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Amorphous zinc tin oxides (a-ZTO) which are 

stoichiometrically close to the Zn2SnO4 and ZnSnO3 

phases have been deposited using remote-plasma reactive 

sputtering, and are incorporated as the channel layers in 

thin film transistors (TFTs). The influence of tin 

composition and annealing temperatures on the structural 

and phase evolutions of the thin films and the electrical 

performances of the TFTs are investigated. Zn2SnO4 

exhibited randomly oriented polycrystalline peaks at 

annealing temperatures ≥700 °C, while ZnSnO3 

decomposed into Zn2SnO4 and SnO2 at 950 °C. TFTs 

employing a Zn2SnO4 channel, after a post-deposition 

annealing at 500 °C, exhibited a field effect mobility ~ 14 

cm2V–1s–1 and a sub-threshold slope ~ 0.6 V dec–1. When 

the tin content is increased in the channel, as in ZnSnO3, 

TFTs exhibited an increase in field effect mobility ~ 20 

cm2V–1s–1 but with a slight deterioration of sub-threshold 

slope to ~ 0.8 V dec–1. When the post-deposition annealing 

temperature is reduced to 300 °C, a mobility as high as ~ 

10 cm2V–1s–1 is still achieved, however a significant 

shoulder in the IDS-VGS curve together with a higher off-

state current is observed. TFT characteristics are explained 

by the sub-bandgap defect states measured by 

photothermal  deflection spectroscopy and the extracted 

Urbach energies. 
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1 Introduction Ionic oxide semiconductors are 

important materials for large area electronic displays due 

to their high carrier mobility, transparency, and the 

possibility of processing at low temperatures. Indium 

gallium zinc oxide (IGZO) TFTs show carrier mobility of 

~ 10 cm2V–1s–1, which is an order of magnitude higher than 

that of hydrogenated amorphous silicon (a-Si:H) [1]. 

However, this material system is rather complex with three 

metal cations, two of which are expensive and resource-

scarce elements. Given that a wide variety of oxides are 

available, research into simpler and less expensive material 

systems are vitally important from an economic point of 

view. Amorphous zinc tin oxide (a-ZTO) fits such a 

system and it has been previously reported that a-ZTO 

TFTs show high electron mobility [2]. Recent studies on a-

ZTO as a replacement for indium tin oxide anodes in 

OLED displays [3], the buffer layer in oxide solar cells [4], 

and the active layer in sensors [5] have clearly 

demonstrated the technological importance and versatility 

of this material for various applications.  

Most oxides are produced by r.f. magnetron sputtering 

from ceramic targets, but the growth rate is very modest (a 

few nm min–1) and the films tend to be highly stressed [6]. 

Reactive sputtering generally has a higher deposition rate, 

and allows the use of metal targets which are more durable 

and cheaper than ceramic targets, thus lowering production 

costs [7]. However, reactive sputtering is not widely 

utilized for the development of a-ZTO TFTs; this is the 

motivation for this work.  
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In this report, a-ZTO thin films are reactively sputtered 

from zinc:tin alloy targets with Sn compositions of 10, 33 

and 50 at.%, and an optimized oxygen flow. Preferential 

sputtering results in the tin composition being higher in the 

films  than in the targets. We have first systematically 

investigated the crystallographic properties and 

stoichiometry of thin films after annealing at temperatures 

up to 950 °C and characterised these by X-ray diffraction 

(XRD) and scanning electron microscopy (SEM). Films 

deposited from 10 and 33 at.% targets are found to have tin 

compositions of 33 and 50 at.% respectively, resulting in 

stoichiometries of the two common crystalline phases of 

ZTO: inverse spinel Zn2SnO4 and ilmenite ZnSnO3. These 

films have been successfully incorporated as channel 

layers in TFTs. Best performing TFTs consistently show 

field effect mobility as high as 20 cm2V–1s–1, switching 

ratio of ~ 108 and sub-threshold slope ~ 0.7 Vdec–1, which 

are obtained with a post-deposition annealing at 500 °C. 

TFTs incorporating a-ZTO channel layer with lower 

annealing temperature are also reported. The effect of tin 

compositions and annealing temperatures on TFT 

performances are explained by the measured sub-bandgap 

defect states and Urbach energy.  

 

2 Experimental details a-ZTO thin films were 

deposited without intentional substrate heating onto 

various substrates from the Zn:Sn metal alloy targets with 

atomic tin contents of 10, 33 and 50 %. As references, ZnO 

and SnO2 thin films are also sputtered from pure metal 

targets. The chamber pressure during sputtering was ~ 6 

×10−3 mbar which was achieved with argon and oxygen 

flows of 60 sccm and 35 sccm respectively. An RF launch 

power of 800 W and a target bias power of 500 W were 

used. The details of the sputtering system can be found 

elsewhere [8]. A-ZTO and ZnO layers which are used for 

film characterisations are ~ 250 to 350 nm thick and those 

used for TFT channel layers are ~ 50 nm thick. Post-

deposition annealing of the films was performed at 

temperatures between 300 and 950 °C in an oven in air. 

The annealing time was 1 hour, except for two samples 

annealed at 950 °C (ZTO50 and ZTO65) where the 

annealing time was reduced to 45 minutes. 

The film thickness was determined using a Gaertner 

He–Ne (633 nm) ellipsometer and Veeco Dektak 

profilometer. The crystallinity of the films was determined 

by a Phillips PW 1820 XRD using a Cu-K radiation and a 

monochromator with the divergence slit and receiving slit 

setting of 0.5 mm and 0.2 mm respectively. SEM images 

and estimation of chemical composition were performed 

on a Leo Gemini 1530VP FEG SEM/EDX system. A more 

accurate ThermoScientific Multilab-2000 X-ray 

photoelectron spectroscopy was also used on some selected 

films. The electronic density of states within the bandgap 

was examined using photothermal deflection spectroscopy 

(PDS), which is a very sensitive optical absorption 

technique [9].  

Bottom gate, inverted staggered structure TFTs were 

fabricated using thermally-grown SiO2 films of 200 nm 

thickness as the gate dielectric and heavily-doped p-type Si 

(100) substrates as the gate electrode. Thermally 

evaporated aluminium (~ 270 nm) was used as the source 

and drain contacts. The active layer and the source/drain 

contacts were deposited and patterned using conventional 

photolithography and lift off methods after annealing. The 

TFTs with channel width to lengh ratio of 50 (W/L = 1000 

m / 20 m) were measured in the dark, at room 

temperature using a Wentworth probe station inside a 

Faraday cage with a HP4140B dual voltage source 

picoammeter. 

3  Results and Discussion 
 

3.1 Thin film characterisations Figure 1 shows the 

deposition rate as a function of tin composition in the films 

(Sn/(Zn+Sn) in atomic %). The deposition rate is the low-

est for pure ZnO (~ 12 nm min–1) and is the highest for 

pure SnOx (~ 34 nm min–1). The deposition rate of ZTO 

varies between 15 to 22 nm min–1 and it increases mono-

tonically with the tin composition in the film.  
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Figure 1 Deposition rate as a function of tin in the ZTO thin 

films. A dashed line is drawn as a guide to the eye. 
 

The tin composition in ZTO is determined by EDX on 

most of the films and by XPS on selected films. It is found 

that the ZTO film which was sputtered from a zinc:tin al-

loy target with 10% Sn actually contains ~ 33% Sn. Simi-

larly, ZTO films sputtered from a zinc:tin alloy target with 

33% and 50% Sn contain ~ 50% and ~ 65% Sn respective-

ly. Referring to the more accurate XPS data in Figure 1, 

the increase of tin in the films compared with the target is 

found to be a factor of 1.3 to 3.3. This is due to preferential 

sputtering which is commonly encountered in sputtering 

from a target with two or more elements [10]. It is also ob-

served in rf magnetron sputtering but to a lesser degree, by 

a factor of 1.3 only [11-13]. In reactive sputtering, accurate 

flow of oxygen would be necessary to produce an oxide 
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with the correct stoichiometry. Moreover, the deposition 

rate is also generally higher when sputtering from a metal 

target than a ceramic target. Therefore, it is not surprising 

that preferential sputtering is more pronounced in reactive 

sputtering from a metal than in magnetron sputtering from 

a ceramic.  

From here on, the ZTO films will be referred to as 

ZTO33, ZTO50 and ZTO65 according to their tin compo-

sition in the film determined by XPS. The stoichiometry of 

the ZTO33 and ZTO50 are very close to the stoichiometry 

of Zn2SnO4 and ZnSnO3 respectively, which are the two 

common ZTO crystals. 

Figure 2 shows the X-ray diffractogram of ZTO33, 

ZTO50 and ZTO65 films as-deposited and after annealing 
at various temperatures. As shown in Figure 2a, the as-

deposited ZTO33 show diffraction peaks relating to those 
of the silicon substrate only, thus indicating that the film is 

likely to be amorphous. The film still appears to be 

amorphous after annealing at 500 °C. Small peaks appear 
at 2= 17.9, 29.3, 34.6 and 42.1 ° after annealing at 

700 °C and their intensities increase after annealing at 
900 °C, along with the appearance of new smaller peaks at 

36.1, 44.5, 52.1 and 60.4 °. These peaks match exactly 

with the power diffraction patterns of Zn2SnO4. Therefore, 
it is confirmed that ZTO33 deposited by reactive sputtering 

is indeed stoichiometrically Zn2SnO4.  
Our results are consistent with previously reported 

Zn2SnO4 using rf magnetron sputtering from ceramic 
targets, and are also very similar to the temperature range 

at which recrystalliztion begins. Randomly oriented 

polycrystalline structured Zn2SnO4 has been reported at 
660 °C by Young et al. [12], and at 750 °C by Satoh  et al. 

[11]. Interestingly films with (111) only orientation are 
also reported in the latter paper when sputtering with 

oxygen and argon gas mixtures [11]. When spray pyrolysis 

was used, a thermal treatment in air at 1000 °C up to 10 
hours is needed to obtain the polycrystalline Zn2SnO4 

phase [14]. 
As shown in Figure 2b, the ZTO50 film is amorphous 

both as-deposited and after annealing at 500 °C, similar to 

ZTO33 in Figure 2a. However, unlike ZTO33, the ZTO50 

film still remains amorphous even after annealing at 

700 °C. After annealing at 950 °C, diffraction peaks relat-

ing to Zn2SnO4 appear. Additionally, new peaks at 2= 

26.8, 38.1 and 52 ° also appear. These new peaks match 

the (110), (200) and (211) peaks of SnO2. Based on its 

stoichiometry, the ZTO50 should have exhibited peaks re-

lating to ZnSnO3 after annealing, but that is not the case. 

Instead, peaks that are related to both Zn2SnO4 and SnO2 

are observed. It has been previously reported that the 

ZnSnO3 is decomposed into Zn2SnO4 and SnO2 at tempera-

tures between 700 to 800 °C [15]. That is in the same tem-

perature range when ZTO50 recrystallizes and changes 

phase. It is also noted that the intensity of SnO2 peaks are 

higher than the Zn2SnO4 peak. 
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Figure 2 X-ray diffractogram of ZTO33, ZTO50 and ZTO65 

(a-c) films as-deposited and after annealing at various 

temperatures. XRD of silicon is also shown to highlight substrate 

related peaks. (?) indicates peaks which are unidentified. 

Diffraction peaks of  Zn2SnO4 (JCPDF 24–1470) are shown as 

dashed lines and those of SnO2 (JCPDF 44–1445) are shown as 

solid lines. 

 



4 Author, Author, and Author: Short title 

 

Copyright line will be provided by the publisher 

Finally, XRD scans for ZTO65 are shown in Figure 2c. 

Similar to ZTO50 in Figure 2b, the ZTO65 remains 
amorphous after annealing up to 700 °C. After annealing at 

950 °C, only peaks relating to SnO2 appear but none 

relating to Zn2SnO4. It is also noteworthy that the 
intensities of the SnO2 peaks are equally as high in ZTO65 

as in ZTO50. At this point, ZTO65 looks very similar to 
pure SnO2 sputtered using dc magnetron sputtering at 

250 °C [16] or that produced by plasma enhanced chemical 

vapor deposition at 250 °C [17]. The chemical 
compositions of ZTO65 was not checked on this annealed 

sample, but it is very likely that zinc ablation has occurred 
[18]. In fact, when zinc stannate was prepared by spray 

pyrolysis, precursors with a zinc:tin ratio of 4:1 were 
needed to account for the loss by evaporation of zinc oxide 

during a very long heat treatment at 1000 °C [14].   

SEM is used to investigate the surface morphology of 

ZTO films after annealing at temperatures ≥ 700 °C. In 

Figure 3a, the top view SEM micrograph of ZTO33 after 

annealing at 700 °C shows a smooth surface with small but 

distinctive round grains. The SEM image after 500 °C (not 

shown) shows a similarly smooth surface, but with fewer 

round grains. Since XRD in Figure 2a indicates a predomi-

nantly amorphous film at 500 °C and small polycrystalline 

peaks at 700 °C, the round grains indicate some local, short 

range ordering of crystals. After annealing at 900 °C (Fig-

ure 3b), the ZTO33 film shows irregular grains with large 

variation in sizes between 50 to 600 nm. This is reflected 

in the higher intensity of the XRD peaks (Figure 2a). It is 

difficult to compare the microstructures of Zn2SnO4 be-

tween samples which were prepared by different methods, 

nonetheless SEM images of relatively homogenous, irregu-

larly shaped grains or agglomerates have been reported by 

various groups [14,19]. 

SEM images of the film with highest tin composition, 

ZTO65 in Figure 3e-f is discussed next. After annealing at 

700 °C, ZTO65 shows a smooth homogenous surface. This 

agrees well with the amorphous phase seen in XRD in Fig-

ure 2c. After annealing at 950 °C, ZTO65 shows a uniform 

surface with densely packed grains. The inset of Figure 3f 

shows multi-facetted grains which vary in size between 20 

to 100 nm. Combining with the XRD data, these are shown 

to be SnO2 grains in random orientations. Recently, Ji et al., 

who deposited SnO2 using rf magnetron sputtering at 

700 °C from a ceramic target under oxygen partial pres-

sures between 0 to 20%, demonstrated how the crystal ori-

entation and grain structure change even with a small 

change in oxygen partial pressure [20]. The SEM image 

and XRD pattern of their polycrystalline SnO2 sputtered 

with oxygen partial pressure of 5 % are found to be re-

markably similar to those of our ZTO65 film annealed at 

950 °C. 

Finally, the ZTO50 sample is examined. As shown in 

Figure 3c, it shows a smooth homogenous surface after an-

nealing at 700 °C, and appears amorphous as also con-

firmed by XRD. At this stage, ZTO50 and ZTO65 look 

very similar. After annealing at 950 °C, a rough uneven 

surface appears. The zoom-out SEM image (not shown) 

shows a bubble-like surface (sizes ~ 2 to 20 m) and a few 

of them are already ruptured producing flakes. According 

to XRD, ZTO50 is composed of two phases, Zn2SnO4 and 

SnO2. Moreover, the intensities are higher in peaks relating 

to SnO2 than Zn2SnO4, which could be interpreted as the 

SnO2 dominating. However, the surface microstructures 

show no resemblance to either SnO2 or Zn2SnO4. This re-

quires further investigation.  

 

 

         
Figure 3 Top view scanning electron micrographs of ZTO thin films. In the top row are the ZTO33, ZTO50 and ZTO65 after an-

nealing at 700 °C (a, c, and e). In the bottom row are the ZTO33 after annealing at 900 °C (b), ZTO50 and ZTO65 after annealing at 

950 °C (d and f) respectively. Inset of figure 3f is a zoom-in of the grains. The scale bars are 400 nm. 
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It should be noted that the ZTO33 and ZTO50 films 

that are used as the channel layer in TFTs are annealed at 

temperatures ≤ 500 °C, thus they would be still amorphous. 

They may look very similar having smooth, highly uniform 

surfaces, but they are very different materials and are stoi-

chiometrically very close to Zn2SnO4 and ZnSnO3 respec-

tively. 

3.2 Thin film transistors 
 
3.2.1 Effect of tin compositions Figure 4 shows 

an overlay of the gate transfer characteristics for the ZnO, 

ZTO33, ZTO50 and ZTO65 TFTs. The field effect mobili-

ty, FE, is calculated from, 
 

 
  DSox

GSDS
FE

VLWC

VI 
    (1) 

 

where GSDS VI  is the transconductance, Cox is the oxide 

capacitance, and W/L is the width to length ratio of the 

channel. The ZnO TFT exhibited a FE of 0.7 cm2V–1s–1, a 

sub-threshold slope ~ 4 Vdec–1 and a switching ratio of 106. 

A significant improvement in performance is observed in 

the ZTO33 TFT, exhibiting FE of 13.5 cm2V–1s–1, a 

threshold voltage ~ 10 V, sub-threshold slope ~ 0.55 V 

dec–1 and switching ratio of 5 × 108. A further increase in 

FE (20.2 cm2V–1s–1) is observed in ZTO50 with threshold 

voltage ~ 8.3 V, sub-threshold slope ~ 0.78 V dec–1 and a 

switching ratio of 5 × 108. It is noteworthy that the hystere-

sis is very small in our devices. Finally, the ZTO65 TFT 

exhibited no transistor characteristics and it could no long-

er be used as a semiconductor channel. The TFT parame-

ters are summarised in Table 1.  

It is well established that the performance of ZnO 

TFTs is greatly limited by the grain boundaries of the pol-

ycrystalline ZnO channel [21].  

In Figure 4, a sharp increase of field effect mobility in 

ZnO to ZTO33, and a further increase to ZTO50 can be at-

tributed to (i) the lack of grain boundaries in the channel 

layer arising from the amorphous nature of multicompo-

nent oxides, and (ii) the effect of metal cation incorpora-

tion, as in this case, tin with its valency (+2 or +4) will 

contribute more free carriers [1]. Another advantage of in-

corporation of heavy metal cations is the suppression of 

oxygen vacancy formation, which is attributed to their 

higher bond strength over ZnO. Suppression of oxygen va-

cancies then enables a very low off state current [22]. Such 

a scheme has been employed in material systems other 

than zinc oxide; in this case, silicon dioxide is incorporated 

into indium oxide based TFTs [23].  

However, the increase in carrier concentration and thus 

mobility in ZTO50 comes at the expense of higher sub-

threshold slope as it is increased from 0.55 to 0.78 V dec–1. 

As the carrier concentration is further increased to ~ 65% 

as shown in ZTO65, channel depletion can no longer be 

achieved. 

 It is well established that TFT performances are 

strongly affected by defect tail states and sub-bandgap 

states originating from structural disorder and defects [24]. 

These states are measured by PDS which is widely utilized 

in various applications [25,26]. Figure 5 shows the absorp-

tion spectra as a function of sub-bandgap energies (≤ 3.2 

eV) for the three ZTO films annealed at 500 °C, which is 

the same anneal temperature as for the channel layers. 
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Figure 4 Gate transfer characteristics for the ZTO and ZnO 

TFTs measured with VDS = 0.2 V. A post-deposition annealing of 

the channel layer is performed at 500 °C for 1 hour in air.  
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500 °C obtained using PDS. Inset shows the corresponding Ur-

bach energy extracted by fitting the band-tail.  
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Figure 6 Gate transfer characteristics for the ZTO50-low TFTs 

measured with VDS = 0.1 and 1 V. The channel layer is annealed 

at 300 °C for 1 hour in air. For comparison the ZTO50 TFT is al-

so shown.  
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Figure 7 PDS absorption spectra for ZTO thin films annealed 

at either 300 °C (ZTO50-low) or 500 °C (ZTO50). Inset shows 

the corresponding Urbach energy extracted by fitting the band-

tail.  
 

The extracted Urbach energy, EU, for ZTO33, ZTO50 

and ZT65 are very similar: 98, 102 and 97 meV respective-

ly. These values are lower than the previously reported Ur-

bach energies for ZTO (110 meV) and IGZO (110 ~ 160 

meV) [22,27,28]. A very low Urbach energy ~ 22 meV has 

also been reported for IGZO [29]. It should be noted that 

different measurement techniques were used in all these 

papers.  Since lower Urbach energy means fewer defect 

states in the bandgap, we can say that our ZTO films are of 

very good quality, which is also indicated by the device 

performance. It is generally accepted that the defect states 

detected by PDS are dominated by those at the valence 

band edge [27], which agrees well with the ZTO65 result 

in that it is not switching off because of excess carriers in 

the conduction band tails and not because of higher defects 

in the valence band tails. 

Also shown in Figure 5 is the absorbance deep in the 

sub-bandgap (1.2 eV < E < 2.2 eV) and it is the highest in 

ZTO33, followed by ZTO65 and then ZTO50. The differ-

ences in the absorbance levels between samples are large, 

but there is no strong correlation observed between ab-

sorbance (deep defect states) and tin concentrations in a-

ZTO. 

 
3.2.2 Effect of annealing temperatures TFTs are 

fabricated employing ZTO50 with a lower post-deposition 

annealing at 300 °C (denoted as ZTO50-low) as shown in 

Figure 6. With a 300 °C anneal, TFT characteristics are 

observed but with a higher off-state current, IOFF ~ 10–10 A 

and a significant shoulder around VGS = 0 V. Compare to 

ZTO50 which is turned on at VGS ~ –5 V, the ZTO50-low 

turned on at VGS ~ –15 V. The device turn-on voltage is al-

so sensitive to the applied VDS. In the accumulation region, 

an order of magnitude increase in the IDS is observed as VDS 

is increased from 0.1 to 1 V. Despite being less than ideal 

devices, a high FE ~ 10 cm2V–1s–1 is still achieved in 

ZTO50-low TFTs. Device parameters are also summarised 

in Table 1.  

 
Table 1 Transistor parameters of ZnO and ZTO TFTs with a 

channel W/L ratio of 50, measured with a VDS of 0.1 or 0.2 V (as 

shown in Figure. 4 and 6). 

TFTs Vth      
[V] 

FE        

[cm2V–1s–1] 

S.S       
[Vdec–1] 

ION /IOFF 

ZnO 17.6 0.7 4.0 106 

ZTO33 10.0 13.5 0.55 5 × 108 

ZTO50 8.3 20.2 0.78 5 × 108 

ZTO50-low 9.6 9.8 2.5 5 × 105 

 

From the PDS absorption spectra in Figure 7, the Ur-

bach energy for ZTO50-low is extracted to be 125 meV, 

which is a significant increase from the 102 meV of 

ZTO50.  This indicates that the density of defect states is 

higher with lower annealing temperatures. Therefore, there 

is a strong correlation between ZTO annealing tempera-

tures and the Urbach energy. Moreover, the absorbance 

deep in the sub-bandgap is also higher in ZTO50-low than 

ZTO50, again showing strong correlation between ZTO 

annealing temperatures and deep defect states.  

From our TFT and PDS data (Figures 4 to 7), it is ob-

served that the effect of annealing temperatures on the 

ZTO TFT performance can be examined by the measured 

density of sub-bandgap states. This is consistent with a 

previous report on the use of PDS for organic devices [30]. 

On the other hand, the effect of tin compositions on the 

ZTO TFT performance does not show a strong correlation. 

However, the Urbach energy extracted is still valuable to 

gauge the quality of the semiconductors. 
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Finally, the XRD and SEM analysis show that the 

ZTO33 and ZTO50 are very different crystalline structures 

and are also at different stages of crystallinity at a given 

annealing temperature. It can also be postulated that they 

will have different local short range order in their amor-

phous phases. This difference, which arises from different 

tin composition in the films, is in turn possibly related to 

the different field effect mobility obtained for the ZTO33 

and ZTO50 TFTs. It is shown here that reactive sputtering 

achieves good devices from films with large window of 

zinc-to-tin ratio. This is consistent with wide process win-

dow of ZTO TFTs produced by other methods such as rf 

magnetron sputtering, pulse laser deposition and chemical 

vapour deposition [31-33]. One drawback of the reactive 

sputtering is the preferential sputtering of one metal over 

another, which would shorten the lifetime of such a target 

in a production environment.  

 

4 Conclusions a-ZTO thin films have been deposit-

ed using remote-plasma reactive sputtering from zinc:tin 

alloy targets with various tin compositions. Optimised 

films are found to be stoichiometrically close to the com-

mon Zn2SnO4 and ZnSnO3 phases, which is confirmed by 

XRD and SEM on films annealed at various temperatures. 

At annealing temperatures ~ 900 °C, the Zn2SnO4 still re-

mains stable but ZnSnO3 is decomposed to Zn2SnO4 and 

SnO2. TFTs incorporating these materials, after a post-

deposition annealing at 500 °C, exhibited good electrical 

characteristics with field effect mobilities ~ 14 to 20 cm2V–

1s–1.  The field effect mobility increases with tin composi-

tions but the Urbach energy does not vary with tin compo-

sition. On the other hand, the Urbach energy increases 

when the annealing temperature is reduced from 500 to 

300 °C, indicating that the defects in the bandgap increase. 

A field effect mobility ~ 10 cm2V–1s–1 is still obtained in 

devices with 300 °C annealed ZTO, but there is a large 

shoulder at VGS ~ 0V in the IDS-VGS curve. The Urbach en-

ergies of the a-ZTO in this work are slightly lower than 

those previously reported for a-ZTO and a-IGZO. In sum-

mary it is shown that a-ZTO with very different tin compo-

sitions and microstructures are able to produce highly per-

forming TFTs with mobilities in the same order. 
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