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A dynamical α-cluster model of 16O
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We calculate the low-lying spectrum of the 16O nucleus using an α-cluster model which includes
the important tetrahedral and square configurations. Our approach is motivated by the dynamics
of α-particle scattering in the Skyrme model. We are able to replicate the large energy splitting
that is observed between states of identical spin but opposite parities. We also provide a novel
interpretation of the first excited state of 16O and make predictions for the energies of 6− states
that have yet to be observed experimentally.

The energy spectrum of the Oxygen-16 nucleus has
posed a challenge to nuclear physicists for decades.
Wheeler suggested in the 1930s that one can model the
nucleus as four α-particles with the ground state de-
scribed as the particles in a tetrahedral arrangement [1].
This picture of the 0+ ground state has been verified in
many different models such as the shell [2, 3], lattice ab
initio [4] and AMD [5] models, giving credence to the old
cluster idea.

Despite the general agreement about the structure of
the ground state, there is no consensus on the structure
of the excited states of the nucleus. For example the
first excited state, which has spin-parity 0+, has been
described as a four-particle-four-hole state [6], a breath-
ing mode of the tetrahedron [7, 8], or correlated with
a bent rhomb [9, 10] or square [4] arrangement of α-
particles. The first suggestion has been put in doubt by
more extensive studies [11], while the other three do not
necessarily contradict each other − each model is sim-
ply too narrow in scope. The lattice spacing of the ab
initio calculation [4] is too large to see the effect of the
bent rhomb or breathing mode in detail. The algebraic
model [8] only considers configurations near the tetrahe-
dron and so does not include the square configuration.
To resolve the disagreement about the 0+ state one must
study a model which includes large amplitude vibrations
around the tetrahedron and allows for the rhomb-like and
square configurations. In addition, this will remove a de-
generacy of states seen in many models but not in the
experimental spectrum.

The Skyrme model [12] is an effective field theory of

hadrons arising as an approximate low-energy limit of
QCD. It is a nonlinear theory of pions, whose small mass
spontaneously breaks the chiral symmetry of the model.
Nuclei are identified with solitons of the theory: the α-
particle is described by a classical soliton with cubic sym-
metry. This allows for a spherically symmetric quantum
ground state with spin-parity 0+, matching conventional
models [13]. It also reproduces α-clustering in larger nu-
clei [14, 15], such as 16O. In particular it contains the
tetrahedral and square configurations seen in conven-
tional cluster models of 16O.

The reason for using the Skyrme model is that it pro-
vides dynamics for the clusters. We can use this to
construct a configuration space that we call the vibra-
tional manifold. There is a dynamical mode, shown in
Fig. 1, connecting the tetrahedral and square config-
urations, via bent rhomb configurations. Two pairs of
α-particles approach each other and form a tetrahedron,
which flattens out into a square, before reopening into
the dual tetrahedron and then breaking into two pairs of
α-particles again, having picked up a 90° twist. There
are three of these modes passing through each tetrahe-
dron, corresponding to the three pairs of opposing edges.
If one starts at the tetrahedron and excites each of these
modes equally then they will cancel out. Therefore there
is degeneracy and these three modes only generate a two-
dimensional space of configurations which forms our vi-
brational manifold.

This manifold is an extension of the linear E-
vibrational space of the tetrahedron. It captures the low-
energy path connecting the two tetrahedra via the

FIG. 1: A scattering mode of four α-particles in the Skyrme model. Each time step shows a surface of constant energy
density which is coloured according to the field value as in [16].
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square configuration as in Fig. 1. The presence of
this path enables a significant energy difference to be
created between quantum states with opposite parities,
which would not be possible by only considering vibra-
tions around the tetrahedron locally.

FIG. 2: The α-particles are restricted to lie on a surface
with six punctures. Regions with the same colouring are

related by D2 symmetry. The scattering mode in Fig. 1 is
represented by the thick black line.

The degrees of freedom in this vibrational manifold
are the positions of the α-particles, which lie on a sur-
face. To account for the asymptotics seen in Fig. 1, this
surface must stretch out to infinity in six directions as in
Fig. 2. Each configuration has D2 symmetry and hence
if one α-particle is at x = (x, y, z), the others are at
(x,−y,−z), (−x, y,−z) and (−x,−y, z). This means we
may focus on one quarter of the surface, which we denote
by M.

Having constructed the vibrational manifold we can
now quantize the system using an extension of the scheme
laid out in [17], but for the first time we include a two-
dimensional manifold of configurations. The total config-
uration space is M× SO(3), which allows for rotations
of each configuration too. The quantum Hamiltonian is

Ĥ = −~2

2
∆ + V (x) , (1)

where V (x) is the static energy of the configuration on
M with an α-particle at x, and the kinetic operator is
proportional to the Laplace–Beltrami operator

∆ = det(g)−
1
2 ∂i

(
det(g)

1
2 gij∂j

)
, (2)

where g is the metric onM×SO(3). The metric is block
diagonal, because of the D2 symmetry of the configura-
tions, and hence the problem splits into vibrational and
rotational parts. The total wavefunction is separable and
can be written as

|Ψ〉 =
∑
L3

φL3
(x) |JL3〉 , (3)

where φ is the vibrational wavefunction and |JL3〉 are the
rigid-body angular momentum states with spin J and
body-fixed angular momentum projection L3. In addi-
tion, the linear combination of states occurring in |Ψ〉
must be D2 invariant.

The vibrational problem – The rescaled Schrödinger
equation for the vibrational wavefunction is

−∆vib φ+ V (x)φ = (E − EJ)φ , (4)

where E is the total energy of |Ψ〉 and EJ is its rotational
energy. EJ involves the moments of inertia of the con-
figurations, which depend on the vibrational coordinates
x. However, for now, we consider them to be constant
to simplify the calculation of the vibrational energy. We
shall reinsert this dependence later in the paper.

To solve (4) we must first model the metric on our
spaceM. To do this we approximateM as one quarter of
the 6-punctured sphere with constant negative curvature.
This captures several important physical features of the
system: that the particles can separate into pairs asymp-
totically and that the surface in Fig. 2 does indeed have
negative curvature. The metric of this manifold is simple
once we map M onto a sub-domain F of the complex
upper half plane. For details, see [18]. The appropriate
sub-domain for this problem is shown in Fig. 3. Defining
ζ = η + iε as the complex coordinate on the upper half
plane, the metric is then proportional to ε−2

(
dη2 + dε2

)
.

This gives rise to the kinetic operator

−∆vib = −ε2
(
∂2

∂η2
+

∂2

∂ε2

)
. (5)

∼=

FIG. 3: The relation between M (left) and F (right).
Tetrahedral configurations are at the points where three

coloured regions meet while the square configurations are at
points where four coloured regions meet. The scattering
mode in Fig. 1 is represented by the thick black lines.

The 6-punctured sphere has cubic symmetry O and
hence M has O/D2

∼= S3 symmetry, where S3 is the
permutation group of the x, y and z axes. S3 can act on
M or F , permuting the coloured regions seen in Fig. 3.
In addition, parity acts on M as

x = (x, y, z)→ (−x,−y,−z) ≡ (x,−y, z) (6)

where we have used the D2 symmetry in the equivalence.
This corresponds to η → −η on F . Hence the vibrational
wavefunctions fall into representations of S3 and parity.

Our choice of potential V is motivated by cluster mod-
els which find that the tetrahedral configuration has the
lowest energy [10]. Going towards the square or asymp-
totic configurations leads to a rise in potential energy.
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In addition, we would like a potential for which (4) is
soluble. A convenient candidate is

V (η, ε) = ε2

(
ω2

(
η − 1

2

)2

+ µ2

)
, (7)

where ω and µ are constant parameters and the ε2 factor
means that solutions of (4) are separable in η and ε.

This potential ansatz is a good approximation for the
low-energy configurations but it diverges asymptotically
for the separated pairs (ε → ∞). Bound states are con-
centrated around the tetrahedral and square configura-
tions and so this divergence has a negligible effect on
them. In order to study scattering states, a different
potential that flattens out asymptotically would be re-
quired. The formula (7) only applies in the top right
region of F and the potential elsewhere can be found by
defining V to take the same value at points related by
S3.
Rovibrational states – The vibrational wavefunctions

must be combined with spin states in order to form rovi-
brational states. The combinations that are permitted
depend on the representation that the vibrational wave-
function falls into. There are two one-dimensional irre-
ducible representations of S3, known as the trivial and
sign representations.

The two lowest-energy vibrational wavefunctions in the
trivial representation are displayed in Fig. 4 (left and
middle). When combined with the |0, 0〉 spin state, we
identify these solutions with the two lowest 0+ states in
the experimental spectrum of 16O. The ground state is
loosely concentrated around the two tetrahedral config-
urations in agreement with other models. The excited
state has approximately equal concentration at the three
square and the two tetrahedral configurations. Hence
we deduce that a global analysis, including both tetra-
hedral and square configurations, is essential to explain
the structure of the excited 0+ state. These vibrational
wavefunctions may also be combined with certain states
of higher spin − those that have tetrahedral symmetry
and positive parity. Overall, these wavefunctions give
rise to a rotational band with spins 0+, 4+, 6+, . . ..

FIG. 4: Vibrational wavefunctions which lie in the trivial
representation. From left to right: the ground state, the first
excited state, and the lowest-lying state with negative parity.

If a configuration has a reflection symmetry and the
wavefunction is non-zero there, one may calculate the in-
trinsic parity for a given spin state. For example, the

tetrahedron has positive intrinsic parity for spins 0 and 4
but negative intrinsic parity for spin 3. This leads to con-
straints on the vibrational wavefunctions, one of which is
that the spin 0 wavefunctions must take the same value
at the tetrahedron and its dual. This is automatic for
positive parity states as we can see in Fig. 4, noting that
the parity operator for the vibrational wavefunctions cor-
responds to η → −η. Negative parity wavefunctions are
also permitted if they vanish at all configurations with a
reflection symmetry. This is true of the rightmost wave-
function of Fig. 4 and hence one may combine it with a
|0, 0〉 spin state to give an overall 0− state.

FIG. 5: Vibrational wavefunctions which lie in the sign
representation. From left to right: the lowest-energy state,

the first excited state, and the lowest-lying state with
positive parity.

Vibrational wavefunctions in the sign representation
of S3 with negative (positive) parity are not too differ-
ent from those in the trivial representation with positive
(negative) parity. The sign representation wavefunctions
are displayed in Fig. 5 and the similarities with those in
Fig. 4 are manifest. The two wavefunctions on the left
give rise to 3−, 6−, . . . states while the right-most wave-
function gives rise to 3+, 6+, . . . states of rather high en-
ergy.

FIG. 6: The lowest-energy positive and negative parity
vibrational wavefunctions which lie in the standard

representation. From left to right: the functions φ1 and φ2

with positive parity, the functions φ1 and φ2 with negative
parity.

The third and final irreducible representation of S3 is
the two-dimensional standard representation. Here the
vibrational wavefunctions for a given eigenvalue have de-
generacy two and we denote the orthogonal pair as φ1
and φ2. The lowest-energy positive and negative par-
ity vibrational wavefunctions of this type are displayed
in Fig. 6. The positive parity states are concentrated
around the square configurations and hence give rise to
approximate rotational bands of the square. The nega-
tive parity states have higher energy than the positive
parity states since they are more constrained, having to
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FIG. 7: The energy spectrum of our model up to 12.7 MeV compared with all the low-lying experimentally observed states
[19]. States are coloured according to the type of vibrational wavefunction from which they arise. The partially dotted lines

represent the trivial irrep (black), sign irrep (green) and standard irrep (blue) of S3. Full vertical lines represent states
identified with the F vibration (red) and A vibration (yellow). The 1− state at 9.6 MeV is unexplained in our model.

vanish at the square configurations. As with the other
representations, there are further vibrationally excited
states which we have calculated though not displayed.
These vibrational wavefunctions are then combined with
a two-dimensional basis of spin states.

For spin 2 the total wavefunction is

|Ψ〉 =
φ1√

2
(|2, 2〉+ |2,−2〉) + φ2 |2, 0〉 . (8)

The vibrational wavefunctions φ1 and φ2 transform in
the same way as the spin states they are paired with.
Hence the total wavefunction is invariant under S3 trans-
formations and parity. We can construct similar states
for spin-parity JP = 4±, 5±, 6±, . . ..
The energy spectrum – In constructing the extended E-

vibrational wavefunctions in (4) we neglected dependence
of the moments of inertia on the vibrational coordinates.
In order to calculate the rotational energy of our states
we use an approximate inertia tensor that interpolates
between the known values for the tetrahedral, square and
asymptotic Skyrme model configurations shown in Fig.
1. This gives rise to a kinetic operator whose expectation
value we then find. This is equivalent to using first order
perturbation theory, which is justified as the energy gaps
between vibrational states in the same representation are
large.

While most of our analysis has focused on extend-
ing the E vibration of the tetrahedron, there are two
other types of vibration that also need to be considered.
The breathing, A vibration describes the four α-particles
moving radially while preserving tetrahedral symmetry.
It gives rise to excited 0+, 3−, 4+, . . . states. The F vi-
bration contains the mode where one α-particle travels
away from the other three, preserving C3 symmetry. This
allows for excited states of spin 1−, 2+, 3±, 4±, . . ..

The 16O ground state is fixed at 0 MeV, with the ex-
cited 0+ and lowest 4+ state being used to scale the vi-
brational and rotational energy units respectively. The
two remaining parameters (ω and µ) are chosen to give
a good fit for the rest of the states. The first 15 states of
the experimental spectrum are shown in Fig. 7 and after

extracting those states coming from the A and F vibra-
tions, we provide a good fit for most of the remaining
states.

In particular, the lowest-lying 2+ and 2− states have
the correct ordering, with a predicted energy gap of 1.8
MeV which is close to the experimentally observed gap
of 1.96 MeV. This gap is caused by the vibrational wave-
functions having significantly different energies, due to
their opposite parities. Our global analysis, including
the tetrahedral and square configurations, is essential to
describe this gap. The lowest 0+, 3− and 4+ states still
form a rotational band, despite the fact that the 3− state
has a different vibrational wavefunction (compare Fig. 5
with Fig. 4 (left)). For our choice of parameters in the
potential, these vibrational wavefunctions have similar
energies.

The calculated energy of the 0− state in Fig. 4 is
16.35 MeV which is significantly larger than the lowest
experimentally observed 0− state which has energy 11.0
MeV. In our calculation we have used the potential (7)
which diverges asymptotically; however, the configura-
tion energy should flatten out as we approach the two
separated pairs of α-particles (ε→∞). Taking this into
account would reduce the vibrational energy of all states
but have a larger effect on highly excited states such as
the 0−.

We find a 6+ state in the trivial S3 representation at
21.7 MeV which agrees with an experimentally observed
state at 21.6 MeV. In addition, we predict two 6− states:
one at 22.2 MeV from the sign representation and one
at 27.1 MeV from the standard representation. Negative
parity spin 6 states of 16O have not yet been observed.

We do not provide an extended model of the F vibra-
tion as we have done with the E vibration, since previ-
ous studies have shown that a local, harmonic analysis
describes the data well [7, 8]. Hence, we simply highlight
the states arising from this vibration in Fig. 7 with-
out calculating their energies. The A vibration splits the
nucleus into four individual α-particles and hence its fre-
quency must be large. We identify the state at 12.0 MeV
as its first excitation.
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Conclusion – We have considered an α-cluster model
for 16O with novel dynamics motivated by the Skyrme
model. Our work allows for α-particle configurations
with tetrahedral and square symmetry within a two-
parameter family of configurations, going beyond the
rigid body analysis considered previously [10], and also
the harmonic analysis of the E vibration in [8]. The
quantum Hamiltonian has a 0+ ground state focused
around the tetrahedral configuration in agreement with

other models, but we provide a novel explanation for the
excited 0+ state as a superposition of the tetrahedral and
square configurations. Our model allows a 0− state which
vanishes at the tetrahedral and square configurations, al-
though these constraints give it a rather high energy. We
also explain the energy gap between the low-lying 2+ and
2− states as being mainly due to their considerably dif-
ferent vibrational wavefunctions.
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