




Overview

�is thesis studies the geometry of objects from 2-dimensional statistical physics in the

continuum.

Chapter 1 is an introduction to Schramm-Loewner evolutions (SLE). SLEs are the canonical

family of non-self-intersecting, conformally invariant random curves with a domain-Markov

property. �e family is indexed by a parameter, usually denoted by κ, which controls the

regularity of the curve. We give the de�nition of the SLEκ process, and summarise the proofs

of some of its properties. We give particular attention to the Rohde-Schramm theorem which,

in broad terms, tells us that an SLEκ is a curve.

In Chapter 2 we introduce the Gaussian free �eld (GFF), a conformally invariant random

surface with a domain-Markov property. We explain how to couple the GFF and an SLEκ

process, in particular how a GFF can be unzipped along a reverse SLEκ to produce another

GFF. We also look at how the GFF is used to de�ne Liouville quantum gravity (LQG) surfaces,

and how thick points of the GFF relate to the quantum gravity measure.

Chapter 3 introduces a di�usion on LQG surfaces, the Liouville Brownian motion (LBM).

�e main goal of the chapter is to complete an estimate given by N. Berestycki, which gives an

upper bound for the Hausdor� dimension of times that a γ-LBM spends in α-thick points for

γ, α ∈ [0, 2). We prove the corresponding, tight, lower bound.

In Chapter 4 we give a new proof of the Rohde-Schramm theorem (which tells us that an

SLEκ is a curve), which is valid for all values of κ except κ = 8. Our proof uses the coupling of
the reverse SLEκ with the free boundary GFF to bound the derivative of the inverse of the

Loewner �ow close to the origin. Our knowledge of the structure of the GFF lets us �nd

bounds which are tight enough to ensure continuity of the SLEκ trace.
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1Schramm-Loewner Evolutions

We will now present a brief introduction to the Schramm-Loewner evolution (SLE) process.

�e chapter begins with some motivation from discrete lattice models in statistical physics. In

Section 1.2 we give the formal de�nition of the SLE process and look at some of its properties.

Finally, in Section 1.3 we take a closer look at the Rohde-Schramm theorem which states,

roughly, that an SLE process as de�ned in Section 1.2 is a curve. We will return to the Rohde-

Schramm theorem in more detail in Chapter 4.
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SLE

1.1 Motivation

In statistical physics there is o�en a physical reason for de�ning a model on a lattice. In

some materials, molecules organise themselves into regular patterns to create crystals. In

others, the lattice structure is not so rigid, but using a regular lattice is a reasonable simplifying

assumption.

Even if there is no physical motivation for introducing a lattice, it can hugely simplify the

mathematics. If we then take the limit as the lattice size tends to zero, the resulting model will

o�en have all of the characteristics we want. In some way it “forgets” the lattice used in the

de�nition.

1.1.1 Percolation

Wewill now introduce a simple lattice model to use as a concrete example. Speci�cally, we will

look at the critical percolationmodel in two dimensions.�is will be an informal introduction;

the interested reader might like to look at [Gri99,GK12] for more details.

Let us suppose that we want to answer the question “how does water percolate through porous

rock?” One way of modelling this phenomenon is to assume that the porous rock is a random

conglomeration of small, solid rock particles, with empty space in between. We also assume

that these rock particles are so small that their individual size and shape will not make a

signi�cant di�erence. So, we can simplify our model by saying that all of the rock particles (or

empty spaces) are the same size and shape.

More precisely, we will assume that all of these shapes are hexagons organised into a (�nite)

honeycomb lattice. We will set all of the hexagons at the bottom of the lattice to be rock, all of

the hexagons at the top to be empty space, and for each hexagon in the middle of the lattice we

independently choose rock or empty space with probably 1/2. See Figure 1.1 for an example.
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1.1 Motivation

Figure 1.1: Example percolation configuration. Orange represents rock,

blue represents empty space.

1.1.2 Interface

A question we can now ask is: what will the percolation interface look like? In other words, if

we pour water in at the top of the lattice, what will the line that separates “wet” from “dry”

look like?�is “wet” and “dry” intuition helps us to see that the interface must exist (due to

the boundary conditions we set) and must not cross itself.

Now let us explore the interface. Imagine that we are standing at the le� hand side of Figure

1.1 on the edge which separates the le�most orange hexagon and the blue one just “north-east”

of it. Now, keeping orange on our right and blue on our le�, we walk through the percolation

con�guration, tracing out the line seen in Figure 1.2.

Figure 1.2: The same percolation configuration as Figure 1.1, with

percolation interface drawn in black.

�e idea behind exploring the interface in this way is to informally introduce the domain
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SLE

Markov property. At each step, we know both where we are and where we will end up (the far

right hand side of the lattice in this case). We also know that the remaining exploration of the

lattice has the same type of randomness as the beginning part of it. So, let us imagine that we

are half way through the exploration. What we have really done is changed the domain we are

exploring by cutting a slit through it where we explored. We still have an orange boundary

on our right and a blue boundary on our le�, which meet at our target point.�e remaining

exploration has the same random law as the �rst half, but in a changed domain.

1.1.3 Scaling limit

�e �nal thing do with this example is look at its scaling limit. What will happen to the

interface when we take the hexagon size to zero? In the scaling limit, the exact shape of the

original hexagons should not make a di�erence, so we could distort them under a conformal

transformation without changing the limiting law.

So, the scaling limit of the interface should

– be non-self-crossing,

– have a domain Markov property, and

– be conformally invariant.

�ese are the properties which we take to characterise the Schramm-Loewner evolution (SLE).

As we will see in Section 1.2, we can use these properties to de�ne a process in the continuum

(i.e. not on a lattice). SLEs are the canonical family of curves which have these properties.

�ey are indexed by a parameter, usually denoted κ, which controls the regularity of the curve.

However, it is not obvious that an SLE de�ned using these three properties will actually be the

scaling limit of the percolation interface! Luckily we know that, on the hexagonal lattice at

least, the scaling limit is an SLE6 curve [Smi01]. Figure 1.3 shows us a closer approximation of

the scaling limit, and gives us an idea of what an SLE6 might look like.
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1.2 Formal definition and properties

Figure 1.3: Percolation interface on a small lattice.

1.2 Formal definition and properties

Now that we understand where part of the motivation for studying SLE curves comes from, we

look at the formal de�nition.�e de�nition was originally given by O. Schramm in [Sch00]

as a conjectural scaling limit for loop erased random walks (LERW), amongst other things.

His insight was to use the Loewner di�erential equation to de�ne the Loewner chain (or �ow)

of the SLE trace, rather than to try to de�ne the trace itself. So, in order to understand the

de�nition of an SLE, we must �rst introduce the Loewner di�erential equation.

1.2.1 Loewner’s equation

In 1923, Charles Loewner introduced an ordinary di�erential equation for studying how

“slit-maps” — conformal maps from a domain with a slit removed back to the domain itself —

evolve as the slit they remove grows [Löw23]. We will restrict our attention to the case where

the domain is the upper half plane,H, and the slit we remove, (γt), starts at the origin and
converges to in�nity. For the rest of this section we also assume, for simplicity, that (γt) is a
simple curve.

For t > 0 we de�ne Ht = H ∖ γ(0, t] to be the upper half plane, cut along the curve γ from 0

to t.�e slit map gt ∶ Ht → H is a conformal map which removes the slit, and leaves us with

the upper half plane. We ensure uniqueness of gt by requiring that it converges to the identity

5
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as z →∞, so

gt(z) − z → 0 as z →∞. (1.1)

We can also look at where the tip of the curve is taken at each time. Since γt /∈ Ht, we can’t

look directly at gt(γt). However, we can de�ne ξt = lims→0 gt(γt+s) for all t. �e function
(ξt) is called the Loewner transform, or driving function, of the curve (γt). Its existence is
guaranteed for any increasing family (Kt) of compactH-hulls with a local growth property.
�e simple curve (γt) is a special case.

With this setup, we can introduce Loewner’s equation.

Proposition 1.2.1 (Loewner’s equation). Let (Kt) be a family of compactH-hulls with a local

growth property, parameterised by their half-plane capacity. For any �xed z ∈ H, the map

gt ∶ Ht → H satis�es
d
dt

(gt(z)) =
2

gt(z) − ξt
,

where (ξt) is the Loewner transform of (Kt).

We will always take (gt(z))t≥0 to be the maximal solution of Loewner’s equation and, for each
z ∈ H, we will call the lifetime of the solution τ(z). For a �xed time t, the subset of H for
which Loewner’s equation still has a valid solution is {z ∈ H ∶ t < τ(z)}, and in fact we have
equality between this set and Ht :

Ht = {z ∈ H ∶ t < τ(z)} .

1.2.2 Simple example

We will now look at the simplest example we can. Rather than thinking of a straightforward

curve as a candidate for (γt), we will instead use the simplest possible driving function that
we can, ξt ≡ 0. We will see in Section 1.2.3 that starting with the driving function rather than
the curve is a useful way of proceeding.
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1.2 Formal definition and properties

Taking ξt ≡ 0, the di�erential equation that (gt) satis�es is

d
dt

(gt(z)) =
2

gt(z)
,

with g0(z) = z.�e solution is

gt(z) =
√
4t + z2,

which is the map that “maps out” the vertical slit connecting the origin with 2i
√
t. We also

see that

gt (2i
√
t) = 0,

which shows that the tip of the curve is mapped to the origin. See Figure 1.4.

gt

Figure 1.4: A visualisation of the slit map gt.
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1.2.3 Derivation of the driving function

We now de�ne a random curve which, as we discussed in Section 1.1.2, is non-self-crossing,

has a conformally invariant law, and has a domain Markov property.�at the curve is non-

self-crossing is taken care of by the fact that we are de�ning it through Loewner’s equation.

Conformal invariance comes from the way that we de�ne an SLE on other complex domains:

as the image under a conformal map of the process we de�ne onH. A careful choice of the

driving function will give us the domain Markov property.�e following derivation of the

driving function is based on [Bef15].

We informally introduced the domain Markov property (DMP) in Section 1.1.2. We need

to be more precise now. Assume that we have a random curve (γt) and the corresponding
Loewner �ow (gt). We know that, for a �xed time s > 0, the function gs maps out the curve
γ[0, s], sending the tip of the curve, γs, to the driving function, ξs. We say that (γt) has the
domain Markov property if, conditional on γ[0, s], the image of the remaining curve under
gs has the same law as the original curve (modulo the starting point). More formally, we say

that (γt) has a domain Markov property if, for any �xed time s > 0,

γ[0,∞) d= gs(γ[s,∞)) − ξs . (1.2)

See Figure 1.5 for an illustration.

�anks to the right hand side of (1.2), it makes sense to de�ne a centred map

ht(⋅) ∶= gt(⋅) − ξt ,

which always maps the tip of the curve to the origin.�en the DMP for (γt) reads

γ[0,∞) d= hs(γ[s,∞)).

�is gives us a nice composition rule for the maps (ht): let t, s > 0 and consider the map ht+s.

We can recover ht+s by �rst mapping out γ[0, s), and then mapping out hs(γ[s, t)). But, the
curve hs(γ[s, t + s)) has the same law as an independent curve γ̃[0, t). So, we can map out

8



1.2 Formal definition and properties

gs

γt

γs

gs(γs) = ξs

gs(γt)

Figure 1.5: A visualisation of the DMP for an SLE2. After the mapping

out the blue curve γ[0, s] by gs, the orange curve has the law of an SLE2

started at ξs.

the remaining curve with an independent map h̃t, which has the same law as ht.�erefore,

we get the identity

ht+s
d= h̃t ○ hs , (1.3)

where (h̃t) and (ht) are independent and identically distributed.

We ensured that the maps (gt) were unique by the condition in (1.1), which states that gt
converges to the identity as z →∞.�is gives us a condition on ht = gt − ξt , namely that

ht(z) = z − ξt +O (z−1) . (1.4)

Now, the condition in (1.3) combined with the expansion in (1.4) shows us that

h̃t ○ hs(z) = z − ξs − ξ̃t +O (z−1) ,
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SLE

where (ξ̃t) is an independent driving process with the same law as (ξt). Looking just at the
driving function, we see that

ξs+t = ξs + ξ̃t ,

which implies that ξs+t − ξs = ξ̃t. In other words, (ξt) is a continuous random process with
independent, stationary increments.�erefore, (ξt)must be a constantmultiple of a Brownian
motion with dri�.

If we want to ensure that the random process we de�ne is invariant under re�ections around

the imaginary axis (which usually holds for discrete processes), then we must have that

(ξt) d= (−ξt).�erefore, the dri� termmust be zero. Wewill make this assumption throughout.

We can at last give the de�nition of the SLE �ow:

De�nition 1.2.2 (SLE �ow). Let (gt) be a family of conformal maps which, for any z ∈ H, are
the maximal solution to the SDE

dgt(z) =
2dt

gt(z) − ξt
, (1.5)

with g0(z) = 0, where ξt =
√

κBt for κ ≥ 0 and (Bt) a standard Brownian motion.�en (gt)
is an SLE �ow.

1.2.4 Basic properties

As we now have the de�nition of the SLE process, we can begin to study its properties. Unless

otherwise stated, the properties of SLE we discuss in this section were �rst shown in [RS11].

First of all, we will refresh our ideas of the domain of de�nition of the solution. Heuristically,

the solution to (1.5) is de�ned, for each z ∈ H, up to the �rst time that “gt(z) = ξt”. We de�ne

the time τ(z), for each z ∈ H, as the lifetime of the solution. Using the lifetime, we can de�ne
the hulls

Kt = {z ∈ H ∶ t ≥ τ(z)} ,

which are the points “eaten” by the SLE �ow. We also de�ne Ht = H ∖ Kt as the region on

which the solution is still de�ned. We know further that gt ∶ Ht → H.
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For the SLE process de�ned as in De�nition 1.2.2 to be a good model of random curves and

interfaces, we need to check that it satis�es some basic conditions. One of the properties that

we need is that an SLE hull is generated by a curve, i.e. there exists a curve (γt) such that, for
each t, the hull Kt is equal to the union of γ(0, t] and the bounded components ofH∖ γ[0, t].
�is might seem like an obvious fact, given the way that we introduced Loewner’s equation

in Section 1.2.1. However, Loewner’s equation as we used in in Section 1.2.1 started with the

curve (γt), de�ned the maps (gt) from the curve, and then found the driving function (ξt).
We are now starting with the driving function, calculating the maps, and hoping that we get a

curve at the end. (Even the fact that we can de�ne Kt as we have is non-trivial, and comes

from the Loewner-Kufare� theorem [Kuf43].)

�at the SLE hulls are generated by a curve is such an important fact that we will come back

to it in much more detail in Section 1.3. For now, we will simply assume that such a curve (γt)
does exist.

Because we have assumed the existence of the curve, we can talk about how the curve depends

on the parameter κ, the parameter that scales the Brownian motion in the driving function.

�e behaviour splits into three phases:

– For κ ∈ [0, 4], the curve (γt) is simple and Kt = γ[0, t].

– For κ ∈ (4, 8), the curve is no longer simple.

– For κ ∈ [8,∞), the curve is space �lling.

�e second case needs a little more detail. If κ ∈ (4, 8), then for any z ∈ H we know that

z /∈ γ[0,∞) almost surely. However z ∈ ⋃t>0 Kt almost surely. So, the curve will avoid any

point you pick in advance, but the curve will end up “swallowing” the entire half plane. See

Figure 1.6 for examples of the �rst two phases.
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κ = 1 κ = 2

κ = 4 κ = 6

Figure 1.6: Examples of SLE processes for κ = 1, 2, 4, 6, all driven by

the same Brownian motion. All SLE simulations based on algorithms

in [Ken07].
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1.2.5 More complex properties and generalisations

We saw in Section 1.1.2 that SLE6 is the scaling limit of the interface in critical percolation

on a triangular lattice [Smi01].�ere are a few other relationships between scaling limits of

discrete models and SLE curves. Schramm’s original motivation for introducing SLE processes

was to study loop erased random walks.

�e loop erased random walk (LERW) is constructed using a simple random walk on a lattice.

As the name implies, whenever the simple random walk creates a loop, that loop is deleted.

�e remainder of the curve forms the LERW. Schramm conjectured that the scaling limit was

equal to an SLE2 curve under the assumption that the scaling limit was conformally invariant

and, in [LSW11], Lawler, Schramm and Werner completed the proof. More precisely, they

show the following.

�eorem 1.2.3. Let D ⊊ C be a simply connected domain containing the origin. Let µδ be the

law of a LERW on the grid δZ2 started at the origin and stopped when it hits ∂D. Let ν be the

law of a radial SLE2 in D starting at the origin.�en µδ converges weakly to ν as δ → 0 under
the metric on unparameterised curves given by

ρ(γ, β) = inf sup
t∈[0,1]

∣γ̂t − β̂t ∣,

where the in�mum is over all parameterisations γ̂ and β̂ in [0, 1] of γ and β respectively.

Also conjectured by Schramm in [Sch00] and proved by Lawler, Schramm and Werner

in [LSW11] is the relationship between SLE8 and the Peano curve of a uniform spanning tree

(UST). A spanning tree is a subset of a �nite, connected graph G = (V , E) such that for every
pair of vertices u, v ∈ V , there is exactly one path connecting u and v.�e UST on a graph is
a spanning tree chosen uniformly at random from the set of all spanning trees of that graph.

If G is a planar graph then we can de�ne the Peano curve as the boundary between the UST

and its dual.

With these de�nitions, Lawler, Schramm andWerner prove the following:
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�eorem 1.2.4. Let D ⊂ C be a domain with a C1 boundary consisting of a simple curve, and

let a, b ∈ ∂D be distinct. Let α, β denote the two arcs of ∂D whose endpoints are a and b. Finally,

let Gδ be the graph approximation of D in the grid δZ2, and let γδ denote the Peano curve of a

UST on Gδ with wired (i.e. conditionally closed) edges close to α and free (conditionally open)

edges close to β.�en γδ converges to the law of a chordal SLE8 connecting a and b.

�e mode of convergence in�eorem 1.2.4 is the same as that in�eorem 1.2.3. �e fact

that scaling limits of the LERW and UST appear in the same paper is due to the relationship

between them: if we pick two vertices u, v ∈ V and look at the path on the UST connecting u
and v, that path has the same law as a LERW between u and v. Indeed, Wilson’s algorithm

uses this fact to construct the UST from successive LERWs [Wil96].

�e original proof of the Rohde-Schramm theorem (in [RS11]) works only for κ ≠ 8. �e
extension to the κ = 8 case comes from estimates about the UST; in the κ = 8 case, the scaling
limit helps us to deduce the existence of the curve, rather than the other way around [LSW11].

�e Rohde-Schramm theorem for κ ≥ 0 as proved in [RS11, LSW11] tells us that, for a forward
chordal SLE de�ned in the upper half planeH, the SLE hull (Kt) is generated by a continuous
curve (γt). For any suitably smooth domain D ⊊ C, the existence of the chordal SLE curve

can be deduced from its existence inH and conformal invariance of the law of SLE. However,

if the boundary of the domain D is not regular, for example if it contains the “Topologists’ sine

curve” {z ∈ C ∶ z = x + i sin(1/x), x > 0}, then the existence of the curve γ in this domain is

no longer a simple consequence of its existence inH.�e proof for existence of the curve in

general domains of this type was given in [GRS12].

�ere is also evidence to support the conjecture that the scaling limit of self-avoiding walks

(SAW) is an SLE8/3 curve. In [LSW02a], Lawler, Schramm and Werner show that “if the

scaling limit of SAWs exists and is conformally covariant, then the scaling limit of SAWs

is SLE8/3”. In [Ken02], Kennedy gives further numerical evidence to support the claim. An

SLE8/3 also has a restriction property.�e restriction property roughly says that the law of an

SLE8/3 conditioned to be in some subset ofH is identical to the law of an SLE8/3 de�ned in
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that subset. More precisely, in [LSW03] the authors show the following:

�eorem 1.2.5 (Restriction). Let K be the hull of an SLE8/3 inH.�en for any simply connected

subset H ⊂ H such that H ∖ H is bounded and bounded away from the origin, the law of K

conditioned on K ⊂ H is equal to the law of Φ(K), where Φ ∶ H→ H is a conformal map that

preserves 0 and∞. Furthermore,

P [K ⊂ H] = Φ′(0)5/8,

when Φ is chosen so that Φ(z)/z → 1 as z →∞.

�e theory in [LSW03] is more general than our statement of�eorem 1.2.5.�e restriction

measures that Lawler, Schramm andWerner studied are a one parameter family of laws Pα

on “closed, random subsets K ofH such that K ∩R = 0, K is unbounded andH ∖ K has two

connected components.”�en with H and Φ chosen as in�eorem 1.2.5, Pα is de�ned as

Pα(K ⊂ H) = Φ′(0)α .

�ey show that the only measure Pα that is supported on simple curves is P5/8, and that is the
law of chordal SLE8/3.

An SLE6 has something known as the locality property. Informally, that means that “an

SLE6 process does not feel where the boundary of the domain lies as long as it does not hit

it” [LSW01b].�e exact formulation is

�eorem 1.2.6 (Locality). Let f ∶ D → H be a conformal homeomorphism from a domain

D ⊂ C ontoH. Suppose that N is a (suitably nice) neighbourhood of 0 inH. De�ne D∗ = f −1(N)
and let f ∗ be the conformal homeomorphism ψN ○ f from D∗ onto H, where ψN ∶ N → H is

such that ψN(0) = 0 and ψ′
N(0) = 1. Let Kt ⊂ D be the hull of SLE6 starting at f −1(0), and

let τ ∶= sup{t ∶ K t ∩ ∂D∗ ∩ ∂D = ∅}. Let K∗
t denote SLE6 in D∗ started at f ∗(−1)(0), and let

τ∗ ∶= sup{t ∶ K∗
t ∩ ∂D∗ ∩ ∂D = ∅}.

�en the law of (Kt , t < τ) is that of a time change of (K∗
t , t < τ∗).

15



SLE

�e locality property is one of the reasons that SLE6 was seen as the natural candidate for

the scaling limit of the percolation interface. Recall from Section 1.1.2 that the percolation

interface was explored from its starting point by looking only at the hexagons one step ahead of

it. For a given realisation of the percolation con�guration, we could change the con�guration

however we liked away from the interface without a�ecting the interface itself.

Along with the restriction property of SLE8/3, the Hausdor� dimension of the curve γ was

found in [LSW03] to be 4/3. �e Hausdor� dimension of SLE6 was then found to be 7/4
in [Bef04]. Full generality for κ > 0 was achieved in [Bef08] with the following theorem:

�eorem 1.2.7 (Hausdor� dimension). Let (Kt) be an SLEκ in the upper half plane with κ > 0,
let γ be its trace and letH ∶= γ([0,∞)).�en, almost surely,

dimH(H) = 2 ∧ (1 + κ
8
) .

�e de�nition of SLE has been extended from the one that we gave in De�nition 1.2.2.�e

introduction of extra marked points on the boundary of the domain that the SLE is growing

in gave rise to the SLEκ(ρ) processes. �e value of ρ at the marked points gives a force,

either towards or away from, the marked point, allowing �ner control of the shape of the SLE

curve [LSW03].

Furthermore, multiple SLEs can now be de�ned in the same domain at once [Dub07a]. So

long as the values of κ and ρ are chosen carefully, the order in which growth of the SLEκ(ρ)
processes is viewed does notmatter. Dubedat showed this by considering the partition function

of SLEs and �nding relationships between κ and ρ to form a set of “commutation relations”.

He also showed how, once we can de�ne multiple SLEs at once, we can couple them together

in useful ways. As we saw in Section 1.2.3, SLEs form the one parameter family of conformally

invariant, non-self-intersecting random curves with a domain Markov property. Consider the

outer boundary of an SLEκ hull for κ > 8.�at outer boundary will be conformally invariant
and non-self-intersecting.�erefore, we would expect them to be related to an SLE. Indeed,

the outer boundary is an SLEκ̂(ρ) process, with κ̂ = 16/κ [Dub07b].
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1.3 The Rohde-Schramm theorem

From the same theory we can also deduce reversibility for SLE: a chordal SLE in a domain

D connecting the point a ∈ ∂D to b ∈ ∂D has the same law as a chordal SLE connecting the
point b to a.�is was proved earlier, for κ ≤ 4, in [Zha08].

SLEs have been a useful tool in studying other objects. �e series of papers that we have

cited several times already, [LSW01b,LSW01c,LSW02b], use SLE theory to derive Brownian

intersection exponents in various (planar) settings. �ese are summarised in [LSW01a].

Amongst many other results, they complete a long standing conjecture by Benoit Mandelbrot

from 1983 that the Hausdor� dimension of the frontier of a planar Brownian motion is

4/3 [MW83].

�ere have also been many advances more recently using couplings between SLE processes

and the Gaussian free �eld, for example [SS09] and [SS13]. We will discuss them more in

Chapters 2 and 4.

1.3 The Rohde-Schramm theorem

We will now summarize the proof of the Rohde-Schramm theorem found in [RS11]. First of

all, we state the condition that we will check to prove that an SLE hull is generated by a curve.

It is found as�eorem 4.1 in [RS11]. It is worth noting its generality: there are few assumptions

made on the driving function. In particular, the driving function is not necessarily random.

�eorem 1.3.1. Let ξ ∶ [0,∞) → R be continuous, and let gt be the corresponding solution of

Loewner’s equation, (1.5). Assume that

γ(t) ∶= lim
y→0

g−1t (iy + ξt)

exists for all t ∈ [0,∞) and is continuous. �en g−1t extends continuously to H and Ht is the

unbounded connected component ofH ∖ γ([0, t]), for every t ∈ [0,∞).

�roughout the rest of this section, we will de�ne

ft ∶= g−1t and f̂t(z) ∶= ft(z + ξt) = g−1t (z + ξt), (1.6)
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and we consider the driving function ξt =
√

κBt , where (Bt) is a standard Brownian motion
and κ ≥ 0.

1.3.1 �eorem statement

�e following theorem is essentially the proof of assumption in�eorem 1.3.1 in the speci�c

case of the SLE driving function. It appears as�eorem 3.6 in [RS11], but we have simpli�ed

the proof a little.

�eorem 1.3.2. De�ne

H(y, t) ∶= f̂t(iy) for (y, t) ∈ (0,∞) × [0,∞).

If κ ≠ 8, then almost surely H(y, t) extends continuously to [0,∞) × [0,∞).

�e simpli�cation of our proof comes from the fact that we have made the rectangle S that
appears in the proof a tiny bit bigger.�e sides of our rectangle have lengths which decay like

2− j(1−ε), while in the original the sides decay like 2− j.�is lets us use a simpler result about the

regularity of Brownian motion (Lemma 1.3.3, which gives an easier estimate on the probability

that the increment of the driving function stays within the rectangle S .�is is used just a�er
(1.14).

We now give the lemma about the regularity of Brownian motion.�e modulus of continuity

and localHölder properties of Brownianmotion arewell known.�e following is a quantitative

bound for the smallest scale on a speci�c partition at which these might fail.

Lemma 1.3.3. Let B be a standard Brownian motion, �x ε > 0 and let

J = sup{ j ∈ N ∶ ∃k ∈ [1, 22 j] ∩N, s ∈ [0, 2−2 j] ∶ ∣Bk2−2 j − Bk2−2 j+s∣ ≥ 2− j(1−ε)} .

�en for n ∈ N,
P [J ≥ n] ≲ 2−cn

for any constant c > 0.
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1.3 The Rohde-Schramm theorem

Proof. Fix a constant c > 0. Let

p(k, j) = P [∃s ∈ [0, 2−2 j] ∶ ∣Bk2−2 j+s − Bk2−2 j ∣ ≥ 2− j(1−ε)] .

�e Markov property and scale invariance of Brownian motion tells us that

p(k, j) = P [∃s ∈ [0, 1] ∶ ∣B22 js∣ ≥ 2− j(1−ε)]

= P [max
s∈[0,1]

∣Bs∣ ≥ 2ε j]

≲ exp (−22ε j−1) .

�erefore, a simple union bound gives us, for a �xed j ∈ N,

P [∃k ∈ [1, 22 j] ∩N, s ∈ [0, 1] ∶ ∣Bk2−2 j+s − Bk2−2 j ∣ ≥ 2− j(1−ε)] ≤
22 j

∑
k=1

p(k, j)

≲ 22 j exp (−22ε j−1)

= exp (−22ε j−1 + 2 j log 2) .

For large enough j, we know 22ε j−1 ≥ (c + 2) j log 2. And so we see that

P [∃k ∈ [1, 22 j] ∩N, s ∈ [0, 1] ∶ ∣Bk2−2 j+s − Bk2−2 j ∣ ≥ 2− j(1−ε)] ≲ 2−c j.

Again, a union bound shows us that, for n ∈ N,

P [∃ j ≥ n, k ∈ [1, 22 j] ∩N, s ∈ [0, 1] ∶ ∣Bk2−2 j+s − Bk2−2 j ∣ ≥ 2− j(1−ε)] ≲
∞
∑
j=n
2−c j. (1.7)

�e event we are considering on the le� hand side of (1.7) is exactly the event {J ≥ n}. So we
see that

P [J ≥ n] ≲
∞
∑
j=n
2−c j ≲ 2−cn .

Since the constant c > 0 was chosen arbitrarily, we are done.

�e proof of�eorem 1.3.2 also needs a result about the tail behaviour of ∣ f̂ ′t (iy)∣ for small
y. We will state the result now, but postpone the proof to Section 1.3.2. �e following is a

simpli�ed version of Corollary 3.5 in [RS11]. (�e simpli�cation in this case comes only from

the fact that we are not stating it in as much generality as the original.)
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�eorem 1.3.4. Let κ ≠ 8, and let f̂t be the centred inverse of the Loewner �ow as de�ned in

(1.6).�en there exist constants ε > 0, δ > 0 and C > 0 such that

P [∣ f̂ ′t (iy)∣ > y−(1−ε)] ≤ Cy2+δ

for all t ∈ [0, 1] and y ∈ (0, 1).

Assuming�eorem 1.3.4 for now, we can give the proof of�eorem 1.3.2.

Proof of�eorem 1.3.2. First we note that, by scale invariance, it is enough to prove that H is

continuous on [0, 1) × [0, 1). Since we already know continuity of H for y > 0, our area of
focus will be very close to the origin.

Now, �x κ ≠ 8.�en, for j, k ∈ N with k < 22 j, let R( j, k) be the rectangle

R( j, k) ∶= [2− j−1, 2− j] × [k2−2 j, (k + 1)2−2 j],

and let

d( j, k) ∶= diamH(R( j, k)).

�e set H(R( j, k)) represents how the vertical line segment [i2− j−1, i2− j] is “smeared out”
under the map f̂t for t ∈ [k2−2 j, (k + 1)2−2 j]. Our aim is to show that these sets decrease in
diameter fast enough as j →∞ for us to deduce the continuity of H close to y = 0. We will do
this by showing

∞
∑
j=0

22 j−1
∑
k=0

P [d( j, k) ≥ 2− jσ] <∞ (1.8)

for some σ > 0, allowing us to use a Borel-Cantelli argument.

We start by �xing a pair ( j, k). We want to prove that

P [d( j, k) ≥ 2− jσ] ≤ C2−(2+δ) j (1.9)

for some δ > 0 and some constant C > 0, which will be enough to show that (1.8) holds.

Wewould like to look at a �nite set of times rather than the entire interval [k2−2 j, (k + 1)2−2 j] or,
ideally, a single time. We will do this by giving ourselves more freedom in space to compensate
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for less freedom in time. Wewant to choose a rectangle S ⊂ C and a time t̂ ∈ [k2−2 j, (k+1)2−2 j]
in such a way that

H(R( j, k)) ⊂ f̂ t̂(S). (1.10)

We will �nd that choosing the rectangle

S ∶= {x + iy ∈ C ∶ ∣x∣ ≤ 23− j(1−ε), y ∈ [2−1− j(1−ε), 23− j(1−ε)]} (1.11)

will work, for some small ε > 0 to be speci�ed later. We will now show that (1.10) holds. Let
t̂ = k2−2 j and let t ∈ [k2−2 j, (k+ 1)2−2 j], and choose y ∈ [2− j−1, 2− j].�en, using the de�nitions
from (1.6), we can write

f̂t(iy) = f̂ t̂ (g t̂ ( f̂t(iy)) − ξ t̂) .

If we can show that g t̂ ( f̂t(iy)) − ξ t̂ ∈ S, then that is enough to prove (1.10). We know that if t̂
is very close to t, then g t̂ ( f̂t(iy)) − ξ t̂ is very close to iy, a point in the interior of S. So, we

write

g t̂( f̂t(iy)) − ξ t̂ − iy = g t̂( f̂t(iy)) − (iy + ξt) + ξt − ξ t̂ . (1.12)

Now let φ(s) = gs ( f̂t(iy)) for s ≤ t.�en φ(t) = iy + ξt , and

φ(t̂) − φ(t) = g t̂( f̂t(iy)) − (iy + ξt). (1.13)

Combining (1.12) and (1.13) and using the triangle inequality gives us the bound

∣g t̂( f̂t(iy)) − ξ t̂ − iy∣ ≤ ∣φ(t̂) − φ(t)∣ + ∣ξt − ξ t̂ ∣. (1.14)

By Lemma 1.3.3 we know that, for large enough j, the second term on the right hand side of

(1.14) is bounded by ∣ξt − ξ t̂ ∣ ≤ 2− j(1−ε). We will now bound the �rst term.

Since gs satis�es Loewner’s equation, we know that φs does also:

∂
∂s

(φ(s)) = 2
φ(s) − ξs

. (1.15)

As with the standard Loewner �ow, we can see that I (∂sφ(s)) < 0, and so the imaginary part
of φ(s) is decreasing.�erefore I(φ(s)) ≥ I(φ(t)) ≥ 2− j−1. Substituting this inequality into
(1.15) gives us the bound

∣ ∂
∂s

(φ(s))∣ ≤ 22+ j. (1.16)
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Since we have also ensured that t − t̂ ≤ 2−2 j, (1.16) lets us deduce that

∣φ(t̂) − φ(t)∣ ≤ 22− j. (1.17)

�is shows that

∣I(g t̂( f̂t(iy)) − ξ t̂ − iy)∣ = ∣φ(t̂) − φ(t)∣ ≤ 22− j,

which, since the imaginary part of gt decreases and t̂ ≤ t, implies that

I(g t̂( f̂t(iy)) − ξ t̂) ∈ [2−1− j(1−ε), 23− j(1−ε)]. (1.18)

Substituting the bound (1.17) into (1.14) lets us see that

∣g t̂( f̂t(iy)) − ξ t̂ − iy∣ ≤ 22− j + 2− j(1−ε) ≤ 23− j(1−ε). (1.19)

�erefore, we certainly have

∣R(g t̂( f̂t(iy)) − ξ t̂)∣ ≤ 23− j(1−ε).

Combining (1.18) and (1.3.1) shows that f̂t(iy) ∈ f̂ t̂(S), and so (1.10) holds.

So our focus shi�s from d( j, k) to diam( f̂ t̂(S)). Koebe’s distortion theorem lets us say that
the ratio ∣ f̂ ′t (z)∣/∣ f̂ ′t (i2− j)∣ is bounded by some constant if z ∈ S.�erefore, there is a constant
C such that

diam( f̂t(S)) ≤ C2−3 diam(S) ∣ f̂ ′t (i2− j)∣

= C2− j(1−ε)∣ f̂ ′t (i2− j)∣.

In order to show (1.9) therefore, it is su�cient to show

P [C2− j(1−ε)∣ f̂ ′k2−2 j(i2− j)∣ > 2−σ j] ≤ C̃2−(2+δ) j (1.20)

for constants C , C̃ and some δ > 0, σ > 0 and ε > 0 which we are free to choose. Rearranging
(1.20) we see

P [C2− j(1−ε)∣ f̂ ′k2−2 j(i2− j)∣ > 2−σ j] = P [∣ f̂ ′k2−2 j(i2− j)∣ > 2(1−σ−ε) j/C] .
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�eorem 1.3.4 tells us that we can choose suitable ε, σ > 0 to ensure the existence of δ > 0,
proving (1.20). Combined with the regularity result from Lemma 1.3.3, we can see that

P [d( j, k) ≥ 2− jσ] ≤ P [∣ f̂ ′k22 j(i2− j)∣ > 2(1−σ−ε) j/C] + P [J ≥ j]

≲ 2−(2+δ) j,

showing that 1.9 holds.

Now that we know that (1.8) holds, the Borel-Cantelli lemma tells us that there are �nitely

many pairs ( j, k) such that d( j, k) ≥ 2− jσ . So, d( j, k) ≤ C2− jσ for some (random) constant

C > 0. �is lets us deduce the continuity of H as y → 0. Let (y′, t′) and (y′′, t′′) be in the
square (0, 1)2, and de�ne

j0 =min{ j ∈ N ∶ j >max{− log2 y′, − log2 y′′, −
1
2
log2 ∣t′ − t′′∣}} .

�e de�nition of j0 means that any rectangle R( j0, k) has its largest y value greater than both
y′ and y′′, since both y′ < 2− j0 and y′′ < 2− j0 . It also ensures that the rectangles R( j0, k′) and
R( j0, k′′) which contain the times t′ and t′′ respectively are adjacent (or the same rectangle),
since ∣t′ − t′′∣ < 2−2 j0 .�en we know that

∣H(y′, t′) −H(y′′, t′′)∣ ≤ ∑
j≥ j0

(d( j, k′j) + d( j, k′′j )) ≲ C2−σ j0 , (1.21)

which shows that for every t0 ∈ [0, 1) the limit of H(y, t) exists as (y, t)→ (0, t0). See Figure
1.7 for an illustration of the sum in (1.21). �is is enough to extend the de�nition of H to

[0,∞) × [0, 1), completing the proof.

1.3.2 Tail bounds of ∣ f̂ ′t (iy)∣

We now restate and prove�eorem 1.3.4, the theorem needed to show (1.20) in the proof of

�eorem 1.3.2. We give a simpli�ed version of the original proof from [RS11] here (omitting

some of the more technical results), and a new proof using the Gaussian free �eld in Chapter

4.
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⋅ (y′′, t′′)

⋅ (y′, t′)
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y

Figure 1.7: The sum in (1.21).

�eorem 1.3.5. Let κ ≠ 8, and let f̂t be the centred inverse of the Loewner �ow as de�ned in

(1.6).�en there exist constants ε > 0 and δ > 0 and C > 0 such that

P [∣ f̂ ′t (iy)∣ > y−(1−ε)] ≤ Cy2+δ

for all t ∈ [0, 1] and y ∈ (0, 1).

We need some supporting results before we prove�eorem 1.3.5. First we introduce a time

change. For z ∈ H and u ∈ R, de�ne the time Tu(z) to be

Tu(z) = sup{t ∈ R ∶ I(gt(z)) ≥ eu} . (1.22)

Recall that I(gt(z)) is decreasing. So, if u is chosen so that eu > I(z), there is no positive
time at which we will have I(gt(z)) ≥ eu. We get around this by using the fact that Brownian

motion is reversible and we can easily de�ne B−t.�is lets us run the Loewner �ow (1.5) in

reverse, and so we can make sense of negative values of Tu(z).

We can do more than just run the Loewner �ow in reverse. A result that we will use in this
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1.3 The Rohde-Schramm theorem

section, and go through more thoroughly in Chapter 4, is that, for all �xed t > 0, the maps

z ↦ g−t(z)

and

z ↦ f̂t(z) − ξt

have the same distribution.

Now, �x ẑ = x̂ + i ŷ ∈ H. With the time change from t to u as de�ned in (1.22), then for every

u ∈ R set

Zu = gTu(ẑ)(ẑ) − ξTu(ẑ),

the position of the original point ẑ at time u under the centred Loewner �ow. It will be useful

to decompose Z into its real and imaginary parts:

Xu =R(Zu) Yu = I(Zu) = eu .

We will also need the function

ϕ(u) = ŷ
Yu

∣g′Tu(ẑ)(ẑ)∣.

We claim that Tu(z) ≠ +−∞, almost surely. (For proof of the claim, see [RS11].)�at means that
the map u ↦ Tu(ẑ) is a bijection, and so all of the processes de�ned in the previous paragraph
can be run at the original speed t as well. We will sometimes need to take derivatives with

respect to the original clock t, and will try to make it clear from context when we do this. In

that case, we simply write

Zt = Xt + iYt = gt(ẑ) − ξt .

We can now state and prove the following, a slight simpli�cation of�eorem 3.2 in [RS11].

Proposition 1.3.6. Let ẑ = x̂ + ŷ ∈ H, and assume that y ∈ (0, 1). Let b ∈ R and de�ne a and λ

by

a = 2b + κb(1 − b)/2 λ = 4b + κb(1 − 2b)/2.
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Set

F(ẑ) = ŷaE [(1 + X20)b∣g′T0(ẑ)(ẑ)∣
a] .

�en

F(ẑ) = (1 + (x̂/ ŷ)2)b ŷλ .

Proof. First, de�ne

F̂(x + iy) = (1 + (x/y)2)b yλ , (1.23)

and then set

Mu = ϕ(u)a F̂(Zu).

Our aim is to show thatMu is a martingale. We will show that it is a local martingale in the

original t-clock, and omit the technical details used to show that it is a true martingale in the

u-clock. Itô’s formula tells us that

dM = F̂(Z)dϕa + ϕadF̂(Z) + d ⟨F(Z), ϕa⟩ . (1.24)

Now, we break (1.24) down further. To do that, we need to calculate dX and dY in the t-clock.

We know that Zt satis�es Loewner’s equation, (1.5), and so taking real and imaginary parts

lets us see that

dXt =
2Xt

X2t + Y 2t
dt − dξt , dYt = −

2Yt

X2t + Y 2t
dt.

�erefore, we can write

dF̂(Zt) = ∂x F̂dXt + ∂y F̂dYt +
1
2
∂2x F̂d ⟨X⟩t

= ∂x F̂ ( 2Xt

X2t + Y 2t
dt − dξt) + ∂y F̂ (− 2Yt

X2t + Y 2t
dt) − κ

2
∂2x F̂dt

= −∂x F̂dξt + (2(X2t + Y 2t )−1(Xt∂x F̂ − Yt∂y F̂) −
κ
2
∂2x F̂) dt. (1.25)

Calculating dϕa takes a couple of steps. Firstly, it will be easiest to calculate

d logϕt = d log ∣g′t(ẑ)∣ − d logYt .
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1.3 The Rohde-Schramm theorem

We see that

∂t log ∣g′t(ẑ)∣ =R(∂z∂tgt(ẑ)
g′t(ẑ)

)

=R(g′t(ẑ)−1∂z
2

gt(ẑ) − ξt
)

= −2R ((gt(ẑ) − ξt)−2) (1.26)

= −2R ((Xt + iYt)−2)

= −2 X2t − Y 2t
(X2t + Y 2t )

2 .

�erefore,

d logϕt = 2
Y 2t − X2t

(X2t + Y 2t )
2dt − d logYt

= (2 Y 2t − X2t
(X2t + Y 2t )

2 +
2

Xt + Yt
) dt

= 4Y 2t
(X2t + Y 2t )2

dt.

Now, we can calculate

dϕa
t = aϕa

t d logϕt

= 4aϕa
t

Y 2t
(X2t + Y 2t )2

dt. (1.27)

Substituting (1.25) and (1.27) into (1.24), we see that

dMt = F̂(Zt)(4aϕa
t

Y 2t
(X2t + Y 2t )2

dt)+

+ ϕa
t (−∂x F̂dξt + (2(X2t + Y 2t )−1(Xt∂x F̂(Zt) − Yt∂y F̂(Zt)) −

κ
2
∂2x F̂(Zt)) dt)

= −ϕa
t ∂x F̂(Zt)dξt+

+ ϕa
t (

4aY 2t
(X2t + Y 2t )2

F̂(Zt) +
2Xt

X2t + Y 2t
∂x F̂(Zt) −

2Yt

X2t + Y 2t
∂y F̂(Zt) −

κ
2
∂2x F̂(Zt)) dt.

(1.28)

To show thatMt is a local martingale, we need to check that the dri� term in (1.28) is equal to

zero. Recalling the de�nition of F̂(x + iy) from (1.23), we can calculate

∂x F̂(x + iy) = 2bx
x2 + y2

F̂(x + iy),

27



SLE

∂y F̂(x + iy) = 1
y(x2 + y2) ((λ − 2b)(x2 + y2) + 2by2) F̂(x + iy),

and

∂2x F̂(x + iy) = 1
(x2 + y2)2 (2by

2 − 2b(1 − 2b)x2) F̂(x + iy).

We now look at the di�erential operator from the dri� term of (1.28):

4ay2

(x2 + y2)2 F̂ +
2x

x2 + y2
∂x F̂ −

2y
x2 + y2

∂y F̂ −
κ
2
∂2x F̂ =

= (x2 + y2)−2 (4ay2 + 4bx2 − 2 ((λ − 2b)(x2 + y2) + 2by2) − κ (by2 − b(1 − 2b)x2)) F̂

= (x2 + y2)−2 ((4b − 2(λ − 2b) + κb(1 − 2b))x2 + (4a − 2(λ − 2b) − 4b − bκ)y2) F̂

= (x2 + y2)−2 ((8b + κb(1 − 2b) − 2λ)x2 + (4a − κb − 2λ)y2) F̂ . (1.29)

We can see from the de�nition of λ = 4b + κb(1− 2b)/2 that the x2 coe�cient in (1.29) is zero.
Recalling that a = 2b + κb(1 − b)/2, we see that

4a − κb = 8b + 2κb(1 − b) − κb

= 8b + κb(1 − 2b),

and so the y2 coe�cient in (1.29) is also equal to zero.�erefore, we see thatMt is indeed a

local martingale.

As we said at the start, we will admit the fact that Mu is a true martingale. �e details can

be found in Lemma 2.2 of [RS11]. Given that it is a martingale, we of course know that

Mu = E [M0]. Expanding this in terms of F̂, we see that

ϕ(û)a F̂(ẑ) = E [ϕ(0)a F̂(z(0))] , (1.30)

where û = logI(ẑ). Substituting in the de�nition of ϕ and F̂, (1.30) reads

F̂(ẑ) = ŷaE [(1 + X20)∣g′Tu(ẑ)(ẑ)] ,

which shows that F̂ satis�es the de�nition of F from the statement of this proposition, and

the proof is �nished.

We can now give the proof of our required tail bound.
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1.3 The Rohde-Schramm theorem

Proof of�eorem 1.3.5. We use the fact that, for a �xed time t, the maps z ↦ f̂ ′t (z) and
z ↦ g′−t(z) have the same distribution to prove the result that we want for the map g′−t,

i.e. there exist constants ε > 0, C > 0 and δ > 0 such that

P [∣g′−t(iy)∣ > y−(1−ε)] ≤ Cy2+δ

for all t ∈ [0, 1] and y ∈ (0, 1).

Recall that in (1.26) we calculated that

∂t log ∣g′t(z)∣ = −2R ((gt(z) − ξt)−2) .

We also de�ned the time u = u(z, t) as u = logI(gt(z)), and can calculate

∂tu = ∂tI(gt(z))
I(gt(z))

= 1
I(gt(z))

I( 2
gt(z) − ξt

)

= 1
I(gt(z))

−2 (I(gt(z)) − ξt)
∣gt(z) − ξt ∣2

= −2∣gt(z) − ξt ∣−2.

�erefore, a simple application of the chain rule gives

∂u log ∣g′t(z)∣ =
R ((gt(z) − ξt)−2)

∣gt(z) − ξt ∣−2
, (1.31)

which lets us see immediately that ∂u log ∣g′t(z)∣ ≤ 1.

Setting ũ = logI(g−t(iy)), the bound inferred from (1.31) lets us see that

log ∣g′−t(iy)∣ − log ∣g′Tu(iy)(iy)∣ ≤ ∣ũ − u∣

which, in turn, shows RRRRRRRRRRR

g′−t(iy)
g′Tu(iy)(iy)

RRRRRRRRRRR
≤ exp (∣ũ − u∣) .

In particular, we see that

P [∣g′−t(iy)∣ > y−(1−ε)] ≤ P [e ∣ũ∣∣g′T0(iy)∣ > y−(1−ε)] .

29



SLE

So, we need to control ũ to complete the proof. Since we have assumed that y ≤ 1 and t < 1,
we know that there is some constant c such that ũ ≤ c almost surely, uniformly in t and y.

Also, on the event {∣g′−t(iy)∣ > y−(1−ε)} Koebe’s 1/4 theorem tells us that I(gt(iy)) ≥ yε/4.
�erefore, on the event {∣g′−t(iy)∣ > y−(1−ε)} we know that ũ ≥ ε log y − log 4. Combining the
two bounds shows that there is some constant C such that, on the event {∣g′−t(iy)∣ > y−(1−ε)},
we have e ∣ũ∣ ≤ Cy−ε. So we can write

P [∣g′−t(iy)∣ > y−(1−ε)] ≤ P [Cy1−ε∣g′T0(iy)∣ > 1]

≤ Ca ya(1−ε)E [∣g′T0(iy)∣
a] , (1.32)

where the last line comes fromMarkov’s inequality and holds for any a ∈ R.

If we choose a, b and λ as in Proposition 1.3.6, we can re-write the right hand side of (1.32) as

Ca ya(1−ε)E [∣g′T0(iy)∣
a] = Ca y−aεF(iy) = Ca yλ−aε ,

and so

P [∣g′−t(iy)∣ > y−(1−ε)] ≤ Ca yλ−aε .

Optimising over our choice of b, we �nd that the value which gives the largest λ is

b = (8 + κ)/(4κ),

at which point

λ = 1 + 4
κ
+ κ
16
.

We can see that λ > 2 for every value of κ > 0 (except κ = 8, at which point λ = 2).�erefore,
for κ ≠ 8, we can choose ε > 0 small enough to ensure that λ − aε > 2, completing the
proof.

It is worth noting at this point that the bound for P [∣ f̂t(iy)∣ > y−(1−ε)], namely Cy1+ 4κ + κ
16−aε

is, up to logarithmic terms, exactly the same as the bound that we derive in Chapter 4, using

totally di�erent methods.
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2Liouville Quantum Gravityand the Gaussian Free Field

We will now give a brief introduction to the Gaussian free �eld and related objects, including

quantum gravity surfaces and Liouville Brownian motion.
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2.1 Motivation

Before we give the formal de�nition of the Gaussian free �eld (GFF), we will put it in context

and explain to the reader how it �ts into the subject as a whole.

2.1.1 Conformally invariant random surface

We met the idea of conformal invariance for systems at criticality with our percolation ex-

ample in Section 1.1.2, and from that we motivated the construction of random curves with

a conformally invariant law.�e link between conformal invariance and statistical physics

systems at criticality is much more general than that, however. It was introduced in [BPZ84],

and there has been much work since then.

One example is the KPZ equation1 from [KPZ88]. It is a non-linear relationship between

scaling exponents, which gives us a one-to-one correspondence between the scaling exponent

of an object when viewed in Euclidean geometry and the scaling exponent of the same object

when viewed in random (Liouville quantum gravity) geometry. If x is the scaling exponent of

an object in Euclidean geometry and ∆ is the scaling exponent of the same object in Liouville

quantum gravity (LQG) geometry, then the KPZ equation tells us that

x = γ2

4
∆2 + (1 − γ2

4
)∆, (2.1)

where γ is a parameter related to the “central charge” of the random geometry. Although

known for a long time in the Physics literature, the KPZ equation in (2.1) has only recently

been rigorously proven (see [DS11,RV11,BGRV14]).

1�is is the KPZ equation associated with Knizhnik, Polyakov and Zamolodchikov, not to be confused with

the identically named equation due to Kardar, Parisi and Zhang.

32



2.1 Motivation

2.1.2 Discretising the surface

Early work on random surfaces in the mathematics literature dealt with discrete random

surfaces, or random lattices. In [AS03], Angel and Schramm study random triangulations of

the sphere.�ey show the existence of a weak limit of random triangulations of the sphere with

n vertices as n →∞, which can be viewed as “a probability measure on random triangulations
of the plane.” A similar random graph, the uniform in�nite planar quadrangulation (UIPQ)

was introduced in [Kri05].

A purely mathematical reason to introduce random lattices such as these is that there is

no good reason to prefer a regular lattice, say Z2, over any other. Why choose Z2 and not

a triangular lattice, for instance? Picking a lattice uniformly at random gets around this

di�culty.

It can also make the mathematics easier. Benjamini and Curien studied the set of “pioneer

points” of a random walk on the UIPQ [BC13].�e set of pioneer points of a simple random

walk is essentially the outer boundary of the trace of the random walk. For a simple random

walk (SRW) on a regular lattice, the evolution of the set of pioneer points will depend heavily

on its shape. However, they found that the evolution of the set of pioneer points of a SRW

on the UIPQ depends only on its boundary length and not on its shape, thanks to a spatial

Markov property of the UIPQ.

2.1.3 Taking the scaling limit

From the discrete lattices discussed in Section 2.1.2, we would like to obtain continuous

random surfaces. We will give a brief description of how we do this now. Much more detail

can be found in the set of lecture notes [Mie15], for example.

�e �rst step is to �nd the limiting radius of the random quadrangulations. For a given

quadrangulation Q = (V(Q), E(Q)) and a vertex v ∈ V(Q), the radius of Q as seen from v
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is de�ned as

R(Q , v) = max
u∈V(Q)

dQ(u, v),

where dQ is the graph distance on the quadrangulation Q. Using that de�nition, we can state

the following theorem from [CS04].

�eorem 2.1.1. LetQn be the set of all planar quadrangulations with n faces. Let Qn ∈ Qn be

chosen uniformly at random and, conditionally on Qn, let v∗ be chosen uniformly at random

from the set of its vertices, V(Qn).�en

( 9
8n

)
1/4

R(Qn , v∗)→ supZ − inf Z ,

where Z is the head of a Brownian snake with lifetime 1.

�e proof uses the Cori-Vauquelin-Schae�er (CVS) bijection between rooted planar quadran-

gulations with n faces and one distinguished vertex, and rooted plane trees with n edges with

suitably labelled vertices and one extra vertex [CV81, Sch98].�e labels on the vertices are

“suitable” if the di�erence in labels on two neighbouring vertices is in {−1, 0,+1}. To obtain
the quadrangulation from the tree, explore the vertices in contour order, clockwise, starting

from the root. Connect each vertex visited to the next vertex encountered in the exploration

with a label exactly one less than the vertex to be attached. See Figure 2.1 for an example.�e

edges we form as we complete these attachments form the edges of our quadrangulation.

By keeping track of the distance from the root of our tree as we do the contour exploration we

get a contour process of length 2n. If the tree we explore, Tn, is chosen uniformly at random

from the set of all rooted plane trees with n edges, then the contour process is uniformly

chosen from the set of excursions of length 2n. We will call this contour process Cn.

If, instead of keeping track of the distance from the root as we explore, we keep track of the label,

then we get a label process Ln. If we have chosen our labels uniformly at random amongst the

set of admissible labels then, conditionally on the tree, we can see that the process Ln behaves

like a random walk with jumps of {−1, 0,+1} along each branch of the tree. Note that Ln gives

us the graph distance from the distinguished vertex in the corresponding quadrangulation.
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Figure 2.1: The CVS bijection. Left: a rooted tree with an added vertex

is drawn in blue, and the corresponding rooted quadrangulation is drawn

around it in orange. Right: the same quadrangulation is drawn in orange,

with the tree drawn inside it in blue.

We get the following convergence.�e proof can be found in, for example [LGM12]

�eorem 2.1.2. Let Cn be the contour process of a tree Tn chosen uniformly at random from the

set of all rooted plane trees with n vertices.�en

(Cn(2nt)√
2n

)
t∈[0,1]

dÐ→ e as n →∞,

where e is a Brownian excursion.

We get a similar convergence result for the label process Ln. But, Ln behaves like a randomwalk

along branches of the tree, conditional on the tree.�e tree already has a “central limit theorem”
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style rescaling, so rather than scaling Ln by n−1/2 we need to rescale by (n−1/2)−1/2 = n−1/4.

�en we get the following.

�eorem 2.1.3. Let Cn and Ln be the contour process and label process of a tree chosen uniformly

at random from the set of all rooted plane trees with n vertices.�en

(Cn(2nt)√
2n

, ( 9
8n

)
1/4

Ln(2nt))
t∈[0,1]

dÐ→ (e, Z) as n →∞,

where e is a Brownian excursion and, conditional on e, Z is a continuous, centred Gaussian

process with covariance function

Cov(Zs , Zt) = inf {eu ∶ u ∈ [s, t]} ,

for s, t ∈ [0, 1] with s ≤ t.

�ese distributional properties were used in [LG13,Mie13] to show convergence of UIPQ,

suitably renormalised, to the Brownian map, in the Gromov-Hausdor� topology. Some

unexpected things appear in this scaling limit: the Brownian map is homeomorphic to the

sphere not the plane [LGP08,Mie08], and it has a Hausdor� dimension of 4 and not 2 [LG07].

2.1.4 Starting in the continuum

Another approach to introducing random surfaces is to work directly in the continuum.�is

was done bymathematicians, in some way, before they explicitly talked about random surfaces.

In the early work of Lawler and Werner, [LW99], Duplantier “recognised the emergence of an

underlying quantum gravity structure” [Dup06].

It was constructed more explicitly in the work of Duplantier and She�eld [DS11]. �ey

constructed the volume form of a random manifold out of the exponential of the Gaussian

free �eld and, using that volume form, were able to show a version of the KPZ equation that we

saw in Section 2.1.1. A slightly di�erent version of the KPZ equation was proven concurrently

in [RV11], using Kahane’s theory of multiplicative chaos [Kah85].
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For now though, we concentrate on the Duplantier–She�eld construction. (A good introduc-

tion can be found in the survey [Gar12].) A di�culty that we will come across in Section 2.2 is

that the GFF is not de�ned pointwise, so its exponential is not well de�ned. However, with a

sequence of regularisations, the measure converges.

We will discuss the construction of the measure more thoroughly in Section 2.4.1. For now,

we will simply assume the existence of a measure µ which can be thought of, formally, as

µ(dz) = eγh(z)dz,

where h is a Gaussian free �eld.

Since Duplantier and She�eld constructed the volume form for the random manifold rather

than a metric, in order to prove the KPZ equation they had to use a slightly modi�ed version

of the de�nition of quantum scaling exponent. Let Bε(z) be the ball of radius ε centred around

the point z.�en, if z ∈ D, the “isothermal quantum ball” of area δ is Bδ(z) = Bε̃(z), where
ε̃ = sup{ε ∶ µ(Bε(z)) ≤ δ}. For X ⊂ D the Euclidean and quantum neighbourhoods are

de�ned as

Bε(X) = {z ∶ Bε(z) ∩ X ≠ ∅}

and

Bδ(X) = {z ∶ Bδ(z) ∩ X ≠ ∅} ,

respectively. From these we de�ne the Euclidean scaling exponent x and quantum scaling

exponent ∆ as

lim
ε→0

logE [L(Bε(X))]
log ε2

=∶ x

and

lim
δ→0

logE [µ(Bδ(X))]
log δ

=∶ ∆,

respectively. With these de�nitions, Duplantier and She�eld obtained the KPZ equation as

follows.

�eorem 2.1.4. Fix γ ∈ [0, 2) and a compact subset D̃ ⊂ D. Let X ⊂ D be a (possibly random)

set, independent of the measure µ. If X ∩ D̃ has a Euclidean scaling exponent x then it has a
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quantum scaling exponent ∆, where ∆ is the non-negative solution to the KPZ equation

x = γ2

4
∆2 + (1 − γ2

4
)∆.

Note that the quantum neighbourhood of X is de�ned in terms of Euclidean balls. It is thought

that, as δ → 0, these Euclidean balls will approximate true quantum balls.

2.1.5 Linking the two approaches

We have now met two di�erent ways of de�ning a random surface, both motivated from

di�erent but related ideas from statistical physics.�e scaling limit approach of Section 2.1.3

has the advantage, amongst other things, of being equipped with a metric space structure.

An advantage of the approach of starting in the continuum is, again amongst others, that the

space comes with a conformal structure inherited from the GFF. However, we cannot view

the random surface as a metric space yet.

�ere has recently been signi�cant progress in linking the two spaces. For γ =
√
8/3, Miller

and She�eld have been able to show that the Brownian map and Liouville quantum gravity

can be endowed with the other’s structure in a consistent way [MS15,MS16a,MS16b].

2.1.6 �e Gaussian free �eld

We brie�y mentioned the Gaussian free �eld in the construction of the LQG measure from

Section 2.1.4.�at is far from its only use! It appears in areas as diverse as the limit of the height

function in random domino tilings (dimers) [Ken01], �uctuations of the Hastings–Levitov

growth model [Sil15], random matrix theory [RV07], �uctuations for the Ginzburg-Landau

interface model [Mil11] and Internal DLA [JLS14].
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2.2 Definition and Properties

Wewill now give the de�nition of the Gaussian free �eld. It does not actually exist as a function,

but instead as a distribution2, and we will make it clear in exactly what space we are viewing

the GFF. A more thorough introduction to the GFF can be found in [Ber15c], for example.

Our presentation follows those notes, along with elements from [Mil13].

We concentrate mostly on the zero (or Dirichlet) boundary Gaussian free �eld in this sub-

section.�e Neumann (or free) boundary GFF is constructed in a similar way, but with a

di�erent Green function.�e Green function we consider in Section 2.2.1 is that of a stopped

Brownian motion. To de�ne the Neumann boundary GFF, we would use the Green function

for a re�ected Brownian motion.

We will meet the Neumann boundary GFF again in Section 2.3, and examine it more thor-

oughly in Chapter 4.

2.2.1 Green function

Before we can de�ne the GFF, we need to spend some time looking at the Green function

de�ned from a stopped Brownian motion. Let D ⊂ Rd be some domain and, for x , y ∈ D, let
pDt (x , y) be the transition probability for a Brownian motion killed when it leaves D.�en
the Green function GD is given by

GD(x , y) = π∫
∞

0
pDt (x , y)dt. (2.2)

�e factor of π in (2.2) is to make some calculations later on easier. Nomatter what the domain

D is, GD will always be in�nite on the diagonal. We can see this by noting that

pDt (x , y) = pt(x , y)πD
t (x , y),

where pt is the standard Brownian transition density and πD
t (x , y) is the probability that

a Brownian bridge from x to y with duration t stays in D. Clearly, πD
t (x , y) → 1 as t → 0.

2�is is distribution in the sense of generalised function, not in the sense of the law of a random variable.
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Combining that with the fact that pt(x , x) = (2πt)−d/2 shows that GD(x , x) is not �nite.

However, as soon as we are o� the diagonal, GD(x , y)might be �nite. We will call any domain
D for which GD is �nite o� the diagonal a Greenian domain. All bounded domains will be

Greenian, but there are unbounded Greenian domains: the upper half plane H in C is an

example. A re�ection argument lets us see that pHt (x , y) = pt(x , y) − pt(x , y), which lets us
calculate explicitly that

GH(x , y) = log
∣x − y∣
∣x − y∣ . (2.3)

In two dimensions, when we view R2 as the complex plane, the Green function inherits

a conformal invariance property from Brownian motion (see�eorem 7.20 of [MP10] for

example).

Proposition 2.2.1. Let D ⊂ C be a domain and ϕ ∶ D → ϕ(D) a conformal map.�en for all

x , y ∈ D,

GD(x , y) = Gϕ(D)(ϕ(x), ϕ(y)).

From the explicit form ofGH in (2.3) and Proposition 2.2.1 we can calculate the Green function

GD for any simply connected domain D ⊊ C. However, there is an even more explicit form,

which arises from the following. More detail can be found in section 1.2 of [Ber15c].

Proposition 2.2.2. Let D ⊂ C be a bounded domain. For any �xed x ∈ D, the Green function

GD(x , ⋅)

– is harmonic in D ∖ {x},

– is equal to zero on the boundary, and

– satis�es ∆GD(x , ⋅) = −2πδx(⋅) in the distributional sense.
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Proposition 2.2.2 tells us that for any bounded domain D ⊂ C,

GD(x , y) = − log ∣x − y∣ − G̃(x , y),

where G̃(x , y) is the harmonic extension of − log ∣x − ⋅∣ from ∂D to D.

2.2.2 De�nition

We would like to de�ne the Gaussian free �eld as a Gaussian process on a Greenian domain

D ⊂ C whose covariance function is equal to the Green function GD.�is leads us into some

di�culties, because the Green function GD is not �nite on the diagonal, so our Gaussian

process will not have a well-de�ned variance. As a consequence, it will not be a function. We

can, however, de�ne it as a stochastic process indexed by signed measures, or as a distribution

in an appropriate generalised function space.

First, we need to be clear about the variance of the process. LetM+ be the set of positive

measures with �nite energy

ED(ρ) =∬
D2
GD(x , y)ρ(dx)ρ(dy), (2.4)

and letM be the set of signed measures ρ which can be decomposed as ρ = ρ+ − ρ−, where

ρ+, ρ− ∈M+. We can also talk about the energy of a function f , so long as the measure given

by ρ(dx) = f (x)dx is inM. In that case, we will write ED( f ) = ED(ρ).

Also, for ρ1, ρ2 ∈M, we de�ne the cross energy of ρ1 and ρ2 as

ED(ρ1, ρ2) =∬
D2
GD(x , y)ρ1(dx)ρ2(dy).

Note that ED(⋅, ⋅) is symmetric and bilinear.

We can now de�ne the zero boundary Gaussian free �eld.

De�nition 2.2.3. �e zero boundary Gaussian free �eld is a stochastic process (hρ)ρ∈M

indexed by the set of measuresM, where each random variable hρ is a centred Gaussian with

variance equal to the energy ED(ρ). Furthermore, for ρ1, ρ2 ∈M, the random variables hρ1

and hρ2 have covariance equal to the cross energy ED(ρ1, ρ2).
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We need to check whether De�nition 2.2.3 actually makes sense.�e �rst point we need to

check is that ED(ρ) ≥ 0 for all ρ ∈M. For that, we need the Gauss–Green formula which
states that

∫
D
∇ f ⋅ ∇g = −∫

D
f∆g ,

for all suitably smooth function f , g which are compactly supported in D. We will also use

the Dirichlet inner product, de�ned as

⟨ f , g⟩∇ = 1
2π ∫D

∇ f (x) ⋅ ∇g(x)dx , (2.5)

where the factor (2π)−1 is to make calculations later on simpler.

�e following proposition is well known, but we include the proof for completeness.

Proposition 2.2.4. �e energy ED(ρ) is non-negative for all ρ ∈M.

In order to prove Proposition 2.2.4, we will use a molli�cation argument. We will need the

following result.

Lemma 2.2.5. Let θ ∶ R2 → R be a smooth, radially symmetric, positive function with compact

support and

∫
R2

θ(x)dx = 1

For ε > 0, let θε(x) = ε−2θ(x/ε). De�ne the function Gε
D(x , y) by

Gε
D(x , y) =∬ GD(u, v)θε(u − x)θε(v − y)dudv .

�en

Gε
D(x , y) ≤ GD(x , y)

for all x , y ∈ D.

Proof. We will prove that

∫ GD(x , v)θε(v − y)dv ≤ GD(x , y). (2.6)

Iterating (2.6) is enough to prove the lemma.
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Let δ = dist(x , y).�e integral changes behaviour depending on whether or not v ∈ Bδ(y).
We will split the integral up and treat the cases separately. Start by writing

∫ GD(x , v)θε(v−y)dv = ∫
v∈Bδ(y)

GD(x , v)θε(v−y)dv+∫
v∉Bδ(y)

GD(x , v)θε(v−y)dv . (2.7)

We know thatGD(x , ⋅) is harmonic in D∖{x}. We have ensured that Bδ(y) ⊂ D∖{x}, and so
GD(x , ⋅) is harmonic in Bδ(y). Because θ is radially symmetric, we can use the circle average

property of harmonic functions to see that

∫
v∈Bδ(y)

GD(x , v)θε(v − y)dv = GD(x , y)∫
v∈Bδ(y)

θε(v − y)dv . (2.8)

We cannot use the circle average argument to get a similar equality for the second term in

(2.7), because any circle that we integrate over will encircle the point x. However, the circle

average argument gives us an inequality. Consider a circle of radius r > dist(x , y), centred
at y. Let Fr be the harmonic extension of GD(x , ⋅) from ∂Br(y) to Br(y).�en we certainly
have

Fr(y) =
1
2π ∫

2π

0
GD(x , y + re iψ)dψ.

�e function Fr is harmonic in Br(y) and agrees with GD(x , ⋅) on ∂Br(y). Because GD(x , ⋅)
has an in�nite singularity in Br(y), we see that

Fr(y) ≤ GD(x , y).

�e choice of r > dist(x , y) was arbitrary, and so we can bound the second term of (2.7) by

∫
v∉Bδ(y)

GD(x , v)θε(v − y)dv ≤ GD(x , y)∫
v∉Bδ(y)

θε(v − y)dv . (2.9)

Substituting (2.8) and (2.9) into (2.7) gives

∫ GD(x , v)θε(v − y)dv ≤ GD(x , y)∫
v∈Bδ(y)

θε(v − y)dv +GD(x , y)∫
v∉Bδ(y)

θε(v − y)dv

= GD(x , y),

�nishing the proof.
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Proof of Proposition 2.2.4. First, assume that ρ is a smooth, compactly supported function in

D and let f be a function which satis�es ∆ f = 2πρ in D, and f = 0 on ∂D.�en

ED(ρ) =∬
D2
GD(x , y)ρ(x)ρ(y)dxdy

= ∫
D

ρ(x) (∫
D
GD(x , y)ρ(y)dy) dx

= −∫
D

ρ(x) f (x)dx by Proposition 2.2.2

= − 1
2π ∫D

f (x)∆ f (x)dx

= 1
2π ∫D

∇ f (x) ⋅ ∇ f (x)dx using integration by parts

= 1
2π ∫D

∣∇ f (x)∣2dx

�e �nal line shows us that ED(ρ) ≥ 0.

To extend from smooth functions to all measures ρ ∈M, let θ be a smooth molli�er satisfying

the conditions in Lemma 2.2.5, de�ne θε(x) = ε−2θ(x/ε), and

ρε(x) = ∫
D

θε(y − x)ρ(dy).

We know, from the calculations above, that ED(ρε) ≥ 0. Now, note that

ED(ρε) =∬
D2
GD(x , y)ρε(x)ρε(y)dxdy

=∬
D2
GD(x , y) (∫

D
θε(u − x)ρ(du))(∫

D
θε(v − y)ρ(dv)) dxdy

=∬
D2

(∬
D2
GD(x , y)θε(u − x)θε(v − y)dxdy) ρ(du)ρ(dv).

Using the notation from Lemma 2.2.5, we see

ED(ρε) =∬
D2
Gε

D(u, v)ρ(du)ρ(dv).

�erefore, using the result from Lemma 2.2.5, we can use the dominated convergence theorem

to see that

lim
ε→0
ED(ρε) = ED(ρ),

and so ED(ρ) ≥ 0.
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Bilinearity of ED(⋅, ⋅) lets us see that, for any λ1, λ2, . . . , λn ∈ R and ρ1, ρ2, . . . , ρn ∈M, we have
n

∑
i=1

λihρ i
d= h∑n

i=1 λ i ρ i . (2.10)

Positivity of ED from Proposition 2.2.4 shows us that ED (∑n
i=1 λiρi) ≥ 0, so the right hand side

of (2.10) is well de�ned.�erefore, we see that

E [exp(i
n

∑
i=1

λihρ i)] = E [exp (ih∑n
i=1 λ i ρ i)]

= exp(− 1
2
ED (

n

∑
i=1

λiρi)) ,

and so the �nite dimensional distributions of (hρ)ρ∈M are well de�ned.

2.2.3 Viewing the Gaussian free �eld as a distribution

Suppose that ρ is a smooth, compactly supported function on D, and f is a function that

satis�es ∆ f = 2πρ.�en, in the proof of Proposition 2.2.4, we derived the identity

ED(ρ) = ⟨ f , f ⟩∇ .

�is motivates an alternative de�nition of the Gaussian free �eld.

Let C∞
0 (D) be the set of smooth, compactly supported functions on D, and let H10(D) be the

closure of C∞
0 (D) under the Dirichlet inner product (2.5). Let { fn} be an orthonormal basis

of H10(D).

De�nition 2.2.6. Let { fn} be an orthonormal basis of H10(D), and {αn} a sequence of
i.i.d. standard Gaussian random variables. We de�ne the GFF as the formal sum

h =∑
n

αn fn .

�e �rst thing to note here is that the GFF h as de�ned in De�nition 2.2.6 is not a member of

H10(D). Its squared H10(D) norm is

∥h∥2∇ =∑
n

α2n ∥ fn∥
2
∇ =∑

n
α2n ,
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which diverges almost surely.

Instead, let us de�ne the partial sum hN = ∑N
n αn fn, which is a member of H10(D).�en for a

function f ∈ H10(D), we can consider the series

⟨hN , f ⟩∇ =
N

∑
n=1

αn ⟨ fn , f ⟩∇ .

By independence and symmetry of the {αn}, we know that (⟨hN , f ⟩∇)N∈N is a martingale.
Furthermore, we see that

E [⟨hN , f ⟩2∇] =
N

∑
n=1

⟨ fn , f ⟩∇E [α2n]

=
N

∑
n=1

⟨ fn , f ⟩∇

≤ ∥ f ∥2∇ <∞,

i.e. (⟨hN , f ⟩∇)n∈N is an L2(P) bounded martingale.�erefore, it converges almost surely and
in L2(P) by the martingale convergence theorem. Its limit, which we write as ⟨h, f ⟩∇, is a
Gaussian random variable whose variance is∑n ⟨ fn , f ⟩∇ = ∥ f ∥2∇.

For functions f , g ∈ H10(D), we can use the same de�nition using partial sums to see that

⟨h, f + g⟩∇ = ⟨h, f ⟩∇ + ⟨h, g⟩∇ .

�erefore, we can use the polarisation identity to see that

Cov (⟨h, f ⟩∇ , ⟨h, g⟩∇) =
1
4
(Var(⟨h, f + g⟩∇) −Var(⟨h, f − g⟩∇))

= 1
4
(∥ f + g∥2∇ − ∥ f − g∥2∇)

= ⟨ f , g⟩∇ .

If we use suitably normalised eigenfunctions of the negative Laplacian as our basis functions

{ fn}, then we can use Weyl’s law on asymptotic behaviour of eigenvalues to see that the GFF
is in H−ε

0 (D) for any ε > 0. In particular, we can construct a version which is a continuous
linear functional on H10(D). For more detail, see�eorem 15.5 of [BN14].
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Importantly, De�nitions 2.2.3 and the distribution de�nition of the GFF are consistent. Sup-

pose we take a GFF h, viewed as a stochastic process onM as we have in De�nition 2.2.3. Let

M∗ be the set of measures ρ ∈M which are regular enough to be written as ρ = 1
2π(∆)−1 f

for some function f ∈ H10(D).�en there is a version of the process (hρ)ρ∈M which, when

restricted toM∗, is a member of H−1
0 (D) and can be de�ned as in De�nition 2.2.6.

2.2.4 Basic properties

We saw in Section 2.1.1 that a vital property for theGFF to have is conformal invariance. Luckily,

conformal invariance is inherited from the Dirichlet inner product used in the covariance

structure. All of the results in this subsection can be found in more detail in [She07], for

example.

�eorem 2.2.7 (Conformal Invariance). Let D and D′ be two domains in C, and let ψ be a

bijective, conformal map from D to D′. Further, let h be a GFF on D, and h′ a GFF on D′.�en

h d= h′ ○ ψ in the sense that, for any function f ∈ H10(D), we have

⟨h, f ⟩∇
d= ⟨h′, f ○ ψ−1⟩∇ .

Proof. �e claim above follows directly from conformal invariance of the Dirichlet inner

product, i.e. for f , g ∈ H10(D) and ψ as in the statement of the proposition, we have

∫
D′
∇ ( f ○ ψ−1) ⋅ ∇ (g ○ ψ−1) dx = ∫

D
∇ f ⋅ ∇g dx . (2.11)

Another very important property of the GFF is the domain Markov property. Suppose that h

is a GFF de�ned on a domain D andU ⊂ D is some subdomain.�e domainMarkov property

essentially says that, if we condition on the values of h on ∂U , then its distribution inside U

is that of a zero boundary GFF plus the harmonic extension of the boundary values. As the

GFF is not a function, conditioning on the values that it takes on ∂U is not really possible.

However, it is a good way of understanding the following theorem intuitively.

47



LQG and the GFF

�eorem 2.2.8 (Domain Markov Property). Let D be a domain, and U ⊂ D a subdomain. Let

h be a GFF on D.�en we can write h = h1 + h2, where

– h1 and h2 are independent,

– h2 is a GFF on U and zero on D ∖U,

– h1, h2 ∈ H−ε
0 (D), and

– h1 is harmonic on U and agrees with h on D ∖U.

�e proof (which we will show soon) involves decomposing the space H10(D) into orthogonal
subspaces, and projecting the basis functions used to de�ne the GFF onto those spaces. So,

for a domain D and a subdomain U ⊂ D, let Harm(U) be the functions in H10(D) which are
harmonic in U , and let Supp(U) be the functions in H10(D) which are supported in U .�ese
are orthogonal and spanning subspaces of H10(D), as we will now see.

Lemma 2.2.9. Using the same sets D and U as in the previous proposition.�en

H10(D) = Harm(U)⊕ Supp(U),

i.e. Harm(U) and Supp(U) are orthogonal and spanH10(D).

Proof. �e proof splits into two parts.

Orthogonal: Let f ∈ Harm(U) and g ∈ Supp(U). �en we calculate the Dirichlet inner
product:

∫
D
∇ f ⋅ ∇g dx = ∫

U
∇ f ⋅ ∇g dx because g = 0 in D ∖U ,

= −∫
U
(∆ f ) g dx by integration by parts ,

= 0 because f is harmonic on U .

�erefore Harm(U) and Supp(U) are orthogonal. For the “integration by parts” section in
the argument, we are using a consequence of the Gauss-Green theorem. See�eorem 3 in

Appendix C of [Eva10].
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Span: Now let f ∈ H10(D), and let f1 be the orthogonal projection of f onto Supp(U). We
want to show that f2 ∶= f − f1 is harmonic on U . Let ϕ ∈ Harm(U) be a function such that
ϕ∣D∖U = f ∣D∖U .�en we can write f2 = ϕ + η for some function η ∈ Supp(U). We calculate
the norm of f2 in terms of ϕ and η to see the following inequality.

∥ f2∥2∇ = ⟨ϕ + η, ϕ + η⟩∇
= ∥ϕ∥2∇ + 2 ⟨ϕ, η⟩∇ + ∥η∥2∇
= ∥ϕ∥2∇ + ∥η∥2∇ by orthogonality

> ∥ϕ∥2∇ if η /≡ 0.

However, since f1 is de�ned as the function which satis�es

∥ f − f1∥∇ = inf
g∈Supp(U)

∥ f − g∥∇ = inf
ϕ̃∈H10(D),

ϕ̃∣D∖U= f ∣D∖U

∥ϕ̃∥∇ ,

we know that ∥ f2∥∇ ≤ ∥ϕ∥∇.�erefore, ηmust be identically zero, and so f2 is harmonic in

U .

We can now prove the Markov property.

Proof of�eorem 4.2.15. Let {ϕn} be any orthonormal basis of H10(D) and let h = ∑n αnϕn

be a GFF (so the αn values are i.i.d. standard normal random variables). Further, let {ϕ1n} be
an orthonormal basis of Harm(U), and {ϕ2n} an orthonormal basis of Supp(U). �en, by
Lemma 2.2.9, {ϕ1n} ∪ {ϕ2n} is an orthonormal basis of H10(D). We can change basis to see that

h =∑
n

αnϕn

=∑
n

α1nϕ1n +∑
n

α2nϕ2n ,

where α i
n = ⟨h, ϕi

n⟩∇ for i = 1, 2. A simple calculation shows that the new coe�cients (α i
n) are

also i.i.d. standard normal random variables.

De�ne the random variables h1 and h2 by

h1 ∶=∑
n

α1nϕ1n and h2 ∶=∑
n

α2nϕ2n .
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First, note that h1 and h2 are independent, by the independence of the sets of random variables

{α1n} and {α2n}. Further, it follows from the de�nition of the basis {ϕ2n} that h2 is a GFF on U
and zero on D ∖U .�erefore, we know that h2 ∈ H−ε

0 (U) and so we have h2 ∈ H−ε
0 (D), from

which it follows that h1 = h − h2 ∈ H−ε
0 (D) also.

�e fact that h2 is zero on D ∖U gives us that h1 agrees with h on D ∖U .�e last thing le� to
show is that h1 is harmonic on U . Since h1 ∈ H−ε

0 (D), we know that

N

∑
n=1

α1nϕ1n → h1

in H−ε
0 (D) as N →∞. It therefore also converges in the sense of distributions, and so for any

function f ∈ C∞0 (U) we can calculate

⟨h1, ∆ f ⟩ = lim
N→∞

⟨
N

∑
n=1

α1nϕ1n , ∆ f ⟩

= lim
N→∞

N

∑
n=1

α1n ⟨ϕ1n , ∆ f ⟩

= lim
N→∞

N

∑
n=1

α1n ⟨∆ϕ1n , f ⟩ by integration by parts,

= 0,

where the last equality comes from the fact that each ϕ1n is harmonic on U . However

⟨h1, ∆ f ⟩ = 0 for all f ∈ C∞0 (U)

is exactly what it means for h1 to be harmonic on U in the sense of distributions, and so we

are done.

2.2.5 Regularisation

We met one technique used for regularising the GFF in Section 2.2.3, which was to de�ne the

partial sum hN . Another way of regularising the GFF into a surface that we need to understand

is the circle average process. We want to look at the GFF when applied to uniform measure

on a circle. For ε > 0 and z ∈ D, let ρz
ε be uniform measure on a circle of radius ε centred at z.
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We will now look at some of the properties of the circle average process given by

hε(z) ∶= ⟨h, ρz
ε⟩

for z ∈ D, 0 < ε < dist(z, ∂D), and h a GFF on D.

�e �rst property of the circle average process we study is its continuity.�e following appears

as Proposition 3.1 in [DS11].

Proposition 2.2.10. �e process (hρ)ρ∈M has a modi�cation such that

(hε(z) ∶ z ∈ D, ε ∈ (0, dist(z, ∂D))

is Hölder continuous on all compact subsets of

{(z, ε) ∶ z ∈ D, 0 < ε < dist(z, ∂D)}

for every η < 1/2.

�e proof of Proposition 2.2.10 involves showing a Lipschitz condition the variance of the

di�erence:

Var(hε1(z1) − hε2(z2)) ≤ K(∣z1 − z2∣ + ∣ε1 − ε2∣), (2.12)

for all (z1, ε1) and (z2, ε2) in a compact subset of

{(z, ε) ∶ z ∈ D, 0 < ε < dist(z, ∂D)}

Condition (2.12) comes from estimates of the covariance which we know is given by

Cov(hε1(z1), hε2(z2)) =∬
D2
GD(x , y)ρz1

ε1(dx)ρz2
ε2(dy). (2.13)

Regularity of the Green functionGD then ensures that condition (2.12) can be met on compact

sets, with a large enough constant K.

Once we know that (2.12) is true, we can combine it with the fact that hε1(z1) and hε2(z2) are
Gaussian to use the multi-parameter Kolmogorov-Čentsov theorem. From that, the result

follows. (See�eorem 2.8 of [KS91] for more detail on the Kolmogorov-Čentsov theorem.)
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Related to the idea of the continuity of the circle average process that we saw in Proposition

2.2.10 and the Markov property of the GFF that we saw in Section 2.2.4 is the idea that we

can recover a Brownian motion from the circle averages around a point z ∈ D.�is is a well
known result (see [She07,DS11] amongst others) but we include the proof for completeness.

Lemma 2.2.11. Let z ∈ D and �x ε0 > 0 small enough so that the circle of radius ε0 centred at z

is contained in D.�en the process de�ned for t > 0 by

Bt ∶= hε0e−t(z) − hε0(z)

is a standard Brownian motion.

Proof. From Proposition 2.2.10 we know that (Bt) is continuous. Now, let ε1, ε2 ∈ (0, ε0) with
ε1 > ε2, and consider the increment

hε2(z) − hε1(z). (2.14)

�e Markov property of the GFF lets us write h = h i + ho, where h i is a zero boundary GFF

inside the ball of radius ε1 centred at z, Bε1(z), ho is harmonic in that ball and agrees with h

outside of it, and h i and ho are independent. As ho is harmonic in Bε1(z), the circle average
property of harmonic functions tells us that ho

ε1(z) = ho
ε2(z) = ho(z).�erefore, we can write

the increment (2.14) as

hε2(z) − hε1(z) = h i
ε2(z) − h i

ε1(z).

�is depends only on the GFF h i , and is therefore independent of ho, the GFF outside the

ball Bε1(z). Translating back to the process (Bt), what we have shown is that for s > t > 0, the
increment Bs − Bt is independent of (Bu ∶ u ∈ (0, t)). And therefore (Bt) has independent
increments.

We know at this point that (Bt) is a Brownian motion, up to a time change. To check that we
are looking at the correct time scale for (Bt) to be a Brownian motion, we need to calculate
the variance of the increment hε2(z) − hε1(z) = h i

ε2(z) − h i
ε1(z) = h i

ε2(z). We can calculate
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variance of the right hand side explicitly:

Var(h i
ε2(z)) =∬D2

GBε1(z)(x , y)ρz
ε2(dx)ρz

ε2(dy)

= ∫
D
GBε1(z)(x , 0)ρz

ε2(dx),

where we have used the circle average property of harmonic functions for the second inequality.

Now, for x on the circle of radius ε2 centred at z, we know that

GBε1(z)(x , 0) = − log
ε2
ε1
,

and so we see that

Var(hε2(z) − hε1(z)) = − log ε2 + log ε1.

Translating this back to the (Bt) process, we �nd that for s > t > 0,

Var (Bs − Bt) = s − t,

and so (Bt) is a Brownian motion.

With more careful calculations involving the Green function, we can �nd the following result

on the variance of the circle average. See Proposition 3.2 of [DS11] for all of the details.

Lemma2.2.12. Let z ∈ D and let ε ∈ (0, dist(z, ∂D)).�en the circle average hε(z) has variance

Var(hε(z)) = − log ε + logR(z;D),

where R(z;D) is the conformal radius of the domain D viewed from z.

2.3 Coupling with SLE

We will now show how the GFF can be related to the SLE curves from Chapter 1. We will

see two similar results. Roughly stated, we can either “zip up” a zero boundary GFF using a

forward SLE to obtain another zero boundary GFF, or we can “cut” a Neumann boundary

GFF using a reverse SLE to obtain another Neumann boundary GFF.�e�eorem statements

are originally from [She10], and the proofs are a combination of those in [She10], [BN14]

and [Mil13].
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2.3.1 �eorem statements

We now state the forward and reverse coupling theorems.�e forward coupling allows us to

“zip up” a zero boundary GFF using a forward SLE. See Figure 2.2. In this section, we break

from the usual notation of gt for the forward SLE �ow and ft for the reverse. We will, instead,

abuse notation and call them both ft . Most of the calculations that we will perform are almost

identical for both cases, and so using the same notation for both cases will ease notation later

on.

ft

γt

hh ○ ft − χ arg f ′t

Figure 2.2: A visualisation of the forward coupling.

�eorem 2.3.1. Fix κ ∈ (0, 4] and let γT be the segment of SLEκ generated by the Loewner �ow

d ft(z) =
2

ft(z)
−
√

κdBt , (2.15)

up to a �xed time T > 0. Write

u0(z) ∶=
−2√

κ
arg z, χ ∶= 2√

κ
−

√
κ
2
,

ut(z) ∶= u0( ft(z)) − χ arg f ′t (z),

and let h̃ be an instance of the zero boundary GFF onH, independent of B.�en the following
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2.3 Coupling with SLE

two random distributions onH agree in law:

h ∶= u0 + h̃.

h ○ fT − χ arg f ′T = uT + h̃ ○ fT .

�e statement of the reverse coupling is similar. It lets us cut through a Neumann boundary

GFF with a reverse SLE to obtain another Neumann boundary GFF. See Figure 2.3.

ft

γt

hh ○ ft + Q log ∣ f ′t ∣

Figure 2.3: A visualisation of the reverse coupling.

�eorem 2.3.2. Fix κ > 0 and let γT be the segment of SLEκ generated by the reverse Loewner

�ow

d ft(z) =
−2
ft(z)

−
√

κdBt , (2.16)

up to a �xed time T > 0. Write

u0(z) ∶=
2√
κ
log ∣z∣, Q ∶= 2√

κ
+

√
κ
2
,

ut(z) ∶= u0( ft(z)) + Q log ∣ f ′t (z)∣,
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and let h̃ be an instance of the free boundary GFF onH, independent of B.�en the following

two random distributions (modulo additive constants) onH agree in law:

h ∶= u0 + h̃.

h ○ fT + Q log ∣ f ′T ∣ = uT + h̃ ○ fT .

�ere is some di�culty with the statement of Theorem 2.3.1 because the distribution h ○
fT − χ arg f ′T is only a priori de�ned as a distribution onH ∖ γT , and we want to view it as a

distribution onH. It is easiest if we view it as uT + h̃ ○ fT and show that both terms are well

de�ned distributions onH.

We will deal with the second term �rst. First note that, by conformal invariance of the GFF,

h̃ ○ fT is a zero boundary GFF on H ∖ γT . To extend it to a distribution on H, we use the

following.�is was originally Proposition 2.2 in [SS13], but our statement and proof is closer

to Proposition 15.8 in [BN14].

Proposition 2.3.3. Let D be a subdomain ofH. Let h be a zero boundary GFF on D.�en h

extends uniquely almost surely to a random variable h in D′(H), the space of distributions on
H, such that ⟨h, ρ⟩ is a centred Gaussian r.v. with variance

ED(ρ) =∬
D×D

ρ(x)GD(x , y)ρ(y)dxdy,

where GD is the Green function on D.

2.3.2 Informal justi�cation

�e proof that uT is a well de�ned distribution onH will come later. For now, we assume that

it is a well de�ned distribution onH to derive the form of the two�eorems.

Most of the following calculations are common to both the forward and reverse couplings.

When we talk about the Green function, we will abuse notation again by having a common
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2.3 Coupling with SLE

letter for both the forward and reverse cases. Let G0 be the Green function for the upper

half plane, and Gt the Green function for Ht = H ∖ γt. By conformal invariance, Gt(x , y) =
G0( ft(x), ft(y)).

We will show that both distributions in the�eorem statements have the same �nite di-

mensional distributions by considering their characteristic functions. Let ρ ∈ C∞
c (H) be a

compactly supported, smooth test function. We know that ⟨h̃ + u0, ρ⟩ is Gaussian with mean

m0 = ⟨u0, ρ⟩

and variance

E0 =∬
H

ρ(x)G0(x , y)ρ(y)dxdy.

So, E [e iθ⟨h̃+u0 , ρ⟩] = e iθm0−
1
2 θ2E0 .

Conditional onFT , Proposition 2.3.3 tells us that ⟨h̃ ○ fT , ρ⟩ is a centredGaussianwith variance

ET =∬
HT

ρ(x)GT(x , y)ρ(y)dxdy.

�erefore, we can calculate

E [exp (iθ ⟨h̃ ○ fT + uT , ρ⟩)] = E [e iθ⟨uT , ρ⟩E [exp (iθ ⟨h̃ ○ fT , ρ⟩) ∣FT]]

= E [exp(iθ ⟨uT , ρ⟩ − 1
2

θ2ET)] .

To show equality in distribution, we would like to show that

E [exp(iθ ⟨uT , ρ⟩ − 1
2

θ2ET)] = exp(iθ ⟨u0, ρ⟩ − 1
2

θ2E0) . (2.17)

It will therefore be su�cient to show that ⟨uT , ρ⟩ is a martingale with quadratic variation
given by

⟨⟨ut , ρ⟩⟩ = −Et = −∬ ρ(x)Gt(x , y)ρ(y)dxdy.

If it is, then Ito’s isometry tells us that

E [⟨ut , ρ⟩2] = E [∬ ρ(x)ut(x)ut(y)ρ(y)dxdy] = −∬ ρ(x)Gt(x , y)ρ(y)dxdy,

which is enough to see (2.17).
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2.3.3 Derivation of ut

What we will in fact show is that for any �xed x , y ∈ H, ut(x) and ut(y) are martingales with
cross variation

d ⟨ut(x), ut(y)⟩ = −dGt(x , y)

and then argue that we can interchange the order of integration.

First, we need to calculate dGt. As most of the calculations are common to all cases, we

will consider them all at once. When we need to distinguish between forward and reverse

couplings, we will use blue and red respectively, and when we distinguish between zero and

free boundary conditions we will use orange and green, respectively.

Note that the Green function takes the form

Gt(x , y) = G0( ft(x), ft(y)) = +− log ∣ ft(x) − ft(y)∣ − log ∣ ft(x) − ft(y)∣.

Now, what is d log ( ft(x) − ft(y))? It has �nite variation (and is in fact smooth), so we can
use standard calculus to see that

d log ( ft(x) − ft(y)) =
1

ft(x) − ft(y)
d( ft(x) − ft(y))

= +−
1

ft(x) − ft(y)
( 2
ft(x)

− 2
ft(y)

) dt

= −+
2

ft(x) ft(y)
dt.

�erefore,

dGt(x , y) = Re(−+
2

ft(x)
(+−

1
ft(y)

− 1
ft(y)

)) dt

= −+Re
⎛
⎜
⎝
2

ft(x)
−2iIm ( 1

ft(y))

−2Re ( 1
ft(y))

⎞
⎟
⎠
dt

= +−Re(
2

ft(x)
i)
Im ( 2

ft(y))

Re ( 2
ft(y))

dt

= −+
−Im ( 2

ft(x)) Im ( 2
ft(y))

Re ( 2
ft(x))Re (

2
ft(y))

dt.
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2.3 Coupling with SLE

We summarise these calculations in the following table.

−dGt(x , y) Zero Free

Forward Im ( 2
ft(x)) Im ( 2

ft(y)) dt −Re ( 2
ft(x))Re (

2
ft(y)) dt

Reverse −Im ( 2
ft(x)) Im ( 2

ft(y)) dt Re ( 2
ft(x))Re (

2
ft(y)) dt

It is clear from this that, as we want −dGt(x , y) to be the cross variation of two martingales,
and therefore the product of two real expressions, we cannot work with the elements in the

table above which have a negative coe�cient.�erefore, we use the zero boundary GFF in the

forward case and the free boundary GFF in the reverse.

It is also clear that we want to construct our martingale ut(x) to have di�usivity equal to the
real or imaginary part of 2

ft(x) . So, let’s check log ft(x):

d log( ft(x)) =
1

ft(x)
d ft(x) −

1
2 ft(x)2

d ⟨ ft(x)⟩

= 1
ft(x)

(+−
2

ft(x)
dt −

√
κdBt) −

κ
2 ft(x)2

dt

=
+−4 − κ
2 ft(x)2

dt −
√

κ
ft(z)

dBt .

�at is almost what we need, but in the κ /= 4 case, we need a correction term. By di�erentiating
the Loewner equation with respect to space, we �nd that

d f ′t (x) = −+
2 f ′t (x)
ft(x)2

dt,

and so

d log f ′t (x) =
1

f ′t (x)
d f ′t (x) = −+

2
ft(x)2

dt.

�erefore, we �nd that

d (log ft(x) + (1−+
κ
4
) log f ′t (x)) = −

√
κ

ft(x)
dBt ,

and hence

d ( 2√
κ
log ft(x) + ( 2√

κ
−+
√

κ
2

) log f ′t (x)) = − 2
ft(x)

dBt .
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Taking the real or imaginary parts as necessary gives the form of ut given in the statements of

the theorems.

To recap, we have just shown the following:

Lemma 2.3.4. For �xed x , y ∈ H, the processes ut(x) and ut(y) as de�ned in�eorem 2.3.1 or

2.3.2 are continuous local martingales, with cross variation equal to

d ⟨ut(x), ut(y)⟩ = −dGt(x , y).

Furthermore, the process ut(x) has quadratic variation given by

d ⟨ut(x)⟩ = −dCt(x),

where

Ct(x) ∶= +− log Im ft(x) − Re log f ′t (x).

�e last result in Lemma 2.3.4 can be seen by similar Itô calculus calculations on ut(x) and
Ct(x).

2.3.4 Extending to ⟨ut , ρ⟩

We now need to argue that the processes ut(x) are martingales (rather than just local mar-
tingales). We also need to show that they are martingales in some uniform sense, to make

sure that ⟨ut , ρ⟩ is a continuous martingale. We will concentrate on the forward case.�e
arguments in the reverse case are, in general, much simpler because the support of the test

functions stay bounded away from the curve γ.

To do so, we will need the following:

Lemma 2.3.5. For a �xed t > 0, the function given by

Ct(x) = log Im ft(x) − Re log f ′t (x)

has a law which decays exponentially, uniformly on compact sets D ⊂ H.
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2.3 Coupling with SLE

�erefore, we can �nd α > 0 so that

P [−Ct(x) > s] ≤ e−αs

for all x ∈ supp(ρ).

Corollary 2.3.6. �e law of ∣ut(x)∣ decays exponentially fast, uniformly for x in the support of

the test function ρ.

Proof. First use the Dubins-Schwartz theorem to see that we can write

P [∣ut(x)∣ > c] = P [∣B−Ct(x)∣ > c]

for some Brownian motion B. For some s > 0, we can then split the event up to see

P [∣B−Ct(x)∣ > c] = P [∣B−Ct(x)∣ > c,−Ct(x) > s] + P [∣B−Ct(x)∣ > c,−Ct(x) < s]

≤ P [−Ct(x) > s] + P [∣Bs∣ > c]

≤ e−αs + 2e−c2/(2s).

Taking s = c shows the exponential decay we were looking for.

�at exponential decay is enough for us to see that for a �xed t, the functions ut(x) are
uniformly bounded in L1(Ω) for every x ∈ supp(ρ). We can now use Fubini’s theorem to
interchange the order of integration to see, for s < t

E [⟨ut , ρ⟩ ∣Fs] = E [∫ ut(x)ρ(x)dx∣Fs]

= ∫ ρ(x)E [ut(x)∣Fs] dx

= ∫ ρ(x)us(x)dx = ⟨us , ρ⟩ .

In other words, the process ⟨ut , ρ⟩ is a martingale.

We now need to show that it is a continuous martingale. We know (from the SDE de�nition)

that ut(x) is almost surely a continuous martingale for any x, but only up to the time τ(x) =
inf {t > 0 ∶ x ∈ γt}.
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In fact, because ut is the real or imaginary part of a conformal function, it is harmonic on its

domain of de�nition.�erefore, so long as the SLE path stays away from the support of the test

function ρ, ut(x) is uniformly in t for x ∈ supp(ρ), which implies that ⟨ut , ρ⟩ is continuous.

Fix a realisation of γ, and let ρε be equal to 0 in an ε-neighbourhood of γ and equal to ρ

everywhere else. By the previous argument, we know that ⟨ut , ρε⟩ is continuous in t. We now
want to show that it converges to ⟨ut , ρ⟩ as ε → 0 uniformly in t.�at will show continuity of
⟨ut , ρ⟩, as the uniform limit of continuous functions is continuous.

�e uniform exponential decay in law that we saw in Corollary 6 implies that E [∣ut(x)∣p] is
uniformly bounded for all x in a compact set, which implies that ut ∈ Lp

loc(H) almost surely,
for any p ≥ 1.

Doob’s inequality tells us that

P [ sup
s∈[0,t]

∣us(x)∣ > c] = P [ sup
s∈[0,t]

eλ∣us(x)∣ > eλc] ≤ e−λcE [eλ∣ut(x)∣] .

Since ∣ut(x)∣ has exponentially decaying tails, E [eλ∣ut(x)∣] is �nite for λ > 0 small enough. So
we see that sups∈[0,t] ∣us(x)∣ also has exponentially decaying tails. And again, this decay is
uniform for x in compact sets. So, by the same argument as above, we see that sups∈[0,t] ∣us(x)∣ ∈
Lp
loc(H) almost surely.

Now, �x T > 0.�en for t ∈ [0, T], we see that

⟨ut , ρ⟩ − ⟨ut , ρε⟩ = ∫
γε
ut(x)ρ(x)dx

where γε is the ε-neighbourhood of γ. We can bound the right hand side by

∫
γε
ut(x)ρ(x)dx ≤ sup

x
(ρ(x))∫

γε
sup
s∈[0,T]

∣us(x)∣dx . (2.18)

Because the path γ has Lebesgue measure 0 almost surely, we know that the area of γε tends to

0 as ε → 0.�erefore, since sup ∣us(x)∣ ∈ Lp
loc(H) for p > 1, a simple Hölder argument shows

us that the right hand side of (2.18) tends to 0 as ε → 0 as well.�at convergence in uniform
for t ∈ [0, T], and so we know that ⟨ut , ρ⟩ is continuous.
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2.4 Liouville quantum gravity

�e �nal thing to do is to check that

⟨ut , ρ⟩2 +∬
Ht

ρ(x)Gt(x , y)ρ(y)dxdy (2.19)

is, in fact, a martingale. We already know that ut(x)ut(y) +Gt(x , y) is. We also know that
the functions ut have exponentially decaying laws. Combining that with the fact that Gt(x , y)
is non-increasing in t lets us use Fubini’s theorem again to deduce that (2.19) is a martingale.

2.4 Liouville quantum gravity

We want to create something that we can use as a random Riemannian surface, whose law

is conformally invariant. �e Riemann uniformisation theorem tells us that any simply

connected Riemann surface is conformally equivalent to one of (a) the open unit disc, (b)

the complex plane, or (c) the Riemann sphere. Two Riemannian metrics are conformally

equivalent if the metric of one can be written as a positive function multiplied by the metric

of the other. So any metric of our random Riemann surface, once it has been parameterised

by (a), (b) or (c), should take the form ρ(z)dz2 for some positive function ρ.

Since the GFF is a conformally invariant object, a natural proposal for the metric of the mani-

fold is eγh(z)dz2.�is is, of course, not well de�ned. However, we can use the regularisation

from Section 2.2.5 to successfully de�ne something we can view as a volume form.

2.4.1 Liouville quantum gravity measure

To construct our volume form, we �rst give a de�nition of the regularised measure. �is

construction is due to Duplantier and She�eld [DS11]. It gives the random measure on a

domain D that we used while discussing the KPZ equation in Section 2.1.4.

De�nition 2.4.1. Let D be a (Greenian) domain, and let h be a zero boundary GFF on D. Let

γ ∈ [0, 2) and ε > 0.�e ε-regularised Liouville measure, µε, is given by

µε(dz) = εγ2/2eγhε(z)dz,
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where dz is standard Lebesgue measure on D.

�e �rst thing to note here is the normalisation. We know that

Var(hε(z)) = − log ε + logR(z;D),

and so we see that

E [eγhε(z)] = exp(γ2

2
(− log ε + logR(z;D)) = R(z;D)γ2/2ε−γ2/2.

�erefore the expected value of the Radon-Nikodym derivative of the measure µε is constant

in ε (ignoring slight boundary e�ects). We can go further: thanks to Lemma 2.2.11 we can

view εγ2/2eγhε(z) as the exponential martingale of a Brownian motion (suitably time-changed).

An application of Fubini’s theorem then lets us deduce that the expected value for the measure

is

E[µε(A)] = ∫
A
R(z;D)γ2/2dz,

so long as the set A has a distance at least ε from ∂D. What we cannot do, however, is

view µε(A) as a martingale, despite the fact that it is the integral over a function which
is a martingale when viewed pointwise. �e di�culty is in constructing the �ltration; the

overlapping circles of the circle averages mean that we have to know, in some sense, the entire

GFF in and around the set A in order to calculate µε(A).

Because we can not view µε(A) as a martingale, we are unable to use standard martingale
convergence techniques to deduce the existence of limε→0 µε(A). However, the following
Proposition from [DS11] gives us that result.

Proposition 2.4.2. Fix γ ∈ [0, 2).�en the measures µε ∶= εγ2/2eγhε(z)dz almost surely converge

weakly inside D, as ε → 0 along powers of 2, to a limiting measure µ = µh.

We will explore other ways of constructing similar measures in Section 2.4.3. One of the

features that sets this construction apart is the almost sure convergence of the measure.�at

means that the measure µ is a measurable function of the �eld h. Conversely, the fact that the

�eld h is a measurable function of the measure µ was shown in [BSS14].
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2.4 Liouville quantum gravity

2.4.2 �ick points

We would like to study the set of points on which the Liouville quantum gravity measure is

supported. For that, we need the idea of a thick point of the Gaussian free �eld. We follow the

de�nition given in [HMP10].

De�nition 2.4.3. Let D ⊂ C be a Greenian domain and let h be a zero boundary GFF in D. A

point z ∈ D is said to be a α-thick point if

lim
ε→0

hε(z)
− log ε

= α.

For α > 0, the set of α-thick points, usually denoted by Tα , is a set where the �eld is unusually

large. We know that the circle average process, (hε(z))ε>0, behaves (up to a random starting

point) like a standard Brownian motion run at speed t = − log ε. So we can view the limit as

lim
ε→0

hε(z)
− log ε

= lim
t→∞

Bt

t
, (2.20)

and the time inversion property of Brownian motion tells us that the right hand side of (2.20)

is zero, almost surely (see�eorem 1.9 of [MP10]).

�e set of α-thick points is not always empty, however, because we consider every z ∈ D,

which is an uncountable number of points. Indeed, we know that the Hausdor� dimension of

Tα is non-zero for suitable α.�e following theorem is from [HMP10]:

�eorem 2.4.4. Let α ≥ 0, and let Tα be the set of α-thick points as de�ned in De�nition 2.4.3.

�en the Hausdor� dimension of Tα is

dimH(Tα) =max(0, 2 −
α2

2
) .

(Similar results for general Gaussian multiplicative chaos measures can be found as�eorems

4.1 and 4.2 of [RV13].)
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�e set of thick points is important for the study of the Liouville quantum gravity measure

because, as we mentioned at the start of this subsection, it is the carrier of the measure.�e

following can be deduced from Proposition 3.4 in [DS11]:

Proposition 2.4.5. Let D ⊂ C be a Greenian domain and let h be a zero boundary GFF on D.

Let γ ∈ [0, 2) and let µ be the γ-LQG measure from Proposition 2.4.2.�en µ is supported on

the set of γ-thick points, Tγ, almost surely.

Sketch proof. �e proof involves constructing a joint law on the set of points z ∈ D and theGFF
h simultaneously. One way to construct this measure is to choose the GFF h �rst, construct

the regularised Liouville measure µε, and then choose a point z according to the measure

µε(dz)
µε(D) .

�is gives a measure Qε on the point z and the �eld h simultaneously. �e key idea to the

proof is then to swap the order we pick the points, so choose z �rst and then h conditional on

z. We will �nd that, conditional on the point z, the �eld h has a log-singularity at z, meaning

that z must be a thick point.

We can write the joint measure, informally, as

Qε(dz, dh) =
1
Z

εγ2/2eγhε(z)dzP[dh],

where P is the law of the GFF.�e marginal law of h under Q is

Qε(dh) =
1
Z
µε(D)P[dh],

i.e. it has the law of a GFF weighted by the total mass it gives to D. So, the marginal law of h

under Qε is absolutely continuous with respect to P.�e marginal law of z is equal to

Qε(dz) =
dz
Z
E [εγ2/2eγhε(z)] ,

which, thanks to the fact that Var(hε(z)) = − log ε + R(z;D), is equal to

Qε(dz) =
dz
Z
R(z;D)γ2/2.
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(In fact, it is only equal to this so long as z is further than ε from the boundary. We will ignore

boundary e�ects to simplify this sketch.) So, as we said at the beginning of the sketch, we

now reverse the procedure. Pick z ∈ D randomly, with probability density proportional to the
conformal radius. Next, pick h according to the measure

Qε(dh ∣ z)∝ eγhε(z)P[dh]. (2.21)

Now, Girsanov’s lemma tells us that, if we tilt a centred Gaussian random variable by the

exponential of a Gaussian, the result will still be Gaussian and have the same variance, but a

shi�ed mean. In our case, by tilting as we have in (2.21), h will have the same variance as a

standard GFF, but a mean function given by

EQ [h(w)] = Cov(h(w), γhε(z)) ≈ −γ log ∣w − z∣.

�is shows that h has a γ-log singularity, almost surely, and so

lim
ε→0

hε(z)
− log ε

= γ.

So, a point z chosen according to the measure Q is almost surely a γ-thick point of the �eld,

also chosen with respect to Q. Since the law of the �eld under Q is absolutely continuous

with respect to the standard law of the GFF, we see that the Liouville measure is supported on

γ-thick points, almost surely.

2.4.3 Multiplicative chaos

Another way of constructing a measure out of Gaussian �elds was introduced by J.P.Kahane

in [Kah85]. He gave a rigorous way of de�ning the measure

µ(dz) = eγX(z)− γ2

2 E[X(z)2]σ(dz), (2.22)

on a metric space (D, ρ), where X is a Gaussian random �eld, σ is a reference measure in the
class R+d (a similar condition to requiring that σ has �nite d-energy), and γ > 0.
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One of the constraints the theory in [Kah85] is that, to ensure uniqueness of the measure, we

need to assume that the covariance kernel

K(x , y) ∶= E [X(x)X(y)]

is of σ-positive type.�e kernel K ∶ D × D → R ∪ {∞} is σ-positive if K can be written as

K(x , y) =
∞
∑
n=0

Kn(x , y), (2.23)

where the functions Kn are non-negative de�nite, continuous and pointwise non-negative.

Kahane focussed on the case that K can be written as

K(x , y) = log+
T

ρ(x , y) + g(x , y), (2.24)

where g is a bounded continuous function.

With K expanded as in (2.23), let Yn be a Gaussian �eld with covariance kernel Kn.�en we

can de�ne an approximation to the �eld X as XN = ∑N
n=0 Yn.�en the sequence of measures

given by

µN(dz) = eγXN(z)−E[XN(z)2]σ(dz)

converge almost surely in the space of Radon measures to a random measure µ. �e σ-

positivity assumption (coupled with Kahane’s convexity inequality) ensures that the law of the

limiting measure does not depend on the σ-positive decomposition of K. However, it does

not guarantee almost sure uniqueness of the limit.

In the same paper, he also derived conditions on γ which ensure that the limiting measure µ

is non-degenerate: we must have γ2 < 2d. Furthermore, he gave some results on the structure
of the carrier of the measure µ which are analogous to those we saw in Section 2.4.2.

Robert andVargas generalised Kahane’s theory in [RV10], relaxing the σ-positivity assumption

(which can be di�cult to check).�ey showed that, using a positive de�nite function θ (with

polynomial decay at in�nity) as a molli�er, the sequence of random measures µε, constructed

from the �eld X ∗ θε as in (2.22), converge in law to a measure µ. Further, the law of the

limiting measure µ is independent of the molli�er θ.

68



2.4 Liouville quantum gravity

Shamov has since extended the theory of Robert and Vargas in [Sha16] to show that, for very

general regularised �elds Xε, we can construct measures µε as in (2.22) which converge in

probability to a limiting measure µ, and that limit is independent of the molli�er.�is implies

that the limiting measure µ is a measurable function of the �eld X. Junnila and Saksman have

shown similar results in [JS15], and their paper covers the critical case, γ2 = 2d, as well.

A slightly weaker version of Shamov’s results, with a signi�cantly simpler proof, was shown

in [Ber15b]. We will summarise some of these in a little more detail now, and use them to give

a new presentation of the Liouville Brownian motion in Section 2.5.

We will make the following assumptions. Let D ⊂ Rk , and suppose the metric ρ is the standard

Euclidean metric. Without loss of generality, assume that D contains the ball of radius 10

centred at the origin. Suppose that the measure σ has dimension d ≤ k, so

∬
D2

1
∣x − y∣d−ε σ(dx)σ(dy) <∞

for all ε > 0.

Let X be a generalised Gaussian function on D with covariance kernel given by (2.24), and

assume that the function g in (2.24) is smooth on D ×D. Fix a function θ ∶ Rk → [0, 1] which
satis�es

∫ θ(x)dx = 1,

and

∬ log
1

∣x − y∣θ(x)θ(y)dxdy <∞.

Set θε(z) = ε−dθ(z/ε), and de�ne Xε(z) = X ∗ θε(z). Finally, de�ne the measure

µε(dz) = eγXε(z)− γ2

2 E[Xε(z)2]σ(dz).

Under these assumptions, the following theorem is given in [Ber15b].

�eorem 2.4.6. Let γ <
√
2d. Let S be the unit cube inRk.�en µε(S) converges in probability

and L1 to a limit µ.�e limit µ is independent of the regularisation θε.
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As with Shamov’s theory,�eorem 2.4.6 is enough to show that the measure µ is a measurable

function of the �eld X. (It is worth noting that a partial converse to this, that the �eld X is a

measurable function of the measure µ when X is a Gaussian free �eld, is given in [BSS14].)

�e proof of convergence involves showing that µε(S) is uniformly integrable. In the case that
γ <

√
d the measures µε are uniformly bounded in L2 and the proof is more straightforward.

In the general case, however, space is partitioned into “good points,” called G ⊂ S, and the

rest.�e set of good points are those which are not too thick up to a certain scale, i.e. where

regularisations of the �eld are not too big.�e measure of the good points, µε(G), is bounded
in L2 and the rest, µε(S ∖G), does not contribute to the L1 limit.

In the course of the proof of existence and uniqueness of the measure, the following two

lemmas were shown.

Lemma 2.4.7. We can write X = ∑i Xi where the (Xi) are independent, continuous Gaussian
�elds, in the sense that for arbitrary, �xed f ∈ L2(D, dx), the sum∑i ⟨Xi , f ⟩ converges almost

surely and agrees with ⟨X , f ⟩ almost surely.

Using the decomposition from Lemma 2.4.7 we can de�ne a measure in a similar way that

Kahane did using his σ-positive decomposition. Importantly, the limiting measures from

both constructions are the same.

Lemma 2.4.8. Let XN be the partial sum XN(z) = ∑N
i=0 Xi(z). De�ne µN(S) by

µN(S) = ∫
S
eγXN(z)− γ2

2 E[X
N(z)]σ(dz).

�en µN(S) is a uniformly integrable martingale, and converges to the same limit µ(S) that
the sequence µε(S) from�eorem 2.4.6 converges to. Furthermore, if we de�ne the sequence of

�ltrations (Fn) by Fn ∶= σ(X1, X2, . . . , Xn), then µ(S) is F∞ measurable.
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2.5 Liouville Brownian motion

2.5 Liouville Brownian motion

Chapter 3 studies properties of Brownian motion on the Liouville quantum gravity surface

mentioned in Section 2.4 — the surface for which the Liouville measure of Section 2.4.1 is the

volume form. In this section we will introduce this Brownian motion, the Liouville Brownian

motion, de�ned simultaneously in [Ber15a] and [GRV13a], both following the de�nition in

the physics literature by [Wat93].�e two papers give slightly di�erent derivations of LBM,

both of which end with essentially the same object. We will now give a new construction,

made possible by the theory in [Ber15b].

2.5.1 Intuition

We now want to construct a Brownian motion on the Riemann surface parameterised by some

domain D ⊂ C whose metric tensor is given (formally) by

eγh(z)(dx2 + dy2), (2.25)

where h is a GFF on D. Let us, for the rest of this subsection, assume that h (and, indeed,

anything else that we use) is as smooth as we need it to be. We will see how to deal with it

rigorously in Section 2.5.2.

One way of constructing a Brownian motion on a Riemannian manifold is to construct a

di�usion whose generator is the Laplace-Beltrami operator on the manifold. Since the metric

(2.25) is conformally equivalent to the “�at” metric on D, the matrix representation of the

metric tensor is simply a scaling of the identity matrix.�at simpli�es the Laplace-Beltrami

operator that we need to deal with. For a suitably smooth function f ∶ M → R de�ned on the

manifold, the Laplace–Beltrami operator in local coordinates on D is

∆M f (z) = 1√
eγh(z)

∆ f (z).

�erefore, the Liouville Brownian motion in the local coordinates of D should be the solution
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Z to the SDE

dZt = e−
γ
2 h(Zt)dBt ,

where B is a standard Brownian motion. �erefore, we see that Z is a continuous local

martingale, and we can write

Zt = B⟨Z⟩t

where B is a standard Brownian motion.

�e study of Liouville Brownian motion Z therefore comes down to the study of its quadratic

variation, ⟨Z⟩. We know that we can write

⟨Z⟩t = ∫
t

0
e−γh(Zs)ds (2.26)

but we cannot use the expression (2.26) as the de�nition of the quadratic variation of Z since

the right hand side still depends on Z. We claim that

⟨Z⟩t ∶= inf {s > 0 ∶ ∫
s

0
eγh(Bu)du} (2.27)

satis�es (2.26).

To see that, �rst note that (2.27) implies

∫
⟨Z⟩t

0
eγh(Bu)du = t

which, a�er di�erentiating with respect to t and rearranging slightly, gives us

d ⟨Z⟩t
dt

= e−γh(B⟨Z⟩t ).

�erefore, we can integrate again to see

⟨Z⟩t = ∫
t

0
e−γh(B⟨Z⟩s )ds,

which is (2.26), as we wanted.

72



2.5 Liouville Brownian motion

2.5.2 Rigorous construction

We will now make rigorous the notion of the function

F(t) = ∫
t

0
eγh(Bs)ds

used in the de�nition of the quadratic variation of the LBM Z, from (2.27). Once we have

shown the existence of such a function, we will be able to de�ne the LBM as

Zt = BF−1(t),

where the Brownian motion B is the same as that used in the de�nition of F.

Our presentation of this construction is new in that is shows convergence of regularised

functions Fε in probability and L1 to a limit F. In particular, that implies that the limiting

function F is a measurable function of the underlying �eld.�e presentation uses the theory

found in [Ber15b] that we summarised in Section 2.4.3.

It is worth noting that the existence of the limit F does need the underlying �eld h to be a GFF,

only that it should be a log correlation Gaussian �eld, as discussed in Section 2.4.3. Further

properties of Liouville Brownian motion such as conformal invariance, however, do depend

on the underlying �eld being a GFF.

Let h be a GFF in D, let (Bt) be an independent Brownian motion started in D, and let

T = inf {t > 0 Bt ∉ D} be the �rst exit time of the Brownian motion from D. Let νT
t be the

occupation measure of the killed Brownian motion at time t so that, for an integrable function

f ,

∫
t∧T

0
f (Bs)ds = ∫

D
f (z)νT

t (dz).

In order to use the theory in Section 2.4.3, we need to check that the stopped occupation

measure has dimension 2, i.e. for all ε > 0 we have

∬
R2×R2

1
∣x − y∣2−ε νT

t (dx)νT
t (dy) <∞. (2.28)
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We will check (2.28) by comparing the stopped measure νT
t with the standard occupation

measure for Brownian motion, which we denote by νt . If we use the same Brownian motion

B to construct both the measure νt and the stopped measure νT
t , we can easily see that for any

positive function f we have

∫
R2

f (z)νT
t (dz) = ∫

t∧T

0
f (Bs)ds

≤ ∫
t

0
f (Bs)ds

= ∫
R2

f (z)νt(dz).

�erefore, if we can show that the measure νt has dimension 2, we will know that the measure

νT
t does also. We can compute the expectation:

E [∬
R2×R2

1
∣x − y∣2−ε νt(dx)νt(dy)] = E [∫

t

0
∫

t

0

1
∣Bu − Bv ∣2−ε dudv]

= ∫
t

0
∫

t

0
E [ 1

∣Bu − Bv ∣2−ε ] dudv

= ∫
t

0
∫

t

0
E [ 1

∣B1∣2−ε∣u − v∣(2−ε)/2 ] dudv

= E [ 1
∣B1∣2−ε ]∫

t

0
∫

t

0

1
∣u − v∣(2−ε)/2dudv

<∞.

So we see that the occupation measure νt has dimension 2 almost surely, and therefore so

does the stopped measure νT
t .

By a similar comparison argument we can show that, if νT
t has dimension 2 then, for all

s ∈ (0, t), the measure νT
s has dimension 2. Taking a countable sequence (tn) ⊂ R converging

to in�nity, we can see that all the measures (νT
tn) have dimension 2, almost surely. And

therefore, by the comparison argument, νT
t has dimension 2 for all t ≥ 0, almost surely.

Now, let θ be a molli�er satisfying the assumptions detailed in Section 2.4.3, and de�ne
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hε(z) = h ∗ θε(z).�en de�ne the regularised function3

Fε(t) ∶= ∫
t∧T

0
eγhε(Bs)− γ2

2 E[hε(Bs)2]ds

= ∫
D
eγhε(z)− γ2

2 E[hε(z)2]νT
t (dz). (2.29)

By�eorem 2.4.6, we know that Fε(t) converges in probability and in L1 to a limit which is
independent of the choice of θ, almost surely in B. We will de�ne the function F as this limit:

F(t) ∶= lim
ε→0

Fε(t). (2.30)

Now that we know how to de�ne the Liouville Brownian motion Z, we would like to show

that it is

– continuous, and

– it does not get stuck.

Continuity of Zt = BF−1(t) is implied by continuity of F−1(t) which we get so long as F is
strictly increasing. (Discontinuities of F−1 correspond to �at areas of F.) Similarly, Z does

not get stuck if F−1 is strictly increasing, i.e. if F is continuous. We will omit the proof of

continuity. See Section 3.4 of [Ber15a], for example.

We now show that F is strictly increasing.�e proof we give is similar to that of�eorem 2.7

in [GRV13a]. It is worth noting that the proof we present here works only for a LBM started

from a single point. Generalising the proof to work for all starting points simultaneously

(which is needed in order to say that LBM is a Feller process, and is done in [GRV13a]) involves

a signi�cant jump in complexity.

Proposition 2.5.1. �e function F de�ned in (2.30) is strictly increasing on the interval [0, T],
where T is �rst exit time of the Brownian motion B from the domain D, almost surely in h and

B.
3In order for our de�nition to agree completely with that of [Ber15a], we should weight the measure by

R(z;D)
γ2/2, the conformal radius raised to the power γ2/2. We do not do this to keep the notation cleaner.
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Proof. First, �x a realisation of the Brownianmotion B, and pick times s, t so that 0 ≤ s < t < T .

We will show that, for this realisation of B, we have a positive di�erence, F(t) − F(s) > 0,
almost surely in h. First, note that (Fε(s)) and (Fε(t)) are uniformly integrable, so we can
write

Eh [F(t) − F(s)] = lim
ε→0

Eh [Fε(t) − Fε(s)]

= lim
ε→0

Eh [∫
D
eγhε(z)− γ2

2 E[hε(z)2] (νT
t (dz) − νT

s (dz))]

= lim
ε→0 ∫D

E [eγhε(z)− γ2

2 E[hε(z)2]] (νT
t (dz) − νT

s (dz))

= ∫
D

νT
t (dz) − νT

s (dz)

= t − s > 0.

Now, we can apply Lemma 2.4.7 to regularise the GFF into partial sums hN = ∑N
i=0 hi . Applying

Lemma 2.4.8 to the �elds hN and the reference measure σ(dz) = νT
t (dz) − νT

s (dz) we can see
that, if we de�ne

MN ∶= ∫
D
eγhN(dz)− γ2

2 E[h
N(z)2]σ(dz)

then (MN) is a uniformly integrable martingale with limit F(t) − F(s).

�e event {F(t) − F(s) = 0} is measurable with respect to the tail σ-algebra generated by the
random �elds (hi), i.e.

{F(t) − F(s) = 0} ∈ ⋂
N∈N

σ (hi ∶ i > N) .

�erefore, Kolmogorov’s 0-1 law tells us that

Ph [F(t) − F(s) = 0] ∈ {0, 1} .

Since we have shown that F(t)− F(s) has positive expectation, we know that F(t)− F(s) > 0,
almost surely in h.

Taking countable, dense pairs in (s, t) ∈ [0, T]2 shows that F is strictly increasing in the
interval [0, T] h-almost surely.�e only property of the Brownian path B that we used here,
other than its exit time T , was that its occupation measure has dimension 2. Since this is true
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almost surely for Brownian motion, we can see that F is strictly increasing up to the exit time

of the Brownian motion B, almost surely in h and B.

2.5.3 Known properties of LBM

Several properties of the Liouville Brownian motion were derived in the introductory pa-

pers [Ber15a, GRV13a]. Most importantly, the fact that the clock function exists when the

regularisation process is taken to its limit. Both showed that the clock function is continuous

and strictly increasing, so the LBM is a continuous process which does not get stuck.

In [Ber15a], an upper bound for the Hausdor� dimension of times that an LBM stays in thick

points was derived. It is strong enough to show that γ-LBM spends Lebesgue-all of its time

in γ-thick points, almost surely. We will discuss this upper bound in much more detail in

Chapter 3. In [GRV13a], they showed that LBM is a Feller and that the Liouville measure µ

is invariant.�is invariance, combined with our knowledge of the carrier of µ from Section

2.4.2, is also enough to see that LBM spends Lebesgue-all of its time in γ-thick points, almost

surely.

Since its introduction, other interesting properties of Liouville Brownian motion have been

found.�e existence of the heat kernel and Dirichlet form for LBM were shown in [GRV14].

�e regularity of the heat kernel, and upper and lower bounds for it were found in [MRVZ14],

and was further bounded in [AK15]. It was constructed on the sphere in [DKRV14], and at

criticality, i.e. when γ = 2, in [RV15].

It has also been used to derive a more intrinsic version of the KPZ equation [BGRV14]. By

using the heat kernel of LBM to de�ne a quantum scaling exponent, the authors were able to

derive the KPZ equation without using the Euclidean metric in the quantum de�nitions that

we saw in Section 2.1.4.
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3Liouville Brownian Motion and Thick

Points of the Gaussian Free Field

In this chapter, we �nd a lower bound for the Hausdor� dimension of times that a Liouville

Brownianmotion spends in α-thick points of the Gaussian free �eld, where α is not necessarily

equal to the parameter used in the construction of the geometry.�is completes a conjecture

in [Ber15a], where the corresponding upper bound was shown.

In the course of the proof, we obtain estimates on the (Euclidean) di�usivity exponent, which

depends strongly on the nature of the starting point. For a Liouville typical point, it is 1/(2− γ2

2 ).
In particular, for γ >

√
2, the path is Lebesgue-almost everywhere di�erentiable, almost surely.

�is provides a detailed description of the multifractal nature of Liouville Brownian motion.
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3.1 Introduction

�e goal of this chapter is to study themultifractal nature of Liouville Brownianmotion.�is is

a process which was introduced in [Ber15a] and [GRV13a] as the canonical di�usion in planar

Liouville quantum gravity. For instance, it is the conjectured scaling limit of a simple random

walk on a uniform random triangulation, conformally embedded into the plane (via circle

packing, for example). Liouville quantum gravity and its geometry has itself been at the centre

of remarkable developments. We point out, among many other works, [RV11,DS11,BGRV14].

Liouville Brownian motion is a useful tool for studying the geometry of Liouville quantum

gravity. In fact, Watabiki has already considered the object (in a non-rigorous way) in an

attempt to describe the metric and fractal structure of Liouville quantum gravity [Wat93].�is

led him to propose a formula for the Hausdor� dimension of the random metric space.�e

paper [BGRV14] may be viewed as a �rst rigorous step in studying such multifractal aspects

using Liouville Brownian motion.�e current chapter addresses a similar point, but from a

di�erent perspective.

�e general structure of the chapter is as follows. In the remainder of this section, we state the

main results and try to give the intuitive idea behind the proof. In Section 3.2 we will brie�y

introduce the objects and de�nitions we use throughout the chapter, providing references

for the reader should they need more detail. In Section 3.3.1 we show that the time change

function has �nite moments around times when the Brownian motion is conditioned to be in

a thick point, and derive crude tail estimates for the time change process from those bounds.

Section 3.3.2 is spent proving a simple large-deviation type result for the supremum of the

harmonic projection of the GFF on to a disc, to use as an analogue of the scaling relation

enjoyed by exactly stochastically scale invariant �elds. In Section 3.3.3 we combine the results

from the previous sections to show Hölder like properties of the time change function Fγ.

Finally, in Sections 3.3.4 and 3.3.5, we prove the main theorems, using the regularity results

obtained in Section 3.3.3.
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3.1.1 Statement of results

Let h be a zero boundary GFF, de�ned in a simply connected proper domain D ⊂ C. One

of the di�culties of working with a GFF is that it is not de�ned as a function, so we cannot

say what value h(z) takes, for z ∈ D. However, it is regular enough that we can talk about its
average value on a set. We will usually take that set to be the circle of radius ε > 0 centred at a
point z ∈ D, and call that average hε(z). Let {hε(z) ; ε > 0}z∈D be the circle averages of h. We
will de�ne both the GFF and its averages more precisely in Section 3.2.1. For α > 0, the set Tα

of α-thick points is given by

Tα = {z ∈ D ∶ lim
ε→0

hε(z)
log 1ε

= α} .

By a theorem in [HMP10], it is known that the Hausdor� dimension of Tα is

dimH(Tα) =max(0, 2 −
α2

2
) ,

almost surely.

Let 0 < γ < 2. We will denote by Zγ a γ-Liouville Brownian motion, formally de�ned as

follows. Let B be a Brownian motion killed upon leavingD. We de�ne its clock process, Fγ, to

be

Fγ(t) = ∫
t

0
eγh(Bs)− γ2

2 E[h(Bs)2]ds,

and the LBM is given by Zγ
t = BF−1γ (t). It is not trivial to make sense of this de�nition.�is

was done in [Ber15a] and [GRV13a], where further properties were also proved. We recall the

construction more precisely in Section 3.2.3.

�e main goal of this chapter is to prove the following bound:

�eorem 3.1.1. Let α, γ ∈ [0, 2), and let Zγ denote a γ-Liouville Brownian motion.�en

dimH({t ∶ Zγ
t ∈ Tα}) ≥

1 − α2
4

1 − αγ
2 +

γ2
4

,

almost surely, where dimH refers to the Hausdor� dimension.
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�e proof of�eorem 3.1.1 follows similar lines as the proof of�eorem 4.1 in [RV13]. Long

range correlations introduced by the Brownianmotion created a fewmore technical di�culties

to overcome.�e authors proved their result for an exactly stochastically scale invariant �eld,

and claimed that the result generalised from that to all log-correlated Gaussian �elds. We were

also unable to follow the generalisation of their proof, which used a non-trivial application of

Kahane’s convexity inequality – we instead had to rely on Lemma 3.3.5.

�eorem 3.1.1, combined with�eorem 1.4 in [Ber15a], gives us the following corollary:

Corollary 3.1.2. Let α, γ ∈ [0, 2), and let Zγ denote a γ-Liouville Brownian motion.�en

dimH({t ∶ Zγ
t ∈ Tα}) =

1 − α2
4

1 − αγ
2 +

γ2
4

,

almost surely.

Similar results for di�usions on deterministic fractals were given in [HK03].

�e key to our proof is good estimates on the regularity of the time change Fγ around α-thick

points. For a given α, we do not get the regularity results around all of the α-thick points, but

we do get it around almost all of them, for the correct choice of measure. If we de�ne the

measure µα by setting, for s ≤ t,

µα([s, t]) = Fα(t) − Fα(s),

then we will show that Fγ behaves polynomially for µα-almost every t, in the following sense:

�eorem 3.1.3. For µα-almost every t > 0, the change of time Fγ has the following growth rate:

lim
r→0

log ∣Fγ(t) − Fγ(t + r)∣
log ∣r∣ = 1 − αγ

2
+ γ2

4
,

almost surely.

When we combine the regularity of the time change function Fγ with known regularity

properties of Brownian motion, we are able to �nd a bound on the small time behaviour of
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the LBM. Let us call Mα the Liouville measure constructed from a GFF with parameter α,

which is formally de�ned as

Mα(dz) = eαh(z)dz.

�e measureMα is almost surely supported on the set of α-thick points and so, if we choose a

point in D according toMα, it will almost surely be an α-thick point of the GFF.

Corollary 3.1.4. Suppose that the starting point of a γ-Liouville Brownian motion is chosen

according to Mα, i.e. Z
γ
0 ∼ Mα.�en

lim sup
t→0

log ∣Zγ
t ∣

log t
= 1
2 − αγ + γ2

2

,

almost surely.

Remark 3.1.5. When α = γ (which will be the typical case), the di�usivity exponent is 2 − γ2

2 .

Also observe that a single process can be both superdi�usive (e.g. when α = 0) and subdi�usive
(e.g. when α = γ).

Finally, we will show the following result about the di�erentiability of a Liouville Brownian

motion, for certain values of the parameter γ.

Corollary 3.1.6. Let γ ∈ (
√
2, 2). �en the γ-Liouville Brownian motion Zγ is Lebesgue-almost

everywhere di�erentiable with derivative zero, almost surely.

3.1.2 Intuition behind the proof

Since we are looking at the dimension of times that a γ-LBM spent in α-thick points, it helps

us to �rst note the following lemma. It is not used in the proofs of the main theorems, but it

provides motivation for them.

Lemma 3.1.7. Let α ∈ [0, 2).�e Hausdor� dimension of time that a Brownian motion B spends

in the α-thick points of a GFF is given by

dimH ({t ∶ Bt ∈ Tα}) = 1 −
α2

4
,

almost surely.
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LBM and Thick Points of the GFF

Proof. Let [B] denote the path of the Brownian motion B. Kau�man’s dimension doubling
formula for Brownian motion (see, for example,�eorem 9.28 of [MP10]), tells us that

2 dimH ({t ∶ Bt ∈ Tα}) = dimH(Tα ∩ [B])

almost surely. But then, since B is independent of the GFF and hence Tα , by a theorem due to

Hawkes [Haw71a,Haw71b] (clearly stated and proved as Corollary 5.2 in [Per96]), we know

that

dimH(Tα ∩ [B]) = dimH(Tα)

almost surely.�e result in [HMP10] gives us that

dimH(Tα) = 2 −
α2

2

almost surely, which completes our proof.

Recall the result that, if a function f is β-Hölder continuous, then for any suitable set E we

have the bound

dimH( f (E)) ≤
1
β
dimH(E). (3.1)

Let us call the set Tα = {t ∶ Bt ∈ Tα}. �en notice that Fγ(Tα) is the set of time spent by
γ-Liouville Brownian motion in α-thick points. We will show that the inverse of the change

of time, F−1γ is 1
1− αγ

2 +
γ2
4

-Hölder continuous around α thick points, allowing us to see that

1 − α2

4
= dimH(Tα) = dimH(F−1γ (Fγ(Tα))) ≤ (1 − αγ

2
+ γ2

4
)dimH(Fγ(Tα)),

where the �nal inequality comes from a result very similar to that in (3.1). (We cannot use

that result exactly, since the Hölder continuity property of F−1γ is restricted to a subset of its

domain. We will discuss this further in Section 3.2.4.)

Rather than showing the regularity of F−1γ directly, we will �nd properties of Fγ and use them

to deduce results about the inverse. However, showing the regularity properties of Fγ around

a single thick point, while useful, is not enough. We want to look at the regularity of Fγ

simultaneously around all α-thick points that the Brownian motion B visits.�is is where we
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use the upper bound that was previously found in [Ber15a].�e upper bound is enough to

show that a γ-LBM, Zγ, spends Lebesgue-almost all of its time in γ-thick points, almost surely.

Our trick, therefore, is to construct two Liouville Brownian motion processes simultaneously

on the same underlying path B; one will use the parameter γ, the other will use the parameter

α. �en, if we sample a time uniformly at random and look at where the process Zα is, it

will almost surely be an α-thick point. Since the process is constructed using the Brownian

motion B, we know that Bmust pass through that particular α-thick point at some time t, say.

But then we know that Fγ(t) corresponds to a time that Zγ is in an α-thick point.

Using this procedure, we can construct a measure on the (Euclidean) set of times that Zγ

spends in α-thick points. We can then sample a time at random from this measure, and look

at the regularity properties of Fγ around that time.�is idea is more thoroughly �eshed out in

Section 3.3.3.

3.2 Setup

We will now collect a few of the de�nitions and results that we use throughout Section 3.3.

�roughout, we let D be a simply connected, proper domain in C. By conformal invariance
of Liouville Brownian motion (including its clock process) we can assume without loss of

generality that D is bounded. (See�eorem 1.3 in [Ber15a].)

3.2.1 Gaussian free �eld

We will brie�y introduce the Gaussian free �eld here, mostly to clarify our notation. For more

detail see, for example, [She07] or the introduction of [DS11].

Before we can de�ne the GFF we need to de�ne the Dirichlet inner product. For any two

smooth, compactly supported functions ϕ and ψ de�ned on D, we de�ne the Dirichlet inner
product as

⟨ϕ, ψ⟩∇ = 1
2π ∫D∇ϕ(z) ⋅ ∇ψ(z)dz.
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We can now de�ne the Gaussian free �eld.

De�nition 3.2.1. LetH10(D) be the Sobolev space given by the completion under the Dirichlet
inner product of smooth, compactly supported functions de�ned on D.�e Gaussian free
�eld is a centered Gaussian process on the space H10(D).

A consequence of the Hilbert space de�nition given above is that for any two functions f , g ∈
H10(D), the random variables ⟨h, f ⟩∇ and ⟨h, g⟩∇ are centred Gaussian random variables
with covariance

Cov(⟨h, f ⟩∇ , ⟨h, g⟩∇) = ⟨ f , g⟩∇ .

�is means that we can de�ne a regularisation of the GFF, and we know about its covariance

properties. Fore more details, see the discussion in Section 3.1, in particular Proposition 3.2

in [DS11].

De�nition 3.2.2. �e average of the GFF h on a circle of radius ε, centred at a point z ∈
{z′ ∈ D ∶ dist(z′, ∂D) > ε} is de�ned as as

hε(z) = ⟨h, ξzε⟩∇ .

�e function ξzε is given by

ξzε(y) = − log(∣z − y∣ ∨ ε) + ϕz
ε(y), (3.2)

where ϕz
ε is harmonic in D and is equal to log(∣z − y∣ ∨ ε) for y ∈ ∂D.

�e reason that we think of the above de�nition as giving the circle average of the GFF is that,

as a distribution, we have that −∆ξzε = 2πνz
ε , where νz

ε is the uniform distribution on the circle

centred at z with radius ε.�erefore, integration by parts gives us

⟨h, ξzε⟩∇ = ⟨h, νz
ε⟩ ,

where ⟨⋅, ⋅⟩ refers to the standard L2 inner product. We will use a continuous modi�cation of
the circle average process {hε(z) ; ε > 0}z∈D throughout. For more detail, see Propositions 3.1
and 3.2 in [DS11].
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�e following lemma will be useful in Section 3.3.2, as it allows us to use properties of the log

function rather than relying on the abstract de�nition of E[ hε(x)hη(y) ]. It is a previously
known result for fairly general log-correlated Gaussian �elds, see Section 4.1 of [RV13] for

example. We prove now that it holds in the speci�c case of the Gaussian free �eld.

Lemma 3.2.3. Let h be a zero boundary GFF de�ned on a simply connected domainD. For any
subdomain D̃ which is compactly contained in D, there exists a constant C > 0 such that, for all
0 < ε, η ≤ dist(D̃, ∂D) with η ≤ ε,

log
1

∣x − y∣ + ε
− C ≤ E[ hε(x)hη(y) ] ≤ log

1
∣x − y∣ + ε

+ C

for all x , y ∈ D̃.

Proof. First note that, by de�nition, E[hε(x)hη(y)] = ⟨ξxε , ξy
η⟩∇. Integration by parts lets us

write that as ⟨ξxε , ξy
η⟩∇ = ⟨ξxε , νy

η⟩. Since x , y ∈ D̃ are uniformly bounded away from ∂D, D is
a bounded domain, and ϕx

ε (de�ned in (3.2)) is harmonic in D̃, we know that there exists a
constant C such that

−C ≤ ϕx
ε (y) ≤ C (3.3)

for all x , y ∈ D̃ and ε > 0. So, to complete the proof, it is su�cient to �nd bounds on
⟨− log(∣x − ⋅∣ ∨ ε), νy

η⟩. To that end, we claim that, for all x , y ∈ D and u ∈ D such that
∣u − y∣ ≤ η, we have

1
3
(∣x − y∣ + ε) ≤ ∣x − u∣ ∨ ε ≤ ∣x − y∣ + ε. (3.4)

�e right hand inequality follows directly from the triangle inequality. For the le� hand

inequality, note that
1
3
(∣x − y∣ + ε) ≤ 1

3
∣x − u∣ + 2

3
ε

by the triangle inequality.�en, if ∣x − u∣ ≤ ε, we see that

1
3
∣x − u∣ + 2

3
ε ≤ ε = ∣x − u∣ ∨ ε,

and if ∣x − u∣ > ε, we see that

1
3
∣x − u∣ + 2

3
ε ≤ ∣x − u∣ = ∣x − u∣ ∨ ε.
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Now, the inequalities in (3.4) imply that, for all x , y ∈ D̃ and u ∈ ∂B(y, η), there exists some
constant C̃ such that

− log(∣x − y∣ + ε) − C̃ ≤ − log (∣x − u∣ ∨ ε) ≤ − log(∣x − y∣ + ε) + C̃ .

When we average over u ∈ ∂B(y, η) therefore, we �nd that

− log(∣x − y∣ + ε) − C̃ ≤ ⟨− log(∣x − ⋅∣ ∨ ε), νz
η⟩ ≤ − log(∣x − y∣ + ε) + C̃ ,

which, when we combine it with (3.3), completes the proof.

One of the properties of the GFF which we will use is the domain Markov property. It roughly

states that, given a subdomain U ⊂ D, the GFF h on D can be decomposed as the sum of a
zero boundary GFF h̃ on U and the di�erence, hhar = h − h̃, which is independent of h̃ and

harmonic on U .�e proof can be found in Section 2.6 of [She07].

Proposition 3.2.4 (Markov property). Let U ⊂ D be a subdomain of the simply connected

domain D. Let h be a GFF on D.�en there exist two random variables hhar , h̃ ∈ H−ε
0 (D) such

that we can write h = hhar + h̃, and

1. hhar and h̃ are independent,

2. h̃ is a zero boundary GFF on U and zero on D ∖ U ,

3. hhar is harmonic on U and agrees with h on D ∖ U ,

Note 3.2.5. Wewill o�en refer to hhar in the decomposition above as “the harmonic projection

of h onto U .”

We now de�ne the set of α-thick points of the �eld h. We can think of these as a kind of “level

set” of the �eld. We are interested in how much time the Liouville Brownian motion spends

in these points, for α ∈ [0, 2) in particular.

De�nition 3.2.6. �e set of α-thick points, Tα is

Tα = {z ∈ D ∶ lim
ε→0

hε(z)
− log ε

= α} .
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3.2.2 Scale invariant Gaussian �eld

To help with calculations in Section 3.3.1, we introduce a centred Gaussian �eld Y de�ned

on the whole complex plane, following the presentation of [RV13]. We use this particular

log-correlated �eld because it has the exact stochastic scale invariance property. A great deal

more information about log-correlated Gaussian �elds and the measures created from them

(those of Gaussian multiplicative chaos) can be found in [Kah85, RV10] for example, and

more about the scaling relations which log-normal random measures satisfy can be found

in [ARV13].

Informally, we de�ne �eld Y to be a centered Gaussian �eld on C with covariance function

E[Y(x)Y(y) ] = log+
T

∣x − y∣ + C . (3.5)

for positive constants T and C. For simplicity, we will take T = 1 and C = 0 throughout.

One of the di�culties here is that, with the covariance function (3.5), Y will not be de�ned

pointwise. We therefore need to look at regularisations of Y . We will use is the white noise

decomposition of the �eld Y . We now give a summary of the construction found in [RV10].

Let f be a real, positive de�nite function onRd .�en, to construct a Gaussian �eld X on with

a covariance E[X(x)X(y)] = f (x − y), we can write

X(x) = ∫
(0,∞)×Rd

ζ(x , ξ)
√

f̂ (ξ)g(t, ξ)W(dt, dξ),

where ζ(x , ξ) = cos(2πx ⋅ ξ)−sin(2πx ⋅ ξ), f̂ is the Fourier transform of f ,W(dt, dξ) is white
noise on (0,∞) ×Rd , and g satis�es ∫

∞
0 g(t, ξ)2dt = 1 for all ξ. With such a construction, we

can de�ne the ε-regularisation of the �eld X by setting

Xε(x) = ∫
(ε,∞)×Rd

ζ(x , ξ)
√

f̂ (ξ)g(t, ξ)W(dt, dξ).

�e speci�c decomposition that we use is also used in [RV13], Appendix C.We give the precise

de�nition:
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De�nition 3.2.7. Let (Yε)ε∈(0,1] be the white noise decomposition of the �eld Y , which has

correlation structure

E [Yε(x)Yε(y)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∣x − y∣ > 1

log 1
∣x−y∣ if ε ≤ ∣x − y∣ ≤ 1

log 1ε + 2(1 −
∣x−y∣

1
2

ε
1
2

) if ∣x − y∣ ≤ ε.

�e following lemma is useful in the study of properties Gaussian multiplicative chaos locally

in Y . It is known in the literature (see [RV13], Appendix C, for example), but we include the

proof here for completeness.

Lemma 3.2.8 (Stochastic scale invariance). For all λ < 1, the �eld Y satis�es the following

scaling relation:

(Yλε(λx))∣x∣≤ 12
d= (Yε(x))∣x∣≤ 12 +Ωλ , (3.6)

where Ωλ is a centred Gaussian random variable with variance log 1λ , independent of the �eld Y.

Proof. We know that both the le� and right hand sides of (3.6) are centred Gaussian �elds.

�erefore, to show the equality in distribution, we need only to show equality in their respective

covariance functions.

We start with the right hand side. Let x , y ∈ C.�en

E [(Yε(x) +Ωλ)(Yε(y) +Ωλ)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log 1λ if ∣x − y∣ > 1

log 1
∣x−y∣ + log 1λ if ε ≤ ∣x − y∣ ≤ 1

log 1ε + 2(1 −
∣x−y∣

1
2

ε
1
2

) + log 1λ if ∣x − y∣ ≤ ε.
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Now, consider the le� hand side of (3.6). Again, let x , y, ∈ C.�en

E [Yλε(λx)Yλε(λy)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∣λx − λy∣ > 1

log 1
∣λx−λy∣ if λε ≤ ∣λx − λy∣ ≤ 1

log 1
λε + 2(1 −

∣λx−λy∣
1
2

(λε)
1
2

) if ∣λx − λy∣ ≤ λε.

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∣x − y∣ > 1/λ

log 1
∣x−y∣ + log 1λ if ε ≤ ∣x − y∣ ≤ 1/λ

log 1ε + 2(1 −
∣x−y∣

1
2

(ε)
1
2
) + log 1λ if ∣x − y∣ ≤ ε.

We can see that the covariance functions are equal, provided ∣x − y∣ ≤ 1. We want to show
equality in distribution only inside the ball centred at the origin with radius 1/2 and, since
∣x − y∣ ≤ 1 for all x , y ∈ B(0, 1/2), the proof is complete.

3.2.3 Liouville Brownian motion

�e Liouville Brownian motion is de�ned as a time change of a Brownian motion, with the

path chosen independently from the �eld h. We will start the Brownian motion at the origin

(assuming 0 ∈ D), and run it until some a.s. �nite stopping time T .�e following de�nition is
non-trivial: for more details about the almost sure existence of the limit and other properties,

see [Ber15a,GRV13a].

De�nition 3.2.9. Let B be a planar Brownian motion, independent of the �eld h. For ε > 0
and γ ∈ [0, 2), de�ne the regularised time change Fγ,ε by

Fγ,ε(t) = ∫
t∧T

0
eγhε(Bs)− γ2

2 E[ hε(Bs)2 ]ds.

�e time change Fγ is de�ned as the limit

Fγ(t) = lim
ε→0

Fγ,ε(t).
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De�nition 3.2.10. Using the same Brownian motion B as in De�nition 3.2.9, we de�ne the

γ-Liouville Brownian motion (γ-LBM for short) Zγ as

Zγ
t = BF−1γ (t).

Two important properties of Fγ, shown in both [Ber15a] and [GRV13a], are that it is continuous

and strictly increasing, almost surely.�ose properties ensure that the γ-LBM does not get

stuck, and is continuous. (See, for example, Proposition 2.8 and�eorem 2.10 in [GRV13a].)

Note 3.2.11. If we call Tα = {t ≥ 0 ∶ Bt ∈ Tα} the set of times that the Brownian motion B

spends in α-thick points, the set of times that the γ-LBM Zγ spends in α-thick points is the

image, under the map Fγ, of the times that B spends in them, i.e. Fγ(Tα) = {t ≥ 0 ∶ Zγ
t ∈ Tα}.

As the Brownian path B of the Liouville Brownian motion Zγ is independent of the GFF h, it

will be useful to decompose the probability measure P as

P = PB ⊗ Ph .

Decomposing P in this way will let us consider expectations on events which depend only on

the �eld h or the path B.

3.2.4 Hausdor� dimension

We will now recall the de�nition of the Hausdor� measure of a set, and collect some useful

tools for �nding upper and lower bounds for the Hausdor� dimension. Since we will be

working in either R or R2, we will not state the de�nitions in their full generality. For more

detail see, for example, Chapter 4 of [MP10].

De�nition 3.2.12. Let E ⊂ Rn. For s ≥ 0 and δ > 0 we de�ne

Hs
δ(E) = inf {

∞
∑
i=1

∣Ei ∣s ∶ E ⊂
∞
⋃
i=1

Ei and ∣Ei ∣ < δ ∀i ≥ 1} ,

where ∣Ei ∣ = sup{∣x − y∣ ∶ x , y ∈ Ei} is the diameter of the set Ei .�en the limit

Hs(E) = lim
δ→0
Hs

δ(E)
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is the s-Hausdor� measure of E.

De�nition 3.2.13. �e Hausdor� dimension of a set E ⊂ Rn is de�ned as

dimH(E) = inf {s ≥ 0 ∶ Hs(E) = 0} .

One tool for �nding bounds on the Hausdor� dimension of a set is to use Hölder continuity

properties of functions. Indeed, if f ∶ Rn → Rm is β-Hölder continuous, then for any set

E ⊂ Rn we have

dimH( f (E)) ≤
1
β
dimH(E), (3.7)

where f (E) = { f (x) ∶ x ∈ E} is the image of E under f .�e assumption of Hölder continuity
is too strong for our purpose. We now de�ne what we call a β-Hölder-like function, and show

that the property is strong enough that the inequality in (3.7) still holds.

De�nition 3.2.14. Let f ∶ R → R be a continuous function, and let E ⊂ R. We say that f is

β-Hölder-like on E if there exist constants C , R > 0 such that

∣ f (x) − f (x + r)∣ ≤ Crβ

for all r ∈ [0, R) and x ∈ E.

�e following proposition is very similar to the well known result concerning Hausdor�

dimension bounds for the image of a set under a Hölder continuous function. We have had

to modify the standard proof slightly to ensure that the result still holds with Hölder-like

functions.

Proposition 3.2.15. Let E ⊂ R, and suppose that f ∶ R→ R is increasing and β-Hölder-like on

E.�en we have the bound

dimH( f (E)) ≤
1
β
dimH(E).

Proof. Suppose that the radius and multiplicative constant for the Hölder-like property of f

are R and C respectively. Let s > dimH(E), and let ε > 0. SinceHs(E) = 0, we know that there
exists some δ0 such thatHs

δ(E) ≤ ε for all δ ∈ (0, δ0).
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Fix a particular δ ∈ (0, δ0 ∧ R).�en we can �nd a cover {Ei} of E with ∣Ei ∣ < δ for all i such

that
∞
∑
i=1

∣Ei ∣s < ε.

Without loss of generality, we may assume that the intersection E ∩ Ei is non-empty.�ere-

fore, for each Ei we can de�ne an interval Ii = [ai , bi], where ai = inf {Ei ∩ E} and bi =
sup{Ei ∩ E}.�en certainly ∣Ii ∣ < δ for all i, the sets {Ii} cover E and∑ ∣Ii ∣s < ε.

As f is increasing, we know that

∣ f (Ii)∣ = ∣ f (ai) − f (bi)∣.

Now, ai is a limit point of Ei ∩ E, so we can �nd a sequence {xn} ⊂ Ei ∩ E such that xn → ai

as n →∞. Since each xn ∈ E, the β-Hölder-like property of f , tells us that

∣ f (Ii)∣ ≤ ∣ f (ai) − f (xn)∣ + ∣ f (xn) − f (bi)∣ ≤ ∣ f (ai) − f (xn)∣ + C∣xn − bi ∣β .

So, letting n →∞, and recalling that f is continuous (by assumption), we see that

∣ f (Ii)∣ ≤ C∣ai − bi ∣β = C∣Ii ∣β .

�erefore, we can deduce that

∞
∑
i=1

∣ f (Ii)∣
s
β ≤ C

∞
∑
i=1

∣Ii ∣s < Cε.

Since { f (Ii)} covers f (E), we have shown that

H
s
β
δ ( f (E)) < Cε.

We may now let δ ↓ 0 and then ε ↓ 0 to see thatH
s
β ( f (E)) = 0, and hence

dimH( f (E)) ≤
s
β
.

Now letting s ↓ dimH(E) gives the desired result.
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3.3 Proofs of the main theorems

One of the tools we use in the proof of the lower bound is the exact stochastic scale in-

variance of the auxiliary �eld Y as detailed in Lemma 3.2.8. However, Lemma 3.2.8 holds

inside the ball B(0, 12), and so we need to ensure that we consider times when the Brownian
motion B does not stray too far from the origin. �erefore, we de�ne the stopping time

τ = inf {t ≥ 0 ∶ Bt /∈ B(0, 12)}, where B(0, 12) is the ball of radius 12 centred at the origin. For
simplicity, we will assume that our domain contains the ball of radius 12 , B(0, 12) ⊂ D.

3.3.1 Moments of Fγ around a thick point

We �rst need to obtain estimates on the moments of the time change Fγ around α-thick points

of the free �eld. We will use these bounds in Section 3.3.3 to derive Hölder-like properties of

Fγ.

Since the law of the GFF conditional on the origin being a thick point is that of an independent

zero boundary GFF plus a log singularity, h(z) d= h̃(z) − α log ∣z∣, the e�ect on the measure is
to divide by ∣z∣αγ.�at is why we are thinking the results in this section as results about Fγ

close to thick points.

Proposition 3.3.1 (A positive moment is bounded). Let α, γ ∈ [0, 2). �en, for some p > 0,
there exists a �nite constant Cp such that

sup
ε∈[0,1)

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

0

eγhε(Bs)− γ2

2 E[ hε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p ⎤⎥⎥⎥⎥⎥⎦
≤ Cp.

Proof. By Kahane’s convexity inequality (Lemma 2 in [Kah85]), taking the measure ν(ds) =
ds

(∣Bs ∣+ε)αγ , it is su�cient to prove the proposition for the scale invariant �eld Y .

Let σ be the �rst time that B leaves the disc of radius 1
2
√
2
.�en, by subadditivity of x ↦ x p
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for p ∈ (0, 1), we know that

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

0

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p⎤⎥⎥⎥⎥⎥⎦
≤ E

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

σ

0

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p⎤⎥⎥⎥⎥⎥⎦

+E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

σ

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p⎤⎥⎥⎥⎥⎥⎦
, (3.8)

and it is su�cient to �nd a uniform upper bound for the right hand side.

We will �rst �nd a uniform bound for the second term on the right hand side of (3.8). Let

R < 1
2
√
2
be �xed, which we will choose later, and de�ne the time τR = inf {t > σ ∶ ∣Bt ∣ ≤ R}

that the Brownian motion returns to the ball of radius R a�er it reaches the circle of radius
1
2
√
2
.

On the event {τR > τ}, we know that ∣Bt ∣ > R for all t ∈ (σ , τ).�erefore we �nd the bound

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

σ

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR>τ}

⎤⎥⎥⎥⎥⎥⎦
≤

≤ R−αγpE [(∫
τ

σ
eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]ds)
p
1{τR>τ}]

≤ R−αγpE [(∫
τ

σ
eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]ds)
p
] (3.9)

Now, the L1 norm of the regularised change of time process is uniformly bounded in ε and,

since p < 1, the expectation of the pth power of it on the event must also be uniformly bounded
in ε. We will call the uniform boundM.

On the event {τR < τ} we will split up the interval (σ , τ) into (σ , τR) and (τR , τ), using the
sub-additivity of x ↦ x p as before to �nd that

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

σ

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR<τ}

⎤⎥⎥⎥⎥⎥⎦
≤

≤ E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τR

σ

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR<τ}

⎤⎥⎥⎥⎥⎥⎦
+

+E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

τR

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR<τ}

⎤⎥⎥⎥⎥⎥⎦
, (3.10)
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Consider the �rst term on the right hand side of (3.10). Similarly to before, we know that

∣Bt ∣ > R for all t ∈ (σ , τR), and so we can bound the expectation uniformly by

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τR

σ

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR<τ}

⎤⎥⎥⎥⎥⎥⎦
≤

≤ R−αγpE [(∫
τR

σ
eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]ds)
p
1{τR<τ}]

≤ R−αγpE [(∫
τ

σ
eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]ds)
p
]

≤ R−αγpM . (3.11)

To deal with the interval (τR , τ), let W be another Brownian motion, with W0 = BτR and

which, for t > 0, evolves independently of B. Let T = inf {t > 0 ∶ Wt /∈ B(0, 12)}.�en, by the
strong Markov property of Brownian motion, we see that

⎛
⎜
⎝
∫

τ

τR

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR<τ}
d=
⎛
⎜
⎝
∫

T

0

eγYε(Ws)− γ2

2 E[Yε(Ws)2 ]

(∣Ws∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR<τ},

and that ∫
T
0

eγYε(Ws)− γ2
2 E[ Yε(Ws)2 ]

(∣Ws ∣+ε)αγ ds is independent of 1{τR<τ}.�erefore, we see that

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

τR

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR<τ}

⎤⎥⎥⎥⎥⎥⎦
=

= E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

T

0

eγYε(Ws)− γ2

2 E[Yε(Ws)2 ]

(∣Ws∣ + ε)αγ ds
⎞
⎟
⎠

p ⎤⎥⎥⎥⎥⎥⎦
P[ τR < τ ] . (3.12)

Because we startedW closer to the boundary of B(0, 12) we know that, on average, it has a
shorter lifespan than B, and so

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

T

0

eγYε(Ws)− γ2

2 E[Yε(Ws)2 ]

(∣Ws∣ + ε)αγ ds
⎞
⎟
⎠

p ⎤⎥⎥⎥⎥⎥⎦
≤ E

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

0

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p ⎤⎥⎥⎥⎥⎥⎦
. (3.13)

Combining (3.12) and (3.13) gives us the bound

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

τR

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p

1{τR<τ}

⎤⎥⎥⎥⎥⎥⎦
≤

≤ E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

0

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p ⎤⎥⎥⎥⎥⎥⎦
P[ τR < τ ] . (3.14)
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Now, consider the �rst term on the right hand side of (3.8). Scaling time by a factor of 12 and

space by a factor of 1√
2
gives

∫
σ

0

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds = 2−1∫
2σ

0

eγYε(Bu/2)−
γ2

2 E[Yε(Bu/2)2 ]

(∣Bu/2∣ + ε)αγ du

d= 2−(1−
αγ
2 )∫

τ̃

0

eγYε( 1√
2
B̃u)− γ2

2 E[Yε( 1√
2
B̃u)2 ]

(∣B̃u∣ + ε
√
2)αγ du

d= 2−(1−
αγ
2 +

γ2

4 )eγΩ√
2 ∫

τ̃

0

eγYε
√
2(B̃u)− γ2

2 E[Yε
√
2(B̃u)2 ]

(∣B̃u∣ + ε
√
2)αγ du,

the last line coming from Lemma 3.2.8, where B̃ is an independent Brownian motion, τ̃ is the

time that B̃ leaves the disc of radius 12 , and Ω√
2 is a centred Gaussian random variable with

variance log
√
2.�erefore, when we take the pth moment, we �nd

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

σ

0

eγYε(Bs)− γ2

2 E[Yε(Bs)2 ]

(∣Bs∣ + ε)αγ ds
⎞
⎟
⎠

p⎤⎥⎥⎥⎥⎥⎦
=

= 2
γ2

4 p2−(1− αγ
2 +

γ2

4 )pE
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ̃

0

eγYε
√
2(B̃u)− γ2

2 E[Yε
√
2(B̃u)2 ]

(∣B̃u∣ + ε
√
2)αγ du

⎞
⎟
⎠

p⎤⎥⎥⎥⎥⎥⎦
. (3.15)

Let us de�ne a sequence of scales by setting εn = 2−
n
2 , for n ∈ N, and call the expectation

En = E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

τ

0

eγYεn (Bs)− γ2

2 E[Yεn (Bs)2 ]

(∣Bs∣ + εn)αγ ds
⎞
⎟
⎠

p⎤⎥⎥⎥⎥⎥⎦
.

Using this notation, we substitute the scaling relation in (3.15), the uniform bounds in (3.9)

and (3.11), and the inequality in (3.14) into (3.8), to see that, for n ≥ 1,

En ≤ 2
γ2

4 p2−(1− αγ
2 +

γ2

4 )pEn−1 + 2R−αγpM + EnP[τR < τ]. (3.16)

Upon re-arrangement, the inequality in (3.16) becomes

En ≤
⎛
⎜
⎝
2

γ2

4 p2−(1− αγ
2 +

γ2

4 )p

1 − P[τR < τ]
⎞
⎟
⎠
En−1 +

2R−αγpM
1 − P[τR < τ] .

By choosing p > 0 �rst and then R > 0 �xed and small enough, we can ensure that the factor
multiplying En−1, 2

γ2
4 p2−(1− αγ

2 +
γ2
4 )p

1−P[τR<τ] , is less than 1. When we have done this, what we have shown
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3.3 Proofs of the main theorems

is that, for some ρ ∈ (0, 1) and some constant M̃, we have En < ρEn−1 + M̃, which implies that

the sequence {En}n∈N is bounded.

Proposition 3.3.2 (A negative moment is bounded). Let α, γ ∈ [0, 2).�en there exists a �nite

constant C−1 such that

sup
ε∈[0,1)

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

1∧τ

0

eγhε(Bs)− γ2

2 E[ hε(Bs)2 ]

(∣Bs∣ + ε)αγ

⎞
⎟
⎠

−1 ⎤⎥⎥⎥⎥⎥⎦
≤ C−1.

Proof. Again, using Kahane’s convexity inequality (Lemma 2 of [Kah85]), it is su�cient to

prove this result for the scale invariant �eld Y . We know that ∣Bs∣ + ε ≤ 3
2 for all s ∈ (0, τ) and

for all ε ∈ [0, 1), and so we �nd the bound

sup
ε∈[0,1)

E
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
∫

1∧τ

0

eγYε(Bs)− γ2

2 E[Y(Bs)2 ]

(∣Bs∣ + ε)αγ

⎞
⎟
⎠

−1 ⎤⎥⎥⎥⎥⎥⎦
≤

≤ (3
2
)

αγ
sup

ε∈[0,1)
E[(∫

1∧τ

0
eγYε(Bs)− γ2

2 E[Y(Bs)2 ])
−1

] . (3.17)

By Lemmas 2.13 and 2.14 of [GRV13a], the right hand side of (3.17) is �nite, and so we are

done.

�e following corollaries will be useful in Section 3.3.3.

Corollary 3.3.3. For any power q, we have a polynomial bound on the probability

P
⎡⎢⎢⎢⎢⎣
∫

1∧τ

0

eγhε(Bs)− γ2

2 E[ hε(Bs)2 ]

(∣Bs∣ + ε)αγ ds ≤ rq
⎤⎥⎥⎥⎥⎦
≤ C−1rq

for any r > 0.

Corollary 3.3.4. �ere exists some p > 0 such that, for any q, we have a polynomial bound on

the probability

P
⎡⎢⎢⎢⎢⎣
∫

τ

0

eγhε(Bs)− γ2

2 E[ hε(Bs)2 ]

(∣Bs∣ + ε)αγ ds ≥ r−q
⎤⎥⎥⎥⎥⎦
≤ Cprpq

for any r > 0.

�e proof of both of these are simple applications of Markov’s inequality.

99



LBM and Thick Points of the GFF

3.3.2 Scaling of a Gaussian free �eld

As well as the polynomial behaviour of the tails of Fγ around thick points that we saw in

Corollaries 3.3.3 and 3.3.4, we also need a bound on the tail behaviour on the supremum (or

in�mum) of the harmonic projection of a GFF on a disc of radius
√
r.

We were able to use the scale invariant �eld Y throughout Section 3.3.1 because the moments

we were trying to bound were convex (or concave) functions of a multiplicative chaos measure,

and so Kahane’s convexity theorem let us change between �elds. In Section 3.3.3, however, we

need to consider moments of certain integrals of the �eld, weighted by indicator functions

depending on the �eld itself. Kahane’s convexity theorem therefore no longer applies, and we

have to work directly with the GFF. So, we need an analogue of the scaling property that the

�eld Y has.

Lemma 3.3.5. LetD ⊂ C be a bounded proper domain, and let D̃ ⊂ D be a compactly contained

subdomain ofD. Let h be a zero-boundary condition GFF onD. Now, using theMarkov property

(Proposition 3.2.4), let us write

h = hhar + h̃,

where hhar is the harmonic projection of h onto the disc of radius 2
√
r and centred at x ∈ D̃, and

h̃ is an independent, zero-boundary condition GFF on the disc of radius 2
√
r and centred at

x ∈ D̃. Let

Ωx√
r = sup

z∈B(x ,
√
r)
hhar(z)

be the supremum of hhar on B(x ,
√
r).�en there exist constants C , p > 0 such that, for all r > 0

small enough,

sup
x∈D̃

P [Ωx√
r > − log r] ≤ Crp.

Proof. �e proof is essentially the same as the proof of Kolmogorov’s continuity criterion.

Instead of taking limits to obtain almost sure results, however, we obtain quantitative estimates
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3.3 Proofs of the main theorems

which hold with high probability. First, let us �x x ∈ D̃. From the proof of Proposition 3.1
in [DS11], we know that there exists some constant K2 such that, for z,w ∈ D and ε > 0,

E [∣hε
√
r(z) − hε

√
r(w)∣2] ≤ K2∣z −w∣. (3.18)

Now, recall that hhar is harmonic on B(x , 2
√
r) and so, using the mean value property of

harmonic functions, we see that the circle average regularisation of hhar is equal to hhar on

sets inside B(x , 2
√
r), i.e. hhar

ε
√
r(z) = hhar(z) for ε small enough and z ∈ B(x ,

√
r).�erefore,

we know that

hε
√
r(z) = hhar(z) + h̃ε

√
r(z). (3.19)

Equation (3.19) and the independence of hhar and h̃, when combined with (3.18) shows us that

E [∣hhar(z) − hhar(w)∣2] ≤ E [∣hε
√
r(z) − hε

√
r(w)∣2] ≤ K2∣z −w∣ (3.20)

for z,w ∈ B(x ,
√
r). Because the �eld h does not depend on our choice of x, we can see that

the middle term in (3.20) is independent of x, and therefore so is the constant K2.

Because hhar(z) − hhar(w) is a Gaussian random variable, (3.20) implies that for any η > 0,
there exists a constant Kη such that

E [∣hhar(z) − hhar(w)∣η] ≤ Kη∣z −w∣η/2 (3.21)

for z,w ∈ B(x ,
√
r). Again, Kη is independent of x by the independence of K2 from x.

Because the supremum of a harmonic function on a domain is attained at the boundary of

that domain, we need only consider z ∈ ∂B(0,
√
r).�erefore, let us set

Xt = hhar (x +
√
re2πit) ,

for t ∈ [0, 1]. From the inequality in (3.21), we deduce that for s, t ∈ [0, 1]

E [∣Xs − Xt ∣η] ≤ Kη∣
√
r (e2πis − e2πit) ∣η/2

≤ K̃ηrη/2∣s − t∣η/2.

�e bound on the covariance structure of X clearly does not depend on the choice of x.
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LBM and Thick Points of the GFF

Now that we have a bound on the η-moment of the increments, we can use Markov’s in-

equality to say things about the probability that the process X is irregular. So, let Dn =
{k2−n ∶ k = 0, 1, . . . 2n} be the set of dyadic points in the unit interval at level n. For some
power p, to be chosen later, we have

P [∣Xk2−n − X(k+1)2−n ∣ > 2−npr1/4] ≤ 2npηr−η/4E [∣Xk2−n − X(k+1)2−n ∣η]

≤ K̃ηrη/42npη∣k2−n − (k + 1)2−n∣η/2

≤ K̃ηrη/42−n(
1
2 η−pη),

for k = 0, 1, . . . , 2n − 1.�erefore, a simple union bound shows that

P [sup
k

∣Xk2−n − X(k+1)2−n ∣ > 2−npr1/4] ≤ K̃ηrη/42−n(
1
2 η−pη−1).

If we choose 0 < p < 1
2 and η su�ciently large, we �nd that q ∶= 1

2η − pη − 1 > 0. Because we
have ensured that q > 0, we can again use the union bound to �nd that

P [sup
n≥0
sup
k

∣Xk2−n − X(k+1)2−n ∣ > 2−npr1/4] ≤ K̃ηrη/4∑
n≥0
2−nq

= K̃ηrη/4 ( 1
1 − 2−q )

= Kηrη/4.

So, we see that the event

A ∶= {Xt is p-Hölder continuous with constant r1/4}

occurs with probability greater than 1 − Kηrη/2. On that event we can see that

∣ sup
t
Xt − inft Xt ∣ ≤ r1/4. (3.22)

Using (3.22), we can �nd a bound for Ωx√
r in terms of objects we have good control over.

Speci�cally, we have

Ωx√
r ≤ ∣ sup

t
Xt − inft Xt ∣ + ∣X∣,

where X is the mean value of the process Xt. Let us consider that second term. Since X is

really just hhar on a circle, and hhar is harmonic, we can use the mean value theorem to see
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3.3 Proofs of the main theorems

that X = hhar(x). But again, we can apply the mean value theorem to see that hhar(x) is really
just the average of h on ∂B(x , 2

√
r), i.e. hhar(x) = h2√r(x). So, we have the inequality

P [Ω√
r ≥ − log r] ≤ P [∣ sup

t
Xt − inft Xt ∣ ≥ −

1
2
log r] + P [h2√r(x) ≥ −

1
2
log r] .

Because h2√r(x) ∼ N(0,− log 2
√
r + logC(x ,D)), we know that the second term on the

right hand side decays polynomially in r as r → 0. Furthermore, since the conformal radius,
C(x ,D), is bounded for x ∈ D̃, the coe�cients we choose in the polynomial bound can be
chosen to hold uniformly for all x ∈ D̃.

So now let us consider the �rst term.

P
⎡⎢⎢⎢⎢⎣
∣ sup

t
Xt − inft Xt ∣ ≥ −

1
2
log r

⎤⎥⎥⎥⎥⎦
= P [{∣ sup

t
Xt − inft Xt ∣ ≥ −

1
2
log r} ∩ A]

+ P [{∣ sup
t
Xt − inft Xt ∣ ≥ −

1
2
log r} ∩ Ac]

≤ P [r1/4 ≥ − 1
2
log r] + P [Ac]

≤ 0 + Kηrη/2,

for r small enough. Since Kη does not depend on x ∈ D̃, we have the desired result.

3.3.3 Hölder-like properties of Fγ

We will now show the required regularity properties of the time change function Fγ. It will be

convenient to introduce the following measures.

De�nition 3.3.6. Let µγ be the measure on the interval [0, τ] de�ned by µγ = L ○ F−1γ , where

L is Lebesgue measure on the interval [0, Fγ(τ)]. In other words, for s, t ∈ [0, τ] with s ≤ t,

we set

µγ([s, t]) = Fγ(t) − Fγ(s).

De�ne the measure µα in a similar way, for α ∈ [0, 2).

Remark 3.3.7. To get some intuition behind the next few results, let us think of the measures

µα and µγ as probability measures for a moment.�en, if we sample a time t ∈ [0, τ] according
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to µα , it will almost surely be such that the Brownianmotion B is in an α-thick point, i.e. t ∈ Tα

almost surely, because the α-LMB, Zα , spends Lebesgue-almost all of its time in α-thick points.

Similar statements hold if we sample a time from µγ.

Proposition 3.3.8. For all α ∈ [0, 2), and γ ∈ [0, 2), �x δ > 0, and let β = 1 − αγ
2 +

γ2

4 . De�ne

the set of times

LN
γ = {t ∈ [0, τ] ∶ µγ([(t, (t + r) ∧ τ]) ≥ rβ+δ ∀r ∈ [0, 2−N)} .

�en for all ∆ > 0, which may be random and may depend on µα([0, τ]), there exists some

random but almost surely �nite N ∈ N such that

µα (LN
γ ) ≥ µα ([0, τ]) − ∆.

�is proposition is essentially saying that if t is an α-thick time, then the µγ mass of an interval

of length r, starting at t, decays more slowly than rβ+δ. It is almost like saying that around

α-thick points, the map function F−1γ is 1
β+δ -Hölder continuous.

�e proof will rely on the following lemma:

Lemma 3.3.9. As before, �x δ > 0 and let β = 1− αγ
2 +

γ2

4 , and let E > 0 be some positive constant.

�en there exist two constants D > 0 and q > 0 such that

E[ µα ({t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) < Erβ+δ}) ] ≤ Drq .

for all r ∈ (0, 1).

Proof. To ease notation, we will prove the case E = 1.�e reader will be able to see that the
same argument works for any positive E, with possibly di�erent constants D and q.

Let r ≥ 0 and �x ε, ε′ > 0 so that ε′ < ε
√
r.�en by Girsanov’s change of measure theorem, we
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get

EBEh[1{ ∫ (t+r)∧τ
t e

γhε
√

r(Bs)−
γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

eαhε′(Bt)− α2
2 E[ hε′(Bt)2 ]1{τ>t}] =

= EB [1{τ>t}Ph [∫
(t+r)∧τ

t
eγ(hε

√
r(Bs)+αEh[hε

√
r(Bs)hε′(Bt)])− γ2

2 E[ hε
√

r(Bs)2 ]ds < rβ+δ]]

= EB [1{τ>t}EB [Ph [∫
(t+r)∧τ

t
eγ(hε

√
r(Bs)+αEh[hε

√
r(Bs)hε′(Bt)])− γ2

2 E[ hε
√

r(Bs)2 ]ds < rβ+δ] ∣Ft]]

(3.23)

where Ft = σ(Bs; s ≤ t) is the natural �ltration for B. Now, using Lemma 3.2.3, we know that
almost surely on the event s, t < τ, there is a constant C such that

Eh [hε
√
r(Bs)hε′(Bt)] ≥ log

1
∣Bs − Bt ∣ + ε

√
r
− C ,

and so we can bound the integral in (3.23) from below by

∫
(t+r)∧τ

t
eγ(hε

√
r(Bs)+αEh[hε

√
r(Bs)hε′(Bt)])− γ2

2 E[ hε
√

r(Bs)2 ]ds ≥

≥ e−αγC ∫
(t+r)∧τ

t

eγhε
√

r(Bs)− γ2

2 E[ hε
√

r(Bs)2 ]

(∣Bs − Bt ∣ + ε
√
r)αγ

ds (3.24)

Now, by changing variables and using the scaling properties of Brownian motion we see that

the right hand side of (3.24) becomes

∫
(t+r)∧τ

t

eγhε
√

r(Bs)− γ2

2 E[ hε
√

r(Bs)2 ]

(∣Bs − Bt ∣ + ε
√
r)αγ

ds = ∫
r∧(τ−t)

0

eγhε
√

r(Bt+s)− γ2

2 E[ hε
√

r(Bt+s)2 ]

(∣Bt+s − Bt ∣ + ε
√
r)αγ

ds

= r∫
1∧((τ−t)/r)

0

eγhε
√

r(Bt+ru)− γ2

2 E[ hε
√

r(Bt+ru)2 ]

(∣Bt+ru − Bt ∣ + ε
√
r)αγ

du

d= r∫
1∧τ′

0

eγhε
√

r(
√
rB̃u+Bt)− γ2

2 E[ hε
√

r(
√
rB̃u+Bt)2 ]

(∣
√
rB̃u∣ + ε

√
r)αγ

du

= r1−
αγ
2 ∫

1∧τ′

0

eγhε
√

r(
√
rB̃u+Bt)− γ2

2 E[ hε
√

r(
√
rB̃u+Bt)2 ]

(∣B̃u∣ + ε)αγ
du,

where B̃ is an independent Brownian motion started at the origin, and

τ′ = inf {u > 0 ∶ ∣
√
rB̃u + Bt ∣ =

1
2
}
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is the �rst time
√
rB̃u+Bt exits the disc of radius 1.�e equality in distribution holdsPh-almost

surely. In order to use the scaling property of the GFF h, (Lemma 3.3.5), we also need to make

sure that B̃ stays bounded. So, let

τ̃ = τ′ ∧ inf {u > 0 ∶ ∣B̃u∣ =
1
2
} .

�en we certainly know that

r1−
αγ
2 ∫

1∧τ′

0

eγhε
√

r(
√
rB̃u+Bt)− γ2

2 E[ hε
√

r(
√
rB̃u+Bt)2 ]

(∣B̃u∣ + ε)αγ
du ≥

≥ r1−
αγ
2 ∫

1∧τ̃

0

eγhε
√

r(
√
rB̃u+Bt)− γ2

2 E[ hε
√

r(
√
rB̃u+Bt)2 ]

(∣B̃u∣ + ε)αγ
du. (3.25)

Now let us use the fact that we are conditioning on Ft and the Markov property of h to write

h = hhar + h̃, where hhar is the harmonic projection of h onto the disc of radius 2
√
r, centred

at Bt , and h̃ has the law of a zero-boundary GFF on the disc of radius 2
√
r, centred at Bt . If we

write Ω√
r = inf z∈B(Bt ,

√
r) hhar(z), we know that h ≥ Ω√

r + h̃ inside the disc B(Bt ,
√
r), and so

we can continue from (3.25) to see that

r1−
αγ
2 ∫

1∧τ̃

0

eγhε
√

r(
√
rB̃u+Bt)− γ2

2 E[ hε
√

r(
√
rB̃u+Bt)2 ]

(∣B̃u∣ + ε)αγ
du ≥

≥ r1−
αγ
2 ∫

1∧τ̃

0

eγhε
√

r(
√
rB̃u+Bt)− γ2

2 (− log(ε
√
r)+C)

(∣B̃u∣ + ε)αγ
du

= r1−
αγ
2 +

γ2

4 e−
γ2

2 C ∫
1∧τ̃

0

eγhε
√

r(
√
rB̃u+Bt)+ γ2

2 log ε

(∣B̃u∣ + ε)αγ
du

≥ r1−
αγ
2 +

γ2

4 e−
γ2

2 CeγΩ√
r ∫

1∧τ̃

0

eγh̃ε
√

r(
√
rB̃u+Bt)+ γ2

2 log ε

(∣B̃u∣ + ε)αγ
du

≥ r1−
αγ
2 +

γ2

4 e−γ2CeγΩ√
r ∫

1∧τ̃

0

eγh′ε(B̃u)− γ2

2 E[ h
′
ε(B̃u)2 ]

(∣B̃u∣ + ε)αγ
du (3.26)

where h′ is a zero boundary GFF on the disc of radius 12 . Substituting the last expression of
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(3.26) back into (3.23) (and noticing that the exponent of r is in fact β) lets us see that

P [∫
(t+r)∧τ

t
eγ(hε

√
r(Bs)+αEh[hε

√
r(Bs)hε′(Bt)])− γ2

2 E[ hε
√

r(Bs)2 ]ds < rβ+δ∣Ft] ≤

≤ P
⎡⎢⎢⎢⎢⎣
e−(αγ+γ2)CrβeγΩ√

r ∫
1∧τ̃

0

eγh′ε(B̃u)− γ2

2 E[ h
′
ε(B̃u)2 ]

(∣B̃u∣ + ε)αγ
du < rβ+δ∣Ft

⎤⎥⎥⎥⎥⎦

≤ P [e−(αγ+γ2)CeγΩ√
r < r

δ
2 ∣Ft] + P

⎡⎢⎢⎢⎢⎣
∫

1∧τ̃

0

eγh′ε(B̃u)− γ2

2 E[ h
′
ε(B̃u)2 ]

(∣B̃u∣ + ε)αγ
du < r

δ
2

⎤⎥⎥⎥⎥⎦
. (3.27)

�e �rst term decays polynomially in r as r → 0 uniformly in Bt, by Lemma 3.3.5, and the

second term decays polynomially in r as r → 0 by Corollary 3.3.3.�erefore, looking back at
(3.23) again, there certainly exist some positive constants D and q such that

E
⎡⎢⎢⎢⎢⎣
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

eαhε′(Bt)− α2
2 E[ hε′(Bt)2 ]1{τ>t}

⎤⎥⎥⎥⎥⎦
≤

≤ E[Drq1{τ>t} ]

= DrqP[ τ > t ] . (3.28)

When we integrate (3.28) over t > 0, we �nd that

E
⎡⎢⎢⎢⎢⎣
∫

τ

0
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

eαhε′(Bt)− α2
2 E[ hε′(Bt)2 ]dt

⎤⎥⎥⎥⎥⎦
≤ E[ τ ]Drq . (3.29)

Proposition 2.8 of [GRV13a] tells us that, almost surely in B and h, the measure de�ned

by µε′
α (dt) = eαhε′(Bt)− α2

2 E[ hε′(Bt)2 ]dt converges weakly to the measure we have called µα.

�erefore, as the set in the indicator function is open, we may use the portmanteau lemma

and Fatou’s lemma to see that

E
⎡⎢⎢⎢⎢⎣
∫

τ

0
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

µα(dt)
⎤⎥⎥⎥⎥⎦
≤

≤ E
⎡⎢⎢⎢⎢⎣
lim inf

ε′→0 ∫
τ

0
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

eαhε′(Bt)− α2
2 E[ hε′(Bt)2 ]dt

⎤⎥⎥⎥⎥⎦

≤ lim inf
ε′→0

E
⎡⎢⎢⎢⎢⎣
∫

τ

0
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

eαhε′(Bt)− α2
2 E[ hε′(Bt)2 ]dt

⎤⎥⎥⎥⎥⎦
.
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Since D and q from (3.29) are independent of ε′, we can therefore see that

E
⎡⎢⎢⎢⎢⎣
∫

τ

0
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

µα(dt)
⎤⎥⎥⎥⎥⎦
≤ E[ τ ]Drq .

We then use Fatou’s lemma twice to conclude

E[ µα ({t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) < rβ+δ}) ] =

= E[∫
τ

0
1{µγ([t,(t+r)∧τ])<rβ+δ}µα(dt) ]

= E
⎡⎢⎢⎢⎢⎣
∫

τ

0
lim inf

ε→0
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

µα(dt)
⎤⎥⎥⎥⎥⎦

≤ lim inf
ε→0

E
⎡⎢⎢⎢⎢⎣
∫

τ

0
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds<rβ+δ}

µα(dt)
⎤⎥⎥⎥⎥⎦

≤ E[ τ ]Drq ,

and we are done, since E[ τ ] <∞ (as it has exponentially decaying tails).

Proof of Proposition 3.3.8. Using Lemma 3.3.9 (taking E = 2β+δ) and Markov’s inequality, we

can bound the upper tail of the µα-measure of the set of times when µγ decays unusually fast

by

P [µα ({t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) < 2β+δrβ+δ}) ≥ rq/2] ≤

≤ r−q/2E [µα ({t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) < 2β+δrβ+δ})]

≤ Drq/2.

So, taking a sequence of scales rn = 2−n, we see that the events

{µα ({t ∈ [0, τ] ∶ µγ([t, (t + rn) ∧ τ]) < 2β+δrβ+δ
n }) ≥ rq/2n }

n∈N

occur only �nitely o�en almost surely, by Borel-Cantelli.�erefore, for all ∆ > 0 (which may
be random and depend on µα([0, τ])), we can �nd a random but almost surely �nite N ∈ N
such that

µα (⋃
n≥N

{t ∈ [0, τ] ∶ µγ([t, (t + rn) ∧ τ]) < 2β+δrβ+δ
n }) ≤ ∑

n≥N
2−qn/2 ≤ ∆,
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and hence

µα (⋂
n≥N

{t ∈ [0, τ] ∶ µγ([t, (t + rn) ∧ τ]) ≥ 2β+δrβ+δ
n }) ≥ µα([0, τ]) − ∆. (3.30)

We now need to infer the result for all r ∈ (0, 2−N) from the discrete set of radii we have it
for in (3.30). So, let t ∈ ⋂n≥N {t ∈ [0, τ] ∶ µγ([t, (t + rn) ∧ τ]) ≥ rβ+δ

n }, take r ∈ (0, 2−N), and
suppose n is such that rn+1 < r ≤ rn.�en

µα([t, (t + r) ∧ τ]) ≥ µα([t, (t + rn) ∧ τ]) ≥ 2β+δrβ+δ
n+1 = rβ+δ

n ≥ rβ+δ ,

which implies that the discrete radii event is a subset of the continuous radii event:

⋂
n≥N

{t ∈ [0, τ] ∶ µγ([t, (t + rn) ∧ τ]) ≥ 2β+δrβ+δ
n } ⊂

⊂ {t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) ≥ rβ+δ ∀r ∈ [0, 2−N)} = LN
γ ,

and so we can conclude that

µα(LN
γ ) ≥ µα([0, τ]) − ∆.

We now state and prove a result which is essentially a “converse” to Proposition 3.3.8.

Proposition 3.3.10. Fix δ > 0, and let β = 1 − αγ
2 +

γ2

4 . De�ne the set of times

UN
γ = {t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) ≤ rβ−δ ∀r ∈ [0, 2−N)}

�en for all ∆ > 0, which may be random and depend on µα([0, τ]), there exists some random

but almost surely �nite N ∈ N such that

µα (UN
γ ) ≥ µα ([0, τ]) − ∆.

�is proposition is essentially saying that around α-thick points, themap function Fγ is (β−δ)-
Hölder continuous. To prove it, we need a lemma that is the equivalent of Lemma 3.3.9.
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Lemma 3.3.11. Fix δ > 0 and let β = 1 − αγ
2 +

γ2

4 , and let E > 0 be some positive constant.�en

there exist two constants D > 0 and η > 0 such that

E[ µα ({t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) > Erβ−δ}) ] ≤ Drη .

for all r > 0.

�e introduction of long range correlations by Brownian motion is much more apparent

in this proof than the proof of Lemma 3.3.9. Instead of re-scaling time by a factor of r and

space by a factor of
√
r as we did previously, we will need to allow a bit of extra wiggle room.

�is is essentially due to the modulus of continuity of Brownian motion around time r ↓ 0
being

√
2r log 1r ; we need a slightly lower power of r to account for the log correction. We will

introduce the radius R, which we will use as our scaling radius, and calculate what it needs to

be closer to the end of the proof.

Proof. Again, we will prove this only in the case that E = 1. Let r, R > 0, and �x ε, ε′ > 0 so
that ε′ < ε

√
R. Using Girsanov’s change of measure theorem and Lemma 3.2.3 as we did in

Lemma 3.3.9, we see that

EBEh[1{ ∫ (t+r)∧τ
t e

γhε
√

r(Bs)−
γ2
2 E[hε

√
r(Bs)2]ds>rβ−δ}

eαhε′(Bt)− α2
2 E[ hε′(Bt)2 ]1{τ>t}] =

= EB

⎡⎢⎢⎢⎢⎢⎣
1{τ>t}P

⎡⎢⎢⎢⎢⎢⎣
eαγC ∫

(t+r)∧τ

t

eγhε
√

R(Bs)− γ2

2 E[hε
√

R(Bs)2]

(∣Bs − Bt ∣ + ε
√
R)αγ ds > rβ−δ∣Ft

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
,

(3.31)

where Ft = σ(Bs; s ≤ t) is the natural �ltration for B. Now, consider the integral in (3.31). We
are looking for upper bounds on it, this time, to �nd an upper bound on the probability in
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(3.31). First of all, we apply a simple change of time, �rst s ↦ s − t and then s = Ru to see that

∫
(t+r)∧τ

t

eγhε
√

R(Bs)− γ2

2 E[hε
√

R(Bs)2]

(∣Bs − Bt ∣ + ε
√
R)αγ ds = ∫

r∧(τ−r)

0

eγhε
√

R(Bt+s)− γ2

2 E[hε
√

R(Bt+s)2]

(∣Bt+s − Bt ∣ + ε
√
R)αγ ds

= R∫
r
R∧

τ−r
R

0

eγhε
√

R(Bt+Ru)− γ2

2 E[hε
√

R(Bt+Ru)2]

(∣Bt+Ru − Bt ∣ + ε
√
R)αγ du

d= R∫
r
R∧τ′

0

eγhε
√

R(
√
RB̃u+Bt)− γ2

2 E[hε
√

R(
√
RB̃u+Bt+Ru)2]

(∣
√
RB̃u∣ + ε

√
R)αγ du

= R1−
αγ
2 ∫

r
R∧τ′

0

eγhε
√

R(
√
RB̃u+Bt)− γ2

2 E[hε
√

R(
√
RB̃u+Bt+Ru)2]

(∣B̃u∣ + ε)αγ du

where B̃ is an independent Brownian motion started at zero, and

τ′ = inf {u > 0 ∶ ∣
√
RB̃u + Bt ∣ =

1
2
} .

�e equality in distribution holds Ph-almost surely.

We now want to use the scaling properties of the �eld h, from Lemma 3.3.5. So, as before,

we use the Markov property of the GFF to write h = hhar + h̃, where hhar is the harmonic

projection of h onto the disc of radius 2
√
R, centred at Bt , and h̃ has the law of a zero-boundary

GFF on the disc of radius 2
√
R, centred at Bt. If we write Ω√

R = supz∈B(Bt ,
√
R) hhar(z), we

know that h ≤ Ω√
R + h̃ inside the disc B(Bt ,

√
R). In order to use Lemma 3.3.5, we need to

make sure that the B̃ does not move far from its starting point. So, let τ̃ be the exit time of B̃

111



LBM and Thick Points of the GFF

from the unit disc.�en, on the event {τ̃ > r
R} we can see that

R1−
αγ
2 ∫

r
R∧τ′

0

eγhε
√

R(
√
RB̃u)− γ2

2 E[hε
√

R(
√
RB̃u)2]

(∣B̃u∣ + ε)αγ du ≤

≤ R1−
αγ
2 ∫

r
R∧τ′

0

eγhε
√

R(
√
RB̃u)− γ2

2 (− log(ε
√
R)−C)

(∣B̃u∣ + ε)αγ
du

= R1−
αγ
2 +

γ2

4 e
γ2

2 C ∫
r
R∧τ′

0

eγhε
√

R(
√
RB̃u)+ γ2

2 log(ε)

(∣B̃u∣ + ε)αγ
du

≤ R1−
αγ
2 +

γ2

4 e
γ2

2 CeγΩ√
R ∫

r
R∧τ′

0

eγh̃ε
√

R(
√
RB̃u)+ γ2

2 log(ε)

(∣B̃u∣ + ε)αγ
du

≤ eγ2CRβeγΩ√
R ∫

r
R∧τ′

0

eγh′ε(B̃u)− γ2

2 E[h
′
ε(B̃u)2]

(∣B̃u∣ + ε)αγ du, (3.32)

where h′ is a zero boundary GFF on the unit disc.�erefore, we can use the right hand side

of (3.32) to bound the probability in (3.31) by

P
⎡⎢⎢⎢⎢⎣
eαγC ∫

(t+r)∧τ

t

eγhε
√

R(Bs)− γ2

2 E[hε
√

R(Bs)2]

(∣Bs − Bt ∣ + ε
√
R)αγ ds > rβ−δ∣Ft

⎤⎥⎥⎥⎥⎦

≤ P
⎡⎢⎢⎢⎢⎣
e(αγ+γ2)CRβeγΩ√

R ∫
r
R∧τ′

0

eγh′ε(B̃u)− γ2

2 E[h
′
ε(B̃u)2]

(∣B̃u∣ + ε)
du > rβ−δ; τ̃ > r

R
∣Ft

⎤⎥⎥⎥⎥⎦
+ P [τ̃ < r

R
]

≤ P
⎡⎢⎢⎢⎢⎣
e(αγ+γ2)CRβeγΩ√

R ∫
τ̃∧τ′

0

eγh′ε(B̃u)− γ2

2 E[h
′
ε(B̃u)2]

(∣B̃u∣ + ε)
du > rβ−δ∣Ft

⎤⎥⎥⎥⎥⎦
+ P [τ̃ < r

R
]

≤ P
⎡⎢⎢⎢⎢⎣
e(αγ+γ2)CeγΩ√

R > ( r
R
)

β
2
r−

δ
2 ∣Ft

⎤⎥⎥⎥⎥⎦
+

+ P
⎡⎢⎢⎢⎢⎣
∫

τ̃

0

eγhε(B̃u)− γ2

2 E[hε(B̃u)2]

(∣B̃u∣ + ε)
du > ( r

R
)

β
2
r−

δ
2

⎤⎥⎥⎥⎥⎦
+ P[ τ̃ < r

R
] . (3.33)

We are now in a position to see what choice we should make for the radius R. We want r
R → 0

as r → 0 polynomially in r, so that the third term in (3.33) decays polynomially. We also

want ( r
R)

β
2 r−

δ
2 to converge to in�nity, polynomially in r, so that the other terms in (3.33) also

decay polynomially: see below.�e choice R = r1−
δ2
2 works for δ small enough, since then

we certainly have r
R = rδ2 → 0, and also ( r

R)
β
2 r−

δ
2 = r

β
2 δ2− δ

2 → ∞. �e exponent β
2 δ2 − 1

2δ is

negative for δ small enough, and so we have the desired properties. With this choice of R, the
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�rst term on the right hand side of (3.33) decays polynomially by Lemma 3.3.5, the second

term decays polynomially by Corollary 3.3.4. We can bound the third term above by

P[ τ̃ < r
R

] ≤ P[T < r
R

] ,

where T is the exit time of a one dimensional Brownian motion from the interval [− 1√
2
, 1√
2
].

�e stopping time T has exponentially decaying tails, and so we can see that the third term

decays polynomially as well.

�erefore, going all the way back to (3.31), there certainly exist some constants D > 0 and
η > 0 such that, for t > 0,

E[1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds>rβ−δ}

eαhε′(Bt)− α2
2 E[ hε′(Bt)2 ]1{τ>t}] ≤ DrηP[ τ > t ] .

Integrating over t > 0 gives

E[∫
τ

0
1
{ ∫ (t+r)∧τ

t e
γhε

√
r(Bs)−

γ2
2 E[hε

√
r(Bs)2]ds>rβ−δ}

eαhε′(Bt)− α2
2 E[ hε′(Bt)2 ]dt] ≤ DrηE[ τ ] . (3.34)

Now, note that (3.34) is almost identical to (3.29). We use the same arguments to let ε′ and ε

converge to zero, and conclude that

E[ µα ({t ∈ [r, τ] ∶ µγ([(t) ∨ 0, (t + r) ∧ τ]) > Erβ−δ}) ] ≤ DrηE[ τ ] ,

which completes the proof, as E[ τ ] <∞.

Proof of Proposition 3.3.10. Proposition 3.3.10 follows from Lemma 3.3.11 in exactly the same

way that Proposition 3.3.8 followed from Lemma 3.3.9.

3.3.4 Proof of�eorem 3.1.1 and Corollary 3.1.2

We now have all of the tools ready to prove�eorem 3.1.1, which we re-state here in more

detail.
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�eorem 3.3.12. Let B be the Brownian motion used to construct the LBM time changes Fα

and Fγ. Call Tα = {t > 0 ∶ Bt ∈ Tα} the set of times that the Brownian motion B is in an α-thick

point.�en

dimH(Fγ(Tα)) ≥
1 − α2

4

1 − αγ
2 +

γ2
4

where, by the de�nition of the change of time, Fγ(Tα) is the set of times the γ-LBM is in α-thick

points.

Proof. We will in fact prove the lower bound for times only for the stopping time τ when the

Brownian motion leaves the disc of radius 12 . To that end, we will abuse notation slightly and

re-de�ne the set of times Tα as

Tα = {t ∈ [0, τ] ∶ Bt ∈ Tα} .

Because Tα ∩ LN
γ ⊂ Tα, where LN

γ is de�ned as in Proposition 3.3.8, we know that

dimH(Fγ(Tα ∩ LN
γ )) ≤ dimH(Fγ(Tα)).

But, because F−1γ is a 1
β+δ -Hölder-like function, in the sense of De�nition 3.2.14, on intervals

starting at times in the image Fγ(LN
γ ), Proposition 3.2.15 implies that

dimH(Tα ∩ LN
γ ) ≤ (β + δ)dimH(Fγ(Tα ∩ LN

γ )), (3.35)

and so to get a lower bound on dimH(Fγ(Tα)), we want to �nd a lower bound for dimH(Tα ∩
LN

γ ). We now use Propositions 3.3.8 and 3.3.10 to see that we can take N large enough to
ensure that Tα ∩ LN

γ ∩UN
α has positive µα-measure (taking γ = α in Proposition 3.3.10, and

∆ = 1
4µα([0, τ]) for example). Since we also know that µα[0, τ] < ∞ almost surely, the

measure µα de�nes a mass distribution on the set Tα ∩ LN
γ ∩UN

α , and by the de�nition of UN
α ,

we know that

µα([t, t + r]) ≤ r1−
α2
4 −δ

for all r ∈ [0, 2−N) and t ∈ Tα ∩ LN
γ ∩UN

α . So, by the mass distribution principle (�eorem 4.19

of [MP10] for example), we �nd that

dimH(Tα ∩ LN
γ ∩UN

α ) ≥ 1 − α2

4
− δ.
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�erefore we certainly have the bound dimH(Tα ∩ LN
γ ) ≥ 1 − α2

4 − δ, which we can substitute

into (3.35) and re-arrange to �nd

dimH(Fγ(Tα)) ≥
1 − α2

4 − δ

1 − αγ
2 +

γ2
4 + δ

.

Since δ was arbitrary we can take the limit δ → 0, and we have shown the result.

And now we re-state Corollary 3.1.2 and prove it:

Corollary 3.3.13. Let B be the Brownian motion used to construct the LBM time changes Fα

and Fγ. Call Tα = {t ∈ [0, T] ∶ Bt ∈ Tα} the set of times that the Brownian motion B is in an

α-thick point.�en

dimH(Fγ(Tα)) =
1 − α2

4

1 − αγ
2 +

γ2
4

where, by the de�nition of the change of time, Fγ(Tα) is the set of times the γ-LBM is in α-thick

points.

Proof. First, following from�eorem 1.4 of [Ber15a], we introduce the sets

T −α = {z ∈ C ∶ lim inf
ε→0

hε(z)
log 1ε

≥ α} ,

T +α = {z ∈ C ∶ lim sup
ε→0

hε(z)
log 1ε

≤ α}

We will call T−
α = {t ∈ [0, τ] ∶ Bt ∈ T −α }, and similarly de�ne T+

α from T +α . We know, from
[Ber15a], that for α > γ we have the upper bound

dimH(Fγ(T−
α )) ≤

1 − α2
4

1 − αγ
2 +

γ2
4

,

and the same result holds when we have α < γ and we replace T−
α with T+

α .

Let us consider the case α > γ. We know that Tα ⊂ T−
α , and so we have

1 − α2
4

1 − αγ
2 +

γ2
4

≤ dimH(Fγ(Tα)) ≤ dimH(Fγ(T−
α )) ≤

1 − α2
4

1 − αγ
2 +

γ2
4

,

showing us the equality. We can show equality in the case α < γ in the same way.
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3.3.5 Proofs of regularity properties

We can now state�eorem 3.1.3 again, and give the proof.

�eorem 3.3.14. For µα-almost every t ≥ 0, the change of time Fγ has the following growth rate:

lim
r→0

log ∣Fγ(t) − Fγ(t + r)∣
log ∣r∣ = 1 − αγ

2
+ γ2

4
, (3.36)

almost surely.

Before we start the proof, we would like to explain the intuition behind µα-almost every t ∈ Tα .

Suppose we have our GFF h, and the Brownian motion B which is the path of our Liouville

Brownian motion. We now run an α-LBM, Zα , along the path B, using h to calculate the time

change Fα. At some time t, chosen uniformly at random from the lifetime of Zα, we inspect

the point in the plane occupied by Zα
t . Because an α-LBM spends Lebesgue-almost all of its

time in α-thick points, we know that the point chosen by Zα
t is an α-thick point, almost surely.

We also know that it is on the path of the Brownian motion B. If we call the time B passes

through this point t, i.e. t = F−1α (t), we know that, around this time, the γ-time change, Fγ,

has the regularity property given in (3.36).

To prove�eorem 3.3.14, we will �rst prove it while taking the limit r ↓ 0, i.e. as r approaches
0 from above.

Lemma 3.3.15. For µα-almost every t ≥ 0, the change of time Fγ has the following growth rate:

lim
r↓0

log ∣Fγ(t) − Fγ(t + r)∣
log r

= 1 − αγ
2
+ γ2

4
,

almost surely.

Proof. Most of the work for this proof has been done in Propositions 3.3.8 and 3.3.10. Recall

that for some arbitrary δ > 0 we de�ned

LN
γ = {t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) ≥ rβ+δ ∀r ∈ [0, 2−N)} ,
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3.3 Proofs of the main theorems

and

UN
γ = {t ∈ [0, τ] ∶ µγ([t, (t + r) ∧ τ]) ≤ rβ−δ ∀r ∈ [0, 2−N)} .

Now let us de�ne

Lγ =⋃
N
LN

γ = {t ∈ [0, τ) ∶ lim sup
r→0

log µγ([t, t + r]))
log r

≤ β + δ} ,

and similarly de�ne Uγ = ⋃N UN
γ .

We showed in Propositions 3.3.8 and 3.3.10 that for any ∆ > 0, we could �nd N large enough
that

µα(LN
γ ) ≥ µα([0, τ]) − ∆,

and

µα(UN
γ ) ≥ µα([0, τ]) − ∆.

Since ∆ was arbitrary and LN
γ , UN

γ are increasing sets, we �nd that

µα(Lγ ∩Uγ) = µα([0, τ]).

Because δ was arbitrary, and we de�ned µγ([t, t + r]) ∶= F(t + r) − F(t), we have shown the
result.

We now need a lemma which allows us to “reverse time” in some way, and extend the result

from Lemma 3.3.15 to the statement in�eorem 3.3.14.

Lemma 3.3.16. Let B be a Brownian motion started at zero, and let t > 0. De�ne two stochastic
processes, conditional on Bt, by setting

W+
s = Bt+s

for s ≥ 0, and
W−

s = Bt−s

for s ∈ [0, t]. Now, let ε < t. �en, conditional on the event {τ > t} (where τ is the �rst exit time

of B from the disc of radius 12), the laws of the restricted processes (W+
s )s∈[0,ε] and (W−

s )s∈[0,ε]
are absolutely continuous with respect to each other.
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Proof. Conditional on Bt = z and the event {τ > t}, the law of the Brownian motion B is that
of a Brownian bridge of duration t, joining the origin and z, conditioned to stay inside the

disc of radius 12 , followed by an independent Brownian motion started at z. Because the event

that the maximum modulus of this Brownian bridge is less than 12 has positive probability, it

does not a�ect the absolute continuity of measures. So for the rest of the proof, we may ignore

the fact that we are conditioning on that event.

By reversibility of Brownian bridges, the processW− has the law of a Brownian bridge of

duration t, connecting z and the origin. And, as stated above,W+ has the law of a Brownian

motion started at z. So, by (6.28) of [KS91] (or, slightlymore explicitly, Lemma 3.1 of [BGRV14]),

we see that the laws of a Brownian bridge of duration t and a Brownianmotion, with a common

starting point, are absolutely continuous with respect to each other on intervals shorter than

t.

Proof of�eorem 3.3.14. Let T be an exponential random variable with mean 1, independent

of the GFF h and the Brownian motion B. Recall that the measure µα is de�ned by

µα([a, b]) = Fα(b) − Fα(a),

which can also be written as µα = Leb ○ Fα. Now, because the law of T is absolutely continu-

ous with respect to Lebesgue measure and Fα is a bijection, the law of F−1α (T) is absolutely
continuous with respect to µα.�erefore, by Lemma 3.3.15, we see that

F−1α (T) ∈ {t > 0 ∶ lim
r→0

log ∣Fγ(t) − Fγ(t + r)∣
log r

= β} ,

almost surely. It therefore follows from Lemma 3.3.16 that we also have

F−1α (T) ∈ {t > 0 ∶ lim
r→0

log ∣Fγ(t) − Fγ(t − r)∣
log r

= β} ,

almost surely. Finally, by absolute continuity of the law of F−1α (T) and the measure µα again,

we deduce that for µα-almost every t we have

lim
r→0

log ∣Fγ(t) − Fγ(t + r)∣
log ∣r∣ = β

almost surely, completing the proof.
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We can use the regularity property of Fγ from�eorem 3.3.14 that we have just shown to �nd

a bound on the growth rate of LBM around thick points of di�erent levels. We �rst prove a

lemma about the growth rate of LBM given a lot of control on how we choose the time we

consider. We will then extend that to the more general statement given in Corollary 3.1.4.

Lemma 3.3.17. Let t ≥ 0 be such that

lim
r→0

log ∣Fγ(t) − Fγ(t + r)∣
log ∣r∣ = 1 − αγ

2
+ γ2

4
.

�en

lim sup
u→0

log ∣ZFγ(t) − ZFγ(t)+u∣
log ∣u∣ = 1

2 − αγ + γ2
2

,

almost surely.

Note 3.3.18. In Lemma 3.3.17, we have let r → 0 and u → 0 from above and below. In the proof
of Corollary 3.3.19, only the result as r ↓ 0 and u ↓ 0 are used, but the distinction is important
for the proof of Corollary 3.3.21.

Proof. Let δ > 0.�en by Lévy’s modulus of continuity of Brownian motion, we know that,
almost surely, there exists some S <∞ such that

∣Bt − Bt+s∣ ≤ s
1
2−δ (3.37)

for all s ∈ [−S , S], and for all ε > 0 there exists some s ∈ [−ε, ε] such that

∣Bt − Bt+s∣ ≥ s
1
2+δ . (3.38)

Now, let us write β = 1 − αγ
2 +

γ2

4 .�en by assumption, there exists some R <∞ such that

rβ+δ ≤ Fγ(t + r) − Fγ(t) ≤ rβ−δ

for all r ∈ [−R, R]. Since F−1γ is well de�ned, this in turn implies that, for all u with ∣u∣ small
enough,

u
1

β−δ ≤ F−1γ (Fγ(t) + u) − t ≤ u
1

β+δ . (3.39)
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Recalling the de�nition Zγ
t = BF−1γ (t) and combining (3.37) and (3.39) shows us that

∣ZFγ(t) − ZFγ(t)+u∣ ≤ (∣u∣
1

β+δ )
1
2−δ

(3.40)

for all ∣u∣ small enough. Furthermore, combining (3.38) and (3.39) shows us that, for any ε′ > 0
there exists some u ∈ [−ε′, ε′] such that

∣ZFγ(t) − ZFγ(t)+u∣ ≥ (∣u∣
1

β−δ )
1
2+δ
.

Taking logs then implies that

1 − δ
2(β + δ) ≤ lim sup

u→0

log ∣ZFγ(t) − ZFγ(t)+u∣
log ∣u∣ ≤ 1 + δ

2(β − δ)

almost surely.�erefore, letting δ → 0 along a countable sequence shows us that the limsup
equals 1

2β almost surely, as claimed.

We can now use the results from�eorem 3.3.14 and Lemma 3.3.17 to prove Corollary 3.1.4,

which we restate here.

Corollary 3.3.19. Suppose that the starting point of a γ-Liouville Brownian motion is chosen

according to Mα, i.e. Z
γ
0 ∼ Mα.�en

lim sup
t↓0

log ∣Zγ
t ∣

log t
= 1
2 − αγ + γ2

2

,

almost surely.

Proof. Let T be an exponential random variable with mean 1, which is independent of the

GFF h and the Brownian motion B.

By the same reasoning as that used in the proof of�eorem 3.3.14, we see that

F−1α (T) ∈ {t ≥ 0 ∶ lim
r→0

log ∣Fγ(t) − Fγ(t + r)∣
log r

= β} ,

almost surely. (If T > supt Fα(t), we set F−1α (T) = ∅, and claim that the equality below holds,
vacuously.)�erefore if we write T ′ = Fγ(F−1α (T)), Lemma 3.3.17 tells us that

lim sup
u→0

log ∣Zγ
T′ − Zγ

T′+u∣
logu

= 1
2β
.
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LetH be the sigma algebra generated by the GFF h, i.e.

H = σ (⟨h, f ⟩∇ ∶ f ∈ H10(D)) .

Now consider the �ltration de�ned by

Gt = σ(Zγ
s ∶ s < t) ∨H

= σ(Bs ∶ s < F−1γ (t)) ∨H.

�e process Zγ is certainly Gt-adapted, and T ′ is a Gt-stopping time since

{T ′ > t} = {Fγ(F−1α (T)) > t} = {T > Fα(F−1γ (t))} ,

and

Fα(F−1γ (t)) = lim
ε→0 ∫

F−1γ (t)

0
eαhε(Bs)− α2

2 E[ hε(Bs)2 ]ds

is Gt-measurable.

We can therefore use the strong Markov property of Zγ to deduce that

lim sup
t↓0

log ∣Zγ
t ∣

log t
= 1
2β

(3.41)

whenever Zγ
0 is chosen according to Pα

T , the law of Z
α
T .

From�eorem 2.5 in [GRV13b], we know that, for a �xed t ≥ 0, the law of Zα
t is absolutely

continuous with respect to the Liouville measureMα, with Radon-Nikodym derivative

dPα
t

dMα (y) = pα
t (0, y) ≥ 0.

We can therefore write
dPα

T

dMα (y) = ∫
∞

0
e−tpα

t (0, y)dt.

�eorem 2.5 of [GRV13b] also implies that, forMα-almost every y ∈ D, the transition density
pα
t (0, y) is strictly positive for all t in a measurable set with positive Lebesgue measure. (�is
fact was noted in an earlier version of their paper.) But that implies that

dPα
T

dMα (y) > 0
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forMα-almost every y ∈ D, i.e. the Liouville measureMα and Pα
T are absolutely continuous

with respect to each other.�erefore, since (3.41) holds almost surely whenever Zγ
0 was chosen

according to Pα
T , we deduce that it also holds almost surely with Z

γ
0 is chosen according to

Mα.

Remark 3.3.20. �e exponential time T in the proof above can be replacecd with a deter-

ministic time t provided we know the existence of a continuous version of the transition

density, for which pt(x , y) > 0 for all x , y ∈ D and all t > 0. �is is known in the case of a
torus [MRVZ14], and similar arguments probably work in the planar case as well. We have

made no attempt to check this, however.

We now restate and prove Corollary 3.1.6:

Corollary 3.3.21. Let γ ∈ (
√
2, 2).�en the γ-Liouville Brownian motion Zγ is Lebesgue-almost

everywhere di�erentiable with derivative zero, almost surely.

Proof. By taking α = γ in�eorem 3.3.14, we know that for µγ-almost every t ≥ 0, the change
of time Fγ has the following growth rate:

lim
r→0

log ∣Fγ(t) − Fγ(t + r)∣
log ∣r∣ = 1 − γ2

4
.

Now, let δ ∈ (0, 1
2− γ2

2

− 1). We can apply Lemma 3.3.17, or speci�cally (3.40) in the proof of
Lemma 3.3.17, to see that for µγ-almost every t ≥ 0 we have

∣Zγ
Fγ(t) − Zγ

Fγ(t)+r ∣ ≤ ∣r∣1/(2−
γ2

2 )−δ ,

for all r with ∣r∣ small enough. But, by the de�nition of µγ, the Fγ image of a set with full µγ

measure has full Lebesgue measure. �erefore, we can see that for Lebesgue-almost every

t ≥ 0 we have
∣Zγ

t − Zγ
t+r ∣ ≤ ∣r∣1/(2−

γ2

2 )−δ

for all r with ∣r∣ small enough.�erefore, we have

lim
r→0

∣Zγ
t − Zγ

t+r ∣
∣r∣ ≤ lim

r→0
∣r∣1/(2−

γ2

2 )−δ−1 = 0
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where the �nal inequality is because we have chosen δ to ensure that 1
2− γ2

2

− δ − 1 > 0. So, we
certainly have di�erentiability for Zγ, for Lebesgue-almost every t ≥ 0, and the derivative is
equal to zero.
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4Rohde-Schramm TheoremThrough Coupling

�is chapter gives a novel proof of the Rohde-Schramm theorem, �rst shown in [RS11]. Our

proof uses the coupling of the reverse SLE with the Neumann boundary GFF to bound the

derivative of the inverse of the Loewner �ow close to the origin. We are able to write the

absolute value of the derivative of the reverse �ow in terms of the exponential of two Gaussian

random �elds; one of them is a Neumann boundary GFF and the other is very closely related.

We can use our knowledge of the structure of the GFF to �nd bounds which ensure continuity

of the SLE trace.
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4.1 Introduction

We will provide a new proof for the Rohde-Schramm theorem in the case κ ≠ 8.�e theorem
roughly states that “a Schramm-Loewner evolution is generated by a path”. It was �rst proved

for κ ≠ 8 in [RS11] and for κ = 8 in [LSW11].

In order to state the Rohde-Schramm theorem properly we will �rst recall some of the notation

that we met in Chapter 1. We will do this brie�y now, and in more detail in Sections 4.2.1 and

4.2.2

Let (ξt) be a real valued, continuous process de�ned for t > 0. De�ne the family of conformal
maps (gt) as the maximal solution to Loewner’s equation:

dgt(z) =
2

gt(z) − ξt
dt (4.1)

for each z ∈ H. For each z ∈ H, we will call the lifetime of the solution τ(z). For a given
time t > 0, we call the subset ofH for which the solution still exists Ht . We can write it more

precisely as

Ht = {z ∈ H ∶ t < τ(z)} .

�e complement of Ht in the upper half plane, Kt = H∖Ht , is the region which gt “maps out,”

i.e. gt ∶ H ∖ Kt → H. Note also that we can see

Kt = {z ∈ H ∶ t ≥ τ(z)} .

�e driving function (ξt) is called the Loewner transform of the hulls (Kt).

We say that the hulls (Kt) are generated by a curve if there exists a curve (γt) ⊂ H such that,

for all t > 0, the set Ht = H ∖ Kt is the unique unbounded component ofH ∖ γ[0, t].

�e following, which appears as�eorem 4.1 in [RS11], gives a condition for the hulls (Kt) to
be generated by a curve.

�eorem 4.1.1. Let ξ ∶ [0,∞)→ R be continuous, and let gt be the corresponding solution of
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Loewner’s equation, (4.1). Assume that

γ(t) ∶= lim
y→0

g−1t (iy + ξt)

exists for all t ∈ [0,∞) and is continuous. �en g−1t extends continuously to H and Ht is the

unbounded connected component ofH ∖ γ[0, t], for every t ∈ [0,∞).

We are particularly interested in the case that ξt =
√

κBt , where κ > 0 and (Bt) is a standard
Brownian motion.�en the hulls (Kt) form an SLEκ process. For the rest of the chapter, we

will assume that (ξt) has this form.

�roughout the rest of the chapter, we will also use the notation

ft ∶= g−1t and f̂t(z) ∶= ft(z + ξt) = g−1t (z + ξt). (4.2)

�e following, which appears as�eorem 3.6 in [RS11], shows that the assumption in�eorem

4.1.1 is true when (ξt) is the driving function for an SLE process.

�eorem 4.1.2. Let (ξt) be a driving function given by ξt =
√

κBt for some κ > 0, where (Bt)
is a standard Brownian motion. Let (gt) be the corresponding solution to Loewner’s equation,

(4.1), and let ( f̂t) be the centred inverse as de�ned in (4.2). De�ne

H(y, t) ∶= f̂t(iy) for (y, t) ∈ (0,∞) × [0,∞).

If κ ≠ 8, then almost surely H(y, t) extends continuously to [0,∞) × [0,∞).

As we saw in Chapter 1, the proof of�eorem 4.1.2 requires control over the modulus of the

derivative ∣ f̂ ′t ∣. It is this control that we concentrate on in this chapter.

4.1.1 Statement of results

We will now prove the following result on the tail behaviour of ∣ f̂ ′t ∣.�e result was known
in [RS11], and a similar result appears as Lemma 4.32 in [Law08]. Our proof takes a completely
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di�erent approach from those; we use the coupling between SLE processes and the Neumann

boundary GFF from [She10].

In spite of our di�erent approach, however, the polynomial decay in the tail that we �nd is, up

to logarithmic corrections, exactly the same as that found in previous proofs.

�eorem 4.1.3. Let κ ≠ 8, and let f̂t be the centred inverse of the Loewner �ow as de�ned in

(4.2).�en there exist constants ε > 0, δ > 0 and C > 0 such that

P [∣ f̂ ′t (iy)∣ > y−(1−ε)] ≤ Cy2+δ

for all t ∈ [0, 1] and y ∈ (0, 1).

4.2 Setup

We will now start to formally de�ne all of the objects we will need for our proof.

4.2.1 Forward SLE

Chordal SLEκ are the one parameter family of conformally invariant, non-self-intersecting

curves which connect two marked points on the boundary of a complex domain.�ey were

introduced in [Sch00] as the scaling limit of loop-erased random walks but, as we will see

soon, it was not obvious that the objects de�ned actually produced curves.

Wewill take our domain to be the upper half plane,H, and our SLEκ will connect the boundary

points 0 and∞. In fact, when we introduce the idea of the SLEκ process evolving through time,

we will think of them as growing from 0 towards∞.�e SLEκ process is de�ned through a

family of conformal maps, (gt), called the Loewner �ow, and a driving function (ξt).

De�nition 4.2.1 (Chordal SLE). Fix κ ≥ 0. Let Bt be a Brownian motion started at zero and

set ξt =
√

κBt . For each z ∈ H ∖ {0} let gt(z) be the maximal solution to

dgt(z) =
2

gt(z) − ξt
dt, (4.3)
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with g0(z) = z. Let τ(z) be the lifetime of the solution. We will call the family of maps (gt)
an SLEκ.

Let us de�ne two families of subsets of the upper half plane. For t ≥ 0, set

Ht ∶= {z ∈ H ∶ t < τ(z)} , Kt ∶= {z ∈ H ∶ t ≥ τ(z)} .

�e set Ht is those points in H for which the solution to (4.3) is still de�ned at time t. For

each t, the function gt is a conformal map from Ht toH.�e sets Kt = H ∖Ht are called the

SLE hulls.

De�nition 4.2.1 gives us the set of SLE hulls (Kt)t≥0 parameterised in “half-plane capacity”
time. To explain exactly what we mean by that, we �rst need the de�nition of half-plane

capacity.

De�nition 4.2.2 (Half-plane capacity). Let K be a compactH-hull.�e half-plane capacity

of K is

hcap(K) ∶= lim
y→∞

yEiy[I(BτK)],

where τK = inf{t ≥ 0 ∶ Bt ∈ K ∪R} is the �rst time the Brownian motion hits the hull K or
the real line.

�e half-plane capacity is, in some sense, the height of the set as viewed from in�nity. For

some concrete examples, the half-plane capacity of the unit disc in the upper half plane is

hcap(D ∩H) = 1, and the half-plane capacity of a vertical line of length 1 in the upper half
plane is hcap((0, i]) = 1/2.

We said before that the SLE hulls (Kt)t≥0 are parameterised in terms of half-plane capacity.
What we mean by that is that hcap(Kt) = 2t for all t ≥ 0.

In Section 4.4, we will use the following de�nition and bound of the height of a compact hull.

It is a previously known result, but we include the proof here for completeness.

De�nition 4.2.3 (Height). Let K be a compactH-hull. Its height is de�ned to be

height(K) ∶= sup{I(z) ∶ z ∈ K} .
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Lemma 4.2.4. Let K be a compactH-hull with height(K) > 2
√

α.�en hcap(K) ≥ α.

Proof. Since both the height of a hull and its half-plane capacity are translation invariant

along the real line, and height(K) > 2
√

α, we can assume that 2i
√

α ∈ K.

Let K′ be the re�ection of K in the imaginary axis. Further, let K̃ be the complement of the

connected component ofH ∖ (K ∪ K′) which contains in�nity. (See Figure 4.1.)

K K′ K̃
2i
√

α 2i
√

α

Figure 4.1: Left: The hull K and its reflection K′. Right: The joined

and filled K̃.

By construction, K̃ contains the line segment (0, 2i
√

α] and therefore we know that

hcap(K̃) ≥ 2α.

To �nd our bound on the half-plane capacity, we need to consider the limit given in De�nition

4.2.2. We will de-construct the expectation in that limit.

We can ignore the event that the Brownian motion exits through the real line since that does

not contribute to the expectation, i.e.

Eiy[I(BτK̃)] = Eiy [I(BτK̃)1{BτK̃ ∈ ∂K̃}] .

Since ∂K̃ ⊂ ∂K ∪ ∂K′, we know that {BτK̃ ∈ ∂K̃} ⊂ {BτK̃ ∈ ∂K} ∪ {BτK̃ ∈ ∂K′} .�erefore, we
can bound the half-plane capacity of K̃ as follows:

Eiy [I(BτK̃)1{BτK̃ ∈ ∂K̃}] ≤ Eiy [I(BτK̃)1{BτK̃ ∈ ∂K}] +Eiy [I(BτK̃)1{BτK̃ ∈ ∂K
′}] (4.4)

By symmetry, we know that

Eiy [I(BτK̃)1{BτK̃ ∈ ∂K}] = Eiy [I(BτK̃)1{BτK̃ ∈ ∂K
′}] ,
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and so, substituting this into (4.4) we �nd

Eiy [I(BτK̃)1{BτK̃ ∈ ∂K̃}] ≤ 2Eiy [I(BτK̃)1{BτK̃ ∈ ∂K}] . (4.5)

Since we know that, if a Brownian motion stopped at τK̃ exits through K, then the same

Brownian motion stopped at τK also exits through K, we see that {BτK̃ ∈ ∂K} ⊂ {BτK ∈ ∂K}.
Also, on the event {BτK̃ ∈ ∂K}, the stopping times τK and τK̃ are equal which means, in

particular, that I(BτK̃) = I(BτK). Using these facts in conjunction with (4.5), we �nd

Eiy [I(BτK̃)1{BτK̃ ∈ ∂K̃}] ≤ 2Eiy [I(BτK̃)1{BτK̃ ∈ ∂K}]

= 2Eiy [I(BτK)1{BτK̃ ∈ ∂K}]

≤ 2Eiy [I(BτK)1{BτK ∈ ∂K}]

= 2Eiy [I(BτK)] .

Multiplying by y and taking limits, we �nd that

hcap(K̃) ≤ 2hcap(K),

which, combined with the fact that hcap(K̃) ≥ 2α, gives us the result that

hcap(K) ≥ α.

Corollary 4.2.5. Let K be a compact H-hull with half place capacity hcap(K) = α. �en we

can bound the height of K by

height(K) ≤ 2
√

α.

Proof. By Lemma 4.2.4 we know that, if height(K) > 2
√

α, then hcap(K) ≥ α. �erefore,

since hcap(K) = α, we must have height(K) ≤ 2
√

α.
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4.2.2 Reverse SLE

�e time reversibility of Brownian motion allows us to give meaning to the idea of a “reverse

SLE” as well as the forward one de�ned in Section 4.2.1.�e reverse SLE is the one we will

need to use for the coupling between the Gaussian free �eld and SLE which we use, �rst shown

in [She10]. We will explain more about this coupling in Section 4.2.5.

In order to follow the notation of [She10] we need to use a slightly di�erent de�nition for the

reverse SLE; it needs to be centered in some way so that the growth of the SLE is at the origin.

(�e intuition for this is much easier if we assume that the Rohde-Schramm theorem is true

and the SLE hull is generated by a curve.) We will explain how the di�erent normalisation

relates to that given in De�nition 4.2.1 and the maps ( f̂t) used in Lemma 4.2.7.

De�nition 4.2.6 (Reverse SLE). Fix κ ≥ 0 and let Bt be a Brownian motion started at zero.

For each z ∈ H let ft(z) be the solution to

d ft(z) = −
2

ft(z)
dt −

√
κdBt , (4.6)

with f0(z) = z. We will call the collection of maps ( ft) a reverse SLEκ.

We now show howDe�nitions 4.2.1 and 4.2.6 of the forward and reverse SLE �ow relate to each

other and to the maps ( f̂t) de�ned in (4.2).�is is a known result (see Section 4 in [Law08],
for example), but we check it here with our speci�c combination of centred reverse �ow and

un-centred forward �ow.

Lemma 4.2.7. Fix a time T ≥ 0 and some value κ ≥ 0. Let (gt) be an SLEκ with driving

function (ξt), ( ft) a reverse SLEκ and de�ne

f̂t(z) ∶= g−1t (z + ξt).

�en

f̂T
d= fT .

Note that the equality in distribution holds for a single �xed time T , not for the range of times

t ∈ [0, T].
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Proof. �e de�nition for the time reversed SLE �ow, for �xed T > 0 is

drt(z) = −
2

rt(z) − ξT−t
dt, t ∈ [0, T],

with r0(z) = z. �is is simply a time change of (4.3) given by t ↦ T − t. �e reverse �ow

de�ned in this way has the property that rT = g−1T (see, for example, Section 4 in [Law08]).

If we now de�ne r̂t(z) = rt(z) − ξT−t , we �nd that

dr̂t(z) = −
2

r̂t(z)
− dξT−t (4.7)

which, by reversibility of Brownian motion, can be written as

dr̂t(z) = −
2

r̂t(z)
−
√

κdBt . (4.8)

�e di�erence between (4.6) and (4.8) is the initial conditions, which are o�en only implicitly

de�ned. All of the standard de�nitions, including (4.6), give the initial condition that the map

in question at time zero should be equal to the identity. As this is true for (4.7), i.e. r0(z) = z,

we see that the initial condition for r̂ is

r̂0(z) = z − ξT .

We therefore see that

f0(z) = r̂0(z + ξT)

and, since they are driven by the same SDE, this equality will continue through time.�erefore,

for time T we see that

fT(z) = r̂T(z + ξT)

= rT(z + ξT) − ξT−T

= rT(z + ξT)

= g−1T (z + ξT).

�is means that, for a single �xed time T , the reverse map f from De�nition 4.2.6 is the same

as the map f̂ .
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�e following (well known) bounds will be useful for us later on.

Lemma 4.2.8. Let κ ≥ 0 and let ( ft) be a reverse SLEκ.�en, for any �xed y > 0, the imaginary

part of ft(iy) is increasing but bounded above for all t ≥ 0 by

I( ft(iy)) ≤
√
4t + y2.

Proof. Fix y > 0 and, for ease of notation, let ft(iy) = Zt = Xt + iYt.�en we know that Zt

satis�es the SDE (4.6) with Z0 = iy. Looking at the imaginary part of the equation shows that

the imaginary part of Zt , Yt , satis�es the SDE

dYt = −I( 2
Zt

) dt

= −I(2(Xt − iYt)
∣Zt ∣2

) dt

= 2Yt

X2t + Y 2t
dt, (4.9)

with Y0 = y. Since y > 0, we can see that the right hand side of (4.9) is greater than zero and
stays positive.�is tells us that Yt is increasing, �nishing the �rst part of the proof.

�e fact thatYt is increasing also shows us that Zt is bounded away from0, sinceI(Zt) ≥ y0 > 0.
�at lets us see that the coe�cients of the SDE which Z satis�es,

dZt = −
2
Zt

dt −
√

κdBt ,

are Lipschitz in space.�erefore, Zt exists as a strong solution. See�eorem 2.5 of [KS91], for

example.

For the second part, we use the fact that X2t ≥ 0 to see the bound

dYt =
2Yt

X2t + Y 2t
dt

≤ 2Yt

Y 2t
dt

= 2
Yt
dt.
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�e solution to the equation x′ = 2/x and the existence of strong solutions gives us our upper
bound.

Corollary 4.2.9. Let κ ≥ 0 and let ( ft) be a reverse SLEκ.�en, for any �xed y > 0, the absolute
value of the derivative, ∣ f ′t (iy)∣, is bounded above by

∣ f ′t (iy)∣ ≤
4
y

√
4t + y2.

Proof. As ft is a reverse SLE �ow we know that ft ∶ H → Ht for Ht = H ∖ Kt. Koebe’s 1/4

�eorem tells us that

∣ f ′t (iy)∣dist(iy, ∂H) ≤ 4 ⋅ dist( ft(iy), ∂Ht). (4.10)

We know that dist(iy, ∂H) = y and

dist( ft(iy), ∂Ht) ≤ dist( ft(iy), ∂H)

= I( ft(iy)).

�erefore we can use the bound from Lemma 4.2.8 along with (4.10) to see

∣ f ′t (iy)∣y ≤ 4
√
4t + y2.

Re-arranging gives the result.

Lemma 4.2.10. Let κ ≥ 0, let ( ft) be a reverse SLEκ, and let (ξt) be its driving process. �en,

for any �xed y > 0, the absolute value of the real part of ft(iy) is bounded above by the absolute
value of ξt, i.e.

∣R( ft(iy))∣ ≤ ∣ξt ∣.

Proof. As before, we write ft(iy) = Zt = Xt + iYt so thatR( ft(iy)) = Xt . By taking real parts

of (4.6), we know that Xt satis�es the SDE

dXt = −R( 2
Zt

) dt −
√

κdBt

= −R(2(Xt − iYt)
∣Zt ∣2

) dt −
√

κdBt

= − 2Xt

X2t + Y 2t
dt −

√
κdBt ,
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with X0 = 0.�e dri� term is always towards the origin and, as we saw in Lemma 4.2.8, strong
solutions to this SDE exist.�erefore, we see that ∣Xt ∣ ≤

√
κ∣Bt ∣, �nishing the proof.

4.2.3 Zero boundary Gaussian free �eld

We now brie�y introduce the zero boundary Gaussian free �eld as a building block to the

Neumann boundary Gaussian Free Field of Subsection 4.2.4. We also collect some of the

known results of the GFF that we rely on.

In order to de�ne the zero boundary GFF, we �rst need to de�ne the Dirichlet inner product.

De�nition 4.2.11 (Dirichlet Inner Product). Let D ⊂ C be a bounded domain. Let C∞
0 (D)

be the set of smooth, compactly supported functions on D. For f , g in C∞
0 (D), de�ne the

Dirichlet inner product as

⟨ f , g⟩∇ = 1
2π ∫D

∇ f (z) ⋅ ∇g(z)dz.

�e zero boundary GFF can be viewed as a standard Gaussian on the Hilbert space completion

of C∞
0 (D) under the Dirichlet inner product, which we denote H0(D). �ere are several

equivalent ways of de�ning the GFF. We give the de�nition used in [She07].

De�nition 4.2.12 (Zero boundary Gaussian free �eld). We say that h is a zero boundary

Gaussian free �eld if, for any f , g ∈ H0(D), the random variables ⟨h, f ⟩∇ and ⟨h, g⟩∇ are
centred Normal random variables with covariance equal to

E [⟨h, f ⟩∇ ⟨h, g⟩∇] = ⟨ f , g⟩∇ .

One of the di�culties with working with the GFF is that it not de�ned pointwise, and so we

cannot treat it as a Gaussian �eld on D. It does not exist as a random variable in H0(D). A
Weyl asymptotics argument can be used to show that it is a member of the dual space H−1

0 (D),
and there is a version which exists as a member of D′(D). For details, see the discussion in
Section 3.3 of [She10], for example.
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We can use regularisations to talk about approximations of the �eld pointwise. �e circle

average regularisation, in particular, will be useful for us.

De�nition 4.2.13 (Circle Average). Let D be a domain in C, and let h̃ be a zero boundary

GFF in D. Let ε > 0 and z ∈ {z′ ∈ D ∶ dist(z′, ∂D) > ε}. De�ne the function ξzε by

ξzε(y) = − log(∣z − y∣ ∨ ε) + ϕz(y), (4.11)

where ϕz is harmonic in D and equal to log(∣z − y∣) for y ∈ ∂D. �en average of h̃ on the
circle of radius ε centred at z is de�ned by

h̃ε(z) ∶= ⟨h̃, ξzε⟩∇ . (4.12)

�e circle average process appears in Section 3.1 of [DS11]. Essentially, we can think of (4.12)

as a circle average because we know that −∆ξzε = 2πνz
ε , where νz

ε is the uniform measure on

the circle of radius ε, centred at z.�erefore, a formal integration by parts lets us say that

⟨h̃, ξzε⟩∇ = ⟨h̃, νz
ε⟩ ,

where ⟨⋅, ⋅⟩ is the standard L2 inner product. For more details about the justi�cation of the
integration by parts, and viewing the GFF as it acts on measures, see Section 2.6 of [She07].

De�nition 4.2.17 and the form of ξzε allows us to calculate the variance of the circle averages.

�e following appears as Proposition 3.2 in [DS11].

Lemma 4.2.14. Let D be a domain in C, and let h̃ be a zero boundary GFF on D. Fix ε > 0,
and let z ∈ D be further than ε from the boundary.�en the circle average, h̃ε(z), is a centred
Gaussian random variable with variance

E [h̃ε(z)2] = − log ε + logR(z;D),

where R(z;D) is the conformal radius of D viewed from z.

We will also need to use domain Markov property of the GFF. A thorough explanation can be

found in Section 2.6 of [She07].
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�eorem 4.2.15 (Domain Markov Property). Let D be a domain, and U ⊂ D a subdomain.

Let h be a GFF on D.�en we can write h = h1 + h2, where

– h1 and h2 are independent,

– h2 is a GFF on U and zero on D ∖U,

– h1, h2 ∈ H−1
0 (D), and

– h1 is harmonic on U and agrees with h on D ∖U.

Finally, we rely on the conformal invariance of the GFF. It is a property inherited from the

conformal invariance of the Dirichlet inner product. See, for example, Section 2.1 of [She07].

�eorem 4.2.16 (Conformal Invariance). Let D and D′ be two domains in C, and let ψ be a

bijective, conformal map from D to D′. Further, let h be a GFF on D, and h′ a GFF on D′.�en

h d= h′ ○ ψ in the sense that, for any function f ∈ H0(D), we have

⟨h, f ⟩∇
d= ⟨h′, f ○ ψ−1⟩∇ .

4.2.4 Neumann boundary Gaussian free �eld

In order to couple the reverse SLE of Section 4.2.2 with a Gaussian free �eld, as in [She10],

we need to understand the Neumann (or free) boundary Gaussian free �eld. We give a

brief introduction here. Much more information can be found in, for example, Section 4.2.4

of [MS13].

�e Dirichlet inner product de�ned in De�nition 4.2.11 can be extended from the set of

smooth, compactly supported functions to f , g ∈ C∞(D), the set of smooth functions on D.
It is no longer strictly an inner product, as all constant functions will have Dirichlet inner

product equal to zero. To get around this, we de�ne the space H(D) as the Hilbert space
completion under the Dirichlet inner product of the functions f ∈ C∞(D) which we view
modulo additive constants.
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Note that, since we only ever look at test functions de�ned up to an additive constant, the

Neumann boundary GFF is de�ned as a distribution only up to an additive constant. Later,

we will need to �x this additive constant.

De�nition 4.2.17 (Neumann boundary Gaussian free �eld). We say that h is a Neumann

boundary Gaussian free �eld if, for any f , g ∈ H(D), the random variables ⟨h, f ⟩∇ and
⟨h, g⟩∇ are centred Normal random variables with covariance equal to

E [⟨h, f ⟩∇ ⟨h, g⟩∇] = ⟨ f , g⟩∇ .

As in the zero boundary case, the Neumann boundary GFF is not de�ned pointwise, but it

exists as a continuous linear functional. See Section 3.3 of [She10]. Also, it inherits a conformal

invariance property from the conformal invariance of the Dirichlet inner product. More

information about how the Neumann boundary GFF can be de�ned on measures, using the

Green function for Laplace’s equation with Neumann boundary conditions, can be found

in [Ber15c].

In order to use the conformal invariance of the �eld, and to understand the statement of

�eorem 4.2.25 in Section 4.2.5, we need to be clear what is means by h ○ ψ, where h is a

Neumann boundary GFF on D and ψ ∶ U → D is a bijective, conformal map. We simply mean

that, for any function f ∈ H(U),

⟨h ○ ψ, f ⟩∇ ∶= ⟨h, f ○ ψ−1⟩∇ .

We will o�en talk about the “harmonic extension” of the Neumann boundary GFF from the

boundary of some subdomain U ⊂ D to the domain U .�e following lemma, which appears

in Section 4.2.5 of [MS13], allows us to do that.

Lemma 4.2.18. Let h be a Neumann boundary GFF on a domain D.�en we can write

h = h̃ +HarmD(h),

where h̃ is a zero boundary GFF on D andHarmD(h) is an independent harmonic function on

D, de�ned up to an additive constant.
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�e proof relies on the fact that the space of functions H0(D) is orthogonal to the space of
harmonic functions on D under the Dirichlet inner product.

Lemma 4.2.18 lets us de�ne the harmonic extension of the Neumann boundary GFF as follows.

De�nition 4.2.19 (Harmonic extension). LetU ⊂ D be a subdomain, and let h be a Neumann

boundary GFF on D with decomposition

h = h̃ +HarmD(h),

where h̃ is a zero boundary GFF on D and HarmD(h) is an independent harmonic function
de�ned up to an additive constant, as in Lemma 4.2.18. Using the Markov property for h̃, we

can write

h̃ = h′ + u,

where h′ is a zero boundary GFF onU and u is harmonic onU .�en the harmonic extension

of h from ∂U to U is de�ned to be

HarmU(h) = HarmD(h)∣U + u∣U .

When we �x the additive constant that is still free in the de�nition of the Neumann boundary

GFF, it can be the case that h̃ and HarmD(h) are no longer independent. For example, if we
normalise the GFF h by specifying that its average value on some set is equal to zero, there

will be some interaction between h̃ and HarmD(h).�is is because the zero boundary GFF h̃
is fully speci�ed, so the function HarmD(h) will have to shi� by a constant to compensate for
the average value of h̃ on the set in question.

However, we will always normalise by specifying the value of HarmD(h) at a point.�is will
ensure that we still have independence:

Lemma 4.2.20. Let h be a Neumann boundary GFF on a domain D, and let z ∈ D. If we specify

thatHarmD(h)(z) = 0 in the decomposition of Lemma 4.2.18, we know that h̃ andHarmD(h)
are still independent.
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Proof. In Lemma 4.2.18, HarmD(h) ∈ Harm(D) represents an equivalence class of harmonic
functions, [HarmD(h)] ⊂ Harm(D), where two functions are equivalent if they agree up
to an additive constant. We can choose the unique representative of that equivalence class

which equals 0 at z, and call that function HarmD(h). Since HarmD(h) depends only on the
equivalence class [HarmD(h)], and the equivalence class is independent of h̃, then HarmD(h)
is also independent of h̃.

We will need some quantitative bounds on the variance of the harmonic part of the Neumann

boundary GFF when it is pinned at a certain point. We will use the following, which appears

as Lemma 2.9 in [GMS14]:

Lemma 4.2.21. Let HarmD(h) be the harmonic part of a Neumann boundary GFF on the

unit disc D, normalised so thatHarmD(h)(0) = 0.�en, for any z,w ∈ D,HarmD(h)(z) and
HarmD(h)(w) are jointly Gaussian with mean zero and covariance

E [HarmD(h)(z)HarmD(h)(w)] = −2 log ∣1 − zw∣.

We can use a coordinate change from the upper half plane to the unit disc, alongwith conformal

invariance of Gaussian free �eld, to get the following bound on the variance of the harmonic

part of the Neumann boundary GFF on the upper half plane.

Lemma 4.2.22. Let HarmH(h) be the harmonic part of a Neumann boundary GFF on the

upper half planeH, normalised so thatHarmH(h)(iy0) = 0 for some (�xed) y0 > 0.�en, for

any z = x + iy ∈ H we see that

E [HarmH(h)(z)2] = −2 log y + 2 log (x2 + (y + y0)2) − 2 log 4y0.

Proof. Let h′ be a Neumann boundary GFF on the unit disc, D, normalised so that

HarmD(h′)(0) = 0,
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and let my0 be the Möbius transformation

my0(z) =
z − iy0
z + iy0

.

�en my0 ∶ H→ D so that my0(iy0) = 0.�erefore, if we set

h = h′ ○my0 ,

then h is a Neumann boundary GFF on H and, by conformal invariance of the GFF and

harmonic extensions, we see that for z ∈ H,

HarmH(h)(z) = HarmH(h′ ○my0)(z)

= HarmD(h′)(my0(z)).

�erefore, with z = iy0, we see that HarmH(h)(iy0) = HarmD(h′)(my0(iy0)) = 0. So, h is
normalised in the way that we want. We can now calculate its variance using the coordinate

change and Lemma 4.2.21, as follows.

Let z = x + iy ∈ H with y ∈ (0, y0).�en, by Lemma 4.2.21, we see

E [HarmH(h)(x + iy)2] = E [HarmD(h′)(my0(x + iy))]

= −2 log ∣1 − ∣my0(x + iy)∣2∣. (4.13)

Expanding the term inside the log in (4.13), we �nd

1 − ∣my0(x + iy)∣2 = 1 − x2 + (y − y0)2
x2 + (y + y0)2

= (y + y0)2 − (y − y0)2
x2 + (y + y0)2

= 4y0y
x2 + (y + y0)2

. (4.14)

Substituting (4.14) into (4.13), we see that

E [HarmH(h)(x + iy)2] = −2 log( 4y0y
x2 + (y + y0)2

)

= −2 log y + 2 log (x2 + (y + y0)2) − 2 log 4y0,

completing the proof.
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We should note that, if we restrict to the case where z = x + iy ∈ H with y ∈ (0, y0), Lemma
4.2.22 easily gives us the slightly simpler inequality that

E [HarmH(h)(z)2] ≤ −2 log y + 2 log (x2 + 4y20) − 2 log 4y0, (4.15)

because (y + y0)2 ≤ 4y20.

Corollary 4.2.23. LetHarmH(h) be the harmonic part of a Neumann boundary GFF on the

upper half planeH, normalised so thatHarmH(h)(iy0) = 0 for some (�xed) y0 > 0.�en, for

any purely imaginary z = iy ∈ H with y ∈ (0, y0), we see that

E [HarmH(h)(iy)2] ≤ 2 log y0 − 2 log y.

Proof. �is is simply the case of x = 0 in (4.15).

Lemma 4.2.24. Let K be a compact hull, and let H = H ∖ K. Let h be a Neumann boundary

GFF onH normalised so that its harmonic part vanishes at iy0 for some y0 > 0. LetHarmH(h)
be the harmonic extension of h from ∂H to H. �en for any z = x + iy ∈ H with y < y0, we

know thatHarmH(h)(z) is a centred Gaussian random variable with variance

E [HarmH(h)(z)2] ≤ −3 log(dist(z, ∂H)) + 2 log(x2 + 4y20) + C ,

where C is a constant which depends on y0 only.

Proof. We know from Lemmas 4.2.18 and 4.2.20 that we can write h = h̃ +HarmH(h), where
h̃ is a zero boundary GFF onH and HarmH(h) is an independent harmonic function, deter-
mined uniquely. Using the Markov property of the zero boundary GFF we can also say that,

restricting to H, we have

h̃∣H = h′ + u,

where h′ is a zero boundary GFF on H and u is an independent harmonic function. We can

therefore see that

h∣H = h′ + u +HarmH(h)∣H

= h′ +HarmH(h).
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Because u is independent of h′ and HarmH(h) is independent of h̃ = h′ + u, we see that h′

and HarmH(h) = u +HarmH(h) are independent.

Let ε < dist(z, ∂H).�en we can take the circle average of the GFFs to see that

h′ε(z) +HarmH(h)(z) = h̃ε(z) +HarmH(h)(z).

By independence of the terms on both the le� hand side and the right hand side, we can say

that

Var(HarmH(h)(z)) ≤ Var(h̃ε(z)) +Var(HarmH(h)(z)). (4.16)

We can use Lemmas 4.2.14 and 4.2.22 to bound the terms on the right hand side of (4.16) to

get

Var(HarmH(h)(z)) ≤ − log ε + logR(z;H) − 2 log y + 2 log(x2 + 4y20) − 2 log 4y0.

We know that logR(z;H) is uniformly bounded above for all z = x + iy with y ∈ [0, y0]. Let
us write this upper bound along with the −2 log 4y0 term as the constant C, so

Var(HarmH(h)(z)) ≤ − log ε − 2 log y + 2 log(x2 + 4y20) + C .

Now let us take ε as large as we can, i.e. ε = dist(z, ∂H). Noting also that, as H is a subset of
H, dist(z, ∂H) = y ≥ dist(z, ∂H), we �nd

Var(HarmH(h)(z)) ≤ −3 logdist(z, ∂H) + 2 log(x2 + 4y20) + C ,

as we wanted.

4.2.5 Coupling reverse SLE and Neumann boundary GFF

We now set out the coupling between reverse SLE and the Neumann boundary GFF, �rst

proved in [She10].�roughout, �x κ > 0 and Q = 2√
κ +

√
κ
2 .

�eorem 4.2.25 (GFF SLE coupling). Let ( ft) be the reverse SLEκ �ow as de�ned by (4.6), with

hulls (Kt). Let h be a Neumann boundary GFF onH, independent of ( ft), normalised so that
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the harmonic part vanishes at iy0 for some y0 > 0 to be speci�ed later. For t > 0, let

ht = h ○ ft +
2√
κ
log ∣ ft ∣. (4.17)

�en

ht + Q log ∣ f ′t ∣
d= h0

modulo a global additive constant.

Corollary 4.2.26. In the same setting as�eorem 4.2.25, there exists a random constant (in

space) bt such that

∣ f ′t (iy)∣ = ( y
∣ ft(iy)∣

)
2

Q
√

κ

exp( 1
Q

(HarmH(h′)(iy) −HarmH(h ○ ft)(iy) + bt)) ,

where h′ is also a Neumann boundary GFF, normalised so that the harmonic part vanishes at

iy0.

We should note that the joint distribution of h′ and h ○ ft will not matter anywhere in the rest

of this chapter.

Proof. �eorem 4.2.25 tells us that ht + Q log ∣ f ′t ∣
d= h0 modulo an additive constant. Let bt be

this constant, so that

ht + Q log ∣ f ′t ∣ − bt
d= h0. (4.18)

Let

h′0 = ht + Q log ∣ f ′t ∣ − bt (4.19)

so that h′0
d= h0, i.e. h′0 is a Neumann boundary GFF onH, h′, plus a log singularity, 2√κ log ∣z∣.

Re-arranging (4.19) gives us

Q log ∣ f ′t (iy)∣ = (h′0 − ht)(iy) + bt

= (h′ − h ○ ft)(iy) +
2√
κ
log ∣iy∣ − 2√

κ
log ∣ ft(iy)∣ + bt

= (h′ − h ○ ft)(iy) +
2√
κ
log

y
∣ ft(iy)∣

+ bt . (4.20)
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�e le� hand side of (4.20) is harmonic inH, as are the last two terms on the right hand side.

�e terms h′ and h ○ ft are not de�ned pointwise, but their di�erence is. Furthermore, since

all other terms are harmonic, the di�erence h′ − h ○ ft must also be harmonic.

Integrating with respect to the Poisson kernel on the real line lets us look at the harmonic

extensions of these function from R toH. As both sides of the equation are harmonic already,

this has no e�ect on the functions. However, linearity of integration against the Poisson kernel

lets us say that

Q log ∣ f ′t (iy)∣ = HarmH(h′)(iy) −HarmH(h ○ ft)(iy) +
2√
κ
log

y
∣ ft(iy)∣

+ bt , (4.21)

which rearranges further to give

∣ f ′t (iy)∣ = ( y
∣ ft(iy)∣

)
2

Q
√

κ

exp( 1
Q

(HarmH(h′)(iy) −HarmH(h ○ ft)(iy) + bt)) .

4.3 Proof of Theorem 4.1.3

We restate the theorem:

�eorem 4.3.1. Let κ ≠ 8, and let f̂t be the centred inverse of the Loewner �ow as de�ned in

(1.6).�en there exist constants ε > 0, δ > 0 and C > 0 such that

P [∣ f̂ ′t (iy)∣ > y−(1−ε)] ≤ Cy2+δ (4.22)

for all t ∈ [0, 1] and y ∈ (0, 1).

�anks to the distributional equality between the reverse �ow, ft , and the centered inverse, f̂t ,

shown in Lemma 4.2.7, we need only show condition (4.22) for the reverse �ow.

Proposition 4.3.2. Let ( ft) be a reverse SLEκ for κ > 0 and κ ≠ 8, coupled with a Neumann

boundary GFF as in Corollary 4.2.26 and let (bt)t≥0 be the coupling constants. Finally, let (ξt)t≥0
be the driving function of the reverse SLE f .
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�en there exists some ε > 0, δ > 0 and C > 0 such that, for all t ∈ [0, 1] and y ∈ [0, 1] we have

P [∣ f ′t (iy)∣ > y−(1−ε)] ≤ Cy2+δ .

Proof. We need to break the probability up into events which are relatively easy to deal with.

A simple union bound lets us say that

P [∣ f ′t (iy)∣ > y−(1−ε)] ≤ P [∣ f ′t (iy)∣ > y−(1−ε), bt ≤ −ε log y, sup
t∈[0,1]

ξt ≤ y−ε]+

+ P [bt > −ε log y] + P [ sup
t∈[0,1]

ξt > y−ε] .

�e fact that the �rst term on the right hand side has the correct polynomial decay is the

subject of Section 4.3.1, Proposition 4.3.3 in particular. We show that the coupling constant bt

has sub-exponential decay in Section 4.4, giving us the arbitrary polynomial decay that we

need here. Finally, it is well known that the supremum of a Brownian motion over a �nite time

interval has sub-exponential tails, and so the third term decays faster than any polynomial as

y → 0.

�e details of this proof are given through the rest of the chapter.

4.3.1 Bounding the probability on the good event

�e good event that we bound the probability on introduces constraints on the supremum

of the driving function of the SLE and a bound on the coupling constant bt introduced in

Corollary 4.2.26. We show that these constraints both hold with very high probability in

Section 4.4.

�roughout, we need to �x a point iy0 for some y0 > 0 that we use to normalise the Neumann
boundary GFF used in the coupling arguments. In order to apply Lemma 4.2.24 we need

to ensure that any complex point that we consider, especially those of the form ft(iy), have
imaginary parts smaller than y0. Happily, we need consider only times t ∈ [0, 1] and the

147



Rohde-Schramm theorem through coupling

starting points iy with y ∈ [0, 1].�erefore, Lemma 4.2.8 guarantees that

I( ft(iy)) ≤
√
4t + y2 ≤

√
5,

for all t ∈ [0, 1] and y ∈ [0, 1]. Furthermore, it will be important in Section 4.4 that

y0 > 2
√
2.

So we �x a point iy0, with

y0 >max (
√
5, 2

√
2) = 2

√
2, (4.23)

which we will use as the pinned point for the remainder of this chapter.

Proposition 4.3.3. Let ( ft) be a reverse SLEκ for κ > 0 and κ ≠ 8, coupled with a Neumann

boundary GFF as in Corollary 4.2.26 and let (bt)t≥0 be the coupling constants. Finally, let (ξt)t≥0
be the driving function of the reverse SLE f .

�en there exists some ε > 0, δ > 0 and C > 0 such that, for all t ∈ [0, 1] and y ∈ [0, 1] we have

P [∣ f ′t (iy)∣ > y−(1−ε), bt ≤ −ε log y, sup
t∈[0,1]

ξt ≤ y−ε] ≤ Cy2+δ .

�e argument begins with a slight modi�cation to Markov’s inequality. We start with the

following lemma.

Lemma 4.3.4. Fix ε > 0, t > 0 and y > 0. Let { fs} be the reverse SLE �ow as de�ned by (4.6).

�en, on the event that {∣ f ′t (iy)∣ > y−(1−ε)}, we know that dist( ft(iy), ∂Ht) > yε/4.

Proof. As ft is a reverse SLE �ow we know that ft ∶ H → Ht for Ht = H ∖ Kt. Koebe’s 1/4

�eorem tells us that

∣ f ′t (iy)∣dist(iy, ∂H) ≤ 4 ⋅ dist( ft(iy), ∂Ht). (4.24)

Since dist(iy, ∂H) = y we know that, on the event {∣ f ′t (iy)∣ > y−(1−ε)},

∣ f ′t (iy)∣dist(iy, ∂H) > yε . (4.25)

Combining the inequalities in (4.24) and (4.25) gives the result.
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Corollary 4.3.5. Fix ε > 0, t > 0 and y > 0. Let { fs}s>0 be the reverse SLE �ow as de�ned by

(4.6).�en we have that

{∣ f ′t (iy)∣ > y−(1−ε)} ⊆ {∣ ft(iy)∣ >
1
4
yε} .

Proof. Since Ht ⊂ H we can see that

dist( ft(iy), ∂Ht) ≤ dist( ft(iy), ∂H)

= I( ft(iy))

≤ ∣ ft(iy)∣.

Combining this with Lemma 4.3.4 �nishes the proof.

We can use Lemma 4.3.4 to get a good bound on the variance of HarmH(h ○ ft) on the event
that {∣ f ′t (iy)∣ > y−(1−ε)}.

Lemma 4.3.6. Let ( fs) be an SLEκ process with driving function (ξt). Let h be an independent

Neumann boundary GFF, normalised so that its harmonic part vanishes at the point iy0. Write

Eh for the expectation with respect to the law of h conditional on ( fs).�en, for �xed ε > 0 and
all t ∈ [0, 1], and y ∈ [0, 1],

Eh [HarmH(h ○ ft)(iy)21{∣ f ′t (iy)∣>y−(1−ε)}1{supt∈[0,1] ξt≤y−ε}] ≤ C′ − 7ε log y,

where C′ is a constant depending on the pinned point y0 only.

Proof. Conformal invariance of solutions to Laplace’s equation lets us say that

HarmH(h ○ ft)(⋅) = HarmHt(h)( ft(⋅)).

Since we chose the pinned point iy0 high enough in (4.23), we can apply Lemma 4.2.24 to see

that

Eh [HarmH(h ○ ft)(iy)21{∣ f ′t (iy)∣>y−(1−ε)}1{supt∈[0,1] ξt≤y−ε}] ≤

≤ (−3 log(dist( ft(iy), ∂Ht)) + 2 log(R( ft(iy))2 + 4y20) + C)1{∣ f ′t (iy)∣>y−(1−ε)},
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which, a�er applying Lemma 4.3.4 to the �rst term and Lemma 4.2.10, gives us the bound

Eh [HarmH(h ○ ft)(iy)21{∣ f ′t (iy)∣>y−(1−ε)}1{supt∈[0,1] ξt≤y−ε}] ≤

≤ −3 log( y
ε

4
) + 2 log (y−2ε + 4y20) + C . (4.26)

We know that y−2ε ≥ 1 and y0 > 1, and so we can see that

log(y−2ε + 4y20) ≤ log(5y−2ε) + log(5y20).

�erefore, we can simplify the bound in (4.26) to

Eh [HarmH(h ○ ft)(iy)21{∣ f ′t (iy)∣>y−(1−ε)}1{supt∈[0,1] ξt≤y−ε}] ≤ −7ε log y + C′,

where C′ depends only on y0, as we wanted.

Lemma 4.3.7. Let ( fs) be a reverse SLEκ with driving function (ξs). Fix t ∈ [0, 1], ε > 0 and
y > 0. Let a > 1 and b = a/(a − 1) be its Hölder conjugate. Let h be a Neumann boundary

GFF independent of ( fs) and write Eh for expectation with respect to the law of h, conditionally

on (ξs). Finally, let h′ be a Neumann boundary GFF as de�ned by the coordinate change in

Corollary 4.2.26. De�ne the event A by

A ∶= {∣ f ′t (iy)∣ > y−(1−ε), bt ≤ −ε log y, sup
t∈[0,1]

∣ξt ∣ ≤ y−ε}.

�en

∣ f ′t (iy)∣a1A ≤ C̃ y
2a

Q
√

κ −ĈεEh [exp(
a
Q

(HarmH(h′)(iy)))] ,

where the constants C̃ and Ĉ depend only on κ, the power a and the pinned point iy0 used in

the coupling.

Proof. We start with the relation found in Corollary 4.2.26, with the small addition of the

indicator function, that

∣ f ′t (iy)∣1A = ( y
∣ ft(iy)∣

)
2

Q
√

κ

exp( 1
Q

(HarmH(h′)(iy) −HarmH(h ○ ft)(iy) + bt))1A.

(4.27)
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Corollary 4.3.5 tells us that 1{∣ f ′t (iy)∣>y−(1−ε)} = 1{∣ f ′t (iy)∣>y−(1−ε)}1{∣ ft(iy)∣>yε/4}. So, we can tell

straight away that
y

∣ ft(iy)∣
1A ≤ 4y1−ε1A. (4.28)

Furthermore we have ensured, by the de�nition of the event A, that the coupling constant bt

is bounded above by bt ≤ −ε log y. We therefore know that

exp( 1
Q
bt)1A ≤ y−ε/Q1A. (4.29)

Substituting (4.28) and (4.29) into (4.27) gives the inequality

∣ f ′t (iy)∣1A ≤ (4y1−ε)
2

Q
√

κ ⋅ y−ε/Q exp( 1
Q

(HarmH(h′)(iy) −HarmH(h ○ ft)(iy)))1A.

We can now take expectation with respect to the law of h conditional on (ξs) and use Hölder’s
inequality, taking care where we put the indicator function, to say that

∣ f ′t (iy)∣1A ≤

≤ (4y1−ε(1+
√

κ
2 ))

2
Q
√

κ
Eh [exp(

a
Q

(HarmH(h′)(iy)))]
1
a
Eh [exp(−

b
Q
HarmH(h ○ ft)(iy))1A]

1
b

.

(4.30)

Now we know that, conditionally on (ξs), HarmH(h ○ ft)(iy) is Gaussian, and we know its
conditional variance from Lemma 4.3.6 . So we can bound the �nal expectation in (4.30) as

follows:

Eh [exp(−
b
Q
HarmH(h ○ ft)(iy))1A] ≤ exp(

b2

2Q2
⋅ (C′ − 7ε log y))

= e
b2C′
2Q2 y−ε 7b

2

2Q2 . (4.31)

Substituting (4.31) into (4.30) gives

∣ f ′t (iy)∣1A ≤ (4y1−ε(1+
√

κ
2 ))

2
Q
√

κ
e

bC′
2Q2 y−ε 7b

2Q2Eh [exp(
a
Q

(HarmH(h′)(iy)))]
1
a

= 4
2

Q
√

κ e
bC′
2Q2 y

2
Q
√

κ −ε( 2
Q
√

κ +
1
Q +

7b
2Q2

)Eh [exp(
a
Q

(HarmH(h′)(iy)))]
1
a

We �nish the proof by raising everything to the power a.
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Corollary 4.3.8. In the same setting as Lemma 4.3.7, we have the following bound on the

probability of interest:

P [∣ f ′t (iy)∣ > y−(1−ε), bt ≤ −ε log y, sup
t∈[0,1]

ξt ≤ y−ε] ≤ Cya(1+
2

Q
√

κ −
a
Q2

)−Cε ,

where C and C are constants which depend only on the Hölder exponent a and the pinned point

iy0.

Proof. First, recall the de�nition of the set A from Lemma 4.3.7, that

A ∶= {∣ f ′t (iy)∣ > y−(1−ε), bt ≤ −ε log y, sup
t∈[0,1]

ξt ≤ y−ε}.

�e proof begins as a slight modi�cation to Markov’s inequality, and then an application of

Lemma 4.3.7:

P [∣ f ′t (iy)∣ > y−(1−ε), bt ≤ −ε log y, sup
t∈[0,1]

ξt ≤ y−ε] = E [1{∣ f ′t (iy)∣>y−(1−ε) , bt≤−ε log y, supt∈[0,1] ξt≤y−ε}]

≤ E [ya(1−ε)∣ f ′t (iy)∣a1A]

≤ E [ya(1−ε)C̃ y
2a

Q
√

κ −ĈεEh [exp(
a
Q
HarmH(h′)(iy))]]

= C̃ ya(1+
2

Q
√

κ )−ε(Ĉ+a)E [exp( a
Q
HarmH(h′)(iy))] . (4.32)

Now, we know a bound on the variance of HarmH(h′)(iy) thanks to Corollary 4.2.23, so we
can �nd a bound for the expectation in (4.32), as follows:

E [exp( a
Q
HarmH(h′)(iy))] ≤ exp(

a2

2Q2
(2 log y0 − 2 log y))

= y
a2

Q2

0 y−
a2

Q2 . (4.33)

So, substituting (4.33) into (4.32) we �nd

P [∣ f ′t (iy)∣ > y−(1−ε), bt ≤ −ε log y, sup
t∈[0,1]

ξt ≤ y−ε] ≤ C̃ y
a2

Q2

0 ya(1+
2

Q
√

κ −
a
Q2

)−ε(Ĉ+a),

as we wanted.

152



4.3 Proof of Theorem 4.1.3

We have done essentially all the work for Proposition 4.3.3 now.�e last thing le� to check is

what happens when we maximise the exponent we found over the value of a.

Proof of Proposition 4.3.3. Proposition 4.3.3 will follow from Corollary 4.3.8 if we can show

that the exponent of y is greater than 2. As we can choose ε however we like, let us ignore it

for now and concentrate on the part of the exponent which is independent of ε. We then get a

quadratic in a:

a (1 + 2
Q
√

κ
− a
Q2

) . (4.34)

It has roots at a = 0 and a = Q2 (1 + 2
Q
√

κ), and so achieves its maximum at the average of
these two: at amax = Q2

2 (1 + 2
Q
√

κ). Substituting amax into (4.34) gives

amax (1 +
2

Q
√

κ
− amax

Q2
) = Q2

4
(1 + 2

Q
√

κ
)
2

. (4.35)

We now want to look at the exponent Q2
4 (1 + 2

Q
√

κ)
2
to make sure that it is always greater than

2. First of all, note that

Q = 2√
κ
+

√
κ
2
,

Q√
κ
= 2

κ
+ 1
2
, Q2 = 4

κ
+ κ
4
+ 2.

�erefore, expanding out the exponent, we �nd

Q2

4
(1 + 2

Q
√

κ
)
2

= Q2

4
(1 + 4

Q
√

κ
+ 4
Q2κ

)

= Q2

4
+ Q√

κ
+ 1

κ

= 1
κ
+ κ
16
+ 1
2
+ 2

κ
+ 1
2
+ 1

κ

= 4
κ
+ κ
16
+ 1.

Di�erentiating to �nd a minimum, we �nd

∂
∂κ

(4
κ
+ κ
16
+ 1) = − 4

κ2
+ 1
16

and so
2
κ
= 1
4
.

�erefore, the exponent is minimised at κ = 8, at which point the exponent takes the value

4
8
+ 8
16
+ 1 = 2.
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So we see that, for κ ≠ 8, we can choose ε > 0 small enough (depending on κ but not y) that

there exists some δ > 0 such that

P [∣ f ′t (iy)∣ > y−(1−ε), bt ≤ −ε log y, sup
t∈[0,1]

ξt ≤ y−ε] ≤ Cyamax(1+ 2
Q
√

κ −
amax
Q2

)−Cε

= Cy2+δ ,

�nishing the proof.

4.4 Bounding the coupling constant

�e aim of this section is to prove the upper bound that we need for the coupling constant bt

that was introduced in Corollary 4.2.26. We want to show that it has the following polynomial

upper tail:

Proposition 4.4.1. �e constant bt from Corollary 4.2.26 has sub-exponential decay i.e. for any

λ > 0 there exists some constant Cλ such that, for all x > 0 we have:

P [bt > x] ≤ Cλe−λx .

�e constant Cλ can be chosen uniformly for t ∈ [0, 1].

Proof. Let λ > 0. We want to use Markov’s inequality to say that

P [bt > x] = P [eλbt > eλx]

≤ e−λxE [eλbt] .

We need to check that E [eλbt] is �nite for all λ > 0, with a uniform bound for t ∈ [0, 1]. We
can rearrange (4.21) to see that, for y > 0,

bt = HarmH(h ○ ft)(iy) −HarmH(h′)(iy) + Q log ∣ f ′t (iy)∣ +
2√
κ
log

∣ ft(iy)∣
y

.
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In fact, if we look at the pinned point iy0, the point where HarmH(h′) vanishes (which is how
bt is chosen), we can see that

bt = HarmH(h ○ ft)(iy0) + Q log ∣ f ′t (iy0)∣ +
2√
κ
log

∣ ft(iy0)∣
y0

.

Exponentiating and taking expectation with respect to the free �eld h which, the reader will

recall, is independent of ( ft), we �nd that

Eh [eλbt] = ∣ f ′t (iy0)∣λQ (∣ ft(iy0)∣
y0

)
2λ√

κ

Eh [exp (λHarmH(h ○ ft)(iy0))] . (4.36)

We can use Lemma 4.2.24 to bound the expectation Eh [exp (λHarmH(h ○ ft)(iy0))], using
the fact that HarmH(h ○ ft)(iy0) = HarmH(h)( ft(iy0)), as follows:

Eh [exp (λHarmH(h ○ ft)(iy0))] ≤

≤ exp(λ2

2
(−3 log(dist( ft(iy0), ∂Ht)) + 2 log(R( ft(iy0))2 + 4y20) + C)) . (4.37)

Now we can use Corollary 4.2.5 and the fact that I( ft(iy0)) is increasing to say that

dist( ft(iy0), ∂Ht) ≥ I( ft(iy0)) − height(Ht)

≥ y0 − 2
√
2t

≥ y0 − 2
√
2, (4.38)

with our choice of y0 in (4.23) ensuring that this is strictly positive. Using the inequality (4.38)

in (4.37) we get

Eh [exp (λHarmH(h ○ ft)(iy0))] ≤ (y0 − 2
√
2)− 3λ2

2 (R( ft(iy0))2 + 4y20)λ2 e
λ2C
2 . (4.39)

Substituting (4.39) into (4.36) gives us the inequality

Eh [eλbt] ≤ ∣ f ′t (iy0)∣λQ (∣ ft(iy0)∣
y0

)
2λ√

κ

(y0 − 2
√
2)− 3λ2

2 (R( ft(iy0))2 + 4y20)λ2 e
λ2C
2 . (4.40)

Corollary 4.2.9 lets us bound the �rst term in (4.40) by

∣ f ′t (iy0)∣ ≤
4
y0

√
y20 + 4.
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Rohde-Schramm theorem through coupling

Lemma 4.2.8 lets us bound the second term in (4.40) by

∣ ft(iy0)∣ ≤
√
R( ft(iy0))2 + 4t + y20

≤
√
R( ft(iy0))2 + 4y20,

where the �nal inequality comes from the fact that we know 4t ≤ 4 ≤ 3y20. It simpli�es the
result of substituting the two previous bounds into (4.40), which is

Eh [eλbt] ≤ 4λQ y
−λQ− 2λ√

κ
0 e

λ2C
2

(y0 + 4)λQ/2

(y0 − 2
√
2)3λ2/2

(R( ft(iy0))2 + 4y20)
λ2+ λ√

κ .

We now take expectations with respect to the law of ( ft) to see that

E[eλbt] ≤ 4λQ y
−λQ− 2λ√

κ
0 e

λ2C
2

(y0 + 4)λQ/2

(y0 − 2
√
2)3λ2/2

E [(R( ft(iy0))2 + 4y20)
λ2+ λ√

κ ]

≤ 4λQ y
−λQ− 2λ√

κ
0 e

λ2C
2

(y0 + 4)λQ/2

(y0 − 2
√
2)3λ2/2

E [(κB2t + 4y20)
λ2+ λ√

κ ]

≤ 4λQ y
−λQ− 2λ√

κ
0 e

λ2C
2

(y0 + 4)λQ/2

(y0 − 2
√
2)3λ2/2

E [(κB21 + 4y20)
λ2+ λ√

κ ] , (4.41)

where the �nal line comes from bound in Lemma 4.2.10. Since B1 is a Gaussian random

variable it has moments of all orders, so we know that the expectation in (4.41) is �nite.

�erefore, the right hand side of (4.41) is our constant Cλ. It does not depend on t, so we have

found a uniform constant for t ∈ [0, 1] such that

P [bt > x] ≤ Cλe−λx .
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[GRV14] Christophe Garban, Rémi Rhodes, and Vincent Vargas. On the heat kernel and

the Dirichlet form of Liouville Brownian Motion. Electron. J. Probab, 19(96):1–25,

2014.

[GRS12] Christophe Garban, Ste�en Rohde, and Oded Schramm. Continuity of the SLE

trace in simply connected domains. Israel Journal of Mathematics, 187(1):23–36,

2012.

[Gri99] Geo�rey Grimmett. Percolation. 1999.

[GK12] Geo�rey R Grimmett and Harry Kesten. Percolation since Saint-Flour. arXiv

preprint arXiv:1207.0373, 2012.

[GMS14] Ewain Gwynne, Jason Miller, and Xin Sun. Almost sure multifractal spectrum of

SLE. arXiv preprint arXiv:1412.8764, 2014.

[HK03] Ben M Hambly and Takashi Kumagai. Di�usion processes on fractal �elds: heat

kernel estimates and large deviations. Probab.�eory Relat. Fields, 127(3):305–352,

2003.

[Haw71a] John Hawkes. On the Hausdor� dimension of the intersection of the range of a

stable process with a Borel set. Probab.�eory Relat. Fields, 19(2):90–102, 1971.

159



BIBLIOGRAPHY

[Haw71b] John Hawkes. Some dimension theorems for sample functions of stable processes.

Indiana Univ. Math. J., 20(8):733, 1971.

[HMP10] Xiaoyu Hu, Jason Miller, and Yuval Peres. �ick points of the Gaussian free �eld.

Ann. Probab., 38(2):896–926, 2010.

[Jac14] Henry Jackson. Liouville brownian motion and thick points of the gaussian free

�eld. arXiv preprint arXiv:1412.1705, 2014.

[JLS14] David Jerison, Lionel Levine, and Scott She�eld. Internal DLA and the Gaussian

free �eld. Duke Mathematical Journal, 163(2):267–308, 2014.

[JS15] Janne Junnila and Eero Saksman. �e uniqueness of the Gaussian multiplicative

chaos revisited. arXiv preprint arXiv:1506.05099, 2015.

[Kah85] Jean-Pierre Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–
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