
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 131.111.184.102

This content was downloaded on 02/05/2017 at 14:00

Please note that terms and conditions apply.

On the equal-mass limit of precessing black-hole binaries

View the table of contents for this issue, or go to the journal homepage for more

2017 Class. Quantum Grav. 34 064004

(http://iopscience.iop.org/0264-9381/34/6/064004)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Probing evolution of binaries influenced by the spin--orbit resonances

A Gupta and A Gopakumar

Statistical constraints on binary black hole inspiral dynamics

Chad R Galley, Frank Herrmann, John Silberholz et al.

Black hole based tests of general relativity

Kent Yagi and Leo C Stein

ON THE MASS RADIATED BY COALESCING BLACK HOLE BINARIES

E. Barausse, V. Morozova and L. Rezzolla

Time-domain inspiral templates for spinning compact binaries in quasi-circular orbits described by

their orbital angular momenta

A Gupta and A Gopakumar

Testing general relativity with present and future astrophysical observations

Emanuele Berti, Enrico Barausse, Vitor Cardoso et al.

Post-Newtonian analysis of precessing convention for spinning compact binaries

A Gupta and A Gopakumar

RELATIVISTIC SUPPRESSION OF BLACK HOLE RECOILS

Michael Kesden, Ulrich Sperhake and Emanuele Berti

Effects of waveform model systematics on the interpretation of GW150914

B P Abbott, R Abbott, T D Abbott et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0264-9381/34/6
http://iopscience.iop.org/0264-9381
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/0264-9381/31/10/105017
http://iopscience.iop.org/article/10.1088/0264-9381/27/24/245007
http://iopscience.iop.org/article/10.1088/0264-9381/33/5/054001
http://iopscience.iop.org/article/10.1088/0004-637X/758/1/63
http://iopscience.iop.org/article/10.1088/0264-9381/31/6/065014
http://iopscience.iop.org/article/10.1088/0264-9381/31/6/065014
http://iopscience.iop.org/article/10.1088/0264-9381/32/24/243001
http://iopscience.iop.org/article/10.1088/0264-9381/32/17/175002
http://iopscience.iop.org/article/10.1088/0004-637X/715/2/1006
http://iopscience.iop.org/article/10.1088/1361-6382/aa6854


1

Classical and Quantum Gravity

On the equal-mass limit of precessing 
black-hole binaries

Davide Gerosa1,2,5, Ulrich Sperhake1,2,3  
and Jakub Vošmera2,4

1 TAPIR 350-17, California Institute of Technology, 1200 E California Boulevard, 
Pasadena, CA 91125, United States of America
2 Department of Applied Mathematics and Theoretical Physics, Centre for  
Mathematical Sciences, University of Cambridge, Wilberforce Road,  
Cambridge CB3 0WA, United Kingdom
3 Department of Physics and Astronomy, The University of Mississippi,  
University, MS 38677, United States of America
4 Institute of Physics AS CR, Na Slovance 2, Prague 8, Czechia

E-mail: dgerosa@caltech.edu

Received 20 December 2016, revised 25 January 2017
Accepted for publication 6 February 2017
Published 1 March 2017

Abstract
We analyze the inspiral dynamics of equal-mass precessing black-hole 
binaries using multi-timescale techniques. The orbit-averaged post-Newtonian 
evolutionary equations admit two constants of motion in the equal-mass limit, 
namely the magnitude of the total spin S and the effective spin ξ. This feature 
makes the entire dynamics qualitatively different compared to the generic 
unequal-mass case, where only ξ is constant while the variable S parametrizes 
the precession dynamics. For fixed individual masses and spin magnitudes, an 
equal-mass black-hole inspiral is uniquely characterized by the two parameters 
ξS,( ): these two numbers completely determine the entire evolution under the 

effect of radiation reaction. In particular, for equal-mass binaries we find that 
(i) the black-hole binary spin morphology is constant throughout the inspiral, 
and that (ii) the precessional motion of the two black-hole spins about the total 
spin takes place on a longer timescale than the precession of the total spin and 
the orbital plane about the total angular momentum.

Keywords: black holes, gravitational waves, post-Newtonian theory
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1. Introduction

In the framework of general relativity, the dynamics of black-hole (BH) binaries and their 
emitted gravitational-wave (GW) signals are determined by the masses and spins of the inspi-
ralling BHs. The binary’s total mass = +M m m1 2 primarily sets the GW frequency, and there-
fore determines the required detection technique. Ground-based interferometers are sensitive 
to BH binaries with masses − �O M1 100( )  [1, 2], space GW missions will be most sensitive 
to BHs of ∼ − �OM M10 104 7( )  [3], while Pulsar Timing Arrays target the detection of GWs 
from even more massive binaries of − �O M10 108 10( )  [4–6]. The mass ratio =q m m 12 1/ ⩽  
directly enters the BH dynamics and the quantity most accurately determined in observa-
tions of BH inspirals is the binary’s chirp mass = +M M q q1c

3 5[ /( )] /  which sets the phase 
of the emitted GWs [7, 8]. The BH spins S1 and S2, although more difficult to measure, also 
directly affect the GW signal. Specifically, the spin components aligned with the orbital angu-
lar momentum affect the coalescence time as more (if spins are aligned) or less (if spins are 
anti-aligned) angular momentum is shed before merger [9]. This effect may be viewed as part 
of general relativity’s tendency to cloak spacetime singularities inside horizons according to 
Penrose’s cosmic censorship conjecture [10, 11] as excessive angular momentum of the post-
merger BH would imply a naked singularity. In the presence of non-vanishing spin comp-
onents perpendicular to the orbital angular momentum, precession due to relativistic spin-spin 
and spin–orbit coupling introduces characteristic modulations in the emitted chirp [12, 13]. 
Future observation of these patterns may help in determining the formation channel of binary 
BHs [14–16]. The BH spins also play a crucial role in determining the final properties of the 
BH remnant [17–19], especially its recoil velocity [20–22]. In terms of gravitational-wave 
source modelling, BH spins increase the number of source parameters by six, significantly 
increasing the complexity of the systems; see, for instance, [23–26], also for attempts to sim-
plify the task. It is highly desirable, in this context, to dissect, in so far as possible using 
analytic means, the complicated morphology of spin precession and classify its key features.

Spin precession influences the binary dynamics on timescales ∝t rpre
5 2/  (where r is the 

binary separation) [12, 13]. In the post-Newtonian (PN) regime �r M 1/  and tpre is (i) much 
longer than the orbital period ∝t rorb

3 2/ , and (ii) much shorter than the inspiral timescale 
∝t rRR

4 [27]. The resulting hierarchy

� �t t torb pre RR (1.1)

turns out to be a very powerful tool to study the binary dynamics: different processes (namely 
orbital motion, precession and inspiral) can be modelled on their respective timescales by 
averaging over quantities varying on shorter times and keeping constant those variables that 
only evolve over the longer time scales. The resulting equations can then be reassembled as a 
complete formalism using a quasi-adiabatic approach. This idea is at the heart of the decades-
old orbit-averaged formulation of the BH binary dynamics [12, 13, 27], as well as the new 
precession-averaged PN approach [28, 29].

In this paper, we complement the analysis of [28, 29] by studying in detail equal-mass 
systems (q  =  1). At first glance, this may appear as a predominantly academic exercise, but it 
is also of practical importance for at least four reasons.

 (i) As we will discuss at greater length below, the subset of q  =  1 binaries behaves quali-
tatively different in several regards relative to the generic unequal-mass case studied in 
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[28, 29] because of the existence of an additional constant of motion (section 2.1). This 
phenomenon also manifests itself at a formal level: merely setting q  =  1 in the math-
ematical framework developed in [28, 29] leads to singular expressions in various places 
and, hence, does not directly predict the dynamics of equal-mass binaries.

 (ii) Even though the behaviour of q  =  1 binaries is ultimately derived from the formalism 
developed in [28, 29], the emerging picture is of such remarkable simplicity that it serves 
as an ideal pedagogical introduction and motivation for readers to venture on to the more 
complex spin-precession formalism of the cited work.

 (iii) During the first years after the numerical relativity breakthroughs [30–32] the majority 
of numerical BH studies focussed on equal-mass binaries and, to this day, equal-mass 
binaries have frequently been used as testbeds for BH evolutions [33–37]. This choice is 
quite natural for several reasons (for instance, the additional symmetry allows for reduced 
computational domains and the merger dynamics probe the most strongly non-linear 
regime), but it involves a small risk that observations made for this particular class of 
binaries be mistaken as generically valid. Our study provides a cautionary statement in 
this regard, as we indeed identify characteristic features that hold for equal-mass systems 
and only for equal-mass systems: the constancy of the total spin magnitude S and a dif-
ference in timescale between the precession of the individual spins and that of the orbital 
plane.

 (iv) Vice versa, the extraordinarily simple behaviour of the equal-mass case may yield valu-
able insight into characteristic features of BH binaries that, while not exactly valid for 
≠q 1, may still hold approximately and thus contribute to our understanding of general 

systems. For instance, if BH binaries with mass ratio reasonably close to unity are found, 
the additional constant of motion stressed in section 2.1 will still be conserved in practice 
at some approximate level and may thus be useful in the modeling of GW signals. We 
note, in this context, that the first GW observations are all compatible with equal-mass 
BH binary sources within a 90% credibility interval [38–41].

The remainder of this work is organized as follows. Our calculations are carried out in sec-
tion 2; results are illustrated in section 3 and conclusions drawn in section 4.

2. Peculiarities of the equal-mass case

According to the spin-precession formalism developed in [28, 29], the evolution of the BH 
spins is conveniently split into dynamics occurring on the precession time scale tpre and those 
happening on the much longer radiation reaction time scale tRR. A key simplification arises 
from the fact that the projection of the effective spin along the orbital angular momentum,

ξ = + ⋅
⎛
⎝
⎜

⎞
⎠
⎟

M m m

S S
L

1
,1 2

1 2

ˆ (2.1)

is a constant of motion of the orbit-averaged 2PN spin-precession equations  and 3.5 PN 
 radiation-reaction equation [42, 43]; at this order, ξ is constant on both time scales tpre and 
tRR. The binary dynamics on the precession time scale is parametrized by the magnitude S of 
the total spin = +S S S1 2 while the secular evolution under the effect of radiation reaction is 
encoded into the total angular momentum = +J L S. A schematic view of these vectors and 
the angles between them is shown in figure 1.

D Gerosa et alClass. Quantum Grav. 34 (2017) 064004
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2.1. Constants of motion

Constants of motion play a crucial role in this story. Let us consider an equal-mass BH binary, 
with mass ratio = =q m m 12 1/  and total mass = +M m m1 2 on a quasi-circular orbit. The 
magnitudes of the BH spins χ χ= =S m M 4i i i i

2 2 /  (i  =  1, 2) are described in terms of the dimen-
sionless Kerr parameter χ0 1i⩽ ⩽ , while the magnitude of the orbital angular momentum L is 
given (at the PN order here considered) in terms of the binary separation r by the Newtonian 
relation = =L m m r M rM 41 2

3/ / . In this case, the effective spin projection ξ (2.1) becomes

ξ ξ=
⋅

⇒ | |
M

S

M

S L
2

2
.

2 2

ˆ
        ⩽ (2.2)

Both the total angular momentum J and the magnitude of the orbital angular momentum L are 
constant on the precessional timescale tpre, because GWs only dissipate energy and momen-
tum on tRR. The magnitude of the total spin S, on the other hand, may vary on tpre under the 
effect of relativistic spin-spin and spin–orbit couplings and was used in [28, 29] to parametrize 
the precession dynamics for ≠q 1 binaries. It was noted, however, that there exist a few special 
configurations where S is constant, such as Schnittman’s spin–orbit resonances [44] and stable 
binary configurations with aligned spins [45].

Figure 1. Vectors and angles describing the dynamics of spinning BH binaries. The 
directions of the two spins S1 and S2 with respect to the orbital angular momentum L 
are described in terms of the angles θ1, θ2, θ12 and ∆Φ, see equations (2.11)–(2.14). The 
orientation of the total angular momentum J relative to L is specified by the angle θL. 
The angle ϕ′ used in section 2.2 to describe the spin dynamics is measured in the plane 
orthogonal to S. The plane is orthogonal only to S, in general not to L.

D Gerosa et alClass. Quantum Grav. 34 (2017) 064004
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We find here the first qualitative difference in the behaviour of equal-mass binaries; for 
q  =  1, the total spin magnuitude S is always constant. This can be seen as follows. The stand-
ard orbit-averaged spin precession equations at 2PN order [12, 43] for q  =  1,

ξ= − + ×⎜ ⎟
⎛
⎝

⎞
⎠t r

M
S

L L S S
d

d

1

2
7

3

2
,1

2 13
2 ˆ (2.3)

ξ= − + ×⎜ ⎟
⎛
⎝

⎞
⎠t r

M
S

L L S S
d

d

1

2
7

3

2
.2

1 23
2 ˆ (2.4)

imply = ⋅ ∝ ⋅ + ∝ ⋅ × =S t t tS S S S S S L Sd d 2 d d d d 02
1 2/ / ( )/ ( ) . It follows that for all q  =  1 

configurations, the magnitude S is conserved on the precession and the radiation-reaction tim-
escales [though not necessarily on the orbital timescale over which equations (2.3) and (2.4) 
are averaged]. This point was realized at least as early as 2008 in [43]. A similar conclusion 
had previously been reached in [13] with an incomplete set of 2PN equations and using some 
further assumptions. By cosine rule, the angle θL between orbital and total angular momen-
tum satisfies θ = + −JL J L S2 cos L

2 2 2, so that with equation  (2.2) and ⋅ = + ⋅LJ L S L2   
we find

ξ= + +J L S L M .2 2 2 (2.5)

This relation holds on tpre and, more importantly, on tRR and therefore describes the evolution 
of J as the separation decreases under GW emission.

These results can also be found using the precession-averaged approach of [28, 29]: With 
q  =  1, equation (13) of [29] gives

ξ =
− −J L S

M L
,

2 2 2

2
 (2.6)

and the effective potentials of BH spin precession, ξ+ and ξ−, coincide for q  =  1, implying that 
S is constant on the precession time. The precession averaging in equation (38) of [29] then 
becomes a trivial operation, so that

ξ
ξ=

+ −
=

+
⇒ = +

J

L

J L S

LJ

L M

J
J J L L M L

d

d 2

2

2
2 d 2 d d ,

2 2 2 2
2        (2.7)

and after integration ξ− − =J L LM const2 2 2  on tRR. By equation (2.6), this constant must be 
S2 and we have recovered equation (2.5).

Note the remarkable character of this finding. With q  =  1 and chosen parameters S1, S2, BH 
binaries are specified by pairs ξ S,( ): both these quantities are constant on the precession and 
radiation reaction time scale and uniquely determine the binary’s characteristics. L is merely a 
measure for the binary separation r and J, the only evolving dependent variable, is determined 
by the simple analytic expression (2.5). All other properties of the binary, such as the mutual 
orientation of the BH spins and that of the orbital plane, follow from straightforward geo-
metric considerations of the triangles J L S, ,( ) and S S S, ,1 2( ) as illustrated below. In contrast, 
for ≠q 1, PN integrations need to be initialized with either ξ, S and J at finite separation, or 
through κ = ⋅∞ ∞S Llimr

ˆ
→  at infinitely large separation. One then needs to precession aver-

age S2 using S td d/  from equation (26) of [29] and numerically integrate for the evolution of J 
on tRR according to equation (38) of that work.

D Gerosa et alClass. Quantum Grav. 34 (2017) 064004
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2.2. Orbital-plane and spin precession

For ≠q 1 the precession dynamics are conveniently parametrized by S, but we have seen that 
in the equal-mass case S is constant and, hence, no longer suitable for this purpose. Instead, 
we consider ϕ′ defined as the angle traced out relative to some reference value ϕ′0 by the spin 
S1 in the plane orthogonal to the total spin S; see figure 1. We can fix the reference value ϕ′0 
by defining [29]

ϕ =
⋅

| × |
=

⋅ × ×

| × | | × |
′ ⊥S S

S S

S S L S

S S S L
cos ,1

1

1

1

ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

[( ) ]
 (2.8)

where ⊥Ŝ  is the unit vector perpendicular to S and ×S L. Note that the orientation of S2 in 
the same plane is automatically determined through this definition by closure of the trian-
gle S S S, ,1 2( ). The angle ϕ′ thus corresponds to rotations of S1 and S2 about S. Using equa-
tions (7), (10), (28) and (29) of [29] together with the spin-precession equations (2.3) and (2.4) 
one can show that equation (2.8) implies

ϕ ϕ
ξ=

| × |
+ ⇒ = − −

′ ′
⊥

⊥
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

t t t t

S

r

M

rS S
S

S
S

Sd cos

d

1 d

d

d

d

d

d

3
1 0,

1

1
1 3ˆ

ˆ ˆ
⩽

 

(2.9)

where the last inequality is manifest for separations r M⩾ , since ξ| | < S M2 12/ ⩽  for Kerr BHs 
with χ 1⩽ . We conclude that the angle ϕ′ always evolves monotonically and ϕ′cos  evolves 
periodically back and forth between  −1 and  +1. While the two spins precess about S with 
phase ϕ′, the orbital plane precesses about J with frequency [28, 29]

ξ ξ
Ω = + + −

⎛
⎝
⎜

⎞
⎠
⎟

M

r

M

L

S

L

M

L

1

4
1 7

3

2
.z

3 2

5 2

2 2

2

2/

/ (2.10)

It is interesting to note that the timescale of these two phenomena scale differently with 
the separation r. While the orbital plane precesses on ∼Ω ∝−t rz

1 5 2/ , the two spins precess 
about S on the longer time scale ϕ ϕ∼ ∝′ ′t t rd d 3/ . This appears surprising at first glance 
since both powers enter the orbit-averaged spin-precession equations (2.3) and (2.4) and one 
would expect the shorter timescale to dominate both features. For generic ≠q 1 binaries, this 
is indeed the case; both, Ω−z

1 and ϕ ϕ′ ′td d/ , scale as r5/2 [29]. The markedly different behaviour 
of q  =  1 binaries arises from a cancelation of all terms ∝ ∝L r  in the numerator on the 
right-hand side of equation (2.9). The leading order term ∝ −r 5 2/  thus drops out of the evo-
lution of the two spins about S, but remains present in the precessional motion of S and L about 
J as described by Ωz of equation (2.10) where no such cancelation occurs.

2.3. Spin morphologies

The angle ϕ′ is a valuable quantity to mathematically formulate the precession dynamics, but 
is not ideal for forming an intuitive picture.This is achieved more conveniently using instead 
the angles between the vectors S1, S2 and L,

θ = ⋅S Lcos ,11
ˆ ˆ (2.11)

θ = ⋅S Lcos ,22
ˆ ˆ (2.12)

D Gerosa et alClass. Quantum Grav. 34 (2017) 064004
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θ = ⋅S Scos ,1 212
ˆ ˆ (2.13)

and the azimuthal angle between the projections of the two spins onto the orbital plane

∆Φ =
×

| × |
⋅

×

| × |

S L

S L

S L

S L
cos .1

1

2

2

ˆ ˆ
ˆ ˆ

ˆ ˆ
ˆ ˆ (2.14)

In general, all four angles, θ1, θ2, θ12 and ∆Φ, oscillate on the precessional timescale, while 
GW emission drives the secular evolution. In the unequal-mass case, the angles θ1, θ2 and θ12 
evolve monotonically during each precession cycle (we define a cycle in this context to cover 
the evolution of ϕ′ over an interval ϕ π∆ =′ ), while the evolution of ∆Φ follows either of 
three qualitatively different scenarios (see e.g. figure 3 of [29]):

 (i) ∆Φ can circulate spanning the full allowed range π π− ,[ ],
 (ii) ∆Φ can librate about 0, and never reaches  ±π,
 (iii) ∆Φ can librate about ±π, and never reaches 0.

This behavior enables us to classify the precessional dynamics into morphologies. In gen-
eral, the specific morphology of a binary is a function of the separation r: radiation reaction 
may cause a BH binary to transition from one morphology to another. These transitions can 
only happen if either θ =±cos 11  or θ =±cos 12  at some point during a precession cycle. 
At that moment, one of the spins is (anti-) aligned with L and ∆Φ is not well defined; see 
equation (2.14).

The q  =  1 case addressed here differs from this picture in some important aspects. The 
angles describing the directions of the spins are obtained from setting q  =  1 in equations (10) 
of [29] and evaluating the corresponding scalar products which gives

θ ξ

ξ ϕ

= + −

+ − − − + − ′

⎡
⎣⎢

⎤
⎦

S S
M S S S

S M S S S S S S

cos
1

4

4 cos ,

1
1

2
2 2

1
2

2
2

2 2 4 2
1 2

2
1 2

2 2

( )

( ) ( )
 

(2.15)

( )

( ) ( )

θ ξ

ξ ϕ

= + −

− − − − + − ′

⎡
⎣⎢

⎤
⎦

S S
M S S S

S M S S S S S S

cos
1

4

4 cos ,

2
2

2
2 2

2
2

1
2

2 2 4 2
1 2

2
1 2

2 2
 

(2.16)

θ =
− −S S S

S S
cos

2
,12

2
1
2

2
2

1 2
 (2.17)

θ θ θ
θ θ

∆Φ =
−

cos
cos cos cos

sin sin
.12 1 2

1 2
 (2.18)

We see that θ12 is constant while the angles θ1 and θ2 oscillate between the two extrema

θ ξ

ξ

= + −

± − − − + −

±
⎡
⎣⎢

⎤
⎦

S S
M S S S

S M S S S S S S

cos
1

4

4 ,

1
1

2
2 2

1
2

2
2

2 2 4 2
1 2

2
1 2

2 2

( )

( ) ( )
 

(2.19)
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θ ξ

ξ

= + −

− − − + −

±
⎡
⎣⎢

⎤
⎦∓

S S
M S S S

S M S S S S S S

cos
1

4

4 ,

2
2

2
2 2

2
2

1
2

2 2 4 2
1 2

2
1 2

2 2

( )

( ) ( )
 

(2.20)

as ϕ′ evolves monotonically between 0 and π during each precession cycle. For q  =  1, the 
boundaries θ ±1  and θ ±2  do not depend on either J or L, but only on the constants of motion 
ξ S S, , 1 and S2. In contrast to the ≠q 1 case, they therefore do not vary on the radiation reaction 
timescale. This implies that the spin morphology, i.e. the qualitative evolution of ∆Φ, remains 
unchanged at all separations. Equal-mass binaries do not exhibit morphological transitions, 
which sets them qualitatively apart from their generic unequal-mass counterparts.

The three different morphologies are still present, however, in the ξ S S S, ; ,1 2( ) param-
eter space of equal-mass binaries. In particular, binaries in the two librating morphologies 
exist even at infinitely large separations ( ∞r → ), while for ≠q 1 all binaries circulate in this 
limit. The main point is that a given binary never crosses the boundary between the different 
morphologies. These boundaries are given by the condition θ =±±cos 1i  and a binary that 
happens to be sitting at such a point will sweep through an aligned configuration S Li∥  during 
each and every precession cycle throughout its entire inspiral. The condition θ =±cos 11  can 
be solved for ξ as a function of S, yielding

ξ
ϕ ϕ

ϕ
=±

+ − + − − − | | −

+ − − − −

′ ′

′

S

M

S S S S S S S S S S

S S S S S S S

2 2 4 1 cos cos 1

4 4 1 cos 1
,

2

1
2

1
2

2
2

1
2

2
2 2 2

2
2 2 2

2
1
2

1
2

2
2 2 2

2
2 2 2

( ) [ ( ) ]
[ ( ) ]( )

 

(2.21)

while θ =±cos 12  has solutions

ξ
ϕ ϕ

ϕ
=±

− + + − − − | | −

+ − − − −

′ ′

′

S

M

S S S S S S S S S S

S S S S S S S

2 2 4 1 cos cos 1

4 4 1 cos 1
.

2

2
2

1
2

2
2

1
2

2
2 2 2

2
2 2 2

2
2
2

1
2

2
2 2 2

2
2 2 2

( ) [ ( ) ]
[ ( ) ]( )

 

(2.22)

Real valued solutions only exist for the three discrete values ϕ = − +′cos 0, 1, 1. For 
ϕ =′cos 0, we obtain

θ ξ=± ⇒ =±
+ −
S S

M S S S
cos 1

4
,1

1
2

2 2
1
2

2
2( )

 (2.23)

( )
θ ξ=± ⇒ =±

− +
S S

M S S S
cos 1

4
.2

2
2

2 2
1
2

2
2 (2.24)

It is straightforward to verify that these solutions violate the bound (2.2) and can be discarded 
as unphysical. On the other hand, the solutions for ϕ| | =′cos 1 (corresponding to θ ±i  of equa-
tion (2.19) and (2.20))

θ ξ=± ⇒ =±
+ −S S S

S
cos 1 ,1

2
1
2

2
2

1
 (2.25)

θ ξ=± ⇒ =±
− +S S S

S
cos 1 ,2

2
1
2

2
2

2
 (2.26)

fall into the allowed range (2.2). These configurations correspond to binaries for which the 
spin morphology is ill-defined during the entire inspiral and they mark the boundary between 
the different morphologies as we will discuss in more detail in the next section.
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3. Results: a simple picture

In the previous section we have seen that the evolution of a quasi-circular equal-mass binary 
with fixed spin magnitudes χ1, χ2 is completely determined by the values of ξ and S which 
remain constant during the inspiral. The orbital angular momentum measures the binary sepa-
ration and the total angular momentum J is given by equation (2.5). We can therefore graphi-
cally visualize the set of all binaries with given χ1, χ2 in the ξS,( ) configuration space and 
analyse the properties of a binary as a function of its location in this diagram. The resulting 
diagrams are shown in figure 2 for several representative choices of χ1 and χ2.

Since S and ξ are both constants of motion, BH binaries are stationary in these plots as they 
inspirals towards merger. Each panel in figure 2 therefore encompasses all equal-mass BH 
binary evolutions with given spin magnitudes χ1 and χ2.

The physically allowed region in the parameter space is determined by the constraint 
= +S S S1 2 and the limits (3.2) for ξ which gives us a total of four conditions

| − | +S S S S S ,1 2 1 2⩽ ⩽ (3.1)

ξ− S M S2 2 .2⩽ ⩽ (3.2)

The resulting curves are shown as dotted lines in the top panel of figure 2. Note that the condi-
tion (3.2) for ξ can be shown to be equivalent to the constraint = −S J L for the magnitude S; 
in particular ξ = S M2 2/  corresponds to = | − |S J L  and ξ = − S M2 2/  corresponds to S  =  J  +  L.

The four corners of the resulting allowed region in the ( ξS, ) plane correspond to binaries 
with both spins (anti-) aligned with the orbital angular momentum (i.e. θ θ= =sin sin 01 2 ). 
More specifically, the top-right (bottom-right) corner maximizes (minimizes) ξ and, hence, 
correspond to both spins being aligned (antialigned) with L. We refer to these binaries as 
up–up (UU) and −down down (DD), respectively. The left boundary of the allowed region 
minimizes S, so that the two spins S1 and S2 are antialigned with each other. The two left cor-
ners represent the corresponding maximum (minimum) in ξ where the larger (smaller) spin is 
aligned and the other spin antialigned with L. We refer to these points as up-down or down-up  
(UD/DU). Since S is constant, all these four ‘corner’ configurations are stable under spin 
precession and phenomena like the up-down instability found in [45] do not occur for equal-
mass binaries. Using equation  (2) in that paper, one immediately sees that both instability 
thresholds ±rud  go to ∞ as q 1→ .

The angles of equations (2.11)–(2.14) describing the mutual orientation of S1, S2 and L are 
all constant for binaries located on the edge of the allowed region because all terms ϕ∝ ′cos  
in equations  (2.15) and (2.17) vanish for either = | ± |S S S1 2  or ξ =± S M2 2/ . We note that 
for = +S S S1 2 the two spins are aligned with each other, so that ∆Φ = 0, while π∆Φ =±  
for the other cases =| − |S S S1 2  and ξ =± S M2 2/ . These configurations lying at the edge of 
the allowed region correspond to the spin–orbit resonances discovered in [44]. The three 
momenta S1, S2 and L share a common plane (i.e. ∆Φ =sin 0) and jointly precess about J 
with fixed mutual directions. While for ≠q 1 such mutual directions undergo secular changes 
due to radiation reaction, they are truly constant for the q  =  1 case examined here (i.e. they are 
independent of L). These are indeed the two families of resonant solutions identified in [44], 
characterized by either ∆Φ = 0 or π∆Φ =± . The ∆Φ = 0 family runs from UU to DD along 
the right border where = +S S S1 2, while the π∆Φ =±  family connects UU to DD along the 
bottom (ξ = − S M2 2/ ), left ( = | − |S S S1 2 ) and top (ξ = S M2 2/ ) borders.

Next, we consider the different spin morphologies which we display in figure 2 by color 
coding different areas in the parameter space. Through equations (2.15)–(2.18), we can regard 
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Figure 2. Configuration space of equal-mass BH binaries in the PN regime. Each 
binary is characterized by the two constants of motions S and ξ, reported on the x and y 
axes respectively. The various panels show the configuration space for different values 
of the dimensionless spin magnitudes χ1 and χ2. As expected, the panels are invariant 
under a relabelling of the binary constituents ( ) → ( )χ χ χ χ, ,1 2 2 1 . The physically allowed 
region is given by the area inside the four lines =| + |S S S1 2  and ξ =± S M2 2/ , shown 
as dotted curves in the top panel. In each panel, we show the resulting boundaries 
as a solid thick line and they mark the spin–orbit resonances, while round circles at 
the four corners UU, DD and UD/DU mark binaries with both spins parallel to the 
orbital angular momentum. The spin morphology is encoded by the color of the shaded 
region and their boundaries are given by the dashed curves given by equations (2.25)  
and (2.26).
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∆Φ as a function of ϕ′cos . The three vectors L, S1 and S2 are coplanar at ϕ =±′cos 1, and 
therefore ( )ϕ∆Φ =± =′sin cos 1 0. A morphology boundary is defined by the discontinuous 
change of the function ϕ∆Φ ′cos( ) as the parameters S, ξ are varied a little. By equation (2.18), 
such a discontinuous change is only possible at θ θ× =sin sin 01 2  which are precisely the 
solutions (2.25) and (2.26) shown as dashed parabolae in figure 2. We already know the behav-
ior of the binaries on the edge of the physically allowed region, so that binaries located close 
to the edge boundaries librate about either ∆Φ = 0 (right; blue colored area in figure 2) or 

π∆Φ =±  (bottom, left, top; red colored) as they approach the two families of resonant bina-
ries where π∆Φ = = ±constant 0, . In the central regions (green), binaries circulate in the 
full range π π∆Φ∈ − ,[ ]. Two of the four solutions (2.25) and (2.26) meet at each of the four 
corners where both spins are (anti-) aligned with the orbital angular momentum. These curves 

also intersect each other at the special configuration = | − |S S S1
2

2
2  and ξ = 0, where two of 

the four instantaneously aligned configurations θ =±cos 11 , θ =±cos 12  are touched during 
each precession cycle.

The fractions of the parameter space belonging to each morphology change with χ1 and 
χ2. In particular, more binaries are allowed to circulate (librate) if the two spin magnitudes 
are different (similar) to each other. In the limiting case χ χ=1 2 the four solutions of equa-
tion (2.25) and (2.26) correspond to only two distinct curves and binaries are not allowed 
to circulate.

It is trivial to show that the entire description we provided remains unchanged under the 
inversion χ χ χ χ, ,1 2 2 1( ) → ( ). Finally, we point out that figure 2 in this paper should not be 
viewied as the q  =  1 equivalent of figure 4 in [29]: that figure merely represents snapshots in 
the ξS,( ) parameter space of a set of binaries with the same value of J at a given separation r. 
Our figure 2 instead displays all binaries (with fixed χ1, χ2) over the entire PN inspiral.

4. Conclusions

We have analyzed the dynamics of spinning equal-mass BH binaries in light of the precession-
averaged approach put forward in [28, 29]. The existence of an additional constant of motion, 
namely the magnitude of the total spin =| + |S S S1 2 , greatly simplifies the PN dynamics. For 
given spin magnitudes S1 and S2, PN inspirals can be labelled by couples ξS,( ), where ξ is the 
projected effective spin and is also a constant of motion. This entirely determines the binary 
evolution at 2PN order of the spin precession equations. The inspiral can be parameterized 
by the magnitude of the orbital angular momentum =L m m r M1 2 /  and the magnitude of the 
total angular momentum = | + |J L S  is given by the analytic expression of equation  (2.5). 
The spin tilts oscillate between the extrema given in equations (2.19) and (2.20) which do not 
depend on L and, thus, on the binary separation.

Together, these features let us picture the entire parameter space of equal-mass BH binaries 
using the diagrams of figure 2. While some features found for generic ≠q 1 binaries, such as 
the existence the two families of spin–orbit resonances, persist in the limit q 1→ , others turn 
out to be qualitatively different. In particular, the spin morphology (i.e. the qualitative evo-
lution of the spin orientation on the precessional timescale) is constant throughout the inspiral 
and is uniquely determined by the values S and ξ of the binary in question. As hinted in [46, 
47], future high-significance GW observations may provide direct measurements of the BH 
binary spin morphology. In the case of (nearly) equal-mass events, this would correspond to 
direct constraints on the spin directions at BH formation; in contrast, for the ≠q 1 case one 
needs to randomize over the precessional phase and evolve the observed configurations back 
to ∞r →  [29].
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Surprisingly, we found that precession of the BH spins and the orbital plane takes place on 
different timescales if q  =  1: the former is ∝ r3 and thus longer than the ∝ r5 2/  result found 
for (i) the orbital plane precession in the q  =  1 case and (ii) for both precession time scales for 
generic ≠q 1 binaries. In principle, this finding may allow for a further timescale-averaging 
procedure, to separate the evolution of the BH spins relative to the orbital plane, and the evo-
lution of the orbital plane in some inertial reference frame (see [48]).

The results presented in this paper have been implemented in the open-source python code 
PRECESSION, available at www.davidegerosa.com/precession [49]. In particular, the con-
stancy of S and equation (2.5) for the evolution of J are exploited explicitly only if the code 
is run with q  =  1. For any value of q  <  1, the general formalism of [28, 29] is used. This has 
been found to provide accurate results for � �q0.005 0.995 [49]. As a possible future exten-
sion of the code one may include the development of a hybrid approach combining the two 
formulations.
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