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Abstract. We study the homotopy type of the space of metrics of positive

scalar curvature on high-dimensional compact spin manifolds. Hitchin used
the fact that there are no harmonic spinors on a manifold with positive scalar

curvature to construct a secondary index map from the space of positive scalar

metrics to a suitable space from the real K-theory spectrum. Our main results
concern the nontriviality of this map. We prove that for 2n ≥ 6, the natural

KO-orientation from the infinite loop space of the Madsen–Tillmann–Weiss

spectrum factors (up to homotopy) through the space of metrics of positive
scalar curvature on any 2n-dimensional spin manifold. For manifolds of odd

dimension 2n+ 1 ≥ 7, we prove the existence of a similar factorisation.

When combined with computational methods from homotopy theory, these
results have strong implications. For example, the secondary index map is

surjective on all rational homotopy groups. We also present more refined
calculations concerning integral homotopy groups.

To prove our results we use three major sets of technical tools and results.

The first set of tools comes from Riemannian geometry: we use a parameterised
version of the Gromov–Lawson surgery technique which allows us to apply

homotopy-theoretic techniques to spaces of metrics of positive scalar curvature.

Secondly, we relate Hitchin’s secondary index to several other index-theoretical
results, such as the Atiyah–Singer family index theorem, the additivity theorem

for indices on noncompact manifolds and the spectral flow index theorem.

Finally, we use the results and tools developed recently in the study of moduli
spaces of manifolds and cobordism categories. The key new ingredient we use

in this paper is the high-dimensional analogue of the Madsen–Weiss theorem,

proven by Galatius and the third named author.
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1. Introduction

1.1. Statement of results. Among the several curvature conditions one can put
on a Riemannian metric, the condition of positive scalar curvature (hereafter, psc)
has the richest connection to topology, and in particular to cobordism theory. This
strong link is provided by two fundamental facts.

The first comes from index theory. Let /Dg be the Atiyah–Singer Dirac operator
on a Riemannian spin manifold (W, g) of dimension d. The scalar curvature ap-
pears in the remainder term in the Weitzenböck formula (or, more appropriately,
Schrödinger–Lichnerowicz formula, cf. [45] and [34]). This forces the Dirac operator
/Dg to be invertible provided that g has positive scalar curvature, and hence forces

the index of /Dg to vanish. The index of /Dg is an element of the real K-theory

group KO−d(∗) = KOd(∗) of a point, due to the Clifford symmetries of /Dg. The

Atiyah–Singer index theorem in turn equates ind( /Dg) with the Â -invariant of W ,

an element in KO−d(∗) which can be defined in homotopy-theoretic terms through

the Pontrjagin–Thom construction. Thus if W has a psc metric, then Â (W ) = 0.
The second fundamental fact, due to Gromov and Lawson [22], is that if a

manifold W with a psc metric is altered by a suitable surgery to a manifold W ′,
then W ′ again carries a psc metric. These results interact extremely well provided
the manifolds are spin, simply-connected and of dimension at least five. Under
these circumstances, the question of whether W admits a psc metric depends only
on the spin cobordism class of W , which reduces it to a problem in stable homotopy
theory. Stolz [46] managed to solve this problem, and thereby showed that such

manifolds admit a psc metric precisely if their Â -invariant vanishes. Much work
has been undertaken to relax these three hypotheses; see [43] and [44] for surveys.

Rather than the existence question, we are interested in understanding the ho-
motopy type of the space R+(W ) of all psc metrics on a manifold W . Our method
requires to consider manifolds W with boundary ∂W . In that case, we choose a
collar [−ε, 0]× ∂W ⊂ W and consider the space R+(W )h of all psc metrics on W
which are of the form dt2 + h on this collar, for a fixed psc metric h on ∂W .

To state our results, we recall Hitchin’s definition of a secondary index-theoretic
invariant for psc metrics [27], which we shall call the index difference. Ignoring some
technical details for now, the definition is as follows. For a closed spin d-manifold
W choose a basepoint psc metric g0 ∈ R+(W ), so for another psc metric g we can
form the path of metrics gt = (1− t) · g+ t · g0 for t ∈ [0, 1]. There is an associated

path of Dirac operators in the space Fredd of Cld-linear self-adjoint odd Fredholm
operators on a Hilbert space, and it starts and ends in the subspace of invertible
operators, which is contractible. As the space Fredd represents KO−d(−), we obtain
an element inddiffg0(g) ∈ KO−d([0, 1], {0, 1}) = KO−d−1(∗) = KOd+1(∗). This
construction generalises to manifolds with boundary and to families, and gives a
well-defined homotopy class of maps

inddiffg0 : R+(W )h −→ Ω∞+d+1KO

to the infinite loop space which represents real K-theory. The main theorems of
this paper are stated as Theorems B and C. They involve the construction of maps
ρ : X → R+(W )h from certain infinite loop spaces X, and the identification of
the composition inddiffg0 ◦ρ with a well-known infinite loop map. Using standard
methods from homotopy theory, one can then derive consequences concerning the



4 BORIS BOTVINNIK, JOHANNES EBERT, AND OSCAR RANDAL-WILLIAMS

induced map on homotopy groups,

Ak(W, g0) : πk(R+(W )h, g0) −→ KOk+d+1(∗) =


Z k + d+ 1 ≡ 0 (mod 4)

Z/2 k + d+ 1 ≡ 1, 2 (mod 8)

0 else,

and we state these consequences first.

Theorem A. Let W be a spin manifold of dimension d ≥ 6, and fix h ∈ R+(∂W )
and g0 ∈ R+(W )h. If k = 4s− d− 1 ≥ 0 then the map

Ak(W, g0)⊗Q : πk(R+(W )h, g0)⊗Q −→ KO4s(∗)⊗Q = Q

is surjective. If e = 1, 2 and k = 8s+ e− d− 1, then the map

Ak(W, g0) : πk(R+(W )h, g0) −→ KO8s+e(∗) = Z/2

is surjective. In other words, the map Ak(W, g0) is nontrivial if k ≥ 0, d ≥ 6 and
the target is nontrivial.

Theorem A supersedes, to our knowledge, all previous results in the literature
concerning the nontriviality of the maps Ak(W, g0), namely those of Hitchin [27],
Gromov–Lawson [21], Hanke–Schick–Steimle [23], and Crowley–Schick [12].

Let us turn to the description of our main result, which implies Theorem A by
a fairly straightforward computation. To formulate it, we first recall the defini-

tion of a specific Madsen–Tillmann–Weiss spectrum. Let GrSpin
d,n denote the spin

Grassmannian (see Definition 3.8.1) of d-dimensional subspaces of Rn equipped

with a spin structure. It carries a vector bundle Vd,n ⊂ GrSpin
d,n × Rn of rank d,

which has an orthogonal complement V ⊥d,n of rank (n − d). There are structure

maps ΣTh(V ⊥d,n) → Th(V ⊥d,n+1) between the Thom spaces of these vector bundles,

forming a spectrum (in the sense of stable homotopy theory) which we denote by
MTSpin(d). This spectrum has associated infinite loop spaces

Ω∞+lMTSpin(d) := colim
n→∞

Ωn+lTh(V ⊥d,n)

for any l ∈ Z, where the colimit is formed using the adjoints of the structure maps.
The parametrised Pontrjagin–Thom construction associates to any smooth bun-

dle π : E → B of compact d-dimensional spin manifolds a natural map

αE : B −→ Ω∞MTSpin(d), (1.1.1)

which encodes many invariants of smooth fibre bundles. For example, there is a map

of infinite loop spaces Âd : Ω∞MTSpin(d) → Ω∞+dKO such that the composition

Âd ◦ αE : B → Ω∞+dKO represents the family index of the Dirac operators on
the fibres of π (a consequence of the Atiyah–Singer family index theorem). The

collision of notation with the Â -invariant mentioned earlier is intended: there is a
map of spectra MTSpin(d)→ Σ−dMSpin into the desuspension of the classical spin

Thom spectrum, and the classical Â -invariant is induced by a spectrum map Â :

MSpin→ KO constructed by Atiyah–Bott–Shapiro. Our map Âd is the composition
of these maps (or rather the infinite loop map induced by the composition).

Definition 1.1.2. Two continuous maps f0, f1 : X → Y are called weakly homo-
topic [3] if for each finite CW complex K and each g : K → X, the maps f0 ◦ g and
f1 ◦ g are homotopic.
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With these definitions understood, we can now state the main results of this
paper.

Theorem B. Let W be a spin manifold of dimension 2n ≥ 6. Fix h ∈ R+(∂W )
and g0 ∈ R+(W )h. Then there is a map ρ : Ω∞+1MTSpin(2n) → R+(W )h such
that the composition

Ω∞+1MTSpin(2n)
ρ−→ R+(W )h

inddiffg0−→ Ω∞+2n+1KO

is weakly homotopic to ΩÂ2n, the loop map of Â2n.

For manifolds of odd dimension, we have a result which looks very similar; we
state it separately as it is deduced from Theorem B, and its proof is quite different.

Theorem C. Let W be a spin manifold of dimension 2n+1 ≥ 7. Fix h ∈ R+(∂W )
and g0 ∈ R+(W )h. Then there is a map ρ : Ω∞+2MTSpin(2n) → R+(W )h such
that the composition

Ω∞+2MTSpin(2n)
ρ−→ R+(W )h

inddiffg0−→ Ω∞+2n+2KO

is weakly homotopic to Ω2Â2n, the double loop map of Â2n.

It should be remarked that in both cases the homotopy class of the map ρ is
in no sense canonical and depends on many different choices (among them the
metric g0). Theorem A is a consequence of Theorems B and C and relatively easy
computations in stable homotopy theory. The geometric form of Theorems B and
C gives an interpretation in terms of spaces of psc metrics to more difficult and
interesting stable homotopy theory computations as well. In Section 5 we make
such computations, and the results obtained are stated below in Section 1.3.

1.2. Outline of the proofs of the main results. We now turn to a brief outline
of the proofs of Theorems B and C, starting with Theorem B. All manifolds in the
sequel are assumed to be compact spin manifolds.

The first ingredient a refinement of the Gromov–Lawson surgery theorem. This is
the cobordism invariance theorem of Chernysh [10] and Walsh [54], which says that
the homotopy type of R+(W )h is unchanged when W is modified by appropriate
surgeries in its interior (the precise formulation is stated as Theorem 2.3.1 below).
Together with the cut-and-paste invariance of the index difference (which we discuss
in detail in Section 3.4), this has two important consequences. Firstly, it is enough
to prove Theorem B when W = D2n and h = h◦ is the round metric on S2n−1;
secondly, we are free to replace D2n by any other simply-connected manifold W
within its spin cobordism class (relative to S2n−1). Here the hypothesis 2n ≥ 6
is required for the first time. From now on, let us assume that W 2n is a compact
connected spin manifold of dimension 2n ≥ 6 with ∂W = S2n−1.

As in [27] and [12], our method relies on the action of the diffeomorphism
group on the space of psc metrics. For a smooth manifold W equipped with
a collar c : [−ε, 0] × ∂W ↪→ W , we write Diff∂(W ) for the topological group
of those diffeomorphisms of W which are the identity on the image of c. This
group acts by pullback on R+(W )h◦ , and we may form the Borel construction
EDiff∂(W )×Diff∂(W ) R+(W )h◦ , which fits into a fibration sequence

R+(W )h◦ −→ EDiff∂(W )×Diff∂(W ) R+(W )h◦ −→ BDiff∂(W ). (1.2.1)
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The Borel construction EDiff∂(W ) ×Diff∂(W ) R+(W )g◦ is the homotopy theoretic

quotient R+(W )g◦//Diff∂(W ), and we use this notation from now on.
The action of Diff∂(W ) on R+(W )h◦ is free, so the projection map

R+(W )h◦//Diff∂(W ) −→ R+(W )h◦/Diff∂(W )

is a weak homotopy equivalence. This quotient space is known as the moduli space
of psc metrics on W in the literature, e.g. [50, §1].

We, however, find the following point-set model for the spaces in (1.2.1) more
enlightening. Choose an embedding ∂W ⊂ R∞−1 and then take as a model for
EDiff∂(W ) the space Emb∂(W, (−∞, 0] × R∞−1) of all embeddings e : W →
(−∞, 0] × R∞−1 such that e ◦ c(t, x) = (t, x) for all (t, x) ∈ [−ε, 0] × ∂W . With
this model, BDiff∂(W ) may be identified with the set of all compact subman-
ifolds X ⊂ (−∞, 0] × R∞−1 such that X ∩ ([−ε, 0] × R∞−1) = [−ε, 0] × ∂W
and which are diffeomorphic (relative to ∂W ) with W . One may therefore view
BDiff∂(W ) as the moduli space of manifolds diffeomorphic to W . Using this model,
the Borel construction EDiff∂(W ) ×Diff∂(W ) R+(W )h◦ is the space of pairs (X, g)

with X ∈ BDiff∂(W ) and g ∈ R+(X)h◦ .
One important feature of the fibre sequence (1.2.1) is that it interacts well with

index-theoretic constructions, by virtue of a homotopy commutative diagram

R+(W )h◦

��

inddiff // Ω∞+2n+1KO

��
R+(W )h◦//Diff∂(W )

��

// ∗

��

BDiff∂(W )
ind // Ω∞+2nKO,

(1.2.2)

which we establish in Section 3.8.4. The right-hand column is the path-loop-
fibration, the top map is the index difference (with respect to a basepoint) and
the bottom map is the ordinary family index of the Dirac operator on the universal
W -bundle over BDiff∂(W ), which can be computed in topological terms by the
index theorem.

If we choose W so that the topology of BDiff∂(W ) is well-understood, we
might hope to extract information about the homotopy type of R+(W )h◦ and
hence about π∗(inddiff) from (1.2.1). For example, if one can show that the map
ind∗ : πk(BDiff∂(W )) → KO−2n−k(∗) is nontrivial, then it follows that the map
inddiff∗ : πk−1(R+(W )g◦) → KO−2n−k(∗) is also nontrivial. This is essentially
the technique which was introduced by Hitchin [27]. But precise knowledge of
π∗(BDiff∂(W )) is scarce, especially when additional information such as the map
ind∗ : πk(BDiff∂(W ))→ KO−2n−k(∗) is required as well.

The driving force behind Theorem B is the high-dimensional analogue of the
Madsen–Weiss theorem, proved by Galatius and the third named author [19, 18],
which makes it possible to understand the homology of BDiff∂(W ), rather than its
homotopy. To describe this result, let K := ([0, 1]× S2n−1)#(Sn × Sn), and when
W0 is a 2n-dimensional compact spin manifold with boundary ∂W0 = S2n−1 write
Wk := W ∪ kK for the composition of W0 with k copies of K. We choose W0 such
that
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(i) W0 is spin cobordant to D2n relative to S2n−1 and
(ii) the mapW0 → BSpin(2n) classifying the tangent bundle ofW0 is n-connected.

Such a manifold W0 exists, and in fact by Kreck’s stable diffeomorphism classifica-
tion theorem [32, Theorem C] it is unique in the sense that if two such manifolds
W0 and W ′0 are given, then Wk

∼= W ′l for some k, l ∈ N.
Gluing in the cobordism K induces stabilisation maps

BDiff∂(W0) −→ BDiff∂(W1) −→ BDiff∂(W2) −→ BDiff∂(W3) −→ · · · .

The parametrised Pontrjagin–Thom maps (1.1.1) induce a map

αW∞ : BDiff∂(W∞) := hocolim
k→∞

BDiff∂(Wk) −→ Ω∞0 MTSpin(2n), (1.2.3)

and it follows from [18] that the map αW∞ is acyclic. Recall that a map f : X → Y
of spaces is called acyclic if for each y ∈ Y the homotopy fibre hofiby(f) has the
singular homology of a point. In particular, the map (1.2.3) induces an isomorphism
in homology and can in fact be identified with the Quillen plus construction of
BDiff∂(W∞)

Once a psc metric m ∈ R+(K)h◦,h◦ is chosen, gluing in the Riemannian cobor-
dism (K,m) induces stabilisation maps

R+(W0)h◦ −→ R+(W1)h◦ −→ R+(W2)h◦ −→ R+(W3)h◦ −→ · · · .

The cobordism invariance theorem of Chernysh [10] and Walsh [54] allows us to
choose the psc metric m so that all these stabilisation maps are homotopy equiva-
lences, so in particular the map

R+(W0)h◦ −→ hocolim
k→∞

R+(Wk)h◦ (1.2.4)

is a homotopy equivalence. These two stabilisation maps (on the moduli space of
manifolds and on the space of psc metrics respectively) together yield stabilisation
maps on the Borel construction. After passing to the (homotopy) colimit, we obtain
a fibre sequence

hocolim
k→∞

R+(Wk)h◦ → hocolim
k→∞

(R+(Wk)h◦//Diff∂(Wk))
p∞→ hocolim

k→∞
BDiff∂(Wk).

The key step is now the construction of a fibration T+
∞

p+∞→ Ω∞0 MTSpin(2n) with
fibre R+(W0)h◦ and a homotopy cartesian diagram

hocolim
k→∞

(R+(Wk)h◦//Diff∂(Wk))

p∞

��

// T+
∞

p+∞

��

hocolim
k→∞

BDiff∂(Wk)
αW∞ // Ω∞0 MTSpin(2n).

(1.2.5)

The main input for the construction of the diagram (1.2.5) is the result that
for each pair of diffeomorphisms f0, f1 ∈ Diff∂(Wk) the automorphisms f∗0 , f

∗
1 :

R+(Wk)h◦ → R+(Wk)h◦ commute up to homotopy. This is again derived from
the cobordism invariance theorem, along with an argument of Eckmann–Hilton
type. This commutativity property allows us to carry out the obstruction-theoretic
argument to produce (1.2.5). At this point it is crucial that αW∞ is acyclic and not
only a homology equivalence.
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The map ρ is defined to be the fibre transport map

Ω∞+1MTSpin(2n) −→ hocolim
k→∞

R+(Wk)h◦

of the fibration p+
∞, followed by the homotopy inverse of (1.2.4) and the identifi-

cation R+(W0)g◦ ' R+(D2n)g◦ coming from the cobordism invariance theorem.

To show that inddiff ◦ρ is weakly homotopic to ΩÂ2n we use the diagram (1.2.2),
Bunke’s additivity theorem for the index [9], and the Atiyah–Singer family index
theorem.

The deduction of Theorem C from Theorem B is by a short index-theoretic
argument. The point here is that for a closed manifold W there is an alternative
description of the index difference map, due to Gromov and Lawson [22], in terms of
a boundary value problem of Atiyah–Patodi–Singer type on the cylinder W × [0, 1].
The proof of Theorem C relates the index difference for (2n+ 1)-dimensional man-
ifolds (Hitchin’s definition) with the index difference for 2n-dimensional manifolds
(Gromov–Lawson’s definition). In order to make the argument conclusive we need
to know that these definitions agree, but this follows from a family version of the
spectral flow index theorem which was proved by the second named author [14].

Remark 1.2.6. The argument for the deduction of Theorem C from Theorem B also
yields that Im(Ak+1(∂W, h)) ⊂ Im(Ak(W, g)) when g ∈ R+(W )h. This allows one
to prove Theorem A by induction on the dimension, starting with d = 6. Along
the same lines, if Theorem B is established for 2n = 6, we get for all d ≥ 6 a
factorisation

Ωd−5Â6 : Ω∞+d−5MTSpin(6)
ρ−→ R+(W d)h

inddiffg−→ Ω∞+d+1KO,

which suffices for some of the computational applications.
In addition, the proof of Theorem B in the special case 2n = 6 enjoys several

simplifications, the principal one being that the results of [18] may be replaced by
those of [19]. Consequently, we have given (in Section 4.3.1) a separate proof of
this special case.

1.3. Further computations. We state the following more detailed computations
for even-dimensional manifolds: they have odd-dimensional analogues too, which
we leave to the reader to deduce from the results of Section 5. The first concerns
the surjectivity of the map on homotopy groups induced by the index difference,
without any localisation.

Theorem D. Let W be a spin manifold of dimension 2n ≥ 6. Fix h ∈ R+(∂W )
and g0 ∈ R+(W )h. Then the map

Ak(W, g0) : πk(R+(W )h, g0) −→ KOk+2n+1(∗)

is surjective for 0 ≤ k ≤ 2n− 1.

One application of this theorem is as follows. Let B8 be a spin manifold such

that Â (B) ∈ KO8(∗) is the Bott class (such a manifold is sometimes called a “Bott
manifold”). By the work of Joyce [28, §6] there is a Bott manifold which admits
a metric gB with holonomy group Spin(7). Then gB must be Ricci-flat and hence
scalar-flat. For any closed spin d-manifold W , cartesian product with (B, gB) thus
defines a direct system

R+(W ) −→ R+(W ×B) −→ R+(W ×B ×B) −→ · · ·



INFINITE LOOP SPACES AND POSITIVE SCALAR CURVATURE 9

and as Â (B) is the Bott class there is an induced map from the direct limit

inddiffh[B−1] : R+(W )[B−1] := hocolim
k→∞

R+(W ×Bk) −→ Ω∞+d+1KO.

It then follows from Theorem D (or its odd-dimensional analogue) that this map is
surjective on all homotopy groups.

Secondly, working away from the prime 2 we are able to use work of Madsen–
Schlichtkrull [35] to obtain an upper bound on the index of the image of the index
difference map on homotopy groups.

Theorem E. Let W be a spin manifold of dimension 2n ≥ 6. Fix h ∈ R+(∂W )
and g0 ∈ R+(W )h. Then the image of the map

A4m−2n−1(W, g0)[ 1
2 ] : π4m−2n−1(R+(W )h, g0)[ 1

2 ] −→ KO4m(∗)[ 1
2 ]

has finite index, dividing

A(m,n) := gcd

{
n∏
i=1

(22mi−1 − 1) ·Num

(
Bmi

2mi

) ∣∣∣∣∣mi ≥ 0,

n∑
i=1

mi = m

}

(where we adopt the convention that (22m−1 − 1) ·Num(Bm

2m ) = 1 when m = 0).

While the numbers A(m, 1) = (22m−1−1) ·Num(Bm

2m ) are complicated, computer
calculations (for which we thank Benjamin Young) show that A(m, 2) = 1 for
m ≤ 45401. Hence A(m, 2`) = 1 for m ≤ 45401 · `, and so for W a spin manifold of
dimension 4` ≥ 6 the map

Ak(W, g0)[ 1
2 ] : πk(R+(W )h, g0)[ 1

2 ] −→ KOk+4`+1(∗)[ 1
2 ]

is surjective for k < 45400 · 4`. (One can deduce similar ranges for manifolds whose
dimensions have other residues modulo 4, cf. Section 5.4.)

Remark 1.3.1. In Section 5.4.2 we show that the estimate in Theorem E is approx-
imately sharp: the quotient of A(m,n) by the index of the image of the map

π4m−2n(MTSpin(2n))[ 1
2 ] −→ π4m−2n−1(R+(W )h, g0)[ 1

2 ] −→ KO4m(∗)[ 1
2 ]

has all prime factors p relatively small, in the sense that p ≤ 2m + 2. Thus any
prime number q dividing A(m,n) with q > 2m+ 2 must in fact divide the index of
the image of this composition.

Thirdly, we study the p-local homotopy type of the spaces R+(Sd) of positive
scalar curvature metrics on spheres. In [55], Walsh has shown that R+(Sd) admits
the structure of an H-space, so for any prime p we may form the localisation
R+
◦ (Sd)(p) of the identity component of this H-space, that is, the component of the

round metric g◦. This may be constructed, for example, as the mapping telescope
of the rth power maps on this H-space, over all r coprime to p.

Theorem F. Let d ≥ 6 and p be an odd prime. Then there is a map

f : (Ω∞+d+1KO)(p) −→ R+
◦ (Sd)(p)

such that (inddiffg◦)(p) ◦ f induces multiplication by (22m−1 − 1) ·Num(Bm

2m ) times
a p-local unit on π4m−d−1.
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Thus if p is an odd regular prime (i.e. is not a factor of Num(Bm) for any m)
and in addition does not divide any number of the form (22m−1 − 1), then there is
a splitting

R+
◦ (Sd)(p) ' (Ω∞+d+1

0 KO)(p) × F(p),

where F is the homotopy fibre of inddiffg◦ . In particular, for such primes the map
induced by inddiffg◦ on Fp-cohomology is injective.

At the prime 2 we are not able to obtain such a strong splitting result, but we
can still establish enough information to obtain the cohomological implication.

Theorem G. For d ≥ 6, the map inddiffg◦ : R+(Sd) → Ω∞+d+1KO is injective
on F2-cohomology.

Acknowledgements. The authors would like to thank Mark Walsh for helpful
discussions concerning surgery results for psc metrics. An early draft of the paper
had intended to contain a detailed appendix written by Walsh on this subject; later
we found a way to prove the main results without using these delicate geometric
arguments. The appendix grew instead into a separate paper, [56], which is of
independent interest.

The authors would also like to thank Don Zagier and Benjamin Young for their
interest and advice regarding the numbers A(m, 2) arising in Theorem E.

2. Spaces of metrics of positive scalar curvature

We begin this chapter by precisely defining the spaces which we shall study, in
Section 2.1. In the other sections, we survey results on spaces of positive scalar
curvature metrics which we shall need later. Section 2.2 provides technical but
mostly elementary results, for later reference. The most important result, to be
discussed in Section 2.3.3, is the cobordism invariance theorem of Chernysh and
Walsh and the hasty reader can jump directly to that section.

2.1. Definitions. Let W : M0  M1 be a cobordism between closed manifolds.
For us, a cobordism will always be a morphism in the cobordism category in the
sense of [20, §2.1]. In particular, the boundary of W is collared: for some a0 <
c0 < c1 < a1 ∈ R, there is an embedding b = b0 t b1 : [a0, c0] ×M0 t [c1, a1] ×
M1 → W which induces the canonical identification of {ai} ×Mi with Mi. Let
Γ(W ; Sym2(TW )) be the space of smooth symmetric (0, 2)-tensor fields on W . This
is a Frechét topological vector space; the topology is generated by the maximum
norms ‖∇ku‖C0 , where u ∈ Γ(W ; Sym2(TW )), and the gradients are taken with
respect to any fixed reference metric on W ; the topology so defined does not depend
on the specific choice of this reference metric.

For εi > 0 small enough, we write R(W )ε0,ε1 ⊂ Γ(W ; Sym2(TW )) for the sub-
space of all Riemannian metrics g on W for which there exist Riemannian metrics hi
on Mi such that b∗i (g) = hi+dt

2 on the collars [a0, a0+ε0]×M0 and [a1−ε1, a1]×M1.
This is convex and hence contractible. The subspace R+(W )ε0,ε1 ⊂ R(W )ε0,ε1 of
metrics with positive scalar curvature is open. Any metric g on W induces a metric
h on ∂W by restriction, and if g is of product form g = h + dt2 on the collar and
has positive scalar curvature then h also has positive scalar curvature. This yields
a continuous map

res : R+(W )ε0,ε1 −→ R+(M0)×R+(M1).
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For a pair (h0, h1) ∈ R+(M0)×R+(M1) we write

R+(W )ε0,ε1h0,h1
:= res−1(h0, h1) ⊂ R+(W )ε0,ε1 .

In plain language: this is the space of all positive scalar curvature metrics whose
restriction to the collar around Mi coincides with hi + dt2.

Let us write

r : Γ(W ; Sym2(TW )) −→ Γ([a0, a0 + ε0]×M0 t [a1 − ε1, a1]×M1; Sym2(TW ))

for the restriction map. Note that R+(W )ε0,ε1h0,h1
is an open subspace of the space

r−1(h0 + dt2 t h1 + dt2), and that the latter is homeomorphic to a Frechét space.
Therefore R+(W )ε0,ε1h0,h1

is a metric space, and hence paracompact. From [39, The-

orem 13] and [24, Proposition A.11], it follows that R+(W )ε0,ε1h0,h1
has the homotopy

type of a CW complex.
From now on, we abbreviate

R+(W ) := R+(W )ε0,ε1 and R+(W )h0,h1
:= R+(W )ε0,ε1h0,h1

for implicitly fixed values of εi. In Lemma 2.2.1 below we will show that the homo-
topy type of this space does not depend on εi, which justifies this short notation.

If one of the manifolds Mi is empty then we write R+(W )h, where h is the
boundary metric.

Let W : M0  M1 and W ′ : M1  M2 be two cobordisms and W ∪ W ′ =
W ∪M1 W

′ be their composition. Let hi ∈ R+(Mi), i = 0, 1, 2, be given. Then
there is a gluing map

µ : R+(W )h0,h1
×R+(W ′)h1,h2

−→ R+(W ∪W ′)h0,h2
,

where the metric µ(g, g′) is defined to agree with g on W and with g′ on W ′. If we
fix g′ ∈ R+(W ′)h1,h2

, then we obtain a map

µg′ : R+(W )h0,h1 −→ R+(W ∪W ′)h0,h2

g 7−→ µ(g, g′)

by gluing in the metric g′. Sometimes we abbreviate g ∪ g′ := µ(g, g′).

2.2. Some basic constructions with psc metrics.

2.2.1. Collar stretching.

Lemma 2.2.1. For 0 < δi ≤ εi < |ai−ci|, the inclusion R+(W )ε0,ε1h0,h1
↪→ R+(W )δ0,δ1h0,h1

is a homotopy equivalence.

Proof. For typographical simplicity, we assume that a0 = 0, M1 = ∅ and write
(ε, δ, c, h) := (ε0, δ0, c0, h0). Let Hs : R→ R, s ∈ [0, 1], be an isotopy such that

(i) H0 = id,
(ii) Hs = id near [c,∞) and near (−∞, 0],
(iii) (Hs)

′ = 1 near δ,
(iv) H1(δ) = ε and
(v) Hs ≤ Hu for s ≤ u.

This induces an isotopy of embeddings, also denoted Hs, of the collar to itself, and
by condition (ii) also of W into itself. Define a homotopy Fs : R+(W )δh → R+(W )δh
by the formula

Fs(g) :=

{
dt2 + h on [0, Hs(δ)],

(Hs)
∗g elsewhere.
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By construction, Fs maps the subspace R+(W )εh to itself, F0 is the identity and
F1 maps R+(W )δh into R+(W )εh. This proves that F1 is a two-sided homotopy
inverse of the inclusion, as claimed. �

Lemma 2.2.1 has the following immediate consequence.

Corollary 2.2.2.

(i) The map R+(W )ε0,ε1h0,h1
→ colim

ε0,ε1→0
R+(W )ε0,ε1h0,h1

is a weak homotopy equivalence.

(ii) For a2 > a1 and h1 ∈ R+(M1), let g = dt2 + h1 ∈ R+([a1, a2] ×M1). The
gluing map µg : R+(W )h0,h1

→ R+(W ∪ ([a1, a2] ×M1))h0,h1
is a homotopy

equivalence.

2.2.2. The quasifibration theorem. Let W be a manifold with collared boundary
M and res : R+(W ) → R+(M) be the restriction map. For h ∈ R+(M), the
geometric fibre res−1(h) is the space R+(W )h while the homotopy fibre hofibh(res)
is the space of pairs (g, p), with g ∈ R+(W ) and p a continuous path in R+(M)
from res(g) to h. Inside the homotopy fibre, we have the space (hofibh(res))C∞ ,
which is defined by the condition that p has to be a smooth path. The inclusion
i : (hofibh(res))C∞ → hofibh(res) is a homotopy equivalence [11, Lemma 2.3].
Chernysh constructs a map

S′ : (hofibh(res))C∞ −→ R+(W )εh

roughly as follows: pick an embedding j : W →W onto the complement of a collar
[0, 1] × ∂W ⊂ W , then the metric S′(g, p) is defined to be (j−1)∗g on the image
of j, and a suitably tempered form of the metric dt2 + pt on the collar (the metric
dt2 + pt has in general neither positive scalar curvature nor a product form near
the boundary {0, 1}× ∂W , but Chernysh shows how to carefully modify it to have
these properties). Chernysh proves that S′ is a two-sided homotopy inverse to the
fibre inclusion R+(W )h → (hofibh(res))C∞ [11, Lemma 2.2]. By inverting i, we
obtain a homotopy class of map S : hofibh(res)→ R+(W )h.

Theorem 2.2.3. (Chernysh [11])

(i) The map S is a two-sided homotopy inverse to the fibre inclusion R+(W )h →
hofibh(res).

(ii) In particular, the restriction map res : R+(W )→ R+(M) is a quasifibration.

2.3. The cobordism theorem.

2.3.1. Standard metrics. On the disc Dd, fix a collar of its boundary Sd−1 ⊂ Dd

by the formula

b : Sd−1 × (−1, 0] −→ Dd

(v, t) 7−→ (1 + t) · v.

We assume that disks are always equipped with this collar.
On the sphere Sd, let gd◦ = g◦ ∈ R+(Sd) and hd−1

◦ = h◦ ∈ R+(Sd−1) be the
ordinary metrics of Euclidean spheres of radius 1 (of positive scalar curvature as
long as the sphere has dimension at least 2)1. Let gdhemi be the metric on Dd which

1The notation g versus h carries no mathematical meaning, but we typically use g’s for metrics
on a cobordism and h’s for metrics on the boundary of a cobordism.
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comes from identifying Dd ⊂ Rd with the lower hemisphere of Sd ⊂ Rd+1 via

Dd −→ Sd

x 7−→ (x,−
√

1− |x|2)

and taking gd◦ under this identification. (Note that gdhemi does not have a product
form near the boundary of Dd.)

We say that a rotation-invariant psc-metric g on Dd is a torpedo metric if

(i) b∗(g) agrees with the product metric hd−1
◦ + dt2 near Sd−1 × {0},

(ii) g agrees with gdhemi near the origin.

We fix a torpedo metric gdtor on Dd once and for all (for each d ≥ 3). In [53,
§2.3], it is proved that gdtor can be chosen to have the following extra property: the
metric on Sd obtained by gluing together two copies of gdtor on the upper and lower
hemispheres is isotopic to gd◦ . Such a metric on Sd will be called a double torpedo
metric and denoted by gddtor.

2.3.2. Spaces of metrics which are standard near a submanifold. Let W be a com-
pact manifold of dimension d with boundary M , equipped with a collar b : M ×
(−1, 0] → W . Let X be a closed (k − 1)-dimensional manifold and φ : Xk−1 ×
Dd−k+1 → W d be an embedding, and suppose that φ and b are disjoint. Let
gX ∈ R(X) be a Riemannian metric, not necessarily of positive scalar curvature.

However, we assume that the metric gX+gd−k+1
tor on X×Dd−k+1 has positive scalar

curvature (this is the case for example if gX has non-negative scalar curvature). Fix
h ∈ R+(M) and let

R+(W ;φ, gX)h ⊂ R+(W )h

be the subspace of those metrics g such that φ∗g = gX + gd−k+1
tor . We call this the

space of psc metrics on W which are standard near X. One of the main ingredients
of the proof of Theorem B is the following result, due to Chernysh [10]. A different
proof was later given by Walsh [54].

Theorem 2.3.1. (Chernysh, Walsh) If d− k + 1 ≥ 3, then the inclusion map

R+(W ;φ, gX)h −→ R+(W )h

is a homotopy equivalence.

Both authors state the result when the manifold W is closed. However, the
deformations of the metrics appearing in the proof take place in a given tubular
neighbourhood of X, and therefore the global structure of W does not play a
role. The precursor of Theorem 2.3.1 is the famous surgery theorem of Gromov
and Lawson [21]: if R+(W )h is nonempty, then R+(W ;φ, gX)h is nonempty. One
might state this by saying that the inclusion map is (−1)-connected. Gajer [16]
showed that the inclusion map is 0-connected, i.e. that each psc metric on W is
isotopic to one which is standard near X.

2.3.3. Cobordism invariance of the space of psc metrics. The original application
of Theorem 2.3.1 was to show that for a closed, simply-connected, spin manifold
W of dimension at least 5, the homotopy type of R+(W ) only depends on the spin
cobordism class of W . We recall the precise statement and its proof.
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Theorem 2.3.2. (Chernysh, Walsh) Let W : M0  M1 be a compact d-dimensional
cobordism, φ : Sk−1 ×Dd−k+1 → int W be an embedding, and W ′ be the result of
surgery along φ. Fix hi ∈ R+(Mi). If 3 ≤ k ≤ d − 2 then there is a homotopy
equivalence

SEφ : R+(W )h0,h1 ' R+(W ′)h0,h1 .

Furthermore, the surgery datum φ determines a preferred homotopy class of SEφ.

The map SEφ is called the surgery equivalence induced by the surgery datum φ.

Proof. Since the surgery is in the interior of W , the boundary of W and the metric
on ∂W are not affected. So we may, for typographical simplicity, assume that
W is closed. Let W ◦ := W \ φ(Sk−1 × int(Dd−k+1)), a manifold with boundary
Sk−1 × Sd−k, and let

W ′ = W ◦ ∪Sk−1×Dd−k+1 (Dk × Sd−k)

be the result of doing a surgery on φ to W . There is a canonical embedding
φ′ : Dk × Sd−k → W ′, and if we do surgery on φ′, we recover W . Note that the
restriction of the psc metric gk−1

◦ + gd−k+1
tor on Sk−1 × Dd−k+1 to the boundary

Sk−1 × Sd−k is gk−1
◦ + gd−k◦ , by the definition of a torpedo metric. Similarly, the

restriction of the psc metric gktor+gd−k◦ on Dk×Sd−k to the boundary is gk−1
◦ +gd−k◦ .

Therefore we get maps

R+(W ;φ, gk−1
◦ )

ι0

��

∼= R+(W ′;φ′, gd−k◦ )

ι1

��

R+(W ) R+(W ′)

(2.3.3)

By Theorem 2.3.1, the map ι0 (ι1, respectively) is a homotopy equivalence if d −
k + 1 ≥ 3 (if k ≥ 3, respectively). �

The cobordism invariance of the space R+(W ) for closed, simply-connected,
spin manifolds of dimension at least five follows by the same use of Smale’s handle
cancellation technique as in [21].

2.3.4. Existence of stabilising metrics. We use Theorem 2.3.1 to deduce the exis-
tence of psc metrics g on certain cobordisms K such that the gluing map µg is a
homotopy equivalence.

Theorem 2.3.4. Let d ≥ 5 and Md−1 be a closed simply-connected spin manifold.
Let K : M  M be a cobordism which is simply-connected and spin, and which is
in turn spin cobordant to [0, 1]×M relative to its boundary. Then for any boundary
condition h ∈ R+(M) there is a g ∈ R+(K)h,h with the following property: if
W : N0  M and V : M  N1 are cobordisms, and hi ∈ R+(Ni) are boundary
conditions, then the two gluing maps

µ(−, g) : R+(W )h0,h −→ R+(W ∪M K)h0,h

µ(g,−) : R+(V )h,h0
−→ R+(K ∪M V )h,h0

are homotopy equivalences.
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Proof. By assumption there is a relative spin cobordism Xd+1 from K to [0, 1]×M .
Since dim(X) ≥ 6, by doing surgery in the interior of X we can achieve that X is 2-
connected, so the inclusions [0, 1]×M → X and K → X are both 2-connected maps.
By an application of Smale’s handle cancellation technique to X, we can assume
that the cobordism X is obtained by attaching handles of index 3 ≤ k ≤ d−2 to the
interior of either of its boundaries. (A reference which discusses handle cancellation
for cobordisms between manifolds with boundary is [52].)

Let g ∈ R+(K)h,h be a psc metric, and φ : Sk−1 ×Dd−k+1 ↪→ K be a piece of
surgery data in the interior of K such that surgery along it yields a manifold K ′

(this corresponds to a surgery of index k) and suppose that 3 ≤ k ≤ d − 2. Let
g′ ∈ R+(K ′)h,h be in the path component corresponding to that of g under the
surgery equivalence SEφ : R+(K)h,h ' R+(K ′)h,h of Theorem 2.3.2.

As in the proof of Theorem 2.3.2 there is a commutative diagram

R+(W )h0,h ×R+(K)h,h // R+(W ∪K)h0,h

R+(W )h0,h ×R+(K;φ, gk−1
◦ )h,h //

OO

��

R+(W ∪K;φ, gk−1
◦ )h0,h

OO

��

R+(W )h0,h ×R+(K ′)h,h // R+(W ∪K ′)h0,h

where all the vertical maps are homotopy equivalences (since 2 ≤ k − 1 ≤ d −
3). Thus gluing on the metric g ∈ R+(K)h,h from the right induces a homotopy
equivalence if and only if gluing on the corresponding metric g′ ∈ R+(K ′)h,h does.
The same is true for gluing in metrics from the left.

Gluing ([0, 1]×M,dt2 +h) on to either side induces a homotopy equivalence, by
Corollary 2.2.2. By Theorem 2.3.2 the cobordism X induces a surgery equivalence
R+(K)h,h ' R+([0, 1]×M)h,h, so if we let g ∈ R+(K)h,h be in a path component
corresponding to that of h+dt2 under the surgery equivalence then gluing on (K, g)
from either side also induces a homotopy equivalence, as required. �

3. The secondary index invariant

This chapter contains the index theoretic arguments that go into the proof of
our main results. We begin by stating our framework for K-theory in Section 3.1.
Then we recall the basic properties of the Dirac operator on a spin manifold and
on bundles of spin manifolds, including those with noncompact fibres, in Section
3.2. These analytical results allow the definition of the secondary index invariant,
inddiff, to be presented in Section 3.3.

Conceptually simple as the definition of inddiff is, it seems to be impossible to
compute directly. The purpose of the rest of this chapter is to provide computational
tools. One computational strategy is to use the additivity property of the index,
which results in a cut-and-paste property for the index difference. This is done
in Section 3.4. The other computational strategy is to relate the secondary index
to a primary index. In Section 3.5, we describe the abstract setting necessary to
carry out such a comparison. This is then applied in two different situations. The
first is the passage from even to odd dimensions, in other words the derivation
of Theorem C from Theorem B, which is carried out in Section 3.6. The second
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situation in which we apply the general comparison pattern is when we compute
the index difference by a family index in the classical sense. This will be essential
for the proof of Theorem B, and is done in Section 3.8. The classical index can
be computed using the Atiyah–Singer index theorem for families of Clifford-linear
differential operators, which we first discuss in Section 3.7. Also in Section 3.8, the
index theorem is interpreted in homotopy-theoretic terms, and there, another key
player of this paper enters the stage: the Madsen–Tillmann–Weiss spectra.

3.1. Real K-theory. The homotopy theorists’ definition of real K-theory is in
terms of the periodic K-theory spectrum KO. By definition, the KO-groups of a
space pair (X,Y ) are given by

KOk(X,Y ) := [(X,Y ), (Ω∞−kKO, ∗)].

The specific choice of a model for KO is irrelevant, as long as one considers only
spaces having the homotopy type of CW complexes. For index theoretic arguments,
we use the Fredholm model, which we now briefly describe. Our model is a variant
of a classical result by Atiyah–Singer [6] and Karoubi [29]. More details and further
references can be found in [14, §2]. We begin by recalling some subtleties concerning
Hilbert bundles and their maps.

3.1.1. Hilbert bundles. Let X be a space (usually paracompact and Hausdorff) and
let H → X be a real or complex Hilbert bundle. For us, a Hilbert bundle will al-
ways have separable fibres and the unitary group with the compact-open topology
as a structure group. An operator family F : H0 → H1 is a fibre-preserving, fibre-
wise linear continuous map. It is determined by a collection (Fx)x∈X of bounded
operators Fx : (H0)x → (H1)x. Some care is necessary when defining properties of
the operator family F by properties of the individual operators Fx. We will recall
the basic facts and refer the reader to [14, §2.3] for a more detailed discussion. An
operator family F is adjointable if the collection of adjoints (F ∗x ) also is an operator
family. The algebra of adjointable operator families on H is denoted by LinX(H).
There is a notion of a compact operator family which is due to Dixmier–Douady [13,
§22]; the set of compact operator families is denoted KomX(H) and is a ∗-ideal in
LinX(H). A Fredholm family is an element in LinX(H) which is invertible modulo
KomX(H).

The reader is warned that being compact (or Fredholm) is a stronger condition
on an operator family F than just saying that all Fx are compact (or Fredholm), and
it can be difficult to check in concrete cases. To prove that a given operator family
is compact (or invertible, or Fredholm), one can use the following sufficient criterion
[14, Lemma 2.16]. To state the criterion, let us say that F : H0 → H1 is locally
norm-continuous if each point x ∈ X admits a neighborhood U and trivialisations
of Hi|U such that in this trivialisation, F is given by a continuous map U →
Lin((H0)x, (H1)x) (with the norm topology in the target). If F is locally norm-
continuous and each Fx is compact (or invertible, or Fredholm), then F is compact
(or invertible, or Fredholm), at least when the base space X is paracompact. One
has to keep in mind that local norm-continuity always refers to a specific local

trivialization. Therefore, the composition H0

F0

to H1
F1→ H2 of two locally norm-

continuous operator families is again locally norm-continuous only if F0 and F1 are
locally norm continuous with respect to the same local trivialization of H1.
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3.1.2. Clifford bundles.

Definition 3.1.1. Let V → X be a Riemannian vector bundle and let τ : V → V be
a self-adjoint involution on V . A Cl(V τ )-Hilbert bundle over K = R or C is a triple
(H, ι, c), where H → X is a K-Hilbert bundle (always assumed to have separable
fibres), ι is a Z/2-grading (i.e. a self-adjoint involution) on H and c = (cx)x∈X is a
collection of linear maps cx : Vx → Lin(Hx) such that

(i) For all v, v′ ∈ Vx, the following identities hold:

cx(v)ι+ ιcx(v) = 0

cx(v)∗ = −cx(τv)

cx(v)cx(v′) + cx(v′)cx(v) = −2〈v, τv′〉.

(ii) If s ∈ Γ(X;V ) is a continuous section, then the collection (cx(s(x))x∈X of
bounded operators is an element of LinX(H).

To ease notation, we typically write c(v) := cx(v). If the grading and Clifford
multiplication is understood, we denote a Cl(V τ )-Hilbert bundle simply by the
letter H. The opposite Cl(V τ )-Hilbert bundle has the same underlying Hilbert
bundle, but the Clifford multiplication and grading are replaced by −c and −ι.
We write “Cl(V + ⊕W−)-Hilbert bundle” when the involution τ(v, w) = (v,−w)
on V ⊕W is considered. We denote by Rp,q the space Rp+q, with the standard
scalar product and the involution τ(v, w) = (v,−w), v ∈ Rp, w ∈ Rq (note that this
convention differs from that in [4], we think it is easier to memorise). We abbreviate
the term “Cl((X × Rp)+ ⊕ (X × Rq)−)-Hibert bundle” to “Clp,q-Hilbert bundle”.
Instead of “finite-dimensional Cl(V + ⊕W−)-Hilbert bundle”, we will rather say
Cl(V + ⊕W−)-module. A Clp,q-Fredholm family is a Fredholm family such that
Fι = −ιF and Fc(v) = c(v)F for all v ∈ Rp,q := (Rp)+ ⊕ (Rq)−.

3.1.3. K-theory. We denote the product of pairs of spaces by (X,Y ) × (A,B) :=
(X × A,X × B ∪ Y × A). A (p, q)-cycle on X is a tuple (H, ι, c, F ), consisting
of a Clp,q-Hilbert bundle and a Clp,q-Fredholm family. If Y ⊂ X is a subspace,
then a relative (p, q)-cycle is a (p, q)-cycle (H, ι, c, F ) with the additional property
that the family F |Y is invertible. Clearly (p, q)-cycles can be pulled back along
continuous maps, and there is an obvious notion of isomorphism of (p, q)-cycles
and of direct sum of finitely many (p, q)-cycles. A concordance of relative (p, q)-
cycles (Hi, ιi, ci, Fi), i = 0, 1 on (X,Y ) consists of a relative (p, q)-cycle (H, ι, c, F )
on (X,Y )×[0, 1] and isomorphisms (H, ι, c, F )|X×{i} ∼= (Hi, ιi, ci, Fi). A (p, q)-cycle
(H, ι, c, F ) is acyclic if F is invertible. Often, we abbreviate (H, ι, c, F ) to (H,F )
if there is no risk of confusion. Occasionally, we write x 7→ (Hx, Fx) to describe a
(p, q)-cycle on X.

Definition 3.1.2. Let X be a paracompact Hausdorff space and Y ⊂ X be a
closed subspace. The group F p,q(X,Y ) is the quotient of the abelian monoid of
concordance classes of relative (p, q)-cycles, divided by the submonoid of those
concordance classes which contain acyclic (p, q)-cycles.

The monoid so obtained is in fact a group, and the additive inverse is given by

− [H, ι, c, F ] = [H,−ι,−c, F ], (3.1.3)

see [14, Lemma 2.19].
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We let (I, ∂I) := ([−1, 1], {−1, 1}) and use the following notation:

ΩF p,q(X,Y ) := F p,q((X,Y )× (I, ∂I)).
Bott periodicity [14, §2.4] in this setting states that the map

bott : F p,q(X,Y ) −→ ΩF p−1,q(X,Y ) (3.1.4)

(H,F ) 7−→ ((x, s) 7→ (Hx, Fx + sιxc(e1)x)) (3.1.5)

is an isomorphism of abelian groups (here ei denotes the ith basis vector of Rp).
By iteration, we get an isomorphism

F p,0(X,Y ) −→ ΩpF 0,0(X,Y ). (3.1.6)

3.1.4. Classifying spaces and relation to the homotopical definition of K-theory.
Let us explain the relation between F p,q and the KO-groups. First, we recall
a classical result by Atiyah–Singer [6] and Karoubi [29]. A Clp,q-Hilbert space
is ample if it contains any finite-dimensional irreducible Clp,q-Hilbert space with
infinite multiplicity, and we fix such an ample Clp,q-Hilbert space U . Let Fredp,q

be the space of Clp,q-Fredholm operators on U , with the norm topology and let
Gp,q ⊂ Fredp,q be the (contractible) space of invertible operators. These spaces are
open subsets of Banach spaces and hence have the homotopy type of CW complexes,
by [39, Theorem 13] and [24, Proposition A.11]. There is a map

bott : Fredp,q −→ map((I, ∂I), (Fredp−1,q,Gp−1,q)) ' Ω Fredp−1,q,

defined by a formula analogous to 3.1.4 and the main result of [6] asserts that it is
a homotopy equivalence. Moreover, Fred0,0 ' Z×BO and so the spectrum defined
by the spaces Fredp,0 and maps bott is homotopy equivalent to the spectrum KO.

We wish to have a comparison map F−p(X,Y ) → [(X,Y ); (Fredp,0,Gp,0)] =
KO−p(X,Y ), but unfortunately, the topology on the space Fredp,0 is too fine to
make this possible directly. In [14, Definition A.3], a coarser topology on Fredp,q

is defined, and with the new topology, the space pair is denoted (Kp,q, Dp,q). We
have the following comparison result.

Theorem 3.1.7.

(i) There is a natural map [(X,Y ); (Kp,q, Dp,q)]→ F p,q(X,Y ) which is bijective
if X is paracompact and compactly generated and if Y ⊂ X is closed [14,
Theorem 2.22].

(ii) The identity map (Fredp,q,Gp,q)→ (Kp,q, Dp,q) is a weak equivalence of pairs
[14, Theorem 2.21 and Theorem 2.22].

For any class b ∈ F p,q(X,Y ), we thus obtain a map (X,Y ) → (Kp,q, Dp,q)
and if (X,Y ) has the homotopy type of a CW complex, a homotopy class of maps
(X,Y )→ (Ω∞+p−qKO, ∗), the homotopy-theoretic realisation of b.

From now on, we denote KO−p(X,Y ) = F p,0(X,Y ).

3.2. Generalities on Dirac operators.

3.2.1. The spin package. A basic reference for spin vector bundles and associated
constructions is [33, §II.7]. Let V → X be a real vector bundle of rank d. A
topological spin structure is a reduction of the structure group of V to the group

G̃L
+

d (R), the connected 2-fold covering group of the group GL+
d (R) of matrices of

positive determinant. In the presence of a Riemannian metric on V , a topological
spin structure induces a reduction of the structure group to Spin(d), which is the
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familiar notion of a spin structure. Explicitly, a spin structure is given by a Spin(d)-
principal bundle P → X and an isometry η : P ×Spin(d) Rd ∼= V . From a spin

structure on V , one can construct a fibrewise irreducible real Cl(V +⊕R0,d)-module
/SV , the spinor bundle. One can reconstruct P and η from /SV , and it is often
more useful to view the spinor bundle /SV as the more fundamental object. The
opposite spin structure /S

op
V has the same underlying vector bundle as /SV and the

same Clifford multiplication, but the grading is inverted (note that this is not the
opposite bundle in the sense of the previous section). If V = TM is the tangent
bundle of a Riemannian manifold Md with metric g, we denote spin structures
typically by /SM . There is a canonical connection ∇ on /SM derived from the Levi-
Civita connection on M . The spin Dirac operator /D = /Dg acts on sections of /SM

and is defined as the composition

Γ(M ; /SM )
∇−→ Γ(M ;TM ⊗ /SM )

c−→ Γ(M ; /SM ).

It is a linear formally self-adjoint elliptic differential operator of order 1, which anti-
commutes with the grading and Clifford multiplication by R0,d. We can change the
Cl0,d-multiplication on /SM to a Cld,0-multiplication by replacing c(v) by ιc(v).

With this new structure, /D becomes Cld,0-linear. Passing to the opposite spin
structure leaves the operator /D unchanged, but changes the sign of the grading
and of the Cld,0-multiplication. The relevance of the Dirac operator to scalar cur-
vature stems from the well-known Schrödinger–Lichnerowicz formula (also known
as Lichnerowicz–Weitzenböck formula) [45], [34], or [33, Theorem II.8.8]:

/D
2

= ∇∗∇+
1

4
scal(g). (3.2.1)

3.2.2. The family case. We need to study the Dirac operator for families of mani-
folds and also for nonclosed manifolds. Let X be a paracompact Hausdorff space.
We study bundles π : E → X of possibly noncompact manifolds with d-dimensional
fibres. The fibres of π are denoted Ex := π−1(x). The vertical tangent bundle is
TvE → E and we always assume implicitly that a (topological) spin structure
on TvE is fixed (then of course the fibres are spin manifolds). A fibrewise Rie-
mannian metric (gx)x∈X on E then gives rise to the spinor bundle /SE → E, a
Cl((TvE)+⊕R0,d)-module. The restriction of the spinor bundle to the fibre over x
is denoted /Sx → Ex, and the Dirac operator on Ex is denoted /Dx. When we con-
sider bundles of noncompact manifolds, they are always required to have a simple
structure outside a compact set.

Definition 3.2.2. Let π : E → X be a bundle of noncompact d-dimensional spin
manifolds. Let t : E → R be a fibrewise smooth function such that (π, t) : E →
X × R is proper. Let a0 < a1 : X → [−∞,∞] be continuous functions. Abusing
notation, we denote X × (a0, a1) = {(x, s) ∈ X × R | a0(x) < s < a1(x)} and
E(a0,a1) := (π, t)−1(X × (a0, a1)). For a closed (d − 1)-dimensional spin manifold
M , we consider the trivial bundle X×R×M → X, with the obvious projection map
to R. We say that E is cylindrical over (a0, a1) if the projection map E(a0,a1) →
X × (a0, a1) is a smooth fibre bundle and if there is a (d − 1)-dimensional spin
manifold M such that there is an isomorphism E(a0,a1)

∼= (X × R ×M)(a0,a1) of
spin manifold bundles over X×(a0, a1). The bundle is said to have cylindrical ends
if there are functions a−, a+ : X → R such that E is cylindrical over (−∞, a−) and
(a+,∞). A fibrewise Riemannian metric g = (gx)x∈X on E is called cylindrical
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over (a0, a1) if gx = dt2 + hx for some metric hx on M , over (a0, a1). We always
consider Riemannian metrics which are cylindrical over the ends. We say that a
bundle with cylindrical ends and metrics has positive scalar curvature at infinity if
there is a function ε : X → (0,∞), such that the metrics on the ends of Ex have
scalar curvature ≥ ε(x).

Any bundle of closed manifolds, equipped with an arbitrary function t, tautolog-
ically has cylindrical ends and positive scalar curvature at infinity. Note that the
fibres of a bundle with cylindrical ends are automatically complete in the sense of
Riemannian geometry. Fibre bundles π : E → X of spin manifolds with boundary
can be fit into the above framework by a construction called elongation.

Definition 3.2.3. Let π : E → X be a bundle of compact manifolds with collared
boundary, and assume that the boundary bundle is trivialised: ∂E = X × N as
a spin bundle. Let g = (gx)x∈X be a fibrewise metric on E so that gx is of the
form dt2 + hx near the boundary, for psc metrics hx ∈ R+(N). The elongation of

(E, g) is the bundle Ê = E ∪∂E (X× [0,∞)×N), with the metric (dt2 +hx) on the
added cylinders. The elongation has cylindrical ends and positive scalar curvature
at infinity.

3.2.3. Analysis of Dirac operators. Let E → X be a spin manifold bundle, equipped
with a Riemannian metric g, and with cylindrical ends. Let L2(E; /S)x be the
Hilbert space of L2-sections of the spinor bundle /Sx → Ex. These Hilbert spaces
assemble to a Cld,0-Hilbert bundle on X. The Dirac operator /Dx is a densely de-
fined symmetric unbounded operator on the Hilbert space L2(Ex; /Sx), with initial
domain Γc(Ex, /Sx), the space of compactly supported sections. The domain of its
closure is the Sobolev space W 1(Ex; /Sx), and the closure of /Dx is self-adjoint (this
is true because Ex is a complete manifold). Thus we can apply the functional calcu-
lus for unbounded operators to form f( /Dx), for (say) continuous bounded functions
f : R → C. In particular, we can take f(x) = x

(1+x2)1/2
and obtain the bounded

transform

Fx :=
/Dx

(1 + /Dx
2
)1/2

.

From now on, we make the crucial assumption that the scalar curvature of g is

positive at infinity. This has the effect that
/Dx

(1+ /Dx
2)1/2

is a bounded Cld,0-Fredholm

operator. The collection of operators (Fx)x∈X is a Cld,0-Fredholm family over X,
which is moreover locally norm-continuous in the sense of Section 3.1.1. These
are standard facts, we refer to [14, §3.1] for detailed proofs geared to fit into the
present framework. If moreover for each y ∈ Y ⊂ X, the metric gy has positive
scalar curvature (on all of Ey, not only at the ends), then the operator /Dy has
trivial kernel, by the Bochner method using the Schrödinger–Lichnerowicz formula
(3.2.1), cf. [33, II Corollary 8.9]. Consequently, the operator Fy is invertible for all
y ∈ Y .

Definition 3.2.4. Let π : E → X be a bundle of Riemannian spin manifolds with
cylindrical ends and positive scalar curvature at infinity, with metric g. We denote
by Dir(E, g) the (d, 0)-cycle x 7→ (L2(Ex, /SEx

), Fx) and by ind(E, g) its class in

KO−d(X). If it is understood that the metric gy has positive scalar curvature for
all y ∈ Y ⊂ X, we use the same symbol to denote the class in the relative K-group
KO−d(X,Y ).
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When we meet a bundle with boundary, by the symbols Dir(E, g) and ind(E, g)
we always mean the index of the elongated manifolds.

Lemma 3.2.5. Let π : E → X be a spin manifold bundle with cylindrical ends
and let g0, g1 be fibrewise metrics which both have positive scalar curvature at
infinity. Assume that g0 and g1 agree on the ends. Let Y ⊂ X and assume that g0

and g1 agree over Y and have positive scalar curvature there. Then ind(E, g0) =
ind(E, g1) ∈ KO−d(X,Y ).

Proof. This follows from the homotopy invariance of the Fredholm index or by
considering the metric (1− t)g0 + tg1 on the product bundle E× I → X × I, which
gives a concordance of cycles. �

In particular, if the fibres of π are closed and if Y = ∅, then ind(E, g) ∈ KO−d(X)
does not depend on g at all. This observation justifies the notation ind(E) ∈
KO−d(X) for closed bundles and ind(E, g) ∈ KO−d(X) when E is a bundle with
cylindrical ends, and the psc metric g is only defined on the ends. In that case,
g = dt2 + h, and we could also write ind(E, h), emphasising the role of h as a
boundary condition. Finally, we remark that if we pass to the opposite bundle
Eop → X (with the opposite spin structure), then

ind(Eop, g) = − ind(E, g). (3.2.6)

This follows from the definition of the opposite spin structure given in subsection
3.2.1 and from the formula (3.1.3) for the additive inverse of a K-theory class.

3.3. The secondary index invariants. We now define the secondary index in-
variant, the index difference. There are two definitions of this invariant which we
will consider. The first one is due to Hitchin [27] and we take it as the main
definition.

3.3.1. Hitchin’s definition. Let W be a manifold with collared boundary M , and let
h ∈ R+(M). On the space I×R+(W )h ×R+(W )h, we consider the elongation of
the trivial bundle with fibre W , and introduce the following fibrewise Riemannian
metric g: on the fibre over (t, g0, g1) it is 1−t

2 g0 + 1+t
2 g1 (since both metrics agree

on M , this has positive scalar curvature at infinity). For t = ±1, this metric has
positive scalar curvature and thus applying the results from the previous section,
we get an element

inddiff := ind(I×R+(W )h×R+(W )h×W, g) ∈ ΩKO−d(R+(W )h×R+(W )h,∆)
(3.3.1)

(where ∆ is the diagonal) which is the path space version of the index difference.

Remark 3.3.2. One can phrase this construction in a slightly imprecise but con-
ceptually enlightening way. Each pair (g0, g1) of psc metrics defines a path t 7→
/D 1−t

2 g0+ 1+t
2 g1

in F d,0, which for t = ±1 is invertible, and hence in the contractible

subspace Dd,0. The space of all paths γ : (I, {±1}) → (F d,0, Dd,0) is homotopy
equivalent to the loop space ΩF d,0. Since the spinor bundle depends on the under-
lying metric and thus the operators /D 1−t

2 g0+ 1+t
2 g1

do not act on the same Hilbert

space, this does not strictly make sense.

If we keep a basepoint g ∈ R+(W )h fixed, we get an element

inddiffg ∈ ΩKO−d(R+(W )h, g)
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by fixing the first variable. Using Theorem 3.1.7, we can represent this element in
a unique way by a homotopy class of pointed maps

inddiffg : (R+(W )h, g) −→ (Ω∞+d+1KO, ∗).

Remark 3.3.3. Note that it is important that the metrics are fixed on M , since
otherwise the metrics 1−t

2 g0 + 1+t
2 g1 might not have positive scalar curvature at

infinity. In fact, if ∂W 6= ∅, then there does not exist an extension of the map
inddiffg to R+(W ) ⊃ R+(W )h, see Corollary 3.6.5 below.

3.3.2. Gromov–Lawson’s definition. The second version of the index difference is
due to Gromov and Lawson [22], and we will use it as a computational tool. We
define it (and use it) only for closed manifolds. Let W be a d-dimensional closed
manifold and consider the trivial bundle over R+(W )×R+(W ) with fibre R×W .
Choose a smooth function ϕ : R → [0, 1] that is equal to 0 on (−∞, 0] and equal
to 1 on [1,∞). Equip the fibre over (g0, g1) with the metric h(g0,g1) := dt2 + (1 −
ϕ(t))g0 + ϕ(t)g1, which has positive scalar curvature at infinity and so gives an
element

inddiffGL := ind(R+(W )×R+(W )×R×W,h) ∈ KO−d−1(R+(W )×R+(W ),∆)
(3.3.4)

(the degree shift appears since R × W has dimension d + 1). Again, we obtain

inddiffGL
g ∈ KO−d−1(R+(W ), g) by fixing a basepoint. The homotopy-theoretic

realisations of both index differences are pointed maps

inddiffg, inddiffGL
g : (R+(W ), g) −→ (Ω∞+d+1KO, ∗). (3.3.5)

The following theorem answers the obvious question whether both definitions of
the index difference yield the same answer. It will be the main ingredient for the
derivation of Theorem C from Theorem B. It follows from a generalisation of the
classical spectral flow index theorem [41] to the Clifford-linear family case.

Theorem 3.3.6 (Spectral flow index theorem [14]). For each closed spin manifold
W , the two definitions of the secondary index invariant agree, i.e. the maps (3.3.5)
are weakly homotopic (cf. Definition 1.1.2).

3.4. The additivity theorem. An efficient tool to compute the secondary index
invariant is the additivity theorem for the index of operators on noncompact mani-
folds. There are several versions of this result in the literature, but the version that
is most useful for our purposes is due to Bunke [9].

3.4.1. Statement of the additivity theorem.

Assumptions 3.4.1. Let X be a paracompact Hausdorff space. Let E → X
and E′ → X be two Riemannian spin manifold bundles of fibre dimension d with
metrics g and g′ and with cylindrical ends, such that E and E′ have positive scalar
curvature at infinity. Assume that there exist functions a0 < a1 : X → R such
that E and E′ are cylindrical over X × (a0, a1) and agree there: E(a0,a1) = E′(a0,a1)

(more precisely, we mean that there exists a spin-preserving isometry of bundles of
closed manifolds over X × (a0, a1)). Assume that the scalar curvature on E(a0,a1)

is positive. Let

E0 = E(−∞,a1); E1 = E(a0,∞); E2 = E′(−∞,a1); E3 = E′(a0,∞)
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and define Eij := Ei∪Ej for (i, j) ∈ {(0, 1), (2, 3), (0, 3), (2, 1)}. Note that E = E01

and E′ = E23. These are bundles of spin manifolds with cylindrical ends, having
positive scalar curvature at infinity.

Theorem 3.4.2 (Additivity theorem). Under Assumptions 3.4.1, we have

ind(E01) + ind(E23) = ind(E03) + ind(E21) = 0 ∈ KO−d(X).

Furthermore, if both bundles E01 and E23 have positive scalar curvature over the
closed subspace Y ⊂ X, then the above equation holds in KO−d(X,Y ).

If X = ∗, this is due to Bunke [9], and the case of arbitrary X and Y = ∅ is
straightforward from his argument. For the case Y 6= ∅, we need to give an addi-
tional argument, and this forces us to go into some details of Bunke’s proof. Fur-
thermore, the setup used by Bunke is slightly different from ours (cf. §1.1 loc.cit.),
and so we decided to sketch the full proof here.

3.4.2. The proof of the additivity theorem. Using (3.2.6), we have to prove that

ind(E01) + ind(E23) + ind(Eop03 ) + ind(Eop21 ) = 0 ∈ KO−d(X). (3.4.3)

Let Hij := L2(Eij ; /S) be the Hilbert bundle on X associated with the bundle Eij .
The sum of the indices showing up in (3.4.3) is represented by the tuple (H, ι, c, F );

the graded Cld,0-bundle is H := H01 ⊕ H23 ⊕ H03 ⊕ H21, with Clifford action,
involution, and operator given by

c :=


c01

c23

−c03

−c21

 ι :=


ι01

ι23

−ι03

−ι21



D :=


/D01

/D23

/D03

/D21

 F :=
D

(1 +D2)1/2
.

Pick smooth functions λ0, µ0 : R → [0, 1] with supp(λ0) ⊂ [0,∞), supp(µ0) ⊂
(−∞, 1] and µ2

0+λ2
0 = 1; we can choose them to have |λ′0|, |µ′0| ≤ 2. We obtain func-

tions µ, λ : X×R→ [0, 1] by µ(x, t) = µ0( t−a0(x)
a1(x)−a0(x) ) and λ(x, t) = λ0( t−a0(x)

a1(x)−a0(x) ).

The formula

J0 :=


−µ −λ
−λ µ

µ λ
λ −µ


defines an operator on H (the interpretation should be clear: for example, multiply-
ing a spinor over E01 by µ gives a spinor with support in E0, and we can transplant
it to E03). Then J := J0ι is an odd, Cld,0-linear involution.

Bunke proves that the anticommutator FJ + JF is compact (stated and proved
as Lemma 3.4.9 below), whence

s 7−→ cos(s)F + sin(s)J (3.4.4)

defines a homotopy from F to J ; since J is invertible, the element [H, ι, c, F ] ∈
KO−d(X) is zero, which proves Theorem 3.4.2 for Y = ∅. Assume that the scalar
curvature is positive over Y ⊂ X, so that F is invertible over Y . If the homotopy
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(3.4.4) would go through invertible operators over Y , the proof of Theorem 3.4.2
would be complete. However, s 7→ cos(s)F + sin(s)J is not in general invertible if
F is, and so we have to adjust this homotopy.

Lemma 3.4.5. There exists C > 0 with the following property. Let x ∈ X and
`x := a1(x) − a0(x) be the length of the straight cylinder in the middle. Then
‖FxJx + JxFx‖ ≤ C

`x
.

Proof. We ease notation by dropping the subscript x. First, compute the anticom-
mutator

P := DJ + JD =


−µ′ −λ′
−λ′ µ′

µ′ λ′

λ′ −µ′

 eι,

where e denotes Clifford multiplication by the unit vector field ∂t on E. The
functions µ and λ have been chosen so that |µ′|, |λ′| ≤ 2/`. Thus DJ + JD is

bounded, and ‖DJ + JD‖ ≤ 2
√

2
` . As in [9], we write FJ + JF as an integral,

starting with the absolutely convergent integral

1

(1 +D2)1/2
=

2

π

∫ ∞
0

(1 +D2 + t2)−1dt ∈ Lin(L2(Ex, /Sx)).

Let Z(t) := (1 +D2 + t2)−1. For each u ∈W 1(Ex; /Sx), we get

(FJ + JF )u =
2

π

∫ ∞
0

(Z(t)DJ + JZ(t)D)udt ∈ L2(Ex, /Sx), (3.4.6)

and we claim that the formula

FJ + JF =
2

π

∫ ∞
0

Z(t)DJ + JZ(t)Ddt ∈ Lin(L2(Ex, /Sx)) (3.4.7)

is true and the integral is absolutely convergent. To prove this, it is enough to show
that the integral (3.4.7) converges absolutely, the equality then follows from (3.4.6).
The operator Z(t)DJ + JZ(t)D is bounded, and we estimate its norm as follows.
Note that Z(t) and D commute. Thus Z(t)DJ + JZ(t)D = Z(t)P + [J, Z(t)]D.
Moreover, [J, Z(t)] = Z(t)[Z(t)−1, J ]Z(t) and [Z(t)−1, J ] = DP −PD. Altogether,
this shows that the integrand can be written as

Z(t)DJ + JZ(t)D = Z(t)P − Z(t)PD2Z(t) + Z(t)DPZ(t)D (3.4.8)

(these formal computations can be justified by restricting to the dense domains).
We have the following estimates:

‖Z(t)‖ ≤ 1

1 + t2

‖D2Z(t)‖ ≤ 1

‖Z(t)D‖ ≤ 1

2
√

1 + t2
.

The first two are clear, and the third follows from supx
x

1+x2+t2 = 1
2
√

1+t2
. There-

fore, the norm of the operator (3.4.8) is bounded by

2
√

2

`

(
1

1 + t2
+

1

1 + t2
+

1

4(1 + t2)

)
=

9
√

2

2`

1

1 + t2
.
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Therefore (3.4.7) is true and the integral converges absolutely. Moreover, (3.4.7)

implies ‖FJ + JF‖ ≤ C
` , with C = 9

√
2

2 . �

Lemma 3.4.9. The anticommutator FJ + JF is compact.

Proof. We use the integral formula (3.4.7), and revert to using the index x. By
an application of [26, Prop. 10.5.1], the operators Zx(t)Px and PxZx(t)Dx are
compact. Since D2

xZx(t) and Zx(t)Dx are bounded, it follows that the integrand
(3.4.8), namely Zx(t)Px−Zx(t)PxD

2
xZx(t)+Zx(t)DxPxZx(t)Dx, is compact. Since

the integral (3.4.7) converges absolutely, we get that FxJx + JxFx is a compact
operator, for each x ∈ X. This is not yet enough to guarantee compactness of
FJ+JF , see the discussion in Section 3.1.1. However, by [14, Proposition 3.7], the
family x 7→ Fx is a Fredholm family, and the proof in loc. cit. shows that F is locally
norm-continuous, with respect to a local trivialization of the Hilbert bundle that
comes from a local trivialization of the original fibre bundle which is compatible
with the cylindrical structure at infinity. The operator family J is locally norm-
continuous with respect to the same local trivializations, and hence FJ + JF is
locally norm-continuous. Therefore, using the criterion mentioned in Section 3.1.1,
compactness of FJ + JF follows. �

Proof of Theorem 3.4.2. Let κ : Y → (0,∞) be a lower bound for the scalar curva-
ture of E and E′, i.e. a function such that for y ∈ Y

κ(y) ≤ scal(gy), scal(g′y).

By the Schrödinger–Lichnerowicz formula we have D2
y ≥

κ(y)
4 . Consider the opera-

tor homotopy H(s) = cos(s)F + sin(s)J . By Lemma 3.4.5

H(s)2
y = cos(s)2F 2

y + sin(s)2 + cos(s) sin(s)(FyJy + JyFy)

≥ cos(s)2 κ(y)/4

1 + κ(y)/4
+ sin(s)2 − C

2`y
,

C being the constant from Lemma 3.4.5. Therefore Hy(s) is invertible for all
s ∈ [0, π/2] and y ∈ Y , provided that

`y >
2C(1 + κ(y)/4)

κ(y)
(3.4.10)

for all y ∈ Y . This proves Theorem 3.4.2 under the additional assumption that the
length `y of the straight cylinder in the middle is long enough to satisfy (3.4.10)
for all y ∈ Y .

The key observation to treat the general case is now that stretching the cylinder
(a0, a1) to arbitrarily big length ` does not affect the lower bound κ for the scalar
curvature (the metric is a product metric on the cylinder, and stretching the cylinder
in the R-direction does not change the scalar curvature). Here is how the stretching
is done. We will simultaneously change the function to R and the metric on the
common piece E(a0,a1) = E′(a0,a1). Let b : X × R → [0,∞) be a function (the

restriction to x × R should be smooth) with support in X × (a0, a1). We change
the metric g = g′ on E(a0,a1) = E′(a0,a1) by adding b(x, t)2dt2. The straight cylinder

now has length
∫ a1(x)

a0(x)

√
1 + b2(x, τ)dτ . We change the projection maps E,E′ → R



26 BORIS BOTVINNIK, JOHANNES EBERT, AND OSCAR RANDAL-WILLIAMS

to (z ∈ E,E′) to

t̃(z) := t(z) +

∫ t(z)

−∞

√
1 + b2(π(z), τ)dτ.

Let a′1(x) := a0(x) +
∫ a1(x)

a0(x)

√
1 + b2(x, τ)dτ ; with the new metric and the new

projection functions, the two bundles are cylindrical over a X × (a0, a
′
1). Clearly,

the new family with the stretched cylinder is concordant to the original one. If the
function b is picked such that for y ∈ Y , the inequality∫ a1(y)

a0(y)

√
1 + b2(y, τ)dτ ≥ 3

C(1 + κ(y)/4)

κ(y)

holds, then the homotopy (3.4.4) is through invertible operators over Y . �

3.4.3. A more useful formulation of the additivity theorem. We reformulate the
additivity theorem slightly, to a form better adapted to our needs. Let (X,Y ) be
as above and let W : M0  M1, W ′ : M1  M2 be d-dimensional spin cobordisms.
Let E → X (E′ → X resp.) be a W -bundle (W ′-bundle, resp.) with trivialised
boundary and a spin structure. Let hi ∈ R+(Mi) be psc metrics and let g (g′,
resp.) be a fibrewise Riemannian metric on E (E′, resp.) which coincides over the
boundaries with hi. Assume that over Y , the metrics g and g′ have positive scalar
curvature.

Corollary 3.4.11. Under the above assumptions, the following holds:

ind(E, g) + ind(E′, g′) = ind(E ∪X×M1
E′, g ∪ g′) ∈ KO−d(X,Y ).

Proof. Let E0 := X × (−∞, 0] ×M0 ∪X×M0 E, E1 := X × [1,∞) ×M1, E2 :=
X × (−∞, 1]×M1 and E3 := E′ ∪X×M2

[2,∞)×M2, with the metrics extended by
cylindrical metrics. By Theorem 3.4.2

ind(E01) + ind(E23) = ind(E03) + ind(E21) = 0 ∈ KO−d(X,Y ).

The manifold bundle E21 has positive scalar curvature and thus ind(E21) = 0. Trac-
ing through the definitions shows that ind(E01) = ind(E, g), ind(E23) = ind(E′, g′)
and ind(E03) = ind(E ∪X×M1

E′, g ∪ g′). This completes the proof. �

3.4.4. Additivity property of the index difference. Here we show what the additivity
theorem yields for the index difference.

Theorem 3.4.12. Let M0
V
 M1

W
 M2 be spin cobordisms, hi ∈ R+(Mi) be

boundary conditions, and g ∈ R+(V )h0,h1
and m ∈ R+(W )h1,h2

be psc metrics
satisfying these boundary conditions. Then

R+(V )h0,h1
×R+(W )h1,h2

µ
//

inddiffg × inddiffm

��

R+(V ∪W )h0,h2

inddiffg∪m

��

Ω∞+d+1KO × Ω∞+d+1KO
+

// Ω∞+d+1KO

is homotopy commutative.

Proof. Write X := R+(V )h0,h1
× R+(W )h1,h2

. On the space X × I, we consider
the following trivial fibre bundles equipped with Riemannian metrics:

(i) E01 has fibre (−∞, 0] × M0 ∪ V ∪ [1,∞) × M1; the metric over (x, y, t) is
1−t

2 g + 1+t
2 x, extended to the cylinders by a product.
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(ii) E23 has fibre (−∞, 1] ×M1 ∪ W ∪ [2,∞) ×M2; the metric over (x, y, t) is
1−t

2 m+ 1+t
2 y, extended to the cylinders by a product.

These two bundles are cylindrical over a neighborhood of X × I×{1} and agree
there. As in Section 3.4, these bundles are partitioned along M1 into Ei, i =
0, . . . , 3. By Theorem 3.4.2, we get

ind(E01) + ind(E13) = ind(E03) + ind(E21).

But ind(E21) = 0 because the bundles E1 and E2 have positive scalar curva-
ture. By construction ind(E01) = inddiffg, ind(E23) = inddiffm and ind(E03) =
inddiffg∪m ◦µ. �

Remark 3.4.13. Let W d be closed and φ : Sk−1 ×Dd−k+1 →W be an embedding,
with 3 ≤ k ≤ d− 2. We use the notation of the proof of Theorem 2.3.2. There are
maps

µgk−1
◦ +gd−k+1

tor
: R+(W ◦)gk−1

◦ +gd−k
◦
−→ R+(W )

µgktor+g
d−k
◦

: R+(W ◦)gk−1
◦ +gd−k

◦
−→ R+(W ′),

and the surgery equivalence map SEφ is the composition of a homotopy inverse of
the first with the second map. Hence, the index difference satisfies an appropriate
cobordism invariance. We leave the precise formulation to the interested reader, as
we will not use this fact.

3.4.5. Propagating a detection theorem. We spell out a consequence of Theorem
3.4.12 which is important for the global structure of this paper. If one manages to
prove a detection theorem for the index difference for a certain single spin cobordism
W d (satisfying the conditions listed below), then the same detection theorem follows
for all spin manifolds of dimension d.

Proposition 3.4.14. Let W : ∅  Sd−1 be a simply-connected spin cobordism of
dimension d ≥ 6, which is spin cobordant to Dd relative to its boundary. Let g ∈
R+(W )hd−1

◦
be in a path component which corresponds to that of gdtor ∈ R+(Dd)hd−1

◦

under a surgery equivalence R+(W )hd−1
◦
' R+(Dd)hd−1

◦
.

Let W ′ be an arbitrary d-dimensional spin cobordism with boundary M ′ and let
h′ ∈ R+(M ′) and g′ ∈ R+(W ′)h′ . Let X be a CW complex, â : X → Ω∞+d+1KO
be a map and let a factorisation

X
ρ−→ R+(W )hd−1

◦

inddiffg−→ Ω∞+d+1KO

of â up to homotopy be given. Then there exists another factorisation

X
ρ′−→ R+(W ′)h′

inddiffg′−→ Ω∞+d+1KO

of â up to homotopy.

Proof. Let W0 = W \ int(Dd) be W with an open disc in the interior removed.
As W is simply-connected and spin cobordant to Dd relative to its boundary, it
follows that W0 is simply-connected and spin cobordant to [0, 1]× Sd−1 relative to
its boundary. Thus by Theorem 2.3.4 there is a metric g0 ∈ R+(W0)hd−1

◦ ,hd−1
◦

such

that the map

µg0 : R+(Dd)hd−1
◦
−→ R+(Dd ∪W0)hd−1

◦
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is a weak homotopy equivalence, and gdtor ∪ g0 is isotopic to g. As X is a CW-
complex, there is a map ρ′ : X → R+(Dd)hd−1

◦
so that µg0 ◦ ρ′ ' ρ, and using

Theorem 3.4.12 the composition

X
ρ′−→ R+(Dd)hd−1

◦

inddiff
gdtor−→ Ω∞+d+1KO

is homotopic to â.
Let W ′ be a spin cobordism with a psc metric g′ as in the assumption of the

proposition. We can change g′ by an isotopy supported in a small disc in the interior
so that g′ agrees with gdtor in that disc, by an easy application of Theorem 2.3.1.
This does not change the homotopy class of the index difference, and we can write
W ′ = Dd ∪W ′0 and g′ = gdtor ∪ g1. The desired factorisation is

X
ρ′−→ R+(Dd)hd−1

◦

µg1−→ R+(W ′)h′
inddiffg′−→ Ω∞+d+1KO

and the composition is homotopic to â, again by Theorem 3.4.12. �

3.5. The relative index construction in an abstract setting. For the proof
of Theorems B and C, we need a precise tool to express secondary indices in terms
of primary indices. Our tool is the relative index construction.

Write I = [0, 1]. Let f : (X,x0) → (Y, y0) be a map of pointed spaces (in
practice, f will be a fibration of some kind). Recall the notions of mapping cylinder
Cyl(f) := (X × I)

∐
Y/ ∼, (x, 1) ∼ f(x) and homotopy fibre hofiby(f) = {(x, c) ∈

X × Y I |f(x) = c(0), c(1) = y}. There is a natural map εy0 : f−1(y0)→ hofiby0(f),
x 7→ (x, cy0), where cy0 denotes the constant path at y0. Let (x0, cy0) ∈ hofiby0(f)
and x0 ∈ f−1(y0) be the basepoints, so that εy0 is a pointed map. There is a natural
map

ηy0 : (I, {±1})× (hofiby0(f), ∗) −→ (Cyl(f), X × {0} ∪ ({x0} × I))

defined by

(t, x, c) 7−→

{
(x, 1 + t) t ≤ 0

c(t) t ≥ 0

and the composition ηy0 ◦ (idI×εy0) is homotopic to the map ιy0 : I × f−1(y0) →
Cyl(f); (t, x) 7→ (x, 1+t

2 ) (as maps of pairs). Moreover, there is the fibre transport
map from the loop space of Y based at y0 to the homotopy fibre (it is a based map):

τ : Ωy0Y −→ hofiby0(f)

c 7−→ (x0, c).

We write KO−p(f) := KO−p(Cyl(f), X × {0} ∪ ({x0} × I)). There is an induced
map

trg : KO−p(f) −→ ΩKO−p(hofiby0(f), ∗)
α 7−→ η∗y0α,

called the transgression. (Often, we consider the composition ε∗y0 ◦ trg and call this
composition transgression as well.) The inclusion i : Y → Cyl(f) induces

bas : KO−p(f) −→ KO−p(Y, y0)

α 7−→ i∗α.
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We call bas(α) the base class of the relative class α. Finally, there is a map, the loop
map Ω : KO−p(Y, y0)→ ΩKO−p(Ωy0Y, ∗), given by pulling back by the evaluation
map I× Ωy0Y → Y .

Lemma 3.5.1. Let α ∈ KO−p(f) be given. Then

τ∗ trg(α) = Ωbas(α) ∈ ΩKO−p(Ωy0Y, ∗).

Proof. The proof is easier to understand than the statement. The diagram

(I, {±1})× (Ωy0Y, ∗)
ev //

τ

��

(Y, y0)

i

��

(I, {±1})× (hofiby0(f), ∗)
ηy0 // (Cyl(f), X ∪ ({x0} × I))

is homotopy commutative (in space pairs), and hence the associated diagram in
K-theory is commutative. By tracing through the definitions, this commutativity
is expressed by the formula in the statement of the lemma. �

This lemma has the following homotopy-theoretic interpretation. Recall that we
write relative K-theory classes as homotopy classes of maps, via the bijection in
Theorem 3.1.7.

Corollary 3.5.2. Let α ∈ KO−p(f) be a relative K-theory class. Then the diagram

Ωy0Y

τ

��

Ωbas(α)

''

hofiby0(f)
trg(α)
// Ω∞+p−q+1KO

is homotopy commutative.

We will use this to translate index-theoretic results into homotopy-theoretic con-
clusions.

Remark 3.5.3. An instructive way to view these constructions is as follows. First
note that f∗bas(α) ∈ KO−p(X,x0) is the zero class (there is a canonical concor-
dance to an acyclic cycle). One might say that α ∈ KO−p(f) induces a homotopy
commutative diagram

hofiby0(f)
trg(α)

//

��

Ω∞+p+1KO

��
X //

f

��

∗

��

Y
bas(α)

// Ω∞+pKO

whose columns are homotopy fibre sequences.



30 BORIS BOTVINNIK, JOHANNES EBERT, AND OSCAR RANDAL-WILLIAMS

3.6. Increasing the dimension. The first application of the generalities from
Section 3.5 is the derivation of Theorem C from Theorem B (the true ingredients
are Theorems 3.3.6, 2.2.3 and the additivity theorem).

Theorem 3.6.1. Let W d be a compact spin manifold with boundary M . Let h0 ∈
R+(M) and g0 ∈ R+(W )h0 . Then there exists a homotopy class of maps T :
Ωh0R+(M)→ R+(W )h0 such that the diagram

Ωh0R+(M)
T //

−Ω inddiffh0 ''

R+(W )h0

inddiffg0ww

Ω∞+d+1KO.

is weakly homotopy commutative.

Before we embark on the proof of Theorem 3.6.1, we show how it accomplishes
the promised goal.

Proof of Theorem C, assuming Theorems B and 3.6.1. By Proposition 3.4.14, it is
enough to consider the case W = D2n+1 and g0 = g2n+1

tor . Then h0 is the round
metric in R+(S2n). Consider the diagram

Ω∞+2MTSpin(2n)
−Ωρ

// Ωh0
R+(S2n)

T //

−Ω inddiffh0 ((

R+(D2n+1)h0

inddiffg0

��

Ω∞+2n+2KO.

The map Ωρ is provided by Theorem B, the composition (−Ω inddiffh0) ◦ (−Ωρ) '
Ω(inddiffh0

◦ρ) is weakly homotopic to Ω2Â2n, also by Theorem B. The triangle is
weakly homotopy commutative by Theorem 3.6.1, and T ◦ (−Ωρ) is the map whose
existence is claimed by Theorem C. �

The rest of this section is devoted to the proof of Theorem 3.6.1. Consider the
restriction map res : R+(W ) → R+(M). We will construct and analyse a relative
class β ∈ KO−d(res).

Metrics of positive scalar curvature on M can be extended to (arbitrary) metrics
on W , by the following procedure. Pick a cut-off function a : W → [0, 1] which is
supported in the collar around M where g0 is of product form and is equal to 1
near the boundary. For any h ∈ R+(M), let σ(h) := a(h + dt2) + (1 − a)g0. The
result is an extension map σ : R+(M) → R(W ) (to R(W ), not to R+(W )!) such
that σ(h0) = g0 and such that σ(h) restricted to a collar is equal to h+ dt2.

Consider the trivial fibre bundle with fibre W over the mapping cylinder Cyl(res)
of the restriction map, and define the following fibrewise Riemannian metric m on
it: over the point h ∈ R+(M) ⊂ Cyl(res) take the metric σ(h), and over the point
(g, t) ∈ R+(W ) × [0, 1] take the metric m(g,t) := tσ(res(g)) + (1 − t)g. By the
construction of σ,

(i) the metric m is psc when restricted to the boundary bundle Cyl(res)×M ,
(ii) m(g,0) = g for g ∈ R+(W ) and

(iii) m(g0,t) = tσ(res(g0)) + (1− t)g0 = g0, for t ∈ [0, 1].
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Therefore, m has positive scalar curvature over (R+(W ) × {0}) ∪ ({g0} × I) ⊂
Cyl(res). We define the class

β = ind(W,m) ∈ KO−d(Cyl(res), (R+(W )× {0}) ∪ ({g0} × I)).

The choices made in the construction of β are the metric g0 and the cut-off function
a. The function a is a convex choice, and so β depends only on g0.

Proposition 3.6.2.

(i) Let εh0
: R+(W )h0

→ hofibh0
(res) be the fibre comparison map. Then the

map ε∗h0
(trg(β)) : R+(W )h0

→ Ω∞+d+1KO is homotopic to − inddiffg0 .

(ii) bas(β) : R+(M)→ Ω∞+dKO is weakly homotopic to inddiffh0 .

Proof. The first part is straightforward. The class ε∗h0
(trg(β)) is represented by the

cycle ι∗h0
β, and ιh0

: I×R+(W )h0
→ Cyl(res) is the map (t, g) 7→ (g, 1+t

2 ). So ι∗h0
β

is represented by the cycle (t, g) 7→ Dir(W,mg, 1+t
2

), but

mg, 1+t
2

=
1 + t

2
σ(res(g)) +

1− t
2

g =
1 + t

2
σ(h0) +

1− t
2

g =
1 + t

2
g0 +

1− t
2

g,

because g ∈ R+(W )h0
and σ(h0) = g0, and this represents minus the index differ-

ence.
The second part is deeper and uses the additivity theorem and the spectral flow

theorem. The base class bas(β) lies in KO−d(R+(M), h0), and by tracing through
the definitions, we find that

bas(β) = ind(W,σ(h)),

the notation indicates that bas(β) is represented by the cycle whose value at h ∈
R+(M) is the Dirac operator of the metric σ(h) on the manifold W . For two
metrics h0, h1 ∈ R+(M), denote by [h0, h1] the metric ds2 +ϕ(s)h1 + (1−ϕ(s))h0

on M × [0, 1], where ϕ : [0, 1] → [0, 1] is a smooth function that is 0 near 0 and 1
near 1. Now we calculate, using the additivity theorem (Corollary 3.4.11), that

ind(W,σ(h)) + ind(M × [0, 1], [h, h0]) + ind(W op, g0)

= ind(W ∪M × [0, 1] ∪W op, σ(h) ∪ [h, h0] ∪ g0) = 0 ∈ KO−d(R+(M), h0).

To see that the index is zero, note first that the manifold W ∪ (M × [0, 1])∪W op

is closed and therefore the index on the right hand side does not depend on the
choice of the metric, by Lemma 3.2.5. Moreover g0 ∪ [h0, h0] ∪ g0 is a psc metric
on W ∪ (M × [0, 1]) ∪W op which agrees with σ(h) ∪ [h, h0] ∪ g0 over the basepoint
h0 ∈ R+(M), and therefore the right-hand side is zero. On the other hand, the
contribution ind(W op, g0) on the left hand side is zero because g0 has positive scalar
curvature, by Bochner’s vanishing argument with the Lichnerowicz–Schrödinger
formula. Therefore

ind(W,σ(h)) = − ind(M × [0, 1], [h, h0]) = ind(M × [0, 1], [h0, h]).

The last equality is true by the addivitity theorem and by Lemma 3.2.5. But, by
Theorem 3.3.6, the right hand side is equal to inddiffh0

∈ KO−d−1(R+(M)). �
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Proof of Theorem 3.6.1. Consider the diagram:

R+(W )h0

εh0 //

− inddiffg0 ''

hofibh0(res)

trg(β)

��

Ωh0R+(M)
τoo

Ω inddiffh0ww

Ω∞+d+1KO.

(3.6.3)

The left triangle is homotopy commutative by Proposition 3.6.2 (i), and the right
triangle is homotopy commutative by Proposition 3.6.2 (ii) and Corollary 3.5.2.
The final ingredient is the quasifibration theorem (Theorem 2.2.3): to get the map
T , take the homotopy inverse of εh0

provided by Theorem 2.2.3 and compose it
with τ . �

Remark 3.6.4. The homotopy inverse to εh0
is given by an explicit construction,

which was sketched before Theorem 2.2.3.

As mentioned in Remark 3.3.3, we can now explain why the index difference map
cannot be extended from R+(W )h0

to R+(W ).

Corollary 3.6.5. If dim(W ) ≥ 7, ∂W 6= ∅ and R+(W )h0
6= ∅, then there does

not exist a map R+(W ) → Ω∞+d+1KO which extends inddiffg0 : R+(W )h0
→

Ω∞+d+1KO.

Proof. Fix g0 ∈ R+(W )h0 and consider the class β constructed in Proposition
3.6.2. By that Proposition and Remark 3.5.3, we obtain a homotopy commutative
diagram whose columns are fibration sequences

R+(W )h0

− inddiffg0 //

��

Ω∞+d+1KO

��
R+(W ) //

��

∗

��

R+(M)
inddiffh0 // Ω∞+dKO.

A hypothetical extension of inddiffg0 to R+(W ) would force the map inddiffh0
to

be zero on homotopy groups in positive degrees. This follows from the long exact
homotopy sequence and contradicts Theorem A. �

3.7. The Atiyah–Singer index theorem. In the case when the spin manifold
bundle π : E → X has closed d-dimensional fibres, the index ind(E) ∈ KO−d(X)
can be expressed in homotopy-theoretic terms using the Clifford-linear version of
the Atiyah–Singer family index theorem. We recall the result here.

3.7.1. KR-theory and the Atiyah–Bott–Shapiro construction. The formulation of
the index theorem which we shall use is in terms of Atiyah’s KR-theory [4]. Let Y
be a locally compact space with an involution τ (a “Real space” in the terminology
of [4]). Classes in the compactly supported Real K-theory KRc(Y ) are represented
by triples (E, ι, f), with E → Y a finite-dimensional “Real vector bundle” as defined
in [4, §1], ι a Z/2-grading on E and f : E → E an odd, self-adjoint bundle map
which is an isomorphism outside a compact set. Both ι and f are required to be
real homomorphisms as defined in [4, §1]. Out of the set of concordance classes of
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triples (E, ι, f), one defines KRc(Y ) by a procedure completely analogous to that
of Definition 3.1.2. Recall the Atiyah–Bott–Shapiro construction [5]: let X be a
compact space, V,W → X be Riemannian vector bundles and p : V ⊕W → X
be their sum. Let V + ⊕ W− be the total space of V ⊕ W , equipped with the
involution (x, y) 7→ (x,−y). Let E be a real Cl(V +⊕W−)-module. Then the triple
(p∗E, ι, γ) with γv,w := ι(c(v)+ic(w)) represents a class abs(E) ∈ KRc(V +⊕W−),
the Atiyah–Bott–Shapiro class of E.

If V → X is a rank d spin vector bundle with spin structure /SV , then the
KO-theory Thom class of V is defined to be

λV := abs( /SV ) ∈ KRc(V + ⊕ R0,d) ∼= KOdc (V ) ∼= K̃O
d
(Th(V )),

where the first isomorphism is proved in [4, §2-3] (and the second one is a standard
property of compactly supported K-theory).

3.7.2. The Clifford-linear index theorem. Let π : E → X be a spin manifold bundle
with closed d-dimensional fibres over a compact base space. Assume that E ⊂
X × Rn and that π is the projection to the first factor. Let NvE be the vertical
normal bundle, so that TvE ⊕ NvE = E × Rn and let U ⊂ X × Rn be a tubular
neighborhood of E. The spin structure on TvE induces a spin structure on NvE.
The open inclusion NvE ∼= U ⊂ X × Rn induces a map (via a Pontrjagin–Thom
type collapse construction)

ψ : KRc(NvE
+ ⊕ R0,n−d) −→ KRc(X × Rn,n−d) ∼= KO−d(X), (3.7.1)

where the last map is the (1, 1)-periodicity isomorphism [4, Theorem 2.3]. The
Clifford-linear index theorem is

Theorem 3.7.2. With this notation, ind(E) = ψ(λNvE) ∈ KO−d(X).

This result is due to Hitchin [27, Proposition 4.2] and is of course a consequence of
the Atiyah–Singer index theorem for families of real elliptic operators [7]. However,
Hitchin’s explanation of the argument (as well as the treatment in [33, §16]) leaves
out a critical detail. For sake of completeness, we discuss this detail.

Recall that /STvE has an action c of the Clifford algebra Cld,0. The Dirac op-

erator /Dx on Ex anticommutes with the self-adjoint bundle endomorphism ιc(v),
for each (x, v) ∈ X × Rd,0. Using the isomorphism (3.1.6), the family of Dirac
operators defines a family

Rx,v :=
/Dx

(1 + /Dx
2
)1/2

+ ιc(v)

over X × Rd which is invertible unless v = 0 and so gives an element in the group
KO0(X×Dd, X×Sd−1). Hitchin uses the real family index theorem [7] to compute
the index of the family (Rx,v)(x,v)∈X×Rd,0 . However, the family index theorem as
proven in [7] only compares elements in absolute K-theory, not in relative K-theory,
and it is not completely evident how the topological index of the family (Rx,v) (as
an element in relative K-theory) is defined. Therefore, a slight extension of the real
family index theorem is necessary.

Theorem 3.7.3. Let π : E ⊂ X × Rn → X be a closed manifold bundle over
a compact base. Let Q : Γ(E;V0) → Γ(E;V1) be a family of real elliptic pseudo-
differential operators of order 0. Assume that Y ⊂ X is a closed subspace such that
for y ∈ Y , the operator Qy is a bundle isomorphism. The symbol class smb(Q) is
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then an element in KRc(Tv(EX−Y )−) and the family index ind(Q) ∈ KO(X,Y ) =
KOc(X − Y ) can be computed as the image of smb(Q) under the composition

KRc(Tv(EX−Y )−) −→ KRc(Tv(EX−Y )− ⊕Nv(EX−Y )− ⊕Nv(EX−Y )+) =

KOnc (NvEX−Y ) −→ KOnc ((X − Y )× Rn) ∼= KOc(X − Y )

of the Thom isomorphism, the map induced by the inclusion and Bott periodicity.

Proof. For Y = ∅, this is precisely the Atiyah–Singer family index theorem [7]. In
the general case, form Z = X∪YX, E′ = E∪E|Y E. SinceQ is a bundle isomorphism
over Y , we can form the clutching V ′0 = V0 ∪Q V1 and V ′1 = V1 ∪id V1 over E′ and
extend the family Q by the identity over the second copy X2 of X. We obtain a
new family P , which coincides with Q over the first copy X1 of X and is a bundle
isomorphism over X2. Therefore, under the map KO(X,Y ) ∼= KO(Z,X2) →
KO(Z), the topological (resp. analytical) index of Q is mapped to the topological
(resp. analytical) index of P . By the index theorem, the topological and analytical
indices of P agree. Finally, as the inclusion X2 → Z splits, the map KO(Z,X2)→
KO(Z) is injective, and the indices agree in KO(X,Y ) = KO(Z,X2). �

Proof of Theorem 3.7.2. We have to compute the family index of the family Rx,v :=
/Dx

(1+ /Dx
2)1/2

+ ιv over X ×Dd, as an element in KO(X × (Dd, Sd−1)). Consider the

homotopy (t ∈ [0, 1])

Rt,x,v :=
√

1− t2|v|2
/Dx

(1 + /Dx
2
)1/2

+ ιv

of families of order 0 pseudo-differential operators. Because

R2
t,x,v = (1− t2|v|2)

/D
2
x

1 + /D
2
x

+ |v|2,

we find that Rt,x,v is invertible for |v| = 1. If ξ ∈ TvE has norm 1, then

smbR2
t,x,v

(ξ) = (1− t2|v|2)
|ξ|2

1 + |ξ|2
+ |v|2

and this is invertible for all x, v, and t, so the family Rt,x,v is elliptic. Thus we
can replace the original family Rx,v = R0,x,v by R1,x,v, which over X×Sd−1 is just
the family ιv of bundle automorphisms. Thus the relative family index theorem
(Theorem 3.7.3) applies. The computation of the topological index of this family
is done in the proof of [27, Proposition 4.2]. �

3.8. Fibre bundles, Madsen–Tillmann–Weiss spectra, and index theory.
We can reformulate the Atiyah–Singer index theorem in terms of the Madsen–
Tillmann–Weiss spectrum MTSpin(d). The basic reference for these spectra is [20]
and the connection to the index theorem was pointed out in [15]. We refer to those
papers for more detail. Later, we will present the variation for manifolds with
boundary, and finally relate the index difference to the family index.

3.8.1. Madsen–Tillmann–Weiss spectra. Let γd → BSpin(d) be the universal spin
vector bundle. By definition, the Madsen–Tillmann-Weiss spectrum MTSpin(d)
is the Thom spectrum of the virtual vector bundle −γd, which may be described
concretely as follows.
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Definition 3.8.1. For n ≥ d, we define the spin Grassmannian GrSpin
d,n as the

homotopy fibre of the natural map

BSpin(d)×BSpin(n− d) −→ BSpin(n).

The spin Grassmannian comes with a map θ : GrSpin
d,n → Grd,n = O(n)

O(d)×O(n−d) to

the ordinary Grassmannian, and we let

Vd,n ⊂ GrSpin
d,n × Rn and V ⊥d,n ⊂ GrSpin

d,n × Rn

be the pullback of the tautological d-dimensional vector bundle on Grd,n and its
orthogonal complement.

By stabilising with respect to n, one obtains structure maps

σn : ΣTh(V ⊥d,n) −→ Th(V ⊥d,n+1),

and by definition the sequence of these spaces form the spectrum MTSpin(d). The
(n times looped) adjoints of the σn yield maps

ΩnTh(V ⊥d,n) −→ Ωn+1Th(V ⊥d,n+1),

and by definition Ω∞MTSpin(d) is the colimit over these maps. Similarly the space
Ω∞+lMTSpin(d) is the colimit of the Ωn+lTh(V ⊥d,n), for l ∈ Z. There are maps

V ⊥d−1,n−1 → V ⊥d,n which are compatible with the structure maps of the spectra and

give a map of spectra MTSpin(d− 1)→ ΣMTSpin(d). On infinite loop spaces this
induces a map Ω∞MTSpin(d− 1)→ Ω∞−1MTSpin(d).

3.8.2. Spin fibre bundles and the Pontrjagin–Thom construction. A bundle π : E ⊂
X ×Rn → X of d-dimensional closed manifolds with a fibrewise spin structure has
a Pontrjagin–Thom map

αE : X −→ ΩnTh(V ⊥d,n) −→ Ω∞MTSpin(d)

whose homotopy class does not depend on the embedding of E into X × Rn. We
also need a version for manifolds with boundary. Let W d be a manifold with
boundary M , and consider fibre bundles E → X with structure group given by the
diffeomorphisms that fix the boundary pointwise. The boundary bundle is then
trivialised, ∂E ∼= X ×M . Assume that there is a (topological) spin structure on
the vertical tangent bundle TvE, which is constant on the boundary bundle. Under
favourable circumstances (which always hold for the manifolds to be considered in
this paper), the following lemma shows that such spin structures exist.

Lemma 3.8.2. Let W be a manifold with boundary M such that (W,M) is 1-
connected, and let π : E → X be a smooth fibre bundle with fibre W and trivialised
boundary bundle, ∂E ∼= X ×M . For each spin structure on W there is a unique
spin structure on TvE which is isomorphic to the given one on the fibre and which
is constant over ∂E.

Proof. The Leray–Serre spectral sequence for the fibration pair (E, ∂E)→ X proves
that (E, ∂E) is homologically 1-connected and that the fibre inclusion (W,M) →
(E, ∂E) induces an injection H2(E, ∂E;Z/2) → H2(W,M ;Z/2). The obstruction
to extending the spin structure on ∂E to all of E lies in H2(E, ∂E;Z/2) and goes
to zero in H2(W,M ;Z/2) since W is assumed to be spin and the spin structure on
M is assumed to extend over W . Thus the obstruction is trivial, which shows the
existence of the spin structure. Uniqueness follows from H1(E, ∂E;Z/2) = 0. �
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A closed spin manifold Md−1 determines a point M ∈ Ω∞−1MTSpin(d), namely
the image under

Ω∞MTSpin(d− 1) −→ Ω∞−1MTSpin(d)

of the point in Ω∞MTSpin(d − 1) determined by the Pontrjagin–Thom map of
the trivial bundle M → ∗. Of course, this point is not unique, but depends on
an embedding of M into R∞ and a tubular neighborhood, which is a contractible
choice.

If W is a d-dimensional manifold with boundary M , and π : E → X is a smooth
manifold bundle with fibre W equipped with a trivialisation ∂E ∼= X ×M of the
boundary and a fibrewise spin structure which is constant along the boundary, then
there is a Pontrjagin–Thom map

αE : X −→ Ω[∅,M ]Ω
∞−1MTSpin(d)

to the space of paths in Ω∞−1MTSpin(d) from the basepoint ∅ to [M ]. A spin
nullbordism V : M  ∅ determines a path in Ω∞−1MTSpin(d) from M to ∅ and
thus a homotopy equivalence

θV : Ω[∅,M ]Ω
∞−1MTSpin(d)

∼−→ Ω∞MTSpin(d)

and we define αE,V := θV ◦ αE : X → Ω∞MTSpin(d). For two nullbordisms V0

and V1 of M the maps αE,V0 and αE,V1 differ by loop addition with the constant
map αV op

0 ∪V1
.

3.8.3. The index theorem and homotopy theory. The vector bundles V ⊥d,n → GrSpin
d,n

have spin structures, so have KO-theory Thom classes λV ⊥d,n ∈ KO
n−d(Th(V ⊥d,n)).

These fit together to a spectrum KO-theory class λ−d ∈ KO−d(MTSpin(d)), alias
a spectrum map

λ−d : MTSpin(d) −→ Σ−dKO.

The infinite loop map of λ−d is denoted Âd := Ω∞λ−d : MTSpin(d) → Ω∞+dKO.
With these definitions, we arrive at the following version of the index theorem.

Theorem 3.8.3. Let π : E → X be a bundle of closed d-dimensional spin mani-
folds. Then the maps

ind(E), (Ω∞λ−d) ◦ αE : X −→ Ω∞+dKO

are weakly homotopic.

The translation of Theorem 3.7.2 into Theorem 3.8.3 is exactly parallel to the
translation of the complex family index theorem described in [15].

For manifold bundles with nonempty boundary, we need a psc metric h ∈ R+(M)
to be able to talk about ind(E, h) := ind(E, dt2 + h) ∈ KO−d(X). To express the
index in this situation in terms of homotopy theory, an additional hypothesis on h
is needed.

Theorem 3.8.4. Let π : E → X be a bundle of d-dimensional spin manifolds, with
trivialised boundary X ×M . Let h ∈ R+(M) and let V : M  ∅ be a nullbordism
which carries a psc metric g ∈ R+(V )h. Then the maps

ind(E, h), (Ω∞λ−d) ◦ αE,V : X −→ Ω∞+dKO

are weakly homotopic.
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Proof. By the additivity theorem (Corollary 3.4.11), ind(E, h) = ind(E ∪∂E (X ×
V )). The result follows in a straightforward manner from Theorem 3.8.3, by the
definition of αE,V as αE∪∂E(X×V ). �

In most cases of interest to us, we will be able to take V = W op, where W is a
fibre of E.

3.8.4. Spin fibre bundles and the index difference. We now show how to fit the
index difference into this context. Let W be a d-dimensional spin manifold with
boundary M and collar [−ε, 0] ×M ⊂ W , such that (W,M) is 1-connected. Let
π : E → X be a smooth fibre bundle with fibre W and structure group Diff∂(W ),
the diffeomorphisms which fix the collar pointwise, and with underlying Diff∂(W )-
principal bundle Q → X. We assume that X is paracompact. By Lemma 3.8.2,
there is a spin structure on the vertical tangent bundle TvE → E, which is constant
along ∂E = X × M ⊂ E. Let h0 ∈ R+(M) be fixed and write R+(W )h0 =
R+(W )εh0

, on which Diff∂(W ) acts by pullback of metrics; there is an induced fibre
bundle

p : Q×Diff∂(W ) R+(W )h0
−→ X.

Observe that a point in Q×Diff∂(W ) R+(W )g0 is a pair (x, g), where x ∈ X and g

is a psc metric on π−1(x) with boundary condition h0. Choose a basepoint x0 ∈ X
and identify π−1(x0) with W . Then p−1(x0) may be identified with R+(W )h0

and
we also choose a basepoint g0 ∈ p−1(x0).

We will now introduce an element β = βπ,g0 ∈ KO−d(p), depending only on
the bundle π and the metric g0. To begin the construction of β, choose a fibrewise
Riemannian metric k on the fibre bundle π : E → X such that

(i) on π−1(x0) = W , the metric k is equal to g0,
(ii) near ∂E, k has a product structure and the restriction to ∂E is equal to h0.

It is easy to produce such a metric using a partition of unity, and of course k
will typically not have positive scalar curvature. Now let Ẽ → Cyl(p) be the

pullback of the bundle π along the natural map Cyl(p) → X. The bundle Ẽ has
the following fibrewise metric: over a point x ∈ X ⊂ Cyl(p), we take the metric
kx, and over a point (x, g, t) ∈ Q ×Diff∂(W ) R+(W )h0 × [0, 1], we take the metric
(1−t)g+tkx. This metric satisfies the boundary condition h0, and it has psc if t = 0

or if (x, g) = (x0, g0). Since E and hence Ẽ is spin, there is a Dirac operator for
this metric, so a well-defined element β ∈ KO−d(p) (defined using the elongation

of the bundle Ẽ). The following properties of this construction are immediately
verified (for the last one, one uses Corollary 3.4.11).

Proposition 3.8.5.

(i) The base class of β is the usual family index of E, with the metric k: that
is bas(β) = ind(E, k) ∈ KOd(X) (this class only depends on the boundary
condition h).

(ii) The transgression of β to p−1(x0) = R+(W )h0 is the index difference class
inddiffg0 ∈ ΩKO−d(R+(W )h0).

(iii) The class β is natural with respect to pullback of fibre bundles.
(iv) Let V : M  M ′ be a spin cobordism and m ∈ R+(V )g0,g1 be a psc metric.

Let π′ : E ∪∂E (X × V )→ X be the bundle obtained by fibrewise gluing in V .



38 BORIS BOTVINNIK, JOHANNES EBERT, AND OSCAR RANDAL-WILLIAMS

We obtain a commutative diagram

Q×Diff∂(W ) R+(W )h0

µm //

p

''

Q×Diff∂(W ) R+(W ∪ V )h1

p′

vv
X,

and the image of βπ′,g0∪m ∈ KO−d(p′) in KO−d(p) agrees with βπ,g0

Proposition 3.8.5 gives a more precise statement of the diagram 1.2.2, as follows.
Let p be the universal W -bundle over BDiff∂(W ). The cycle β defines a nullhomo-
topy of the map ind(E, k)◦p, which can be viewed as a map R+(W )h//Diff∂(W )→
PΩ∞+dKO to the path space. On the fibre of R+(W )h//Diff∂(W ) → BDiff∂(W ),
β induces the index difference map inddiffg0 . However, in the next chapter, we will
use Proposition 3.8.5 instead of the more informal diagram 1.2.2.

4. Proof of the main results

In this section we will prove Theorem B. Before beginning the proof in earnest,
we will establish a result (Theorem 4.1.2) which will be a fundamental tool in
the proof, but is also of independent interest. For the purpose of exposition we
have structured the proof of Theorem B into three parts. In Section 4.2 the main
constructive argument of the paper is carried out, which is stated as Theorem 4.2.4.
This construction assumes the existence of a space X which can be approximated
homologically by hocolimk BDiff∂(Wk), where Wk is a certain sequence of spin
cobordisms, and the output of this construction is a map ΩX → R+(Wk). Sections
4.3 and 4.4 provide the data assumed for Theorem 4.2.4. In Section 4.3, we set up
the general framework and finish the proof in the case 2n = 6 (which is done by
directly quoting [19]). Section 4.4 deals with the general case, which instead uses
[18].

4.1. Action of the diffeomorphism group on the space of psc metrics. As in
the previous section, for a manifold W with boundary ∂W and collar [−ε, 0]×∂W ⊂
W , and a boundary condition h ∈ R+(∂W ), we have a space R+(W )h = R+(W )εh
and there is a right action of the group Diff∂(W ) of diffeomorphisms of W which
are the identity on the collar on R+(W )h by pullback of metrics. This in particular
induces a homomorphism

Γ(W ) := π0(Diff∂(W )) −→ π0(Aut(R+(W )h)), (4.1.1)

to the group of homotopy classes of self homotopy equivalences of the spaceR+(W )h.

Theorem 4.1.2. Let W be a compact simply-connected d-dimensional spin mani-
fold with boundary ∂W = Sd−1. Assume that d ≥ 5 and that W is spin cobordant
to Dd relative to its boundary. Then for h = hd−1

◦ the image of the homomorphism
(4.1.1) is an abelian group.

The conclusion can also be expressed by saying that the action in the homotopy
category of Γ(W ) on R+(W )hd−1

◦
is through an abelian group.

The proof of this theorem will consist of an application of the cobordism invari-
ance of spaces of psc metrics (Theorem 2.3.1) and a formal argument of Eckmann–
Hilton flavour. We first present the formal argument, and then explain how to fit
our geometric situation into this framework.
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Lemma 4.1.3. Let C be a nonunital topological category with objects the integers,
and let G be a topological group which acts on C, i.e. G acts on the morphism spaces
C(m,n) for all m,n ∈ Z, and the composition law in C is G-equivariant. Contrary
to the usual notation of category theory, let us write composition as

C(m,n)× C(n, k) −→ C(m, k)

(x, y) 7−→ x · y.

Suppose that

(i) C(m,n) = ∅ if n ≤ m.
(ii) For each m 6= 0 there exists a um ∈ C(m,m + 1) such that the composition

maps

um · − : C(m+ 1, n) −→ C(m,n) for n > m+ 1

− · um : C(n,m) −→ C(n,m+ 1) for n < m

are homotopy equivalences.
(iii) There exists an x0 ∈ C(0, 1) such that the composition maps

− · x0 : C(m, 0) −→ C(m, 1) for m < 0

x0 · − : C(1, n) −→ C(0, n) for n > 1

are homotopy equivalences.
(iv) The G-action on C(m,n) is trivial unless m ≤ 0 and 1 ≤ n.

Then for any f, g ∈ G the maps f, g : C(0, 1)→ C(0, 1) commute up to homotopy.

Remark 4.1.4. To understand the motivation for the above set-up and its proof, the
reader may consider the following discrete analogue. Let M be a unital monoid,
and X be a set with commuting left and right M -actions, and in addition an action
of a group G on X by left and right M -set maps. Finally, suppose that there is an
x0 ∈ X such that the maps x0 · −,− · x0 : M → X are both bijections. Then G
acts on X through its abelianisation.

Proof. For a point y in a space Y , we denote by [y] ∈ π0(Y ) the path component it
belongs to. For f ∈ G there are elements yf ∈ C(−1, 0) and zf ∈ C(1, 2) such that

[yf · x0] = [u−1 · fx0] ∈ π0(C(−1, 1))

[x0 · zf ] = [fx0 · u1] ∈ π0(C(0, 2)).

To see this, first note that u−1 ·fx0 = f(u−1 ·x0) as the composition is G-equivariant
and G acts trivially on C(−1, 0), and then note that the maps

C(−1, 0)
−·x0−→ C(−1, 1)

f←− C(−1, 1)
u−1·−←− C(0, 1)

are all homotopy equivalences and hence induce bijections on π0. Choose yf so that
[yf ] corresponds to [x0] under these bijections. The argument for zf is analogous,
using the homotopy equivalences

C(1, 2)
x0·−−→ C(0, 2)

f←− C(0, 2)
−·u1←− C(0, 1)

instead. We now claim that the maps

fg(− · u−1 · x0 · u1), gf(− · u−1 · x0 · u1) : C(−2,−1) −→ C(−2, 2)
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are homotopic, which follows by the concatenation of homotopies

fg(− · u−1 · x0 · u1) = f(− · u−1 · gx0 · u1)

' f(− · u−1 · x0 · zg)
= (− · u−1 · fx0 · zg)
' (− · yf · x0 · zg)
' (− · yf · gx0 · u1)

= g(− · yf · x0 · u1)

' g(− · u−1 · fx0 · u1)

= gf(− · u−1 · x0 · u1).

As the map − · u−1 · x0 · u1 : C(−2,−1) → C(−2, 2), is a homotopy equivalence,
it follows that the maps fg, gf : C(−2, 2) → C(−2, 2) are homotopic. Finally, the
diagram

C(0, 1)

h

��

u−2·u−1·−·u1
// C(−2, 2)

h

��

C(0, 1)
u−2·u−1·−·u1

// C(−2, 2)

commutes for each h ∈ G and the horizontal maps are homotopy equivalences. It
follows that fg ' gf : C(0, 1)→ C(0, 1), as required. �

Proof of Theorem 4.1.2. Consider a closed disc Dd ⊂ Sd−1 × (0, 1). By Theorem
2.3.1 we may find h ∈ R+(Sd−1 × [0, 1])h◦,h◦ which is equal to gdtor in the disc Dd

and is in the same path component as the cylinder metric hd−1
◦ + dt2. By cutting

out the disc, we obtain a psc metric on T := Sd−1× [0, 1] \ int(Dd), also denoted h.
Let us denote by P = Sd−1 the boundary component of T created by cutting out
this disc.

Gluing in (T, h) along Sd−1 × {0} gives a map

µh : R+(W )h◦ −→ R+(W ∪Sd−1×{0} T )h◦,h◦ .

This is a homotopy equivalence, because its composition with the map

R+(W ∪Sd−1×{0} T )h◦,h◦ −→ R+(W ∪Sd−1×{0} T ∪P Dd)h◦ ,

which glues in the torpedo metric on Dd, is homotopic to the gluing map µh◦+dt2
after identifying the target with R+(W ∪Sd−1×{0} S

d−1 × [0, 1])h◦ . These last two
maps are homotopy equivalences, by Theorem 2.3.1 and Corollary 2.2.2 (ii) respec-
tively. Let us write V := W ∪Sd−1×{0} T , considered as a cobordism Sd−1 = P  
Sd−1 × {1} = Sd−1.

We now let G := Diff∂(W ) and C(0, 1) = R+(V )h◦,h◦ . The group G acts
on V , by extending diffeomorphisms as the identity on T , and the gluing map
µh : R+(W )h◦ → R+(V )h◦,h◦ is G-equivariant and a homotopy equivalence. To
prove the theorem it is therefore enough to show that the image of the action map
π0(G)→ π0(Aut C(0, 1)) is an abelian group. This will follow by an application of
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Lemma 4.1.3. Define a nonunital category C having objects the integers, and

C(m,n) =


R+((Sd−1 × [m, 0]) ∪ V ∪ (Sd−1 × [1, n]))h◦,h◦ m ≤ 0, n ≥ 1,

R+(Sd−1 × [m,n])h◦,h◦ m < n ≤ 0 or 1 ≤ m < n,

∅ otherwise.

Composition is defined by the gluing maps, and the G-action is defined by letting
G act trivially on cylinders. For m 6= 0, we let um ∈ C(m,m + 1) = R+(Sd−1 ×
[m,m+ 1])h◦,h◦ be the cylinder metric h◦ + dt2, so that assumption (ii) of Lemma
4.1.3 holds by Corollary 2.2.2. Finally, note that V is cobordant relative to its
boundary to Sd−1 × [0, 1] and so Theorem 2.3.4 shows that there is a psc metric
x0 ∈ C(0, 1) satisfying assumption (iii) of Lemma 4.1.3. �

4.2. Constructing maps into spaces of psc metrics.

Statement of the main construction theorem. Let 2n ≥ 6 and suppose that

W : ∅ S2n−1

is a simply-connected spin cobordism, which is spin cobordant to D2n relative to
its boundary. Let

K := ([0, 1]× S2n−1)#(Sn × Sn) : S2n−1  S2n−1.

For i = 0, 1, 2, . . . let K|i := S2n−1 and K|[i,i+1] : K|i  K|i+1 be a copy of K.
Also, consider W as a cobordism to K|0. Then we write

Wk := W ∪K|[0,k] := W ∪
k−1⋃
i=0

K|[i,i+1] : ∅ K|k

for the composition of W and k copies of K, so W0 = W . Define the group
Dk := Diff∂(Wk), and write Bk := BDk for the classifying space of this group and
πk : Ek := EDk×Dk

Wk → Bk for the universal bundle. There is a homomorphism
Dk → Dk+1 given by extending diffeomorphisms over K|[k,k+1] by the identity, and
this induces a map λk : Bk → Bk+1 on classifying spaces. Let B∞ := hocolimk Bk
denote the mapping telescope.

By Lemma 3.8.2, there is a unique fibrewise spin structure on each bundle Ek.
Thus there is the family of Dirac operators on the fibre bundles πk. We now
list further hypotheses on the manifold W , which will allow us to carry out an
obstruction-theoretic argument. We will later make particular choices of W and
construct the data assumed in these assumptions.

Assumptions 4.2.1. We are given

(i) a space X with an acyclic map Ψ : B∞ → X,
(ii) a class â ∈ KO−2n(X) such that Ψ∗(â) restricts to ind(Ek, h

d−1
◦ ) ∈ KO−2n(Bk),

for all k, up to phantom maps.

Remark 4.2.2. Recall that a map f : X → Y of spaces is called acyclic if for each
y ∈ Y the homotopy fibre hofiby(f) has the singular homology of a point. This
is equivalent to f inducing an isomorphism on homology for every system of local
coefficients on Y ; if Y is not simply-connected then it is stronger than merely being
a homology equivalence. If Y (and hence X) is connected and F = hofiby(f), we
get from the long exact homotopy sequence

π2(X)→ π2(Y )→ π1(F )→ π1(X)→ π1(Y )→ 1
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that ker(π1(f)) is a quotient of the perfect group π1(F ) and hence itself perfect.
It follows that f : X → Y may be identified with the Quillen plus construction
applied to the perfect group ker(π1(f)), by [42, Theorem 5.2.2] [25, Theorem 3.5].

Remark 4.2.3. Recall that a map f : X → Y to a pointed space is called phantom if
it is weakly homotopic to the constant map to the basepoint. Maps f0, f1 : X → ΩZ
to a loop space are said to agree up to phantom maps if their difference f0 · f−1

1 is
phantom.

In order to make certain homotopy-theoretic arguments we (functorially) replace
certain spaces by CW complexes, by writing Rk := |Sing•R+(Wk)h2n−1

◦
| and X :=

|Sing•X|. The rest of this section is devoted to the proof of the following result.

Theorem 4.2.4. If the spin cobordism W : ∅  S2n−1 is such that W is simply-
connected and is spin cobordant to D2n relative to its boundary, and Assumptions
4.2.1 hold, then there is a map ρ : ΩX → R0 such that the composition with
inddiffm0

: R0 → Ω∞+2n+1KO agrees with Ωâ, up to phantom maps.

In Sections 4.3 and 4.4 we will show how a tuple (W,X, â) satisfying these hy-
potheses can be constructed, but in the rest of this section we will prove Theorem
4.2.4, and so suppose that the hypotheses of this theorem hold.

Setting the stage for the obstruction argument. Theorem 4.2.4 will be proved by
an obstruction-theoretic argument, which needs some preliminary constructions.
Before we begin, let us collect the important consequences of our work so far.

Proposition 4.2.5.

(i) There is a surgery equivalence R+(W0)h2n−1
◦

' R+(D2n)h2n−1
◦

, and so in par-

ticular R+(W0)h2n−1
◦

is non-empty. Thus we may choose an g−1 ∈ R+(W0)h2n−1
◦

which lies in the component of g2n
tor ∈ R+(D2n)h2n−1

◦
under the surgery equiv-

alence.
(ii) There are metrics gi ∈ R+(K|[i,i+1])h2n−1

◦ ,h2n−1
◦

so that the gluing maps

µgi : R+(Wi)h2n−1
◦

−→ R+(Wi+1)h2n−1
◦

are homotopy equivalences. Let

mi := g−1 ∪ g0 ∪ g1 ∪ · · · ∪ gi−1 ∈ R+(Wi)h2n−1
◦

.

(iii) The action homomorphism Γ(Wk)→ π0(Aut(R+(Wk)h2n−1
◦

)) has abelian im-
age.

Proof. This is straightforward from the previous work: Because W0 = W is spin
cobordant to D2n relative to its boundary by assumption, the first part follows
from Theorem 2.3.2. Because the manifold K|[i,i+1] = ([0, 1]× S2n−1)#(Sn × Sn)
is cobordant to a cylinder relative to its boundary, the second part follows from
Theorem 2.3.4. The third assertion follows from Theorem 4.1.2, again using the
assumption that W0 is spin cobordant to D2n relative to its boundary. �

We introduce the abbreviations Rk := R+(Wk)h2n−1
◦

, Tk := EDk ×Dk
Rk, write

pk : Tk → Bk for the projection map and write µk := µhk
: Rk → Rk+1 for the

gluing maps defined by the metrics hk of Proposition 4.2.5 (ii). The map µk is
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Dk-equivariant (by construction), so there is an induced map between the Borel
constructions

Rk
µk //

��

Rk+1

��

Tk
νk //

pk

��

Tk+1

pk+1

��

Bk
λk // Bk+1.

By Proposition 4.2.5 (ii), the top map is a weak homotopy equivalence, so the
lower square is weakly homotopy cartesian. Using the (unique) spin structure that
each fibre bundle πk : Ek → Bk has (cf. Lemma 3.8.2), the construction of Section
3.8 gives relative KO-classes βk ∈ KO−d(pk). Let hocolimk pk : hocolimk Tk →
hocolimk Bk be the induced map on mapping telescopes.

Proposition 4.2.6. There is a relative KO-class β∞ ∈ KO−d(hocolimk pk), such
that the restriction to KO−d(pk) is equal to βk.

Proof. The map

KO−d(hocolimk pk) −→ lim←−KO
−d(pk)

is surjective by Milnor’s lim1 sequence. The classes βk ∈ KO−d(pk) give a consistent
collection by Proposition 3.8.5, and so there exists a β∞ ∈ KO−d(hocolimk pk)
restricting to them. �

Let us move to the simplicial world, in which we will carry out the proof of
Theorem 4.2.4. The simplicial group Sing•Dk (obtained by taking singular sim-
plices) acts on the simplicial set Sing•Rk. We denote the geometric realisations by
Dk := |Sing•Dk| and Rk := |Sing•Rk|, and also write Bk := BDk. Let D∞ and
R∞ be the colimits of the induced maps

λk : Dk −→ Dk+1 and µk : Rk −→ Rk+1,

which, as these maps are cellular inclusions, are also homotopy colimits. Let B∞ :=
BD∞ and Ψ : B∞ → X := |Sing•X| be a map in the homotopy class induced by

B∞ = colim
k→∞

Bk
'←− hocolim

k→∞
Bk −→ |Sing•(B∞)| |Sing•Ψ|−→ |Sing•(X)| = X.

Let

pk : Tk := EDk ×Dk
Rk −→ Bk

be the induced fibre bundles, for k ∈ N ∪ {∞}. There is a commutative diagram

T∞

p∞

��

hocolimk Tk

hocolimk pk

��

'oo // hocolimk Tk

hocolimk pk

��

B∞ hocolimk Bk
'oo // hocolimk Bk.

As the four left spaces in the diagram are all CW-complexes, there exists a
class β∞ ∈ KO−2n(p∞) whose pullback to KO−2n(hocolimk pk) coincides with
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the pullback of the class β∞ constructed in Proposition 4.2.6 to Cyl(hocolimk pk).
The square

Tk

pk

��

// T∞

p∞

��

Bk
// B∞.

(4.2.7)

is homotopy cartesian, as both maps are Serre fibrations, the map Rk → R∞ on
fibres is a homotopy equivalence by Proposition 4.2.5 (ii), and all the spaces have
the homotopy type of CW complexes. The following property of the class β∞ is
clear from the construction and Proposition 4.2.6.

Lemma 4.2.8. The pullback of β∞ to each Cyl(pk) agrees with the pullback of βk
along the weak homotopy equivalence Cyl(pk)→ Cyl(pk).

The obstruction argument. The topological group D∞ acts on R∞, and the map
p∞ : T∞ → B∞ is the associated Borel construction. In particular, there is an
associated homomorphism

D∞ −→ Aut(R∞)

of topological monoids, which on classifying spaces gives a map

h : B∞ −→ BAut(R∞).

Lemma 4.2.9. The monodromy map π1(B∞)→ π0 Aut(R∞) has abelian image.

Proof. Because a group is commutative if all its finitely generated subgroups are,
and because the diagram (4.2.7) is homotopy cartesian, it is enough to prove that
the monodromy map π1(Bk) → π0(Aut(Rk)) has abelian image for each k. But
π1(Bk) = π0(Dk) = Γ(Wk), and under this identification, the monodromy map
becomes the homomorphism Γ(Wk) → π0(Aut(Rk)) induced from the action, and
we have shown that this acts through an abelian group in Proposition 4.2.5 (iii). �

Proposition 4.2.10. The exists a commutative and homotopy cartesian square

T∞ //

p∞

��

T+
∞

p+
∞
��

B∞
Ψ // X.

Moreover, there is a unique class β+
∞ ∈ KO−2n(p+

∞) which restricts to β∞ ∈
KO−2n(p∞).

Proof. First, we invoke May’s general classification theory for fibrations [36]. The
result (loc. cit. Theorem 9.2) is that there is a universal fibration E → BAut(R∞)
with fibre R∞ over the classifying space of the topological monoid Aut(R∞) and
a homotopy cartesian diagram

T∞

p∞

��

// E

��

B∞
h // BAut(R∞).
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By Assumption 4.2.1 (i) there is an acyclic map Ψ : B∞ → X. We claim that
the obstruction problem

B∞
Ψ //

h
%%

X

g

��

BAut(R∞)

can be solved, up to homotopy. Since Ψ is acyclic, by the universal property
of acyclic maps [25, Proposition 3.1] it is sufficient to prove that ker(π1(Ψ)) ⊂
ker(π1(h)). The group ker(π1(Ψ)) is perfect, but by Lemma 4.2.9 the group π1(h)
has abelian image, and so π1(h)(ker(π1(Ψ))) is trivial; in other words, ker(π1(Ψ)) ⊂
ker(π1(h)).

Therefore, we have constructed a factorisation

h : B∞
Ψ−→ X

g−→ BAut(R∞)

up to homotopy. Let us denote by p+
∞ : T+

∞ → X the fibration obtained by pulling
E back along the map g, so there is an induced commutative square

T∞
Ψ′ //

p∞

��

T+
∞

p+
∞
��

B∞
Ψ // X.

By construction, the square is homotopy cartesian. Therefore, since Ψ is acyclic,
so is Ψ′. Thus the class β∞ ∈ KO−d(p∞) from Lemma 4.2.8 extends to a unique
class β+

∞ ∈ KO−d(p+
∞). �

Now we define the map ρ∞ : ΩX → R∞ as the fibre transport of the fibration
p+
∞. Since R0 → R∞ is a homotopy equivalence, we can lift ρ∞ to a map ρ : ΩX→

R0. It remains to check that ρ has the property stated in Theorem 4.2.4. We apply
the relative index construction (i.e. Corollary 3.5.2) to the class β+

∞ and obtain a
homotopy commutative diagram

ΩX
ρ

}}

ρ∞

��

Ωbas(β+
∞)

))

R0
' // R∞

trg(β+
∞)

// Ω∞+2n+1KO.

The composition R0 → R∞
trg(β+

∞)→ Ω∞+2n+1KO is homotopic to (the pullback
to R0 of) the index difference with respect to the psc metric m0 ∈ R+(W0)h2n−1

◦
,

by construction, Lemma 4.2.8 and Proposition 3.8.5. Recall that in Assumption
4.2.1 (ii) we have chosen a map â : X → Ω∞+2nKO which restricts to the family
index on each Bk.

Proposition 4.2.11.

(i) The classes bas(β+
∞) and â in [X,Ω∞+2nKO] agree up to phantom maps.

(ii) The classes Ωbas(β+
∞) and Ωâ in [ΩX,Ω∞+2n+1KO] agree up to phantom

maps.
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The proof of Theorem 4.2.4 will be completed by the second statement of Propo-
sition 4.2.11. For the proof, we need general results about the relation between
phantom maps into loop spaces and homology equivalences.

Lemma 4.2.12. If the pointed map k : X → ΩZ is a phantom, then so is its
adjoint kad : ΣX → Z under the loop/suspension adjunction. If f : X → ΩZ is a
pointed phantom map, then so is the loop map Ωf : ΩX → Ω2Z.

Proof. Let l : F → ΣX be a map from a finite CW complex, and we wish to
show that kad ◦ l is nullhomotopic. After adding a disjoint basepoint to F , we
may assume that l is a pointed map. As any finite subcomplex of ΣX is contained
in the suspension ΣL of a finite (pointed) L ⊂ X, we can write l = (Σi) ◦ j,
where i : L → X is the inclusion and j : F → ΣL some map. But then kad ◦ l =
kad ◦Σi◦j = (k◦ i)ad ◦j. Since k is a phantom and L is finite, k◦ i is nullhomotopic.
Because the target of k ◦ i is an H-space, k ◦ i is nullhomotopic as a pointed map,
by [24, 4A.2, 4A.3]. Hence the adjoint (k ◦ i)ad is nullhomotopic as desired.

The second part is similar: let g : K → ΩX be a pointed map from a finite CW
complex. Then (Ωf) ◦ g is adjoint to f ◦ gad. Because f is a phantom, f ◦ gad is
nullhomotopic, and nullhomotopic as a pointed map since its target is an H-space.
Therefore (Ωf) ◦ g is nullhomotopic, as desired. �

Lemma 4.2.13. Let f : X → Y be a homology equivalence and h : Y → ΩZ be a
map to a loop space. If h ◦ f is a phantom, then so is h.

Proof. Without loss of generality, we can assume that X and Y are connected CW
complexes and that h and f are pointed maps. It is also enough to prove that h
becomes nullhomotopic when composed with pointed maps with finite CW source.
Let F be a finite pointed complex and g : F → Y be a map; we wish to show that
h ◦ g is nullhomotopic. It is enough to prove that (h ◦ g)ad = had ◦ (Σg) : ΣF →
ΣY → Z is nullhomotopic. Now as f was assumed to be a homology equivalence of
connected CW complexes, Σf : ΣX → ΣY is a homotopy equivalence. Thus there
exists a map m : ΣF → ΣX with (Σf) ◦m ' Σg. Hence

(h ◦ g)ad = had ◦ (Σg) ' had ◦ (Σf) ◦m = (h ◦ f)ad ◦m.
But by assumption, h ◦ f is a phantom and thus by Lemma 4.2.12, (h ◦ f)ad

is a phantom as well. As ΣF is finite, we find that (h ◦ g)ad and thus h ◦ g is
nullhomotopic, as claimed. �

Proof of Proposition 4.2.11. The first statement implies the second, by Lemma
4.2.12. We claim that the two compositions

bas(β+
∞) ◦Ψ, â ◦Ψ : B∞ −→ X −→ Ω∞+2nKO

agree up to phantoms. Since Ψ is a homology equivalence, this will imply—by
Lemma 4.2.13—that bas(β+

∞) and â agree up to phantoms, as desired. Let f :
K → B∞ be a map from a finite CW complex. By compactness, it lands in some
Bk. To finish the proof, it is thus enough to check that the compositions

Bk −→ X
bas(β+

∞)−→ Ω∞+2nKO and Bk −→ X
â−→ Ω∞+2nKO

agree up to phantoms. But by Assumption 4.2.1 (ii), the composition Bk → X
â→

Ω∞+2nKO is homotopic to (the pullback to Bk of) the family index ind(Ek, h
2n−1
◦ ) ∈

KO−2n(Bk), up to phantoms. Moreover, by Proposition 4.2.10, Lemma 4.2.8 and
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Proposition 3.8.5, the composition Bk → X
bas(β+

∞)→ Ω∞+2nKO is homotopic to (the
pullback to Bk of) the family index ind(Ek, h

2n−1
◦ ) ∈ KO−2n(Bk) as well. �

4.3. Starting the proof of Theorem B. Consider a sequence of spin cobordisms

∅ W K|0
K|[0,1]
 K|1

K|[1,2]
 K|2

K|[2,3]
 K|3  · · · (4.3.1)

as in the previous section. The associated fibre bundles πk : Ek → Bk admit unique
spin structures—which can be taken to be compatible—by Lemma 3.8.2. Hence we
obtain a map

hocolim
k→∞

Bk −→ hocolim
k→∞

Ω[∅,K|k]Ω
∞−1MTSpin(2n)

on homotopy colimits. Each of the maps

Ω[∅,K|k]Ω
∞−1MTSpin(2n) −→ Ω[∅,K|k+1]Ω

∞−1MTSpin(2n),

which concatenates a path with the path obtained from the Pontrjagin–Thom con-
struction applied to K|[k,k+1], is a homotopy equivalence, and as K|−1 = ∅ we
obtain a map

α∞ : B∞ := hocolim
k→∞

Bk −→ Ω∞0 MTSpin(2n) (4.3.2)

well-defined up to homotopy.
Suppose for now that the map α∞ is acyclic. Then it satisfies Assumption 4.2.1

(i), and for Assumption 4.2.1 (ii) we take the class

Ω∞(λ−2n) ∈ KO−2n(Ω∞0 MTSpin(2n))

represented by the infinite loop map of the KO-theory Thom class of MTSpin(2n).

Proposition 4.3.3. The maps ind(Ek, h
2n−1
◦ ) : Bk → Ω∞+2nKO and Bk →

B∞
α∞→ Ω∞0 MTSpin(2n)

Ω∞(λ−2n)→ Ω∞+dKO, agree up to phantom maps.

Proof. Let C be compact and C → Bk be a map which classifies a spin fibre
bundle E → C with fibre Wk and trivialised boundary. On the boundary bundle
C ×K|k, there is the psc metric h2n−1

◦ . We give the trivial fibre bundle C ×W op
k

the fibrewise psc metric mk constructed in Proposition 4.2.5 ii. We let E′ :=
Ek ∪C×K|k (C ×W op

k ), which is the bundle Ek with a trivial bundle glued to it,
and has closed fibres. Since mk is psc, we find by the additivity theorem (Corollary
3.4.11) that

ind(Ek, h
2n−1
◦ ) = ind(E′).

By construction, the map C → Bk → B∞
α∞→ Ω∞0 MTSpin(2n) is the map αE′ :

C → Ω∞0 MTSpin(2n). By the Atiyah–Singer family index theorem (Theorem
3.8.4), these two maps out of C are homotopic. �

We have verified the hypotheses of Theorem 4.2.4, which thus provides a weak
homotopy class of map

ρ : Ω∞+1MTSpin(2n) −→ R+(W0)h2n−1
◦

such that the composition

Ω∞+1MTSpin(2n)
ρ−→ R+(W0)h2n−1

◦

inddiffh−1−→ Ω∞+2n+1KO

is homotopic to Ω∞(λ−2n) up to phantom maps. This establishes Theorem B for
the manifold W = W0, and the general case then follows from Proposition 3.4.14.
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Thus in order to finish the proof of Theorem B in dimension 2n we must produce a
spin cobordism W : ∅ S2n−1 such that the following three conditions are satisfied

(i) W is 1-connected,
(ii) W is spin cobordant to D2n relative to its boundary,

(iii) the associated map α∞ is acyclic.

The main result of [19] gives criteria on W for the map α∞ to be a homology
isomorphism, as long as 2n ≥ 6. This result is enough to prove Theorem B in the
case 2n = 6, and we explain it first.

4.3.1. Finishing the proof of Theorem B: the 6-dimensional case. In this case we let
W = D6, which clearly satisfies the first two conditions. The manifold Wk is then
the k-fold connected sum #k(S3 × S3), minus a disc. To establish the acyclicity of
the map α∞ in this case, we use the following theorem.

Theorem 4.3.4 (Galatius–Randal-Williams). The map

α∞ : hocolim
k→∞

BDiff∂(#k(S3 × S3) \D6) −→ Ω∞0 MTSpin(6) (4.3.5)

is a homology equivalence.

This is a consequence of the general theorem [19, Theorem 1.8], and is explicitly
discussed in [19, §1.5]. There is one minor observation required: in [19] the notation
Diff∂(W ) denotes the colimit of the groups of diffeomorphisms fixing smaller and
smaller collars, whereas in this paper it denotes the group of diffeomorphisms fixing
a single collar. But the natural homomorphism between these groups is a weak
homotopy equivalence by an argument like that of Lemma 2.2.1, and we will not
distinguish between them.

Having a homology equivalence is not quite enough for the obstruction theory
in the previous subsection, where we needed the map to be acyclic. However, we
also have the following.

Proposition 4.3.6. The space Ω∞0 MTSpin(6) is simply-connected.

This follows from recent calculations of Galatius and the third named author
[17, Lemma 5.7]. We have been informed by Bökstedt that his calculations with
Dupont and Svane [8] can be used to give an alternative proof. It follows from
this proposition that the map (4.3.5) is actually acyclic (as the target is simply-
connected, so there are no local coefficient systems to check), which finishes the
proof of Theorem B for d = 6.

4.4. Finishing the proof of Theorem B. There are three ways in which the
case 2n > 6 is more difficult to handle than the case 2n = 6. Firstly, the infi-
nite loop space Ω∞0 MTSpin(2n) is not necessarily simply-connected, so it is not
automatic that the homology equivalences coming from [19] are acyclic. Sec-
ondly, the manifold obtained by the countable composition of the cobordisms
K = ([0, 1]× S2n−1)#(Sn × Sn) does not form a “universal spin-end” in the sense
of [19, Definition 1.7] unless 2n = 6, and so the results of [19] do not apply. Thirdly,
even if the results of [19] did apply to this stabilisation, we must show that there
is a spin cobordism W : ∅  S2n−1 whose structure map `W : W → BSpin(2n) is
n-connected and which in addition satisfies the conditions given in Section 4.3.

The first two of these difficulties can be avoided by appealing instead to the
results of [18], which build on those of [19]. These results upgrade those of [19]
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to always give acyclic maps instead of merely homology equivalences, and to allow
more general stabilisations than by “universal ends”. The third difficulty must be
confronted directly, and we shall do so shortly. First, let us state the version of the
result of [18] which we shall use, and show how to extract it from [18].

Theorem 4.4.1 (Galatius–Randal-Williams). Let W : ∅ S2n−1 be a spin cobor-
dism such that the structure map `W : W → BSpin(2n) is n-connected. Then the
map

α∞ : hocolim
k→∞

BDiff∂(Wk) −→ Ω∞0 MTSpin(2n)

is acyclic.

Proof. We adopt the notation used in the introduction of [18]. Let θ : BSpin(2n)→
BO(2n) be the map classifying the universal spin bundle of dimension 2n. Let us

write ˆ̀
W : TW → θ∗γ2n for the bundle map covering `W , write P := S2n−1, and

let ˆ̀
P := ˆ̀

W |P . We have the cobordism K = ([0, 1]× P )#(Sn × Sn) and we wish

to choose a bundle map ˆ̀
K : TK → θ∗γ2n such that

(i) ˆ̀
K |{0}×P = ˆ̀

K |{1}×P = ˆ̀
P , and

(ii) ˆ̀
K restricted to W1,1 ⊂ K is admissible in the sense of [18, Definition 1.2].

As the map θ is 2-co-connected, and we have assumed that n ≥ 3, the manifold
W1,1 has a unique θ-structure. As admissible θ-structures always exist by [18, §2.2],

it must be admissible, so it is enough to find a ˆ̀
K satisfying (i). But as K may be

obtained from {0, 1}×P by attaching a single 1-cell followed by n-cells and higher,

the only obstruction to finding a bundle map ˆ̀
K extending given bundle maps over

{0} × P and {1} × P is whether these are coherently oriented. Thus there is such

a ˆ̀
K .
The space Bunθ∂,n(Wk; ˆ̀

P ), of those θ-structures on Wk which restrict to ˆ̀
P on

∂Wk = K|k = P and have n-connected underlying map, is homotopy equivalent to
the space of (n-connected) relative lifts

P
`P //� _

��

B

θ

��

Wk
τ //

::

BO(2n)

of a Gauss map τ of Wk. The obstructions to trivialising an element of the pth
homotopy group of this space therefore lie in the groups

Hi(Dp+1 ×Wk, ∂(Dp+1 ×Wk);πi(BO(2n), B)), i ≥ 1.

As the map θ is 2-co-connected these obstruction groups vanish for i ≥ 3. As
the pair (Wk, P ) is 1-connected, the pair (Dp+1 ×Wk, ∂(Dp+1 ×Wk)) is (p + 2)-
connected, and so these obstruction groups also vanish for i ≤ p+2 so in particular

for i ≤ 2. Therefore the obstruction groups vanish for all p, so πp(Bunθ∂,n(Wk; ˆ̀
P )) =

0 for all p. Thus the natural map gives a weak homotopy equivalence

Bunθ∂,n(Wk; ˆ̀
P )//Diff∂(Wk)

∼−→ BDiff∂(Wk).

On the other hand, Bunθ∂,n(Wk; ˆ̀
P )//Diff∂(Wk) is a path component of the space

N θ
n (P, ˆ̀

P ) of [18, Definition 1.1], and by [18, Theorem 1.5] there is an acyclic map

hocolim
k→∞

N θ
n (P, ˆ̀

P ) −→ Ω∞MTSpin(2n),
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where the homotopy colimit is formed using the endomorphism − ∪ (K, ˆ̀
K) of

N θ
n (P, ˆ̀

P ). Restricting to the path component

hocolim
k→∞

Bunθ∂,n(Wk; ˆ̀
P )//Diff(Wk,K|k)

∼−→ hocolim
k→∞

Diff(Wk,K|k)

this map identifies with α∞. �

It remains to provide a spin cobordism W which satisfies all conditions we needed
so far. We equip D2n with the unique (up to isomorphism) spin structure and S2n−1

with that induced on the boundary.

Proposition 4.4.2. For 2n ≥ 6 there exists a spin cobordism W : ∅ S2n−1 such
that

(i) W is spin cobordant relative to its boundary to D2n,
(ii) the structure map `W : W → BSpin(2n) is n-connected (as BSpin(2n) is

simply-connected, it follows that W is simply-connected).

Proof. This works for more general θ-structures, but we confine ourselves to the
case we need. The space BSpin(2n) is simply-connected and has finitely-generated
homology in each degree, so there exists a finite complex X and an n-connected
map f : X → BSpin(2n). Let f∗γ2n → X be the pullback of the universal spin
vector bundle. The structure map D2n → BSpin(2n) factors as

D2n h−→ X
f−→ BSpin(2n),

which yields an isomorphism TD2n ∼= h∗f∗γ2n. By surgery below the middle
dimension in the interior of D2n (compare [51, Theorem 1.2] which also applies to
the case with boundary), we may find a cobordism relative boundary Y from D2n

to a manifold W , and a map g : Y → X extending h such that

(i) the map g|W : W → X is n-connected,
(ii) there is a stable isomorphism TY ∼= g∗f∗γ2n ⊕ R extending the isomorphism

TD2n ∼= h∗f∗γ2n.

It follows from (ii) that Y is a spin cobordism and so is W , as well. The stable

tangent bundle of W is classified by the map ϕ : W
g|W→ X

f→ BSpin(2n)
j→ BSpin

and since g|W and f are n-connected and j : BSpin(2n)→ BSpin is 2n-connected,
it follows that ϕ is n-connected. There is a homotopy commutative diagram

W
ϕ

//

`W

$$

BSpin

BSpin(2n)

j
88

from which the n-connectivity of `W follows. �

5. Computational results

In this section, we will derive the computational consequences of Theorems B
and C. To do so, we will study the effect of the maps

Ω∞+1λ−2n : Ω∞+1
0 MTSpin(2n) −→ Ω∞+2n+1KO

Ω∞+2λ−2n : Ω∞+2
0 MTSpin(2n) −→ Ω∞+2n+2KO
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on homotopy and homology, and in particular their images; Theorems B and C
show that these maps factor through R+(S2n) and R+(S2n+1) respectively, so the
images of these maps are contained in the the images of the respective secondary
index maps. This section is almost entirely homotopy-theoretic, and except for
Theorem 5.4.11, we shall not mention spaces of psc metrics any further.

Recall that MTSpin(d) is the Thom spectrum Th(−γd) of the additive inverse
of the universal vector bundle γd → BSpin(d). For any virtual spin vector bun-
dle V → X of rank r ∈ Z, we denote the KO-theoretic Thom class by λV ∈
KOr(Th(V )) = [Th(V ),ΣrKO]. Note that there is a unique lift of λV to Σrko,
the appropriate suspension of the connective KO-spectrum, which we denote by
the same symbol. In the special case V = −γd, we denote the Thom class by
λ−d ∈ [MTSpin(d),Σ−d(ko)]. We are interested in the groups

Jd,k := Im ((λ−d)∗ : πk(MTSpin(d))→ πd+k(ko)) .

5.1. Multiplicative structure of Madsen–Tillmann–Weiss spectra. The spec-
trum ko has a ring structure, and the algebraic structure of π∗(ko) is well-known,
due to Bott periodicity. There are elements η ∈ π1(ko), κ ∈ π4(ko) and β ∈ π8(ko),
such that

π∗(ko) = Z[η, κ, β]/(2η, η3, κ2 − 4β, κη). (5.1.1)

Even though MTSpin(d) is not itself a ring spectrum, there is a useful product
structure available to us as the collection {MTSpin(d)}d≥0 form what one might
call a graded ring spectrum. Namely, there are maps

µ : MTSpin(d) ∧MTSpin(e) −→ MTSpin(d+ e)

which come from the bundle maps γd × γe → γd+e which cover the Whitney sum
maps BSpin(d)× BSpin(e) → BSpin(d + e). The usual multiplicative property of
Thom classes translates into the statement that the diagram

MTSpin(d) ∧MTSpin(e)

λ−d∧λ−e

��

µ
// MTSpin(d+ e)

λ−(d+e)

��

Σ−dko ∧ Σ−eko // Σ−(d+e)ko

(where the bottom horizontal map is the ring spectrum structure map) commutes
up to homotopy. On the level of homotopy groups, this commutativity means that
for a ∈ πk(MTSpin(d)), b ∈ πl(MTSpin(e)), we have

(λ−(d+e))∗(µ(a, b)) = (λ−d)∗(a) · (λ−e)∗(b) ∈ πd+e+k+l(ko). (5.1.2)

In order to write down elements in πk(MTSpin(d)), the interpretation of this
homotopy group in terms of Pontrjagin–Thom theory is useful.

Theorem 5.1.3. The group πk(MTSpin(d)) is isomorphic to the cobordism group
of triples (M,V, φ), where M is a closed (k + d)-manifold, V → M a spin vector
bundle of rank d and φ : V ⊕ εkR ∼= TM a stable isomorphism of vector bundles.

This is just a special case of the classical Pontrjagin–Thom theorem, see e.g. [47,
Chapter II]. There are homomorphisms

πk+1(MTSpin(d− 1)) −→ πk(MTSpin(d)) −→ ΩSpin
d+k , (5.1.4)

where the symbol ΩSpin
d+k denotes the ordinary spin cobordism group of (d + k)-

manifolds. The first homomorphism sends [M,V, φ] to [M,V ⊕R, φ], and the second



52 BORIS BOTVINNIK, JOHANNES EBERT, AND OSCAR RANDAL-WILLIAMS

forgets V and φ (but keeps the spin structure on M that is induced by them). The

homomorphism πk(MTSpin(d)) → ΩSpin
d+k is surjective for k ≤ 0 and bijective for

k < 0. The image of πk(MTSpin(d)) → ΩSpin
d+k (for k > 0) is the group of all

cobordism classes which contain manifolds whose stable tangent bundle splits off
a k-dimensional trivial summand. Any d-dimensional spin manifold M defines an
element [M,TM, id] ∈ π0(MTSpin(d)), but this construction does not descend to a

homomorphism ΩSpin
d → π0(MTSpin(d)), as a (d + 1)-dimensional spin cobordism

does not generally admit a destabilisation of its tangent bundle to a d-dimensional
vector bundle compatible with the tangent bundle along its boundary (e.g. Dd+1

as a nullbordism of Sd for d even).
The product has a pleasant description in terms of manifolds: if [Mi, Vi, φi] ∈

πki(MTSpin(di)), i = 0, 1, then

[M0×M1, V0×V1, φ0×φ1] = µ([M0, V0, φ0], [M1, V1, φ1]) ∈ πk0+k1(MTSpin(d0+d1)).

It is a consequence of the Atiyah–Singer index theorem that

(λ−d)∗([M,V, φ]) = ind( /DM ) ∈ KO−d−k = πk+d(ko)

for [M,V, φ] ∈ πk(MTSpin(d)). From now on, we will denote this invariant by

the classical notation Â (M). For k + d ≡ 0 (mod 4), the value of Â (M) can be
computed in terms of characteristic classes by the formula

Â (M) =

{
〈Â(TM), [M ]〉 · βr if d+ k = 8r,
1
2 〈Â(TM), [M ]〉 · βrκ if d+ k = 8r + 4.

(5.1.5)

For each d ≥ 0 there is a class

ed := [∗,Rd, id] ∈ π−d(MTSpin(d)),

which is a generator for the group π−d(MTSpin(d)) ∼= Z. These classes clearly

satisfy µ(ed, ee) = ed+e and Â (ed) = 1. Moreover, e0 is a unit for the multiplication
µ. Multiplication by e1 defines a map

ηd : S−1 ∧MTSpin(d) −→ MTSpin(1) ∧MTSpin(d) −→ MTSpin(d+ 1), (5.1.6)

which coincides with the analogous map in [20, §3] and which on homotopy groups
induces the first map in (5.1.4). The composition

S−d
ed−→ MTSpin(d)

λ−d−→ Σ−dko

is the dth desuspension of the unit map of the ring spectrum ko. To sum up, we
obtain a homotopy commutative diagram:
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S0 e0 //

e1

((e2

!!

MTSpin(0)

η1

��

λ−0
// ko

ΣMTSpin(1)

η2

��

λ−1

66

Σ2MTSpin(2)

η3
��

λ−2

==

...

(5.1.7)

From (5.1.2) and (5.1.7), we obtain

Corollary 5.1.8. There are inclusions Jd,k ⊇ Jd−1,k+1 and Jd,kJe,l ⊆ Jd+e,k+l.

5.2. Proof of Theorem A. In this section we shall provide the homotopy theoretic
calculations which, when combined with Theorem B and C, establish Theorem A.
We first investigate the effect of the maps λ−d on rational homotopy groups.

Theorem 5.2.1. For each d ≥ 2 and d+ k ≡ 0 (mod 4), the map

(λ−d)∗ : πk(MTSpin(d))⊗Q −→ πk+d(ko)⊗Q ∼= Q

is surjective.

Proof. The proof is a standard calculation with characteristic classes, but we present
the details as they will be used later on.

Let π : V → X be a complex vector bundle of rank n whose underlying real
bundle has a spin structure. The spin structure determines a Thom class λV ∈
KO2n(Th(V )), which for this proof we shall write as λSpin

V . On the other hand,
the complex structure determines a Thom class λCV ∈ K2n(Th(V )). The groups
SO(2), Spin(2), and U(1) are all isomorphic, but Spin(2) → SO(2) is a double
cover. Identifying all these groups with U(1), it follows that a spin structure on
a complex line bundle is precisely a complex square root. In particular, the spin
structure on V determines a square root det(V )1/2 of the complex determinant

line bundle of V . The relation between the Thom classes λSpin
V and λCV under the

complexification map c : KO → KU is given by the following formula2, cf. [33,
(D.16)]:

c(λSpin
V ) = det(V )−1/2 · λCV ∈ K2n(Th(V )).

If V ⊕V ⊥ ∼= εnC, we obtain, using that det(V )⊗det(W ) = det(V ⊕W ), the formula

c(λSpin
V ⊥

) = det(V )1/2 · λCV ⊥ ∈ K
2n(Th(V ⊥)).

This relation is preserved under stabilisation, and therefore we get an equation in
the K-theory of the Thom spectrum

c(λSpin
−V ) = det(V )1/2 · λC−V ∈ K−2n(Th(−V )).

2It is important here to adopt the correct convention for K-theory Thom classes of complex
vector bundles: one should take the convention used in [33, Theorem C.8], which is characterised

by the identity (λCL)2 = (1− L) · λCL ∈ K
0(Th(L)) when L→ CP∞ is the universal line bundle.
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Similarly, if uV ∈ H2n(Th(V );Q) is the cohomological Thom class, then

ch(λCV ) = I(V ) · uV ∈ H∗(Th(V );Q)

where I(−) is the genus associated to 1−ex
x cf. [33, p. 241]. This is also multiplicative

and stable, hence gives an equation in spectrum cohomology

ch(λC−V ) = 1
I(V ) · u−V ∈ H

∗(Th(−V );Q).

After these generalities let us begin the proof of the theorem. By Corollary 5.1.8,
it is enough to consider the case d = 2, and as Spin(2) can be identified with U(1)
we may identify BSpin(2) with CP∞. Under this identification the universal rank
2 spin bundle is identified with L⊗2, the (realification of the) tensor square of the
universal complex line bundle over CP∞. Specialising the above general theory to
this case, we obtain

c(λSpin
−L⊗2) = L · λC−L⊗2 ∈ K−2(MTSpin(2)). (5.2.2)

and

ch(λC−L⊗2) =
c1(L⊗2)

1− ec1(L⊗2)
· u−2,

where u−2 ∈ H−2(MTSpin(2)) is the cohomological Thom class.
If we define x := c1(L), which generates H2(CP∞;Z), then we obtain

ch(c(λSpin
−L⊗2)) =

2x

1− e2x
ex · u−2 = − x

sinh(x)
· u−2 ∈ H∗(MTSpin(2);Q),

and following [37, Appendix B] the identity 1
sinh(2v) = 1

tanh(v) −
1

tanh(2v) yields

x

sinh(x)
= 1 +

∞∑
m=1

(−1)m
(22m − 2)Bm

(2m)!
x2m,

where Bm is the mth Bernoulli number (our notation for Bernoulli numbers also
follows [37, Appendix B]). We hence obtain the formula

ch(c(λSpin
−L⊗2)) = −

(
1 +

∞∑
m=1

(−1)m
(22m − 2)Bm

(2m)!
x2m

)
· u−2. (5.2.3)

The point of the proof is now that (22m−2)Bm

(2m)! 6= 0 for all m > 0. More precisely,

consider the diagram

π4m−2(MTSpin(2))⊗Q
(λ−2)∗

//

h

��

π4m(ko)⊗Q

h

��

H4m−2(MTSpin(2);Q)

'
��

(λ−2)∗
// H4m(ko;Q)

〈ph4m,−〉
��

H4m(BSpin(2);Q)
e // Q.

The upper vertical maps are the Hurewicz homomorphisms, which are isomorphisms
by Serre’s finiteness theorem; the left bottom vertical arrow is the inverse Thom iso-
morphism, and the right bottom vertical map is the evaluation against themth com-
ponent of the Pontrjagin character, which is also an isomorphism. The upper square
is commutative, and the above calculation shows that the lower square commutes
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if e is the evaluation against (−1)m+1 (22m−2)Bm

(2m)! x2m 6= 0 ∈ H4m(BSpin(2);Q). As

this class is nonzero, the lower horizontal map is onto, and so is the upper horizontal
map, as claimed. �

We now describe the effect of the maps λ−d onto the Z/2 summands.

Theorem 5.2.4. For each d ≥ 0 and 0 ≤ i ≡ 1, 2 (mod 8), the map

(λ−d)∗ : πi(Σ
dMTSpin(d)) −→ πi(ko) ∼= Z/2

is surjective.

Proof. That the unit map S0 → ko hits all 2-torsion follows from the work of Adams
on the J-homomorphism [2, Theorem 1.2]. But the d-fold desuspension of the unit
map is λ−d ◦ ed, by the remarks before diagram (5.1.7). �

5.3. Integral surjectivity. The following implies Theorem D.

Theorem 5.3.1. The homomorphism (λ−d)∗ : πk(MTSpin(d))→ πd+k(ko) is sur-
jective for all k ≤ d+ 1.

Proof. If k + d 6≡ 0 (mod 4), then the map is surjective by Theorem 5.2.4. In
particular, if k = d+ 1 then k + d is odd so the claim follows in this case. For the
case k ≤ d, using the multiplicative structure (5.1.8) and (5.1.1) it will be enough

to create elements k ∈ π2(MTSpin(2)) with Â (k) = κ and b ∈ π4(MTSpin(4))

with Â (b) = β. For both cases, we use Theorem 5.1.3, and both elements will be
given by a (2m − 1)-connected 4m-manifold, m = 1, 2, with the desired value of

Â (M), plus a spin vector bundle V → M of rank 2m, and a stable isomorphism
V ⊕ε2mR ∼= TM . We will write uM ∈ H4m(M) for the generator with 〈uM , [M ]〉 = 1.

Recall the formulae for the low-dimensional Â-classes and the Hirzebruch classes

Â1 = − 1

23 · 3
p1 Â2 =

1

27 · 32 · 5
(−4p2 + 7p2

1)

L1 =
1

3
p1 L2 =

1

32 · 5
(7p2 − p2

1).

(5.3.2)

We first construct the element k ∈ π2(MTSpin(2)). Let K be a K3 surface, which
is a simply-connected spin manifold. It is well-known that the intersection form of
K is q = 2(−E8)⊕3H, the direct sum of two times the negative E8-form and three
hyperbolic summands. The signature of this form is −16, which by Hirzebruch’s
signature theorem means that p1(TK) = −48uK . Therefore, Â(TK) = 2uK and

so Â (K) = κ by (5.1.5), as required. We claim that there exists a complex line
bundle L → K such that p1(L⊗2) = p1(TK). Let c ∈ H2(K) and Lc be the line
bundle with c1(La) = c. Since

p1(L⊗2
c ) = c1(L⊗2

c )2 = 4q(c) · uK ,
we have to pick c such that q(c) = −12. It is easy to see that a quadratic form
which contains a hyperbolic summand represents any even number, and therefore
such a c exists. We now claim that TK and L⊗2

c ⊕ ε2R are stably isomorphic. To
see this, we must show that the triangle in the following diagram commutes.

BSpin(2)

��

K
TK //

L⊗2
c

;;

BSpin
p1/2

// K(Z, 4)
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As the map p1/2 : BSpin −→ K(Z, 4) is 8-connected, it is enough to show that
p1(TK) = p1(L⊗2

c ⊕ ε2) ∈ H4(K;Z), but we have arranged for this to be true.
Hence there is a stable isomorphism φ : L⊗2

c ⊕ ε2 ∼= TK and the element k =
[K,Lc, φ] ∈ π2(MTSpin(2)) has the desired properties.

In the 8-dimensional case the proof is similar but more difficult (with the ex-
ception that every vector bundle on a 3-connected 8-manifold is spin, so we do not
have to take care of this condition). Let P be the 8-dimensional (−E8)-plumbing
manifold, which is 3-connected as the Dynkin diagram for E8 is contractible. Con-
sider \28P , the boundary connected sum of 28 copies of P . This is a 3-connected
parallelisable manifold, with signature −25 · 7, and its boundary ∂(\28P ) is dif-
feomorphic to S7, by the calculation of Kervaire–Milnor [30] that the group of
homotopy 7-spheres is a cyclic group of order 28. The manifold M := \28N ∪S7 D8

is parallelisable away from a point, and therefore p1(TM) = 0. The Hirzebruch
signature theorem and (5.3.2) shows that

p2(TM) = −25 · 32 · 5uM

and Â(TM) = uM , so that Â (M) = β, by (5.1.5). For r ≥ 0 let Kr := ]r(S4×S4)
and Mr := M]Kr. This is still parallelisable away from a point, whence p1(TMr) =

0, and since Mr is cobordant to M , we still have Â (Mr) = β. We now claim that for
r = 12, we can find a 4-dimensional vector bundle Vr → Kr so that the connected
sum of Vr with the trivial bundle over M yields a vector bundle over Mr with the
same Pontrjagin classes as TMr. Consider the exact sequence

KO−1(M (4)
r )

δ→ K̃O
0
(S8)→ KO0(Mr)→ KO0(M (4)

r )→ K̃O
1
(S8) = 0

coming from the cofibre sequence M
(4)
r → Mr → S8. As M

(4)
r is a bouquet of

4-spheres we have KO−1(M
(4)
r ) ∼= Z/2, and since K̃O

0
(S8) ∼= Z it follows that

the map δ is zero. Because KO0(M
(4)
r ) is free abelian, it follows that KO0(Mr)

is torsion-free, and this implies that the Pontrjagin character ph : KO0(Mr) →
H∗(Mr;Q) is injective. Therefore, a stable vector bundle on Mr is determined by
its Pontrjagin classes. Thus if we are able to find a 4-dimensional vector bundle
Vr → Kr such that ε4R]Vr →M]Kr = Mr has the same Pontrjagin classes as TMr,
then it will be stably isomorphic to TMr.

Isomorphism classes of 4-dimensional stably trivial vector bundles on Kr − ∗ '∨r
(S4∨S4) are in bijection with 2H4(Kr) ∼= (Z2)r, the group of cohomology classes

that are divisible by 2. The bijection is given by the Euler class. For each such
vector bundle, there is an obstruction in

π7(BSpin(4)) ∼= π6(S3 × S3) ∼= Z/12⊕ Z/12

against extending the vector bundle over Kr (the isomorphism π6(S3) ∼= Z/12 is
classical, see [49, p. 186]). To explain this obstruction, write x1, y1, . . . , xr, yr ∈
π4(
∨r

(S4 ∨ S4)) for the inclusions of the wedge summands, so that the attaching
map for the 8-cell of Kr is the sum of Whitehead products

∑r
i=1[xi, yi]. Thus,

if we write ρ ∈ π4(BSpin(4)) for the class with Euler class 2 and first Pontrja-
gin class zero, then the stably trivial vector bundle on Kr − ∗ with Euler class
(a1, b1, . . . , ar, br) ∈ (Z2)r ∼= 2H4(Kr) has obstruction

r∑
i=1

[ai · ρ, bi · ρ] =

(
r∑
i=1

aibi

)
· [ρ, ρ] ∈ π7(BSpin(4))
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against extending over Kr. Therefore, if we take r = 12, all ai to be equal and all
bi to be equal, then the obstruction is zero and the vector bundle can be extended.

Thus, for each c ∈ 2H4(S4 × S4), we obtain a 4-dimensional vector bundle Vc
on K12 = ]12(S4 × S4) with Euler class

(c, c, . . . , c) ∈ H4(K1;Z)r ∼= H4(Kr;Z).

When restricted to the 4-skeleton, the bundle Vc is stably trivial and so p1(Vc) = 0.
Now we take the connected sum of Vc with the trivial vector bundle on M and

get a vector bundle W12 →M12 = M]K12, with p1(W12) = 0 and Euler class

e(W12) = (c, c, . . . , c, 0) ∈ H4(K1)⊕ · · · ⊕H4(K1)⊕H4(M) = H4(M12).

Let q0 be the intersection form on H4(S4 × S4), and compute

p2(W12) = e(W12)2 = q(c, c, . . . , c, 0)uM12
= 12q0(c)uM12

.

In order to achieve that p2(W12) = p2(TM12) = 25 · 32 · 5uM12
, we have to find an

even c so that q0(c) = −23 · 3 · 5. As in the four-dimensional case, we can find an
even c with q0(c) = 8s, for each s ∈ Z, and picking s = −15 finishes the proof. �

5.3.1. Homological conclusions. We can use Theorem 5.3.1 to obtain results on the
image of H∗(Ω

∞+1MTSpin(d);F) → H∗(Ω
∞+d+1ko;F) when F is a field. When

F = Q or F2, the result is particularly nice. For F = Q and d ≥ 2, we find that

H∗(Ω
∞+1MTSpin(d);Q) −→ H∗(Ω

∞+d+1ko;Q)

is surjective, using Theorem 5.2.1. For F = F2, we have the following result, proving
Theorem G.

Proposition 5.3.3. For n ≥ 0, the Thom class maps

Ω∞+1λ−2n : Ω∞+1MTSpin(2n) −→ Ω∞+2n+1ko

Ω∞+2λ−2n : Ω∞+2MTSpin(2n) −→ Ω∞+2n+2ko

are surjective on F2-homology.

Proof. We require some information about H∗(Ω
∞+kko;F2) = H∗(Ω

k(Z×BO);F2)
as algebras over the Dyer–Lashof algebra. When k ≡ 0, 1, 2, 4 mod 8, so Ωk(Z×BO)
is disconnected, the class ξ = [1] ∈ H0(Ωk(Z × BO);F2) of the path component
corresponding to a generator of πk(Z × BO), and its inverse ξ−1 = [−1], generate
H∗(Ω

∞+kko;F2) as an algebra over the Dyer–Lashof algebra. For the remaining k
the unique nontrivial class ξ in the lowest nonvanishing reduced homology group
generates H∗(Ω

∞+kko;F2) as an algebra over the Dyer–Lashof algebra. These
claims follow from the calculations of Kochman [31] and Priddy [40], a pleasant
reference for which is [38].

By Theorems 5.2.4 and 5.3.1 the class ξ is in the image of

π∗(Ω
∞+jMTSpin(2n))

Ω∞+jλ−2n∗−→ π∗(Ω
∞+2n+jko) −→ H∗(Ω

∞+2n+jko;F2)

for j = 1, 2, and if k ≡ 0, 1, 2, 4 mod 8 then ξ−1 is too. Thus these classes are also
in the image of H∗(Ω

∞+jλ−2n;F2). As Ω∞+jλ−2n is an infinite loop map its image
on F2-homology is closed under multiplication and Dyer–Lashof operations, so the
map is surjective on F2-homology as claimed. �
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5.4. Away from the prime 2. Away from the prime 2, we can considerably
improve the surjectivity result Theorem 5.3.1 by applying work of Madsen and
Schlichtkrull [35]. All spaces X that occur in the sequel are infinite loop spaces,
so they have localisations X → X(p) which induce algebraic localisation at p on
homotopy and homology (see e.g. [48]).

Theorem 5.4.1. Let p be an odd prime. There is a loop map f : (Ω∞+2
0 ko)(p) →

Ω∞0 MTSpin(2)(p) such that the composition

(Ω∞+2
0 ko)(p)

f−→ Ω∞0 MTSpin(2)(p)
Ω∞λ−2−→ (Ω∞+2

0 ko)(p)

on π4m−2(−) is multiplication by a p-local unit times (22m−1 − 1) ·Num(Bm

2m ).

Proof. Let us write Ω2
0(Z×BO) for Ω∞+2

0 ko, β : BU
∼→ Ω2

0(Z×BU) for the Bott
equivalence and β−1 for its homotopy inverse. The proof will be based on work of
Madsen–Schlichtkrull [35]. Their work allows us to construct the following homo-
topy commutative diagram, where all infinite loop spaces are implicitly localised at
p, and k ∈ N is chosen such that its residue class generates (Z/p2)×.

CP∞

L−1

��

CP∞

L−1

��

Ω2
0(Z×BO)

1©

ρ
//

f

��

BU

2©

β−1◦Ω2(1−ψk)◦β
//

Ωs̃

��

BU

Ωs

��

Ω∞0 MTSpin(2)

3©Ω∞λ−2

��

' // Ω∞0 MTSO(2)

Ω∞(r(t)·λC
−L)

��

Ω∞ω // Q0(CP∞+ )

Ω2
0(Z×BO)

ρ
// BU

Here MTSO(2) = Th(−γ2) is the Thom spectrum of minus the tautological bundle
γ2 → BSO(2); it receives a spectrum map from MTSpin(2) coming from the map
BSpin(2)→ BSO(2). Identifying BSO(2) with CP∞, and γ2 with the tautological
complex line bundle L → CP∞, the map ω is the “inclusion” map Th(−L) →
Th(−L ⊕ L) = Σ∞CP∞+ . The map ρ = β−1 ◦ Ω2c is obtained by looping the

complexification map twice then using the inverse Bott equivalence, and ψk is the
kth Adams operation. The diagram is constructed as follows.

(i) The square 2© is constructed in [35, Section 7], specifically in the proof of
Theorem 7.8 of that paper, and the only property we require of it is the fact
that Ωs ◦ (L − 1) ' inc − [1], where inc : CP∞ → Q1(CP∞+ ) is the standard
inclusion, and −[1] denotes its translation from the 1 component to the 0
component, cf. proof of Lemma 7.5 in [35].

(ii) The map f is defined so as to make the square 1© commute. This uses the
fact that the lower map in 1© is an equivalence, as we are working at an odd
prime so BSpin(2)→ BSO(2) is a p-local equivalence.

(iii) In the square 3© the left hand map is the infinite loop map of λ−2, the KO-
theory Thom class of MTSpin(2).

(iv) In the square 3© the right hand map is the infinite loop map corresponding
to the class r(t) ·λC−L ∈ K0

(p)(MTSO(2)) in the p-local K-theory of MTSO(2),
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where λC−L ∈ K0
(p)(MTSO(2)) is the Thom class, and

r(t) =
√

1 + t ∈ K0
(p)(BSO(2)) = Z(p)[[t]] t = L− 1

is the formal power series expansion of
√

1 + t, whose coefficients lie in Z[ 1
2 ] so

are p-local integers for any odd prime p, so this defines an element in p-local
K-theory. Under the map BSpin(2)→ BSO(2) the line bundle L pulls back
to L⊗2, and so r(t) pulls back to L.

(v) The commutativity of square 3© is another way of expressing formula (5.2.2)
from the proof of Theorem 5.2.1.

We wish to compute the effect of the composition Ω∞λ−2 ◦ f on π4m−2, where
it must be multiplication by some p-local integer Am ∈ Z(p). As the map

ρ : π4m−2(Ω2
0(Z×BO)) −→ π4m−2(BU)

is an isomorphism, the effect of the composition Ω∞(r(t) ·λC−L)◦Ωs̃ on π4m−2 must

also be multiplication by Am. Because the map Ω∞(r(t) · λC−L) ◦ Ωs̃ : BU → BU
is a loop map it sends primitives in H∗(BU ;Q) to primitives, and so sends the
Chern character class ch2m−1 to a multiple of ch2m−1. As classes in π4m−2(BU)
are detected faithfully by their evaluations against ch2m−1, it follows that the map
Ω∞(r(t) ·λC−L)◦Ωs̃ sends ch2m−1 to Am ·ch2m−1. Thus we may compute in rational
cohomology.

Let us identify BSO(2) with CP∞, so the tautological bundle is given by the
universal complex line bundle L. Write x := c1(L) ∈ H2(CP∞;Z). Firstly

(Ω∞(r(t) · λC−L))∗ch2m−1 = (−1)m+1 (22m − 2) ·Bm
(2m)!

σ∗(x2m · u−2),

where σ∗ : H∗(MTSO(2)) → H∗(Ω∞0 MTSO(2)) denotes the cohomology suspen-
sion. This comes from formula (5.2.3) of the proof of Theorem 5.2.1. As ω∗(xi) =
xi+1 · u−2, we may write the above equation as

(Ω∞(r(t) · λC−L))∗ch2m−1 = (−1)m+1 (22m − 2) ·Bm
(2m)!

(Ω∞ω)∗(σ∗(x2m−1)). (5.4.2)

Secondly, we wish to compute (Ωs)∗(σ∗(x2m−1)). The class σ∗(x2m−1) is primi-
tive and Ωs is a loop map, so this class will again be primitive and so a multiple of
ch2m−1. To determine which multiple, we may pull it back further to CP∞, where

(Ωs ◦ (L− 1))∗(σ∗(x2m−1)) = (inc− [1])∗(σ∗(x2m−1)) = x2m−1.

As (L− 1)∗ch2m−1 = x2m−1/(2m− 1)!, we find that

(Ωs)∗(σ∗(x2m−1)) = (2m− 1)! · ch2m−1. (5.4.3)

Thirdly, we wish to compute (β−1 ◦Ω2(1−ψk) ◦ β)∗ch2m−1. Again, this will be
primitive and we may find which multiple of ch2m−1 it is by pulling back further
to CP∞. The map β−1 ◦Ω2(1−ψk) ◦β ◦ (L− 1) classifies the virtual vector bundle
(k − 1) + L− kLk, which may be seen by the calculation

(1− ψk)(u ∧ (L− 1)) = u ∧ ((L− 1)− k(Lk − 1)) ∈ K0(S2 ∧ CP∞),

where u = β(1) ∈ K0(S2) is the Bott element (and the Bott equivalence β is given
by multiplication by u). Thus the map β−1 ◦Ω2(1−ψk) ◦ β ◦ (L− 1) pulls ch2m−1

back to 1−k2m
(2m−1)! · x

2m−1, and so

(β−1 ◦ Ω2(1− ψk) ◦ β)∗ch2m−1 = (1− k2m) · ch2m−1. (5.4.4)
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Fourthly, the commutativity of 2© along with (5.4.2), (5.4.3), and (5.4.4) gives

(Ω∞(r(t) · λC−L) ◦ Ωs̃)∗ch2m−1 = (−1)m+1 (22m − 2) ·Bm
2m

· (1− k2m) · ch2m−1

and so

Am = (22m−1 − 1) ·Num(Bm

2m ) ·

(
(−1)m+1 · 2 · (1− k2m)

Den(Bm

2m )

)
.

Finally, it is well-known that (1−k2m)
Den(Bm/2m) is a p-local unit whenever p is an odd

prime and k generates (Z/p2)×. This follows from Lemma 2.12 and Theorem 2.6
of [1], together with von Staudt’s theorem. Hence Am is (22m−1 − 1) · Num(Bm

2m )
times a p-local unit, as claimed. �

There are two types of consequences of Theorem 5.4.1. The first concerns the
index of the groups Jd,k[ 1

2 ] ⊂ πd+k(ko)[ 1
2 ], and the other is a splitting result for the

index difference. We begin with the homotopy group statements. One derives from
Theorem 5.4.1:

Corollary 5.4.5. The subgroup J2,4m−2[ 1
2 ] ⊂ π4m(ko)[ 1

2 ] has finite index which

divides (22m−1 − 1) ·Num(Bm

2m ).

Next, we adopt the convention that (22m−1 − 1) · Num(Bm

2m ) = 1 for m = 0 and
set

A(m,n) := gcd

{
n∏
i=1

(22mi−1 − 1) ·Num
(
Bmi

2mi

) ∣∣∣∣∣mi ≥ 0,

n∑
i=1

mi = m

}
. (5.4.6)

Using products and Corollary 5.4.5, we find that J2n,4m−2n[ 1
2 ] ⊂ π4m(ko)[ 1

2 ] has
finite index dividing A(m,n). Using the maps (5.1.6) we arrive at the following
conclusion, which proves Theorem E.

Corollary 5.4.7. For each n,m, q ≥ 0, J2n+q,4m−2n−q[
1
2 ] ⊂ π4m(ko)[ 1

2 ] has finite
index dividing A(m,n).

The strength of this result can be demonstrated by some concrete calculations.
Recall that Num(Bm

2m ) = ±1 for m ∈ {1, 2, 3, 4, 5, 7} and Num(B6

12 ) = −691, so any
prime p dividing A(m, 2) in particular divides each of

1 · (22m−1 − 1) ·Num(Bm

2m )

1 · (22m−3 − 1) ·Num( Bm−1

2(m−1) )

7 · (22m−5 − 1) ·Num( Bm−2

2(m−2) )

31 · (22m−7 − 1) ·Num( Bm−3

2(m−3) )

127 · (22m−9 − 1) ·Num( Bm−4

2(m−4) )

7 · 73 · (22m−11 − 1) ·Num( Bm−5

2(m−5) )

691 · 23 · 89 · (22m−13 − 1) ·Num( Bm−6

2(m−6) )

8191 · (22m−15 − 1) ·Num( Bm−7

2(m−7) )

for m ≥ 7, and the appropriately truncated list for m ≤ 6. Computer calculation
(for which we thank Benjamin Young) shows that for m ≤ 45401 the first four



INFINITE LOOP SPACES AND POSITIVE SCALAR CURVATURE 61

conditions (or the first m for m < 4) already imply that A(m, 2) = 1. We there-
fore have that J4,4m−4[ 1

2 ] = π4m(ko)[ 1
2 ] for m ≤ 45401. Therefore, further taking

products, we see that

J4`+q,4k−q[
1
2 ] = π4`+4k(ko)[ 1

2 ]

for q ≥ 0 and k ≤ 45400 · `.

5.4.1. A homotopy splitting. The final of our computational results is the following
splitting theorem. To state it, we introduce a condition on prime numbers.

Definition 5.4.8. Recall that an odd prime number is called regular if it does not
divide any of the numbers Num(Bm

2m ). We say that an odd prime is very regular if

in addition it does not divide any of the numbers (22m−1 − 1).

Remark 5.4.9. The usual definition of a regular prime p is one which does not divide
Num(Bm) for any 2m ≤ p − 3. This is equivalent to not dividing Num(Bm

2m ) for

any 2m ≤ p − 3, and is also equivalent to not dividing Num(Bm

2m ) for any m: If

such a p divided Num(Bn

2n ) for some 2n > p − 3 then we cannot have p − 1 | 2n

(as then p | Den(Bn

2n ) by von Staudt’s theorem) so we must have p − 1 - 2n. Thus
we may find 0 6= 2n ≡ 2mmod (p− 1) with 2m ≤ p− 3. Kummer’s congruence (of
p-integers) Bn

2n ≡
Bm

2m mod p then contradicts p being regular in the usual sense.

Remark 5.4.10. By Fermat’s little theorem, if a prime p divides (22m−1 − 1) for

some m, then it also divides (22m′−1 − 1) for some m′ ≤ p−1
2 . Hence it is easy to

check the condition of not dividing any 22m−1 − 1, and for example of the regular
primes less than 100 the primes 7, 23, 31, 47, 71, 73, 79 and 89 are not very regular,
and the remaining primes 3, 5, 11, 13, 17, 19, 29, 41, 43, 53, 61, 83, and 97 are very
regular.

The space R+(Sd) is an H-space by [55], and the component R+
◦ (Sd) of the

round metric is a grouplike H-space. Therefore for each prime number p there is
a p-localisation R+

◦ (Sd) → R+
◦ (Sd)(p), which induces the corresponding algebraic

localisation on homotopy and homology.

Theorem 5.4.11. For d ≥ 6 and each odd very regular prime, there is a weak
homotopy equivalence

R+
◦ (Sd)(p) ' Ω∞+d+1

0 ko(p) × F(p)

where F is the homotopy fibre of the index difference map

inddiffgd◦ : R+
◦ (Sd) −→ Ω∞+d+1

0 ko.

Proof. We consider the composition

Ω∞+d+1
0 ko(p)

(5.4.1)−→ Ω∞+d−1
0 MTSpin(2)(p) −→ Ω∞+d−5

0 MTSpin(6)(p)

−→ Ωd−6R+
◦ (S6)(p)

L−→ R+
◦ (Sd)(p)

inddiff
gd◦−→ Ω∞+d+1

0 ko(p).

(5.4.12)

The first map is from Theorem 5.4.1 and the second is the map (5.1.6). The third
map is the map from Theorem B, looped (d− 6) times. To understand the fourth
map L, apply Theorem 3.6.1, which gives the left triangle of the (weakly) homotopy
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commutative diagram

Ωgm−1
◦
R+(Sm−1)

T //

Ω inddiff
g
m−1
◦ ((

R+(Dm)hm−1
◦

inddiffgmtor

��

µgmtor // R+(Sm)

inddiffgm
dtor
'inddiffgm◦

ww

Ω∞+m+1KO.

The (homotopy) commutativity of the right triangle follows from the additivity
theorem, more precisely Theorem 3.4.12. The (d− 6)-fold iteration of maps along
the top of this diagram (and p-localisation) yields the map L in (5.4.12); the com-
mutativity up to homotopy of this diagram shows that inddiffgd◦ ◦L is homotopic

to Ωd−6 inddiffg6◦ . By Theorem B, the composition

Ω∞+d−5
0 MTSpin(6)(p) −→ Ωd−6R+

◦ (S6)(p)
L−→ R+

◦ (Sd)(p)

inddiff
gd◦−→ Ω∞+d+1

0 ko(p)

is the same as Ω∞+d−5λ−6, and so precomposing with the map

Ω∞+d−1
0 MTSpin(2)(p) −→ Ω∞+d−5

0 MTSpin(6)(p)

gives Ω∞+d+1λ−2. Therefore, by Theorem 5.4.1 the composition (5.4.12) induces
multiplication by a p-local unit times (22m−1−1)·Num(Bm

2m ), which proves Theorem
F. If p is in addition very regular then the composition (5.4.12) is a weak homotopy
equivalence, so composing all but the last map gives a composition

Ω∞+d+1
0 ko(p)

θ−→ R+
◦ (Sd)(p)

inddiff
gd◦−→ Ω∞+d+1

0 ko(p)

which is a weak homotopy equivalence.
Let j : F → R+

◦ (Sd) be the inclusion of the homotopy fibre of the map inddiffg◦ .
Implicitly localising all spaces at p, it follows that the map

π∗(Ω
∞+d+1
0 ko)⊕ π∗(F )

θ∗⊕j∗→ π∗(R+
◦ (Sd))⊕ π∗(R+

◦ (Sd))
Σ→ π∗(R+

◦ (Sd))

is an isomorphism. But R+
◦ (Sd)(p) is an H-space, and therefore, by the classical

Eckmann–Hilton lemma, addition on π∗(R+
◦ (Sd)(p)) is induced by the H-space

multiplication µ on R+
◦ (Sd)(p). Therefore, the map

µ ◦ (θ × j) : Ω∞+d+1
0 ko(p) × F(p) −→ R+

◦ (Sd)(p)

is a weak homotopy equivalence. �

5.4.2. Sharpness. Recall that we write c : KO→ KU for the complexification map,
and that the Chern character map ch2m : π4m(ku) → Q is an isomorphism onto
Z ⊂ Q. The identity (cf. [33, Proposition 12.5])

ch(c(λ−2n)) = (−1)nÂ(γ2n) · u−2n ∈ H∗(MTSpin(2n);Q)

yields the commutative diagram

π4m−2n(MTSpin(2n))

h

��

λ−2n
// π4m−2n(Σ−2nko)

c // π4m−2n(Σ−2nku)

ch2m

��

H4m−2n(MTSpin(2n);Z) H4m(BSpin(2n);Z)'
−·u−2n
oo

(−1)nÂ4m
// Q,

and the composition along the top of the diagram has image in Z ⊂ Q. Furthermore,
the complexification map c is an isomorphism with Z[ 1

2 ]-module coefficients.
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Let p be an odd prime number such that 4m < 2p− 3. Then the map h(p) is an
isomorphism by the Atiyah–Hirzebruch spectral sequence

E2
s,t = Hs(MTSpin(2n);πt(S

0)(p)) =⇒ πs+t(MTSpin(2n))(p),

as the first p-torsion in the stable homotopy groups of spheres is in degree 2p− 3.
This shows that the image of the map

Â4m : H4m(BSpin(2n);Z(p)) −→ Q (5.4.13)

lies in Z(p) ⊂ Q. In addition, if we write jd,k for the index of Jd,k in KOd+k then
its p-adic valuation νp(jd,k) is equal to that of the index of the image of (5.4.13)
inside Z(p) (because the map c is an isomorphism with Z(p)-coefficients). We will
proceed to analyse this index.

The map
∏n
i=1BSpin(2) → BSpin(2n) induces a surjection on homology with

Z[ 1
2 ]-module coefficients (as with these coefficients BSpin(k) → BO(k) is an iso-

morphism), so the image of (5.4.13) is the same as that of

Â4m :

(
n⊗
i=1

H∗(BSpin(2);Z(p))

)
4m

−→ Q.

Identify BSpin(2) with CP∞, so that L⊗2 is the universal spin rank 2 bundle, and
let x = c1(L). Write xi for the pullback of x to the ith factor of

∏n
i=1BSpin(2).

Then the Â-class of the direct sum of the pullbacks of the n universal bundles to∏n
i=1BSpin(2) is, by multiplicativity,

n∏
i=1

xi
sinh(xi)

,

and if we let A` := (−1)` (22`−2)B`

(2`)! be the coefficient of x2` in x
sinh(x) then we find

that the image of (5.4.13) is precisely the Z(p)-linear span〈
n∏
i=1

Ami

∣∣∣∣∣ ∑mi = m

〉
Z(p)

⊂ Q.

Each A` with ` ≤ m is a p-integer: our assumption 2` ≤ 2m < p shows that
(2`)! is a p-local unit, and von Staudt’s theorem shows that Den(B`

2` ) is a p-local
unit. (Alternatively this follows from the commutative diagram in the case n = 1
and localised at p, using that composition along the top is a p-integer, and that
composition along the bottom has image the Z(p)-linear span of A`.) Thus

νp(j2n,4m−2n) = min∑
mi=m

νp

(
n∏
i=1

(22mi−1 − 1) ·Num(
Bmi

2mi
)

)
.

Thus, in terms of the constants A(m,n) defined in (5.4.6), there is an identity

j2n,4m−2n = A(m,n) · A
B

where (by Corollary 5.4.7) A is a power of 2, and B is an integer all of whose prime
factors p satisfy p ≤ 2m+ 2.
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