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Abstract 

The generation of solar fuels through artificial photosynthesis could, in 

principle, solve our looming energy crisis. Photoelectrochemical devices use 

light-absorbers, such as semiconductors, to capture sunlight and generate 

excited states of charge carriers that are transported to catalysts for the 

production of solar fuels. However, the most suitable photoactive materials 

are often chemically unstable in contact with an aqueous electrolyte solution 

and therefore need protection by a conformal coating through a material that 

is chemically robust to prevent corrosion and conducting to allow transfer of 

charges to a solution-exposed catalytic site. Commonly used coating 

procedures and materials are extremely challenging to scale and therefore 

unlikely to be applicable on a scale to cover global demand. In this mini 

review, we present recent advances in this field revolving around 

unconventional, yet technically simpler and less costly routes to protecting 

and activating photocorrodible electrodes for solar fuels application. We focus 

on two emerging approaches: (i) the use of single source precursor chemistry 

for the preparation of bi-functional protecting and catalytically active layers, 

and (ii) the use of low-temperature fusible eutectic alloys as protecting and 

conducting layers that can be easily activated for catalysis. 
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Introduction 

The world is currently facing a steady increase in energy demand and 

consequently an accelerated depletion of fossil fuel resources.1 

Photoelectrochemical (PEC) systems capture and convert solar energy in the 

chemical bonds of solar fuels and these approaches are widely pursued in the 

field of artificial photosynthesis.1 Solar-driven water splitting into H2 and O2 is 

potentially an attractive reaction from an economic point of view, due to the 

abundance of water and solar energy, coupled with the exceptionally high 

specific energy density (33.3 kWh kg−1) of H2 fuel.2,3 

PEC cells employ light-harvesting materials such as semiconductors and 

catalysts to transform solar into chemical energy. Although only 1.23 V are 

required to overcome the thermodynamic barrier for water splitting, in 

practice, voltages of more than 1.8 V4 are necessary to overcome losses from 

solution resistance and overpotential (i.e., reaction kinetic barriers). Water 

splitting systems based on a single light absorber result in inefficient 

harvesting of solar light and can only reach a solar-to-hydrogen (STH) 

conversion efficiency of up to 12%.5 Tandem architectures with two small 

band gap semiconductors give a theoretical ceiling of 31% efficiency and 

have therefore been proposed as a much more attractive approach for PEC 

solar fuels synthesis.6,7 A recent review shows that these values descend to 

5.4% (single light absorber) and 16.2% (tandem configuration) when using 

realistic estimations of earth abundant photoelectrodes.8  

However, while UV-absorbing, i.e. wide bandgap, materials are frequently 

stable, narrow band gap materials are often photocorroded under water 
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splitting conditions. Furthermore, the catalysts used in conjunction with the 

semiconductors also degrade over time, thus aggravating the effect. 

Developing scalable protection strategies that allow the stable operation of 

small band gap materials during water splitting (and other solar fuel forming 

reactions) and enable the sustained operation of suitable catalysts is therefore 

of paramount importance for the advancement of tandem PEC cells and 

efficient solar fuel synthesis. 

In this mini-review, we will first give a brief background on PEC cells and 

summarise the most frequently used method to protect photocorrodible 

materials, i.e., surface passivation with thin film techniques. The main part will 

then focus on emerging methods for protecting unstable semiconductors and 

prolonging the lifetime of catalytic materials for use in solar fuel production, 

with an emphasis on the use of fusible alloys and single source precursor 

(SSP) chemistry for this purpose. 

 

Photocorrodible materials in PEC cells 

PEC devices are usually composed by a semiconductor/electrolyte junction to 

effect the separation of charge carriers upon photoexcitation.9 Tandem 

semiconductor electrode-based PEC cells can consist of two photoelectrodes 

(Fig.1a) or of a monolithically integrated combination of two photoelectrodes 

in a single structure (Fig.1b).9 Extensive reviews present numerous examples 

of such PEC configurations for water splitting in the past few decades.10–14 

A primary strategy for realising efficient PEC cells is the use of two 
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semiconductors placed optically and electrically in series, which are coupled 

with a suitable H2 evolution catalyst (HEC) and O2 evolution catalyst (OEC). 

An optimum tandem solar-driven water-splitting system consists in theory of a 

pair of semiconductors with a band gap of 1.60–1.80 eV as the top layer and 

0.95–1.20 eV as the bottom layer.5–7,15 These band gap requirements rule out 

the use of most known oxide semiconductors and suggest the suitability of 

Group IV, III–V, II–VI, and chalcopyrite semiconductors as light absorbers.16 

It is often useful to study these materials’ performance first individually. In this 

case, photocathodes (Fig.1c) or photoanodes (Fig.1d) are paired with a dark 

electrode and are electrically biased to study the H2 evolution reaction (HER) 

or O2 evolution reaction (OER), respectively. Si (Eg = 1.1 eV) and Cu2O (Eg = 

2.2 eV) are commonly used as photocathodes. WO3 (Eg = 2.8 eV), Fe2O3 (Eg 

= 2.2 eV) and BiVO4 (Eg = 2.5 eV) are often employed as photoanodes. 

These materials are popular due to their (sometimes direct) relatively narrow 

bandgaps, which allow harvesting the visible region of the solar spectrum, and 

suitable band positioning with respect to the water reduction and oxidation 

potentials. They are then coupled with suitable HECs (conventionally Pt, 

NiMo, CoP, MoS2, etc.) and OEC (conventionally IrO2, RuO2 and NiFeOx, 

etc.).17 Recent efforts using density functional theory calculations have 

allowed the prediction and preparation of mixed metal and earth abundant 

catalysts suitable for HER and OER.18 

PEC cells can also be biased with a photovoltaic (PV) element and form PV-

biased PEC cells, as shown in Fig.1e. If the PV element is able to deliver all of 

the required voltage for the water splitting reaction, it can be coupled directly 
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to a suitable HEC and OEC to reduce protons and oxidise water, respectively 

(Fig.1f). A well-known example of the latter approach is the artificial leaf, 

where a commercial triple junction amorphous Si solar cell was interfaced with 

a self-assembled,19 self-healing,20 cobalt-phosphate (CoPi) OEC and NiMoZn-

alloy as HEC. This design initially achieved an STH of 4.7% in wired and 2.5% 

in wireless configuration.21 The catalysts used in the system have evolved 

over time to incorporate the bacterium Ralstonia eutropha22 to reduce CO2 in 

the dark, which if wired to a 18% efficiency solar cell would yield solar-to-fuel 

efficiencies of 10%.23 Lead halide perovskites (PVKs) are another excellent 

example for the approach shown in Fig. 1f as they have revolutionised the PV 

field in recent years with efficiencies of over 22% being now certified.24 Their 

limited stability however, in particular in the presence of moisture, has 

prevented their use in aqueous medium. As an initial proof of concept, two 

PVK PV cells in series kept in air were wired to a bifunctional Ni/Fe layered 

double hydroxide grown on Ni foam electrocatalyst submerged in an alkaline 

electrolyte solution to produce H2 at a STH efficiency of 12.3%.25 

PVK cells have also been used in tandem configuration, as shown in Fig. 1e, 

where the PVK solar cell was kept in air and was connected to a 

photoelectrode submerged in the electrolyte. Hematite-PVK using CoPi and 

Pt as OEC and HEC tandem cells have reached a STH efficiency of 2.4% in 1 

M NaOH solutions following the configuration shown in Fig.1e.26 BiVO4-based 

photoanodes coupled with a single PVK solar cell kept in air yielded STH 

conversion efficiencies of 2.5% also using CoPi and Pt as OEC and HEC (0.1 

M phosphate buffer, pH 7),27 which has recently been improved to 6.2% by 
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doping the BiVO4 material with Mo and using Fe(Ni)OOH and Pt as OEC and 

HEC (0.5 M phosphate buffer, pH 7).28 

However, both the semiconductors and catalysts used in configurations 1a to 

1f for this application are typically unstable and undergo degradation under 

water splitting conditions. 

Indeed, in the case of PV-biased PEC cells discussed above, the PV element 

is usually kept encapsulated outside the electrolyte solution and can show 

lifetimes of thousands of hours, the electrocatalysts are immersed in solution 

to drive the water splitting reaction and often degrade over time, sometimes in 

a matter of minutes.29 

On the other hand, corrosion of semiconductors is an ubiquitous problem, 

which consists in the destruction of a material under the chemical or 

electrochemical action of the surrounding environment.30 Photocorrosion 

occurs when the anodic (or cathodic) corrosion potential of the semiconductor 

lies within its band gap. In this case, photocorrosion is competitive with the 

water splitting half reactions but the former is typically less energetic and thus 

thermodynamically more favorable leading to dominating corrosion 

phenomena.31–33 Corrosion can produce either soluble or insoluble 

decomposition products.16 The former results in the dissolution of the 

semiconductor, whereas the latter decomposes the semiconducting properties 

and can form insulating layers that cause deactivation over time or effectively 

block the photogenerated carriers from reaching the electrode-electrolyte 

interface or catalyst site.34 
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Stabilisation of semiconductors and the long-term stability of catalysts are 

thus highly important and a requirement for the development of scalable and 

industrially relevant solar fuel technologies. Conventional techniques (Table 1) 

have revolved around using chemically stable coatings. TiO2 is by far the 

most studied material, as justified by its Pourbaix diagram that predicts its 

chemical stability in pH 0-14 electrolyte solutions within several hundreds of 

mV of cathodic and anodic overpotentials.35 However, these layers must be 

thin enough to allow interfacial charge transfer (in particular at potentials 

where TiO2 is insulating), but at the same time thick and conformal to provide 

chemical resistance to the electrolyte solution. 

Alternative techniques aiming at extending the lifetime of photoelectrodes and 

electrocatalysis, referred to here as emerging, have been reported in the 

literature in the past few years. These techniques are based on protection 

mechanisms different from surface passivation (Figure 2) and provide an 

alternative to the conventional thin film approach. Emerging techniques are in 

principle, of easier preparation, better scalability and in some cases have 

already shown stabilities comparable with thin film technologies. 

Both conventional and emerging protection methods have been summarised 

Table 1 and Fig. 2. Table 1 groups the approaches in the 

conventional/emerging categories and provides a detailed description of each 

approach and its reported use and results. It is worth noting that the reported 

stability of most of the examples gathered in Table 1 does not make reference 

to the lifetime of the materials. Indeed, stability tests are often performed for 

an arbitrary amount of time, after which the performance of the 

photoelectrodes is still significantly high. Therefore, their actual lifetime (or 
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even half-life) is potentially higher than the values reported in Table 1. Figure 

2, on the other hand, separates the approaches in terms of the element that is 

intended to be stabilised and the governing principle of the protection 

mechanism. 

Conventional protection mechanisms for unstable semiconductors 

The most common approach to protect unstable photoelectrodes is coating 

them with films that are more stable towards photocorrosion both 

thermodynamically and kinetically.  

Nowadays, unstable semiconductors are coated with nanometre-scale thin 

films of materials including metals or metallic silicides,36–38 wide band gap 

semiconductors,39 transparent conducting oxides,34,40 transition metals and its 

oxides,39,41 and organic polymers.42 Most recent studies deal with the 

fabrication of these protective layers using atomic layer deposition (ALD),43 

which is a subset of CVD techniques that allows for ultra-thin films with limited 

charge transfer resistance. Physical vapour deposition (PVD) also allows for 

conformal and thickness controlled deposition of protecting materials. Other 

classical techniques such as electrodeposition, sol–gel, chemical bath, and 

spray deposition have a low cost of implementation but often result in porous 

films.16 The porosity diminishes the efficacy of anti-corrosion coatings since it 

can allow the electrolyte to reach the surface of the underlying layer. These 

methods have been studied extensively and have been the focus of several 

reviews.16,33,39–41,43 

Research into surface protection of photocorrodible semiconductors has been 

undergoing for several decades. While most early results were based on a 
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relatively thick layers of TiO2 prepared by sol-gel,44 or chemical vapour 

deposition (CVD)45 techniques. As a result, the protected semiconductor 

photoelectrodes had often poor PEC performance due to a substantial voltage 

drop across the resistive films.40,46 Modern thin film technology now allows for 

an effective protection of semiconductors. Indeed, as seen on Table 1, 

protection layers prepared through conventional approaches have already 

been reported to stabilise the photoelectrodes for periods ranging from 20 min 

to close to 100 h over a wide range of pH conditions. 

 It is worth noting that a conformal overlayer protects a photoactive material 

and often times forms a buried junction,9 which has the advantage that the 

absolute band edge position is decoupled from the thermodynamic water 

splitting potentials and that losses associated with non-ideal band positioning 

are eliminated.47 Indeed, in contrast to conventional PEC cells, alignment of 

the semiconductor band energies with the redox potentials for the half 

reactions of water splitting is not required and a sufficient photovoltage of 

around 1.8 to 2.0 V is sufficient to drive water splitting. The buried junction 

thus relaxes the constraints imposed by a classical PEC device because it 

separates light absorption from catalysis, and does not require the light 

absorber to be stable in aqueous electrolytes in which the pH regime for the 

absorber and best water-splitting catalyst may not be compatible.4 

The widely used TiO2 ALD protection layers, while allowing for conformal and 

thickness control, are also challenging to scale up for commercialisation of 

solar fuels technology. Furthermore, catalytically active layers must still be 

deposited on top of the protection layer. 



	11 

An illustrative example is Cu2O photocathodes for H2 evolution. Cu2O is an 

attractive material for tandem water splitting systems since it is a p-type 

semiconductor with a direct bandgap of 2 eV, which corresponds to a 

maximum theoretical photocurrent of 14.7 mA cm−2
.
48 Cu2O displayed modest 

activities until the demonstration of ALD protection 

(5×(4 nm ZnO/0.17 nm Al2O3)/11 nm TiO2) with Pt as a catalyst showed a high 

PEC photocurrent for oxide materials under AM1.5 G illumination.47,49 This 

work spurred research on precious-metal free catalysts to be combined with 

the stabilised Cu2O photocathode and a range of HECs were deposited on 

top of the protection layer: Pt,49 RuOx,50 and MoSx.51 TiO2-protected Si 

photocathodes have also been reported, where Pt52–56 and even enzymes57 

have been used as catalysts for H2 evolution. 

Surface layers that protect and act as catalytic site can be considered as 

bifunctional layers. These type of layers are preferred since their presence 

has been linked to improved solar-to-fuel conversion efficiency by hindering 

the degradation of the light-harvester through the decrease of accumulated 

charges.58 Furthermore, this approach also decreases the cost and 

complexity of the sample preparation, as it does not require a two-step 

procedure. Examples of this approach for protecting Si photocathodes with 

multifunctional layers are MoS2,59 CoS2,60 NiOx,61 NiRuOx
62 and amorphous 

CoOx.63 Bifunctional coatings have also been successful for Cu2O: a 10 nm 

NiOx film was deposited onto a Cu2O nanowire photocathode by a sequential 

spin-coating followed by an annealing protocol to protect the light absorber 

and this layer also improves charge transfer across the electrode/electrolyte 

interface with NiOx acting as an electrocatalyst for H2 evolution.64 This 
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photocathode was paired with a WO3 photoanode and constituted the first 

reported example of a tandem water splitting PEC cell with a pair of metal 

oxide semiconductors that operated without applied bias.64 

 

Emerging protection mechanisms for unstable semiconductors 

Several innovative and more scalable approaches have been recently 

explored to tackle the instability of narrow band-gap semiconductors and 

catalysts under water-splitting conditions. We have grouped the approaches 

by the governing principle of the protecting mechanism (Figure 2), namely 

charge quenching (which includes single source precursor chemistry, 

nanoparticles and other layers) and encapsulation. 

Semiconductor protection by charge quenching 

Single source precursor chemistry. Solution processed SSP chemistry is 

an attractive approach for preparing multifunctional materials on a large scale, 

as it bypasses the need for expensive equipment and processing. A SSP 

contains all of the required elements for a desired composite material, 

allowing for its synthesis in a simple, one-step procedure. The selection of a 

suitable SSP allows for the production of mono-, bi- and multifunctional 

coatings. 

In recent years, a highly versatile and scalable SSP approach for preparing 

multifunctional films on photoelectrodes has been developed.65–69 Hydrolytic 

decomposition of titanium or polyoxotitanate compounds results in amorphous 

TiO2 films in a single-step.70 Heterobimetallic polyoxotitanate nanocages 

[TixOy(OR)zMn] (where M is a transition metal dopant) can be used as a 
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readily-hydrolysable SSP for the generation of M-doped TiO2 coatings (TiM) 

with tunable nanostructures and electro- and photochemical properties. SSPs 

such as those depicted in Fig. 3 (TiNi and TiCo) were selected because they 

hydrolyse quickly to form amorphous TiO2 as protective coating and pre-

catalytic Ni and Co species, which are among the best-known noble metal-

free HECs and OECs. 

Intriguingly, Ni and Co species have also been shown to be bifunctional 

catalysts in water splitting catalysis,71–73 which gives the heterobimetallic 

SSPs a wide scope for applications as multifunctional coatings. Fig. 3 shows 

schematically the procedure to produce a protecting and catalytically active 

layer in a single spin-coating step and with the TiCo and TiNi containing SSPs. 

The precursors were hydrolysed upon spin-coating or drop-casting, which led 

to an amorphous Ti-, Ni- or Co- containing precursor composite film (TiMpre).65 

TiNi and TiCo are activated under cathodic conditions giving rise to Ni 

embedded in amorphous NiOx/Ni(OH)2 and TiO2 matrix, or Co embedded in 

amorphous CoOx/Co(OH)2 and TiO2 matrix as HEC (TiMHEC). Anodic 

activation led instead to NiOx or CoOx embedded in TiO2 as OEC (TiMOEC).65 

The TiO2 layer prepared through this method was found to increase the 

stability of the photoelectrodes even though it could not be classically 

considered a thin film. Its protective qualities probably arise from a charge-

quenching effect, where the photogenerated charges are removed from the 

photoactive material and are trapped in the TiO2 layer, thus hindering the self-

corrosion of the material. 74 

Assembly of a tandem PEC cell could be demonstrated by pairing a Si 
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photocathode and a WO3 photoanode both coated with the same TiNi SSP for 

overall solar-driven water splitting.65 These PEC cells demonstrate the 

suitability of TiNi as trifunctional SSP as it acted as a protective film, HEC and 

OEC. A PEC cell with p-Si coated with the TiNi SSP and BiVO4 covered with 

TiCo provided close-to-quantitative H2 and O2 gas generation with an applied-

bias solar-to-hydrogen efficiency of 0.59%. By scaling to a midsized tandem 

PEC cell with these electrodes, total photocurrent of approximately 2 mA at an 

applied bias of 0.6 V was generated.65  

Although SSP chemistry is not yet able to generate totally conformal 

protection layers, its charge quenching capabilities have shown increased 

stabilities and activities thus making it a viable alternative to conventional 

methods, with extremely facile preparation, multifunctional character, and 

good stabilities. 

Charge quenching with nanoparticles and other layers. Deposition of 

nanoparticles directly on top of a photocorrodible semiconductor can 

significantly suppress the corrosion reaction as was demonstrated by spin-

coating Ni nanoparticles onto the surface of a Cu2O│CuO photocathode.74 

After 20 min of simulated solar illumination, the nickel decorated Cu2O│CuO 

heterojunction retained 1.5 times more of the initial photocurrent than a bare 

Cu2O│CuO.74 Nanoparticles presumably aid in decreasing corrosion by 

rapidly quenching the photogenerated charges75. Since the rate of both 

anodic and cathodic corrosion depends on the concentration of holes and 

electrons,76 respectively, a decrease in the latter would slow 

photodegradation. 
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An alternative charge quenching approach that does not share the 

disadvantage of the non-conformal nature of nanoparticles used ferrihydrite 

as a hole-storage layer that was able to protect unstable Ta3N5, TaON and 

BiVO4 photoanodes against photocorrosion. With overlying Co3O4 

nanoparticles as catalyst, the Ta3N5/ferrihydrite/Co3O4 remained at about 94% 

of the initial activity after 6 h irradiation becoming the most durable of the 

Ta3N5 based photoanodes reported to date.77 

Semiconductor protection by encapsulation 

Eutectic fusible alloys as protecting and conducting layers. Lead-halide 

PVKs have already surpassed efficiencies of over 20% and are the fastest-

developing technology in the history of photovoltaics.24 However, their 

infamous fragility in the presence of traces of water, even low amounts of 

moisture, makes them unsuitable for direct use as light harvesters in aqueous 

solution for the production of H2 through water splitting.36,38 

However, the PVK can be protected by a simple metal-encapsulating 

technique that is scalable and potentially also applicable to a wide range of 

photocorrodible materials. Field’s metal, a fusible InBiSn alloy, has been 

employed as a protecting and conducting layer for the highly unstable 

CH3NH3PbI3 PVK.37 When a layer of this material is placed on top of a PVK 

solar cell, it is capable of shielding it from water while simultaneously allowing 

the transport of the photogenerated electrons to the top of the device, where 

they can reach a co-integrated HEC such as Pt to produce H2 (see Fig. 4a). 

The surface of the Field’s metal can be readily functionalised either by 

creating a thin oxide surface layer, to which catalysts could be anchored, or 

simply by depositing the catalyst through electroless deposition. 
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The average photocurrent density obtained at 0 V versus RHE was 6.9 ± 1.8 

mA cm–2, with a record device at 9.8 mA cm–2 and with an onset potential as 

positive as 0.95 ± 0.03 V versus RHE (Fig. 4b). The photocathodes retained 

80% of their initial photocurrent for more than 1.5 h in aqueous solution under 

chopped AM 1.5G irradiation (see Fig. 4c), and approximately 1 h under 

continuous illumination, which is remarkably long considering that unprotected 

PVK materials degrade within seconds when submerged in water.37 

Furthermore, the stability of these photocathodes could potentially be 

improved significantly by changing the metallic contact layer between PCBM 

and Field’s Metal to an inert metal, such as Au or removing it altogether. 

The main drawback of this approach is that the photoelectrodes cannot be 

illuminated from the front, and must therefore be able to be prepared on a 

transparent substrate. On the other hand, this has also an advantage, as light 

will be reflected at the metal coating back into the electrode, thus increasing 

the photons absorbed and charges generated. 

A further advantage of this method is the fact that the protecting eutectic 

metal can be easily recycled almost indefinitely by detaching it from the 

electrode, cleaning it and melting it. This decreases the effective cost of each 

protected photoelectrode and is aligned with a potential industrial application. 

The utilisation of eutectics as protection layers is currently performed at a 

macroscopic level. Although there is hitherto no nano- or microscopic control 

in this emerging deposition technique, future developments using this 

approach are expected to overcome this limitation. It is for this reason that we 

included an evaporated metallic charge collection layer to improve charge 

transport in our first report.37 However, preliminary results show that the direct 
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contact between Field’s Metal and the underlying PCBM allows for efficient 

charge transport and can yield good performing water splitting cells. 

 

Emerging approaches for long-term stability of catalysts 

Self-healing and regeneration. Long-term stability in the order of a decade 

or more will ultimately be required for commercialisation of solar fuels 

technology. Self-repair has been demonstrated to prolong the lifetime of 

catalytically active species through in situ catalyst formation as a repair 

mechanism. A well-known example is a cobalt-phosphate (Co-Pi) water 

oxidation catalyst that can be formed in situ under anodic conditions (see Fig. 

5a). 20 Co2+ formed and released into solution during water-oxidation catalysis 

will be redeposited upon oxidation to Co3+ in the presence of phosphate and 

re-generated the active OEC.20 

A novel approach for regeneration of bifunctional and scalable iron-only 

materials for water splitting was recently reported.78 HEC and OEC activity is 

caused by a facile and reversible inter-conversion of an oxide-supported Fe0 

phase active for HER under a cathodic bias into an iron oxide-hydroxide 

(FeOx) phase active for OER under an anodic bias (see Fig. 5b). Bias-

switching can thereby interconvert the iron anode into a cathode reversibly, 

which significantly enhanced stability and lifetime of a water electrolyser 

system with negligible activity loss for three days.78 Bias-switching may 

enable the stabilisation of PV- (or even wind) driven electrolysers that suffer 

from stability issues from fluctuating current densities. 
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In situ regeneration was also achieved in a CuRhO2 p-type semiconductor 

that showed increased stability for PEC H2 evolution in the presence of air 

than Ar. CuRhO2 photocorrodes under HER conditions to yield inactive Cu(0), 

which was re-oxidised to active Cu(I) in the presence of O2.79 The rapidly 

developing field of O2 tolerant proton reduction catalysis has been reviewed 

recently80. 

Although regeneration and self-healing has mainly been demonstrated for 

catalysts, this approach could in principle be extended to the photoabsorbers, 

or their protecting layers as well. 

Superhydrophobic materials. The solar industry uses superhydrophobic 

materials in the form of transparent coatings to minimise the reflection of light 

and grant self-cleaning properties to outdoor solar cells.81,82 A recent review 

demonstrates simple colloidal techniques for preparing hierarchical structures 

that can produce sophisticated functions, such as superhydrophobicity.83  

Superhydrophobic metallic Cu surfaces exhibit greatly enhanced antireflection 

without any chemical modification. Furthermore, their corrosion in an aqueous 

NaCl electrolyte solution was dramatically hindered due to enhancement of 

polarisation resistance.84 Hierarchical TiO2 nanorods decorated with ZnO 

have shown a dramatic change of the wetting behaviour of the top surface 

toward hydrophobicity.85 

In superhydrophobic surfaces, the non-wetting behaviour is caused by the 

presence of a gaseous interlayer on the submerged surface.86 Therefore, 

submerged superhydrophobic materials experience performance loss. To 

address this limitation, PEC water splitting was employed to refill the escaping 
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air interlayers on SiC/Si87 hierarchical structures and ultra efficient Pt 

nanostructured electrodes.88 Furthermore, they found that the pine-shaped Pt 

nanostructured electrode had a lower gas bubble contact area and 

subsequently lower gas bubble adhesion force giving rise to active (≈3.85 mA 

mV−1, 13.75 times higher than Pt flat electrode) and steady HER performance 

(≈100% retention after 36 h).88 The preparation of structured hierarchical ITO 

electrodes by self-assembly has also been reported, and the technique could 

potentially also be used to render electrode surfaces superhydrophobic.89 

Thus, the use of biomimetic superhydrophobic materials for water splitting is a 

promising approach that could potentially protect the underlying light 

harvester from the electrolyte solution and maximise the performance of the 

catalyst. 
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Summary and perspective 

Artificial photosynthesis allows storing energy as a chemical fuel and 

complements photovoltaic technology as it directly addresses the 

intermittence problem of electricity generation. Combinations of narrow 

bandgap semiconductors with suitable catalysts would yield the highest STH 

efficiencies for this application, but such materials are often unstable under 

water splitting conditions. 

Conventionally, the issue of photoelectrode instability has been tacked with 

thin film technology. The vast majority of literature on this subject deals with 

thin films of wide band gap semiconductor materials (such as TiO2 and ZnO) 

deposited through operationally costly techniques, such as ALD or sputtering. 

While these techniques allow the formation of conformal and nm-thin 

protection layers, the preparation is technically demanding and challenging to 

be scalable for global demand. However, even in the cases where 

photoelectrode instability was successfully hindered with ALD coatings, the 

problem of catalyst degradation in such systems still persists. 

In this review, we have introduced emerging methods for protecting and 

activating unstable light-harvesting materials. Firstly, charge quenching 

techniques were introduced. Single source precursor chemistry was 

introduced as a special case to generate multifunctional layers able to both 

protect and drive the H2 and/or O2 evolution reactions in one simple 

preparation procedure. Secondly, we showed the use of fusible alloys to 

protect highly unstable materials, such as lead halide PVKs. This approach, 

where a protecting and electrically conducting layer of a fusible alloy was 

placed on top of a highly unstable PVK layer showing a record stability for this 
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material in aqueous solution, is potentially applicable to other photocorrodible 

materials and might even increase the efficiencies since it features a two-pass 

light path, which would increase the amount of photons absorbed and thus the 

current generated. Other types of charge quenching layers as well as 

nanoparticles were also presented as special cases of this method.  

In order to prolong the lifetime of the cataysts involved in water splitting, we 

also presented nascent biomimetic methods such as self-healing (which has 

already shown very promising results) and superhydrophobic materials (which 

have also the potential of protecting the underlying semiconductor). 

Despite the promise of these approaches, there are still many challenges in 

designing stable and active photoelectrodes for water splitting. Ultimately, the 

method of choice should be simple, cost-effective and scalable. 

Conventional methods have greatly helped to understand the underlying 

degradation mechanisms. However, they usually lack a study on the stability 

of the catalysts used in the systems. Indeed, both the stability of the 

semiconductor and the catalyst (perhaps by combining some of the methods 

presented in this review) must be addressed and they should increase by 

several orders of magnitude compared to the state-of-the-art systems. 

While the emerging methods are relatively new, they already show great 

promise. Fusible alloy protection stability could be improved by using an inert 

intermediate layer, such as Au, or avoiding it altogether. Superhydrophobicity 

and self-repair mechanisms have already shown stabilities of several 

hundreds of hours. In our opinion, the biomimetic methods presented in this 

review should be combined with semiconductor protection methods in order to 

tackle both issues simultaneously. 
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Table 1. Summary of conventional and emerging protection mechanisms for unstable semiconductor photoelectrodes. 
 

Protection mechanism 
Advantages Disadvantages Coatings 

Electrolyte (pH) Reported stability 
after protection Type Method Technology 

Conventional 
Thin film 
technology 

PVD 
• Precise overall 

composition 
control. 

• Line-of-sight 
deposition.[a] 

• May damage the 
substrate due to 
high-energy 
impacts. 

• Lack of chemical 
control at the 
interface. 

TiO2
53,55,90

 

NiRuOx
62  

TiO2 
1 M HClO4

53 
1 M KOH55 
1 M KOH90 
NiRuOx: 0.25 M NaSO4 (7.2)62 

TiO2 
75 h53 
8 h55 
60 h90 
1.5 h62[b] 

CVD 

• Precise 
composition 
control and 
thickness 
control. 

• Conformal 
coating. 

• Limited to 
materials with 
suitable precursor 
volatility, stability 
and deposition 
chemistry. 

TiO2
45 

TiO2
91 

C (diamond)92 

0.5 M H2SO4
45 

N/A 
N/A 

N/A 
N/A 
N/A 

CVD (ALD) 

• Conformal and 
uniform 
deposition on 
porous 
materials. 

• High degree of 
thickness 
control. 

• Often lengthy 
procedures and 
with high 
operational costs. 

 

TiO2
49,51,53,90,93–97

 

SnO2
98  

Ga2O3
99 

 

TiO2 

1 M H2SO4
96 

1 M NaOH96 
0.5 M C8H5KO4 (4)97 
1 M Phosphate (7)96 
1 M KOH90 
1 M HClO4

53 
SnO2: 0.5 M NaSO4 (5)98 
Ga2O3: 0.5 M NaSO4 (4)99 

TiO2  
8 h96 
8 h96 
12 h97 
18 h96 
60 h90 
72 h53 
SnO2: 57 h98 
Ga2O3: 20 min99 

Electrodeposition 

• Coating of 
porous 
materials. 

• Thickness 
control. 

• Low 
implementation 
cost. 

• Limited by 
deposition 
conditions. 

• Requires 
conductive 
substrate/path. 

• Often leads to 
porous coatings. 

CuO100 
MoS2+x

51  
C (sp2, sp3)101[c] 

0.05 M NaSO4 (7)100 
0.5 M NaSO4 (4)51 
0.5 M H2SO4

101 

20 min100 
10 h51  
24 h101 

CBD[d] 
• Low 

implementation 
cost. 

• Often leads to 
porous coatings. 

 

FeOOH102 
ZnS103 
NiOx

64 

0.5 M NaSO4 (7) 
0.25 M K2SO3, 0.35 M Na2S (13.3)103 
0.1 M NaSO4 (6) 

2 h102 
5 h103 
20 min64 
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Emerging 

Nanoparticles 

Pre-synthesized 
• Leaching. 
• Non-optimal 

protection. 

• Simple 
preparation. 

ZnFe2O4
75 

CuS104  
Ni74 

0.5 M Na2S75 
1 M NaSO4 (5)104  
1 M NaSO4 (5)74 

1 h75 
1 h104  
30 min74 

SSP 

• Low 
implementation 
cost. 

• Simple 
procedure. 

• Multifunctional 
coatings. 

• Scalable. 
 

• Lack of film 
quality control. 

• Lack of conformal 
coating. 

[(CoI)Ti11O14(OiPr)17]68 
[Ti2(OEt)9(NiCl)]2

65–67,69
 

[Ti4(OEt)15(CoCl)]65
 

0.1 M K2SO4 (9.2)65 
1 M KCl (9.2)67 

24 h (30% of initial)65 
4 h67 

Fusible alloys 

• Recyclability. 
• Simple 

procedure. 
• Double light 

path.[e] 

• Limited to back 
illumination. 

Field’s Metal37 0.1 M borate (8.5)37 1 h37 

Self-healing and regenerating materials • Prolonged 
lifetimes. 

• Specific to 
certain materials. 

CoOx
20 

CuRhO2
79 

Fe-FeOx
78

 

CdS, CdSe105 

0.1 M phosphate (7) 20 
1 M NaOH79 
0.1 M KOH (13) 

78 
1.25 M NaOH, 0.2 M Na2S105 

50 h20 
8 h79 
72 h78 
10 h105 

Superhydrophobic materials 
• Reaction-

protection 
feedback. 

• Catalyst contact 
with electrolyte 
diminished. 

Fe106 
ZnO/Si107 
TiO2/ZnO85 
SiC/Si87 

Water106[f] 
0.4 M NaSO4

107 
N/A85 
0.4 M NaSO4

87 

168 h106[f] 
700 h107 
N/A85 
2000 h87 

aA directional deposition effect is observed in line-of-sight deposition techniques, which requires the rotation of 3D samples in the chamber to achieve a 
homogeneous deposition. bAccelerated durability test by applying a switching potential test. cElectropolymerisation. dCBD = Chemical Bath Deposition. eSince 
the fusible alloy layer is not transparent, the photoelectrodes are illuminated from the back, which entails that the light traveling through the materials is 
reflected by the metallic layer, thus effectively providing a double light pass for the devices. fIn this work, the stability of the superhydrophobicity of the 
material is assessed by measuring the contact angle after 7 days submerged in water. 
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Fig. 1 Schematic representation of PEC cells where the overall solar-driven 

water splitting reaction is performed (a) by a pair of complementary 

photoelectrodes connected in tandem or (b) a monolithic structure with two 

photoelectrodes connected in series through an ohmic contact. In these 

configurations, all the electrodes are submerged in an aqueous solution. The 

photocathode (c) and photoanode (d) can also be used separately to study 

the corresponding half reactions. An alternative way of generating solar fuels 

is by combining the use of photovoltaic electrodes with photoelectrodes in a 

PV-biased PEC cells. (e) It is possible to connect a single PV element with a 
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photoelectrode to obtain the necessary voltage to split water, or (f) when a 

single (or a series of) PV elements is capable of generating enough voltage to 

split water, the electrode is then wired to suitable catalysts which are 

submerges in an aqueous solution. 
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Fig. 2 Conventional and emerging protection approaches used to protect 

photocorrodible materials during solar fuel applications.  
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Fig. 3 Molecular structure of [Ti2(OEt)9(NiCl)]2 (TiNiSSP) and 

[Ti4O(OEt)15(CoCl)] (TiCoSSP) based on crystallographic coordinates (H atoms 

and disordered etoxy groups omitted for clarity): Ti (yellow), Ni (orange), Co 

(magenta), Cl (green), O (red), and C (gray). The precursors were spin coated 

on different substrates and underwent hydrolytic decomposition that lead to 

an amorphous composite film containing Ti, Ni/Co atoms, which were 

transformed to the active HEC or OEC following activation under cathodic or 

anodic conditions, respectively. Adapted from reference 65. 

  



	38 

 

Fig. 4 (a) Schematic representation of the solar H2 producing perovskite 

(PVK) photocathode. The configuration is based on an inverted p-i-n solar cell 

coated with a Field’s Metal layer and a Pt HEC on top of the Ag layer. (b) 

Typical linear sweep voltammetry of the PVK-based photocathode.  (c) 

Chronoamperogram recorded with the PVK photocathode at an applied 

potential of 0 V versus RHE. An aqueous buffer solution (0.1 M borate, pH 
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8.5), chopped solar light irradiation (AM 1.5 G, 100 mW cm 2, λ > 400 nm) 

and an inert (N2) atmosphere at room temperature were used in both 

experiments. Adapted from reference 37. 
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Fig. 5 (a) Schematic representation of the self-repair mechanism of the Co-Pi 

O2 evolution catalyst in the presence of phosphate under un applied voltage.20 

(b) Proposed mechanism of the electrochemical reversibility and regeneration 

of bi-functional iron-only electrodes for water splitting in alkaline solution. An 

anodic potential generates the active FeOx species for OER catalysis and a 

cathodic potential produces Fe(0) embedded in an iron oxide matrix as HER 

catalyst.78  
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Broader Context Statement 

The transformation of solar energy into chemical energy through the 

generation of solar fuels, or artificial photosynthesis, is one of the most 

promising routes for tackling the world’s fuel demand in a post-fossil era. 

Photoelectrochemical devices composed of narrow bandgap semiconductors, 

photovoltaic elements and suitable electrocatalysts are currently considered 

as one of the main approaches to carry out artificial photosynthesis. However, 

these materials are often unstable under operating conditions and require 

protection to prolong their lifetimes. The state-of-the-art protection layer 

consists of a thin film of TiO2 (combined with other wide bandgap 

semiconductor materials) deposited by atomic layer deposition. These 

protection layers, while being able to successfully protect the underlying 

semiconductors, are operationally costly and difficult to scale up. We herein 

review alternative emerging techniques to protect both narrow bandgap 

semiconductors and the accompanying catalysts for solar fuel production. 

Conventional methods have greatly helped to understand the underlying 

degradation mechanisms and have paved the way to open new routes, 

possibly taking inspiration from natural processes such as self-repair, 

superhydrophobicity and multifunctionality. New research using single source 

precursor chemistry, fusible alloys and nanotechnology shows that we are 

ready to step into a new generation of protection methods that are simple, 

cost-effective and scalable, and are capable of making solar fuels a 

technologically relevant renewable energy source. 
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