) and Ehlers-Danlos 256 

syndrome (COL3A1 mutations).   257 

The majority of reported mutations in COL4A1/A2-related SVD tend to affect the glycine residue, 258 

disrupting the three-dimensional conformation of each α1 or α2 strand and thus impairing the 259 

formation of the resulting tropocollagen molecule. (69) This is thought to result in the impaired 260 

synthesis of the basement membrane, culminating in blood vessel fragility. (27) Both human and 261 

mouse mutations in COL4A2 have been shown to cause the impaired secretion of both α1 and α2 262 

chains, thus resulting in the retention of mutant α1 and α2 chains in the endoplasmic reticulum (26). 263 

The accumulation of mutant α1 or α2 chains results in endoplasmic reticulum stress, which may also 264 

contribute to disease.(28,29)  265 

In a phenotypic subtype of COL4A1-related SVD known as Hereditary Angiopathy, Nephropathy, 266 

Aneurysms and Cramps (HANAC syndrome), mutations were found to aggregate in the 31-residue 267 

CB3[IV] region of the COL4A1 gene, which is a critical integrin binding site, suggesting that abnormal 268 

interactions between type IV collagen and cells may result in a systemic form of the disease (25,70). 269 
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While a precise molecular pathway in COL4A1 and A2-associated SVD has not yet been identified, it 270 

is likely that the impaired function of collagen in the ECM contributes to the disease process. 271 

Relevance of collagen genes in sporadic SVD 272 

While COL4A1/A2 mutations can cause familial SVD, recent evidence suggests common variants in 273 

the same genes are associated with sporadic SVD and ICH. A meta-analysis of genotype data from 274 

large GWAS studies in stroke in individuals of European ancestry identified three common variants 275 

(rs9521732, rs9521733, rs9515199) in intronic regions in COL4A2 which were significantly associated 276 

with deep ICH. There was a similar trend for lacunar stroke and WMH although the associations did 277 

not achieve the stringent significance levels set to account for the multiple comparison made.(71) 278 

(Table 3) 279 

A multi-ethnic genome-wide meta-analysis of dementia- and stroke-free cohorts found a SNP 280 

located in an intron of the COL4A2 gene, rs9515201 which was associated with WMH in community 281 

populations; this SNP (72) is in strong linkage disequilibrium with SNPs that were previously 282 

identified to be associated with sporadic ICH.(71) (Table 3) 283 

Other possible mechanisms of disease – insights from genetics  284 

Blood Brain Barrier development and integrity 285 

Mutations and copy number variations in the FOXC1 gene were initially identified as a cause for  286 

Axenfeld-Rieger Syndrome (ARS) and cerebellar malformations.(73) In multiple case reports of 287 

patients with 6p25 deletions, individuals with ARS and other developmental abnormalities were also 288 

found to have WMH from as early as 18 months of age.(35) A meta-analysis and study of expression 289 

quantitative trait loci in GWAS data from the CHARGE consortium later demonstrated that 3 SNPs 290 

associated with WMH strongly influenced FOXC1 transcript levels, and that 18 out of 18 patients 291 

with FOXC1-related ARS also showed MRI evidence of SVD.(36) (Table 3) 292 

 293 
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The FOXC1 gene codes for the forkhead box transcription factor C1 (Foxc1), critical in the 294 

development of blood vessels.(74) Foxc1 originates from the neural crest and is expressed by brain 295 

pericytes, which are integral components of the BBB, and regulates vascular morphogenesis and 296 

maturation during embryological brain development.  While Foxc1 deletion does not preclude 297 

angiogenesis and may not affect BBB formation and permeability, it results in altered brain pericyte 298 

and endothelial cell proliferation, impairing blood vessel stability and thus predisposing these vessels 299 

to haemorrhage. (74) Hence, although the precise mechanisms behind FOXC1-associated SVD are 300 

not known, the theoretical basis of this disease suggests an impairment of the BBB.  301 

FOXC1 interacts with Paired-like homeodomain transcription factor 2 or Pituitary Homeobox 2 302 

(PITX2), a developmental transcription factor expressed in the neural crest. Mutant forms of PITX2 303 

also cause ARS.(73) ARS patients with PITX2 mutations also had features of SVD on brain imaging.(36) 304 

The similar phenotype seen with PITX2 mutations lends further support for the involvement of the 305 

FOXC1 pathway in the development of SVD.  306 

Studies in FOXC1 knockout models have led to speculation that matrisome proteins may mediate 307 

disease mechanisms in FOXC1-related SVD.(41) The expression of matrix metalloproteinases (MMPs), 308 

which regulate the ECM, is increased in the cornea of global and neural crest-deleted Foxc1-/- mice. 309 

These MMPs regulate the bioavailability of vascular endothelial growth factors sequestered in the 310 

ECM. Upregulation of MMP expression leads to disorganisation of the ECM and excessive growth of 311 

vessels in the cornea of mutant mice.(33) Suppression of Foxc1 in zebrafish also reduced expression 312 

of platelet-derived growth factor (PDGF), a matrisome-associated protein integral to the 313 

development of vasculature. Consistent with evidence in humans that alterations in Foxc1 dosage 314 

were associated with SVD, zebrafish with either Foxc1 knockdown or overexpression also exhibited 315 

cerebral haemorrhage.(36) 316 

Adjacent to the FOXC1 gene on chromosome 6p25 is FOXF2, a gene that encodes the Foxf2 317 

transcription factor. Foxf2 is expressed specifically in CNS pericytes and is required for pericyte 318 
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differentiation and BBB development. (75)  FOXF2 knockout mouse embryos develop defects in the 319 

BBB, and FOXF2 inactivation in adult mice lead to BBB breakdown, cerebral infarction and 320 

microhaemorrhage. (76) 321 

FOXF2 mutations and copy number variations have been implicated in Anterior Segment Dysgenesis, 322 

an ocular condition which also occurs in ARS. (77) In ARS, patients with FOXC1 and FOXF2 both 323 

deleted have more extensive WMH than those with deletion of only FOXC1, suggesting that the loss 324 

of interactions between FOXC1 and FOXF2 contribute to a shared disease pathway. (78) 325 

 326 

The same forkhead box protein loci have also been implicated in sporadic SVD. (Table 3) A meta-327 

analysis of GWA data of the FOXC1 and PITX2 gene locus identified 10 WMH-associated SNPs which 328 

lie in an intron of the GDP-mannose 4,6-dehydratase gene (GMDS) adjacent to FOXC1. Three of 329 

these SNPs have effects on FOXC1 transcript levels. (36) In the PITX2 gene locus, nine SNPs were 330 

found to be significantly associated with WMH. (36) Another recent large-scale GWAS meta-analysis 331 

in ischaemic stroke identified a novel locus close to FOXF2. (75) The same SNP was also associated 332 

with WMH, suggesting that the mechanism by which disease risk is conferred is though SVD. These 333 

converging results from sporadic and monogenic disease lend support to the possible roles of the 334 

FOXC1-PITX2-FOXF2 interactions and their roles in maintaining BBB integrity via proteins in the 335 

matrisome. 336 

 337 

Evidence for the involvement of the BBB in SVD is also seen in CADASIL. Histopathological 338 

examinations of cerebral vessels from CADASIL patients and transgenic mouse models of CADASIL 339 

have shown damaged pericytes. (79–81) The TGFβ pathway, which has been implicated in both 340 

CADASIL and CARASIL, may provide a possible explanation for this process. In vitro studies of TGFβ1, 341 

which is the most extensively studied form of TGFβ, have shown that TGFβ1 reduces pericyte 342 

proliferation and elevates the expression of MMPs and other proinflammatory cytokines which may 343 

disrupt BBB function. (82) 344 
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Impairment of DNA Damage Response 345 

Retinal Vasculopathy with Cerebral Leukodystrophy and Systemic Manifestations (RVCL-S) is an 346 

autosomal dominant form of SVD caused by mutations in the Table 1) The TREX1 gene codes for the 347 

most abundant DNA exonuclease in mammals, known as DNase III or Three prime Repair 348 

Exonuclease.(31)  349 

 350 

DNase III has a role in the repair of DNA damage, being translocated from the endoplasmic reticulum 351 

to the nucleus during oxidative DNA damage.(32) DNase III enzymatically digests cytosolic single-352 

stranded DNA to prevent the cell from responding to immunostimulatory DNA, such as those arising 353 

from pathogenic viruses.  354 

 355 

Dysfunctional DNase III arising from TREX1 mutations may thus result in the erroneous recognition 356 

and clearance of self-nucleic acids, resulting in autoimmune and inflammatory diseases such as 357 

systemic lupus erythematosus (SLE), an inherited form of SLE known as familial chilblain lupus, and 358 

an inflammatory early-onset encephalopathy known as Aicardi-Goutiéres Syndrome. (15) 359 

 360 

RVCL mutations lead to the expression of DNase III with a truncated C-terminus, disrupting the 361 

transmembrane domain and impairing the cellular localisation of DNase III in the endoplasmic 362 

reticulum.(31) The nuclear target of DNase III was recently identified as poly(ADP-ribose) 363 

polymerase-1 (PARP1), an enzyme which repairs single stranded DNA breaks through a process of 364 

base excision repair, and is integral to the cell’s DNA damage response. (83) The disrupted 365 

localisation of DNase III may theoretically have a toxic gain-of-function effect, or attenuate normal 366 

DNA damage responses, however the precise mechanisms underlying RVCL remain to be 367 

characterised.  368 

 369 

Further insights from GWAS– common and distinct mechanisms across the SVD spectrum 370 
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 371 

A number of insights into the underlying genetic architecture of sporadic SVD have also come from 372 

recent GWA studies.  373 

 374 

An important question is whether SVD pathology is homogeneous across all individuals, or whether 375 

there are distinct pathological pathways leading to SVD in different groups. In a population of stroke 376 

patients, (84) genetic factors underlying WMH were distinct in hypertensive individuals compared to 377 

non-hypertensives, with only a very low correlation between the genetic components (r2=0.15). (84) 378 

This points to distinct disease pathways leading to SVD in the two groups. 379 

 380 

A recent investigation of the genetic component of lacunar ischaemic stroke using GWAS data from 381 

a young onset population with MRI-confirmed lacunar stroke showed that genetic factors are an 382 

important contributor to risk in this population, (17) with higher heritability than in previous 383 

populations where most phenotyping was done using CT. (85) Much of the heritability arose from 384 

regions of the genome influencing expression of genes, or in DNase I Hypersensitivity sites, 385 

suggesting that the genetic risk of sporadic SVD is conferred through subtle changes to gene 386 

expression and regulation. In addition, when dividing lacunar cases into those with extensive WMH 387 

and those without, analysis suggested that distinct but different rare genetic variants contributed to 388 

disease in the two groups, again highlighting that multiple distinct pathways lead to different 389 

manifestations SVD in different groups of patients. (17) 390 

 391 

GWAS studies in MRI-determined WMH have identified 13 loci robustly associated with the trait, as 392 

summarised in Table 4 (72,86,87) Four of the loci arise from an extended region containing NEURL1, 393 

PDCD11, and SH3PXD2A. Of these genes, NEURL - a highly conserved E3 ubiquitin ligase - is of 394 

particular interest as it inhibits the Notch pathway through decreasing expression of the Notch 395 

ligand, JAG1. (88,89) Interestingly, 5 of the associated loci fall in genes which have been implicated 396 
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in malignant brain tumours of the white matter involving glial cells, highlighting the importance of 397 

these cells in pathogenesis of SVD. As well as influencing WMH in both community and stroke 398 

patient populations, (86) 12 of the identified WMH loci also confer risk of lacunar stroke, (90) and 399 

one of the loci, on 1q22, is also associated with ICH. (91) 400 

 401 

Taken together, GWAS to date emphasise that there are likely multiple pathways leading to SVD. 402 

Some of these pathways are shared across manifestations of disease, but also some are likely to be 403 

specific to disease groups; and in some cases are likely to act through interactions with risk factors 404 

such as hypertension. 405 

 406 

Concluding remarks 407 

Studies in both monogenic forms of SVD and the genetics of ‘sporadic’ SVD are now beginning to fill 408 

in the blank edges in the map of the disease processes in SVD. (Figure 2) Shared pathways affecting 409 

the integrity and function of the ECM appear to play an integral role in these disease pathways. It is 410 

likely that there are multiple shared pathways, each being involved to different degrees in different 411 

manifestations or subtypes of SVD. These genetic mechanisms, as well as their interactions with 412 

environmental factors, may provide explanations as to why different patients in the sporadic disease 413 

population exhibit each feature of SVD to different extents.  414 

In addition, there is now accumulating evidence of a protein aggregation cascade seen in CADASIL, 415 

suggesting that the convergence of pathways may extend beyond SVD, and there may be a 416 

convergence of pathogenic pathways seen in neurodegenerative diseases in general.  417 

Elucidating the disease pathways in SVD may allow us to identify therapeutic targets. An example is 418 

seen in a monogenic large vessel vasculopathy, Marfan syndrome, which can be caused by 419 

mutations in the fibrillin-1 gene. Fibrillin-1 is a key ECM component and binds to the latent TGFβ 420 

complex. Antagonists of TGFβ signalling such as losartan have now been shown to reduce the 421 
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development of aortic aneurysms in a mouse model of Marfan syndrome. (92) The involvement of 422 

the TGFβ pathway in SVD may lead us towards the use of TGFβ antagonists to halt disease 423 

progression, while the protein aggregation cascade may suggest the potential utility of drugs being 424 

developed in the treatment of other neurodegenerative diseases with similar mechanisms. 425 

Further genetic studies in SVD will likely provide more conclusive evidence of overlap of disease 426 

pathways involved in both monogenic and sporadic disease. While understanding the processes in 427 

each disease, whether a monogenic form of SVD or sporadic disease, may aid the development of 428 

treatment options for the specific disease, it is possible that the distinction between each of the 429 

diseases are blurred and the same few convergent processes will eventually serve as therapeutic 430 

targets. 431 
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Table 3: Common variants, found in monogenic disease genes, are associated with features of SVD 432 

Monogenic 
disease 
gene 

Phenotype and 
populations 
studied 

Approach No. of patients/ 
controls 

Variants identified 
(intronic, I/ exonic, E, 
downstream, DS, 
intergenic (IG) 

Strength of evidence Referen
ces 

 
NOTCH3 

WMH in 
community-based 
population  

Direct 
sequencing of 
all 33 exons, 
promoter and 
3’-
untranslated 
region of 
NOTCH3 

 Sequenced:195 
community-based 
Caucasians, 82 
controls with no 
WMH 

 Genotyped: 888 
participants from 
Austrian Stroke 
Prevention Study 

4 SNPs associated 
with WMH presence 
and progression in 
hypertensives 

 rs1043994 (I) 

 rs10404382 (I) 

 rs10423702 (I) 

 rs1043997 (E) 

 Only candidate gene studied 

 Replication of rs10404382 in 
GWAS data from hypertensive 
stroke-free elderly individuals 
in CHARGE consortium 
(n=8545) 

(67) 

Ischaemic stroke Direct 
sequencing of 
all 33 exons 

269 Caucasians with 
ischaemic stroke, 95 
controls 

1 SNP associated with 
ischaemic strokes 

 rs785101403 

 Only candidate gene studied 

 Insufficient power to study 
demonstrate association with 
stroke subtypes 

(93) 

Symptomatic 
lacunar stroke or 
WMH in stroke 
patients  

Meta-analysis 
of GWAS data 
sets  

1350 European 
patients with MRI-
confirmed lacunar 
stroke, 3670 patients 
with ischaemic stroke 
and WMH, 7397 
controls 

No association 
between NOTCH3 
variants and lacunar 
stroke or WMH 
volume 

Only candidate gene studied  (68) 

Leukoaraiosis 
(Fazekas scale 3) 

Screen of 
exons 3, 4, 5, 6 
of NOTCH3 
gene by 
polymerase 
chain reaction 

218 patients with 
lacunar stroke (48 with 
leukoaraiosis) 

No association 
identified between 
common 
polymorphisms and 
leukoaraiosis 

Limited screen of NOTCH3 gene 
only 

(94) 
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Monogenic 
disease 
gene 

Phenotype and 
populations 
studied 

Approach No. of patients/ 
controls 

Variants identified 
(intronic, I/ exonic, E, 
downstream, DS, 
intergenic (IG) 

Strength of evidence Referen
ces 

(PCR)-single-
stranded 
conformationa
l 
polymorphism 
analysis 

 Symptomatic 
ischaemic 
cerebrovascular 
disease 

PCR analysis of 
T6746C 
polymorphism  

235 Japanese patients 
with CT/MRI defined 
ischaemic stroke/TIA 
(142 with lacunar 
stroke), 315 controls 

No association found 
between T6746C and 
cerebrovascular 
disease or lacunar 
stroke 

Only one polymorphism studied in 
NOTCH3 gene 

(95) 

Ischaemic stroke 
and dementia 

Novel 
diagnostic 
array for 
known 
mutations and 
polymorphism
s in exons 3 
and 4 of 
NOTCH3 

70 patients with 
CT/MRI-confirmed 
ischaemic stroke and 
77 patients with 
dementia, 117 controls 

No association 
between known 
polymorphisms and 
stroke or dementia 

Only 5 previously identified 
polymorphisms in 2 exons studied  

(96) 

HTRA1 None reported  

COL4A1 Presumed sporadic 
ICH  

Direct 
sequencing of 
coding regions 
of COL4A1, 
including 
flanking 
intronic 
regions 

 48 patients with 
presumed 
hypertension-
related deep ICH 

 48 with probable 
cerebral amyloid 
angiopathy-related 
ICH  

2 rare coding variants 
associated with ICH: 

 c.C1055T 
(p.P352L) (E)  

 c.C1612G 
(p.R538G) (E)  

 Only candidate gene studied 

 Only rare variants analysed for 
pathogenicity – common 
variants not studied  

 Cellular assay of variants 
demonstrated impaired 
secretion of α1 chain. 

(97) 
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Monogenic 
disease 
gene 

Phenotype and 
populations 
studied 

Approach No. of patients/ 
controls 

Variants identified 
(intronic, I/ exonic, E, 
downstream, DS, 
intergenic (IG) 

Strength of evidence Referen
ces 

 145 controls 

COL4A2  Intracerebral 
haemorrhage 
(ICH)(deep/lob
ar) 

 Ischaemic 
stroke 
(cardioembolic, 
large vessel, 
SVD) 

 WMH 
(ischaemic 
stroke and 
population-
based) 

Meta-analysis 
of GWAS data 
sets 

 1545 patients with 
ICH, 1485 controls 

 1854 patients with 
lacunar stroke, 
2733 with 
ischaemic stroke 
and WMH, and 
9361 controls 

3 SNPs associated 
with deep ICH: 

 rs9521732 (I) 

 rs9521733 (I) 

 rs9515199 (I) 
 

 Only candidate genes studied 

 No significant eQTLs with 3 
SNPs or 5 other SNPs in high LD 
with these 3. 

 SNPs located in regions with 
possible regulatory roles 

 SNPs did not reach significance 
threshold for association with 
lacunar stroke or with WMH 
volume 

(71) 

WMH in stroke 
patients 

Meta-analysis 
of GWAS data  

3670 stroke patients 4 novel SNPs 
associated with WMH, 
one of which is in 
COL4A2 

  rs9515201 (I) 

SNP in strong linkage disequilibrium 
(LD) with those previously 
identified (above) 
SNP may have regulatory function 

(72) 

COL4A2 Presumed sporadic 
ICH 

Direct 
sequencing of 
coding regions 
of COL4A2, 
including 
flanking 
intronic 
regions 

 48 patients with 
presumed 
hypertension-
related deep ICH 

 48 with probable 
cerebral amyloid 
angiopathy-related 
ICH  

 145 controls 

3 rare coding variants 
associated with ICH:  

 c.3368A>G 
(p.E1123G) (E) 

 c.3448C>A 
(p.Q1150K) (E) 

 c.5068G>A 
(p.A1690T) (E)  

 Only candidate gene studied 

 Only rare variants analysed for 
pathogenicity – common 
variants not studied 

 Cellular assay of variants 
demonstrated impaired 
secretion of α1 and α2 chains. 

(26) 
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Monogenic 
disease 
gene 

Phenotype and 
populations 
studied 

Approach No. of patients/ 
controls 

Variants identified 
(intronic, I/ exonic, E, 
downstream, DS, 
intergenic (IG) 

Strength of evidence Referen
ces 

TREX1 None reported  

FOXC1 / 
PITX2 

WMH in 
community-based 
dementia- and 
stroke-free 
populations  

Meta-analysis 
of GWAS data 
and study of 
patients with 
FOXC1-related 
Axenfeld-
Rieger 
Syndrome 
(ARS) 

9361 patients in 
GWAS, 18 patients 
with FOXC1-related 
ARS 

10 SNPs located in 
GMDS gene (lies 
adjacent to FOXC1) 

 rs12206258 (I) 

 rs12203614 (I) 

 rs12199578 (I) 

 rs12193217 (I) 

 rs10458129 (I) 

 rs12206340 (I) 

 rs12189662 (I) 

 rs6936881 (I) 

 rs7765461 (I) 

 rs7765344 (I) 

 Only candidate gene region 
studied 

 3 SNPs strongly modify FOXC1 
transcript levels: 

o rs12206258 
o rs6936881 
o rs7765344 

 18 of 18 patients with FOXC1-
related ARS have features of 
SVD 

(36) 

9 SNPs near PITX2 

 rs2129979 (DS) 

 rs11931959 (DS) 

 rs13121924 (DS) 

 rs3866831 (IG) 

 rs6533531 (IG) 

 rs3866832 (IG) 

 rs13141190 (IG) 

 rs6533530 (IG) 

 rs7697491(IG) 

 rs723363 (IG) 

 Only candidate gene regions 
studied 

Stroke and stroke 
subtypes 
(ischaemic, 

Meta-analysis 
of GWAS data  

84961 European 
participants (4348 with 
stroke, of which 1770 

rs12204590 near 
FOXF2 associated with 
all-stroke and WMH 

 rs12204590 replicated in 
validation samples (stroke 
patients), associated with risk 

(75) 
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Monogenic 
disease 
gene 

Phenotype and 
populations 
studied 

Approach No. of patients/ 
controls 

Variants identified 
(intronic, I/ exonic, E, 
downstream, DS, 
intergenic (IG) 

Strength of evidence Referen
ces 

cardioembolic, 
non-cardioembolic) 
WMH in stroke-
free adults  

were non-
cardioembolic 
ischaemic strokes) 

burden in stroke-free 
adults  

of all-stroke  

 rs12200309, in complete LD 
with rs12204590, associated 
with small vessel ischaemic 
stroke in validation samples 

 Region includes enhancers, 
with 2 SNPs in high LD with 
rs12204590 having probable 
roles in regulating gene 
expression 

 433 
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Table 4: SNPs associated with WMH in community and stroke populations 434 

SNP Chromosome 
Nearest 
Gene 

Phenotype Association References 

rs7214628 17 TRIM65 
WMH in community 
and stroke 
populations 

(72,86) 

rs72848980 10 NEURL 
WMH in community 
populations 

(72,86) 

rs7894407 10 PDCD11 
WMH in community 
populations 

(72,86) 

rs12357919 10 SH3PXD2A 
WMH in community 
populations 

(72,86) 

rs7909791 10 SH3PXD2A 
WMH in community 
populations 

(72,86) 

rs78857879 2 EFEMP1 
WMH in community 
and stroke 
populations 

(72,86) 

rs2984613 1 
PMF1-
BGLAP 

WMH in community 
populations, 
intracerebral 
haemorrhage 

(72,86,91) 

rs11679640 2 HAAO 
WMH in community 
populations 

(72,86) 

rs72934505 2 NBEAL1 
WMH in community 
and stroke 
populations 

(72,86) 

rs941898 14 EVL 
WMH in community 
and stroke 
populations 

(72,86) 

rs962888 17 C1QL1 
WMH in community 
and stroke 
populations 

(72,86) 

rs9515201 13 COL4A2 

WMH in community 
and stroke 
populations, 
intracerebral 
haemorrhage 

(71,72,86) 

rs12445022 16 ZCCHC14 
Small vessel stroke, 
WMH in stroke 
populations 

(87) 

 435 
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Figure 2: The convergence of disease pathways, particularly in the extracellular matrix (ECM), in the mechanisms underlying monogenic SVD. These 436 
pathways may also be biological correlates for clinical and other disease features identified in post-mortem and transgenic animal studies, as seen in the 437 
example of CADASIL. Pathological and clinical features are also shared between monogenic and sporadic disease, lending support to the possibility of these 438 
shared pathways also being involved in sporadic SVD.  439 

 440 

 441 
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