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Abstract

A random group contains many subgroups which are isomorphic to the fun-
damental group of a compact hyperbolic 3-manifold with totally geodesic
boundary. These subgroups can be taken to be quasi-isometrically embed-
ded. This is true both in the few relators model, and the density model of
random groups (at any density less than a half).
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1. Introduction

Geometric group theory was born in low-dimensional topology, in the col-
lective visions of Klein, Poincaré and Dehn. Stallings used key ideas from
3-manifold topology (Dehn’s lemma, the sphere theorem) to prove theorems
about free groups, and as a model for how to think about groups geometri-
cally in general. The pillars of modern geometric group theory — (relatively)
hyperbolic groups and hyperbolic Dehn filling, NPC cube complexes and their
relations to LERF, the theory of JSJ splittings of groups and the structure of
limit groups — all have their origins in the geometric and topological theory
of 2- and 3-manifolds.

Despite these substantial and deep connections, the role of 3-manifolds
in the larger world of group theory has been mainly to serve as a source of
examples — of specific groups, and of rich and important phenomena and
structure. Surfaces (especially Riemann surfaces) arise naturally through-
out all of mathematics (and throughout science more generally), and are as
ubiquitous as the complex numbers. But the conventional view is surely that
3-manifolds per se do not spontaneously arise in other areas of geometry
(or mathematics more broadly) amongst the generic objects of study. We
challenge this conventional view: 3-manifolds are everywhere.

1.1. Random groups

The “generic” objects in the world of finitely presented groups are the
random groups, in the sense of Gromov. There are two models of what one
means by a random group, and we shall briefly discuss them both.

First, fix k � 2 and fix a free generating set x1, x2, · · · , xk

for F
k

, a free
group of rank k. A k-generator group G can be given by a presentation

G := hx1, x2, · · · , xk

| r1, r2, · · · , r`i
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where the r
i

are cyclically reduced cyclic words in the x
i

and their inverses.
In the few relators model of a random group, one fixes ` � 1, and then

for a given integer n, selects the r
i

independently and randomly (with the
uniform distribution) from the set of all reduced cyclic words of length n.

In the density model of a random group, one fixes 0 < D < 1, and then
for a given integer n, define ` = b(2k� 1)Dn

c and select the r
i

independently
and randomly (with the uniform distribution) from the set of all reduced
cyclic words of length n.

Thus, the di↵erence between the two models is how the number of rela-
tions (`) depends on their length (n). In the few relators model, the absolute
number of relations is fixed, whereas in the density model, the (logarithmic)
density of the relations among all words of the given length is fixed.

For fixed k, `, n in the few relators model, or fixed k,D, n in the density
model, we obtain in this way a probability distribution on finitely presented
groups (actually, on finite presentations). For some property of groups of
interest, the property will hold for a random group with some probability
depending on n. We say that the property holds for a random group with
overwhelming probability if the probability goes to 1 as n goes to infinity.

As remarked above, a “random group” really means a “random presen-
tation”. Associated to a finite presentation of a group G as above, one can
build a 2-complex K with one 0 cell, with one 1 cell for each generator x

i

,
and with one 2 cell for each relation r

j

, so that ⇡1(K) = G. We are very
interested in the geometry and combinatorics of K (and its universal cover)
in what follows.

1.2. Properties of random groups

All few-relator random groups are alike (with overwhelming probabil-
ity). There is a phase transition in the behavior of density random groups,
discovered by Gromov (1993) § 9: for D > 1/2, a random group is either
trivial or isomorphic to Z/2Z, whereas at any fixed density 0 < D < 1/2,
a random group is infinite, hyperbolic, and 1-ended, and the presentation
determining the group is aspherical — i.e. the 2-complex K defined from
the presentation has contractible universal cover. Furthermore, Dahmani–
Guirardel–Przytycki (2011) showed that a random group with density less
than a half does not split, and has boundary homeomorphic to the Menger
sponge.

The Menger sponge is obtained from the unit cube by subdividing it into
27 smaller cubes each with one third the side length, then removing the
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Figure 1: The boundary of a random group is a Menger sponge

central cube and the six cubes centered on each face; and then inductively
performing the same procedure with each of the remaining 20 smaller cubes;
see Figure 1.

The Menger sponge has topological dimension 1, and is the universal
compact space with this property, in the sense that any compact Hausdor↵
space of topological dimension 1 embeds in it.

It is important to understand what kinds of abstract groups H arise as
subgroups of a random group G. However, not all subgroups of a hyperbolic
group are of equal importance: the most useful subgroups, and those that
tell us the most about the geometry of G, are the subgroups H with the
following properties:

1. the group H itself is something whose intrinsic topological and geomet-
ric properties we understand very well; and

2. the intrinsic geometry of H can be uniformly compared with the ex-
trinsic geometry of its embedding in G.

In other words, we are interested in well-understood groups H which are
quasi-isometrically embedded in G.

A finitely generated quasi-isometrically embedded subgroupH of a hyper-
bolic group G is itself hyperbolic, and therefore finitely presented. The inclu-
sion of H into G induces an embedding of Gromov boundaries @1H ! @1G.
Thus if G is a random group, the boundary of H has dimension at most 1,
and by work of Kapovich–Kleiner (2000), there is a hierarchical description
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of all possible @1H.
First of all, if @1H is disconnected, then one knows by Stallings (1968)

that H splits over a finite group. Second of all, if @1H is connected and
contains a local cut point, then one knows by Bowditch (1998) that either H
is virtually a surface group, or else H splits over a cyclic group. Thus, apart
from the Menger sponge itself, understanding hyperbolic groups with bound-
ary of dimension at most 1 reduces (in some sense) to the case that @1H is
a Cantor set, a circle, or a Sierpinski carpet — i.e. one of the “faces” of the
Menger cube. The Sierpinski carpet is universal for 1-dimensional compact
Hausdor↵ planar sets of topological dimension 1. Thus one is naturally led to
the following fundamental question, which as far as we know was first asked
explicitly by François Dahmani:

Question 1.2.1 (Dahmani). Which of the three spaces — Cantor set, circle,
Sierpinski carpet — arise as the boundary of a quasiconvex subgroup of a
random group?

Combining the main theorem of this paper with the results of Calegari–
Walker (2015) gives a complete answer to this question:

Answer. All three spaces arise in a random group as the boundary of a
quasiconvex subgroup (with overwhelming probability).

This is true in the few relators model with any positive number of rela-
tors, or the density model at any density less than a half. The situation is
summarized as follows:

1. @1H is a Cantor set if and only if H is virtually free (of rank at least
2); we can thus take H = ⇡1(graph). The existence of free quasiconvex
subgroups H in arbitrary (nonelementary) hyperbolic groups G is due
to Klein, by the ping-pong argument.

2. @1H is a circle if and only if H is virtually a surface group (of genus
at least 2); we can thus take H = ⇡1(surface). The existence of sur-
face subgroups H in random groups (with overwhelming probability)
is proved by Calegari–Walker (2015), Theorem 6.4.1.

3. @1H is a Sierpinski carpet if H is virtually the fundamental group
of a compact hyperbolic 3-manifold with (nonempty) totally geodesic
boundary; and if the Cannon conjecture is true, this is if and only
if — see Kapovich–Kleiner (2000). The existence of such 3-manifold
subgroupsH in random groups (with overwhelming probability) is The-
orem 6.2.1 in this paper.
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Explicitly, we prove:

3-Manifolds Everywhere Theorem 6.2.1. Fix k � 2. A random k-
generator group — either in the few relators model with ` � 1 relators,
or the density model with density 0 < D < 1/2 — and relators of length
n contains many quasi-isometrically embedded subgroups isomorphic to the
fundamental group of a hyperbolic 3-manifold with totally geodesic boundary,
with probability 1�O(e�n

C
) for some C > 0.

Our theorem applies in particular in the few relators model where ` = 1.
In fact, if one fixes D < 1/2, and starts with a random 1-relator group G =
hF

k

| ri, one can construct a quasiconvex 3-manifold subgroup H (of the sort
which is guaranteed by the theorem) which stays injective and quasiconvex
(with overwhelming probability) as a further (2k � 1)Dn relators are added.

1.3. Commensurability

Two groups are said to be commensurable if they have isomorphic sub-
groups of finite index. Commensurability is an equivalence relation, and it is
natural to wonder what commensurability classes of 3-manifold groups arise
in a random group.

We are able to put very strong constraints on the commensurability
classes of the 3-manifold groups we construct. It is probably too much to
hope to be able to construct a subgroup of a fixed commensurability class.
But we can arrange for our 3-manifold groups to be commensurable with
some element of a family of finitely generated groups given by presentations
which di↵er only by varying the order of torsion of a specific element. Hence
our 3-manifold subgroups are all commensurable with Kleinian groups of
bounded convex covolume (i.e. the convex hulls of the quotients have uni-
formly bounded volume). Explicitly:

Commensurability Theorem 7.0.2. A random group at any density <
1/2 or in the few relators model contains (with overwhelming probability) a
subgroup commensurable with the Coxeter group �(m) for some m � 7, where
�(m) is the Coxeter group with Coxeter diagram

r r r rm

The Coxeter group �(m) is commensurable with the group generated
by reflections in the sides of a regular super ideal tetrahedron — one with
vertices “outside” the sphere at infinity — and with dihedral angles ⇡/m.
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1.4. Plan of the paper

We now describe the outline of the paper.
As discussed above, our random groups G come together with the data

of a finite presentation

G := hx1, · · · , xk

| r1, · · · , r`i

From such a presentation we can build in a canonical way a 2-complexK with
1-skeleton X, where X is a wedge of k circles, and K is obtained by attaching
` disks along loops in X corresponding to the relators; so ⇡1(K) = G.

Our 3-manifold subgroups arise as the fundamental groups of 2-complexes
M(Z) that come with immersions M(Z) ! K taking (open) cells of M(Z)
homeomorphically to cells ofK. Thus, for every 2-cell ofM(Z), the attaching
map of its boundary to the 1-skeleton Z factors through a map onto one of
the relators of the given presentation of G.

One way to obtain such a complex M(Z) is to build a 1-complex Z as
a quotient of a collection L of circles together with an immersion Z ! X
where X is the 1-skeleton of K, and the map L ! X takes each component
to the image of a relator. We call data of this kind a spine. In § 2 we describe
the topology of spines and give su�cient combinatorial conditions on a spine
to ensure that M(Z) is homotopic to a 3-manifold.

Since X is a rose whose edges are endowed with a choice of orientation
and labelling by the generators x

i

, we will usually encode a map of graphs
� ! X by labelling (oriented) edges by x±1

i

, in the spirit of Stallings (1983).
As usual, if an oriented edge e of � is labelled x±1

i

then the oriented edge
ē with the reverse orientation is labelled x⌥1

i

. Note that there is a simple
condition to ensure that such a map � ! X is an immersion: one simply
requires that no two oriented edges of � incident at the same vertex have
the same label. We call such a graph � folded (also in the spirit of Stallings
(1983)).

In § 3 we prove the Thin Spine Theorem, which says that we can build
such a spine L ! Z, satisfying the desired combinatorial conditions, and
such that every edge of the 1-skeleton Z is long. Here we measure the length
of edges of Z by pulling back length from X under the immersion Z ! X,
where each edge of X is normalized to have length 1. In fact, if we let G1

denote the 1-relator group

G1 := hx1, · · · , xk

| r1i
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with associated 2-complex K1 which comes with a tautological inclusion
K1 ! K, then our thin spines have the property that the immersionM(Z) !
K factors through M(Z) ! K1.

For technical reasons, rather than working with a random relator r1,
we work instead with a relator which is merely su�ciently pseudorandom
(a condition concerning equidistribution of subwords with controlled error
on certain scales), and the theorem we prove is deterministic. Of course, the
definition of pseudorandom is such that a random word will be pseudorandom
with very high probability.

Explicitly, we prove:

Thin Spine Theorem 3.1.2. For any � > 0 there is T � � and ✏ ⌧ 1/T
so that, if r is (T, ✏)-pseudorandom and K is the 2-complex associated to the
presentation G := hF

k

| ri, then there is a spine f : L ! Z over K for which
L is a union of 648 circles (or 5,832 circles if k = 2), and every edge of Z
has length at least �.

This is by far the longest section in the paper, and it involves a compli-
cated combinatorial argument with many interdependent steps. It should be
remarked that one of the key ideas we exploit in this section is the method of
random matching with correction: randomness (actually, pseudorandomness)
is used to show that the desired combinatorial construction can be performed
with very small error. In the process, we build a reservoir of small indepen-
dent pieces which may be adjusted by various local moves in such a way
as to “correct” the errors that arose at the random matching step. Similar
ideas were also used by Kahn–Markovic (2011) in their proof of the Ehren-
preis Conjecture, by Calegari–Walker (2015) in their construction of surface
subgroups in random groups, and by Keevash (2014) in his construction of
General Steiner Systems and Designs. Evidently this method is extremely
powerful, and its full potential is far from being exhausted.

The Thin Spine Theorem can be summarized by saying that as a graph,
Z has bounded valence, but very long edges. This means that the image of
⇡1(Z) in ⇡1(X) induced by the inclusion Z ! X is very “sparse”, in the sense
that the ball of radius n in ⇡1(X) contains O(3n/�) elements of ⇡1(Z), where
we can take � as big as we like. This has the following consequence: when
we obtain G1 as a quotient of ⇡1(X) by adding r1 as a relator, we should not
kill any “accidental” elements of ⇡1(Z), so that the image of ⇡1(Z) will be
isomorphic to ⇡1(M(Z)), a 3-manifold group.
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This idea is fleshed out in § 4, and shows that random 1-relator groups
contain 3-manifold subgroups, although at this stage we have not yet shown
that the 3-manifold is of the desired form. The argument in this section
depends on a so-called bead decomposition, which is very closely analogous to
the bead decomposition used to construct surface groups by Calegari–Walker
(2015), and the proof is very similar.

In § 5 we show that the 3-manifold homotopic to the 2-complex M(Z) is
acylindrical; equivalently, that it is homeomorphic to a compact hyperbolic
3-manifold with totally geodesic boundary. This is a step with no precise
analog in Calegari–Walker (2015), but the argument is very similar to the
argument showing that M(Z) is injective in the 1-relator group G0. There
are two kinds of annuli to rule out: those that use 2-cells of M(Z), and those
that don’t. The annuli without 2-cells are ruled out by the combinatorics of
the construction. Those that use 2-cells are ruled out by a small cancellation
argument which uses the thinness of the spine. So at the end of this section,
we have shown that random 1-relator groups contain subgroups isomorphic
to the fundamental groups of compact hyperbolic 3-manifolds with totally
geodesic boundary.

Finally, in § 6, we show that the subgroup ⇡1(M(Z)) stays injective as
the remaining ` � 1 random relators are added. The argument here stays
extremely close to the analogous argument in Calegari–Walker (2015), and
depends (as Calegari–Walker (2015) did) on a kind of small cancellation
theory for random groups developed by Ollivier (2007). This concludes the
proof of the main theorem.

A further section § 7 proves the Commensurability Theorem. The proof
is straightforward given the technology developed in the earlier sections.

2. Spines

2.1. Trivalent fatgraphs and spines

Before introducing spines, we first motivate them by describing the anal-
ogous, but simpler, theory of fatgraphs.

A fatgraph Y is a (simplicial) graph together with a cyclic ordering of the
edges incident to each vertex. This cyclic ordering can be used to canonically
“fatten” the graph Y so that it embeds in an oriented surface S(Y ) with
boundary, in such a way that S(Y ) deformation retracts down to Y . Under
this deformation retraction, the boundary @S(Y ) maps to Y in such a way
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that the preimage of each edge e of Y consists of two intervals e± in @S(Y ),
each mapping homeomorphically to e, with opposite orientations.

Abstractly, the data of a fatgraph can be given by an ordinary graph Y , a
1-manifold L, and a locally injective simplicial map f : L ! Y of (geometric)
“degree 2”; i.e. such that each edge of Y is in the image of two intervals in
L. The surface S(Y ) arises as the mapping cone of f . If one orients L and
insists that the preimages of each edge have opposite orientations, the result
is a fatgraph and an oriented surface as above. If one does not insist on the
orientation condition, the mapping cone need not be orientable. Attaching
a disk along its boundary to each component of L produces a closed surface,
which we denote S(Y ).

We would like to discuss a more complicated object called a spine, for
which the analog of S(Y ) is a 2-complex homotopy equivalent to a compact
3-manifold with boundary. The 2-complex will arise by gluing 2-dimensional
disks onto the components of a 1-manifold L, and then attaching these disks
to the mapping cone of an immersion f : L ! Z where Z is a 4-valent graph,
and the map f is subject to certain local combinatorial constraints.

The first combinatorial constraint is that the map f : L ! Z should be
“degree 3”; that is, the preimage of each edge of L should consist of three
disjoint intervals in L, each mapped homeomorphically by f .

Since Z is 4-valent, at each vertex v of Z we have 12 intervals in L
that map to the incident edges; these 12 intervals should be obtained by
subdividing 6 disjoint intervals in L, where the dividing point maps to v.
Since L ! Z is an immersion, near each dividing point the given interval in
L runs locally from one edge incident to v to a di↵erent one. There are three
local models (up to symmetry) of how six edges of L can locally run over
a 4-valent vertex v of Z so that they run over each incident edge (in Z) to
v three times (this notion of “local model” is frequently called a Whitehead
graph in the literature). These three local models are illustrated in Figure 2.

The third local model is distinguished by the property that for each pair
of edges of Z adjacent to v, there is exactly one interval in L running over
v from one edge to the other. We say that such a local model is good. The
second combinatorial constraint is that the local model at every vertex of Z
is good.

If f : L ! Z is good, and M(Z) is the mapping cone of f , then the
2-complex M(Z) can be canonically thickened to a 3-manifold, since a neigh-
borhood of the mapping cone near a vertex v embeds in R3 in such a way that
the tetrahedral symmetry of the combinatorics is realized by symmetries of
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Figure 2: Three local models

the embedding. Similarly, along each edge the dihedral symmetry is realized
by the symmetry of the embedding. The restriction of this thickening to
each component of L is the total space of an I-bundle over the circle; we say
that f : L ! Z is co-oriented if each of these I-bundles is trivial. The third
combinatorial constraint is that f : L ! Z is co-oriented.

Definition 2.1.1. A spine is the data of a compact 1-manifold L and a 4-
valent graph Z, together with a co-oriented degree 3 immersion f : L ! Z
whose local model at every vertex of Z is good. If f : L ! Z is a spine, we
denote the mapping cone by M(Z), and by M(Z) the 2-complex obtained
by capping each component of L in M(Z) o↵ by a disk.

Lemma 2.1.2 (Spine thickens). Let f : L ! Z be a spine. Then M(Z) is
canonically homotopy equivalent to a compact 3-manifold with boundary.

Proof. We have already seen that M(Z) has a canonical thickening to a
compact 3-manifold in such a way that the restriction of this thickening to
each component of L is an I-bundle. The total space of this I-bundle is an
annulus embedded in the boundary of M(Z), and we may therefore attach
a 2-handle with core the corresponding component of L providing this I-
bundle is trivial. But that is exactly the condition that f : L ! Z should be
co-oriented.

By abuse of notation, we call M(Z) the thickening of Z.

2.2. Tautological immersions
Now let’s fix k � 2 and a free group F

k

on k fixed generators. Let X
be a rose for F

k

; i.e. a wedge of k (oriented) circles, with a given labeling
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by the generators of F
k

. Let G be a random group (in whatever model) at
length n. Each relator r

i

is a cyclically reduced word in F
k

, and is realized
geometrically by an immersion of an oriented circle ◆

i

: S1
i

! X. Attaching
a disk along each such circle gives rise to the 2-complex K described in the
introduction with ⇡1(K) = G.

Definition 2.2.1. A spine over K is a spine f : L ! Z together with an
immersion g : Z ! X such that for each component L

i

of L, there is some
relator r

j

and a simplicial homeomorphism g
i

: L
i

! S1
j

for which ◆
j

g
i

= gf .

The existence of the simplicial homeomorphisms g
i

lets us label the com-
ponents L

i

by the corresponding relators in such a way that the map f :
L ! Z has the property that the preimages of each edge of Z get the same
labels, at least if we choose orientations correctly, and use the convention
that changing the orientation of an edge replaces the label by its inverse.
So we can equivalently think of the labels as living on the oriented edges of
Z. Notice that the maps g

i

, if they exist at all, are uniquely determined by
g, f, ◆

j

(at least if the presentation is not redundant, so that no relator is
equal to a conjugate of another relator or its inverse).

Evidently, if f : L ! Z, g : Z ! X is a spine over K, the immersion
g : Z ! X extends to an immersion of the thickening g : M(Z) ! K, that
we call the tautological immersion.

Our strategy is to construct a spine over K for which M(Z) is homotopy
equivalent to a compact hyperbolic 3-manifold with geodesic boundary, and
for which the tautological immersion induces a quasi-isometric embedding on
⇡1.

3. The Thin Spine Theorem

The purpose of this section is to prove the Thin Spine Theorem, the
analog in our context of the Thin Fatgraph Theorem from Calegari–Walker
(2015).

In words, this theorem says that if r is a su�ciently long random cyclically
reduced word in F

k

giving rise to a random 1-relator group G := hF
k

| ri
with associated 2-complex K, then with overwhelming probability, there is
a good spine f : L ! Z over K for which every edge of Z is as long as we
like; colloquially, the spine is thin.

For technical reasons, we prove this theorem merely for su�ciently “pseu-
dorandom” words, to be defined presently.
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3.1. Pseudorandomness

Instead of working directly with random chains, we use a deterministic
variant called pseudorandomness.

Definition 3.1.1. Let � be a cyclically reduced cyclic word in a free group
F
k

with k � 2 generators. We say � is (T, ✏)-pseudorandom if the following is
true: if we pick any cyclic conjugate of �, and write it as a reduced product
of reduced words {w1, . . . , wn

} of length T (and at most one word v of length
< T )

� := w1w2w3 · · ·wn

v

(so n = b|r|/T c) then for every reduced word � of length T in F
k

, there is
an estimate

1� ✏ 
#{i such that w

i

= �}

n
· (2k)(2k � 1)T�1

 1 + ✏

Here the factor (2k)(2k� 1)T�1 is simply the number of reduced words in F
k

of length T . Similarly, we say that a collection of n reduced words {w
i

} each
of length T is ✏-pseudorandom if for every reduced word � of length T in F

k

the estimate above holds.

For any T, ✏, a random reduced word of lengthN will be (T, ✏)-pseudorandom
with probability 1�O(e�N

c
) for a suitable constant c(T, ✏). This follows im-

mediately from the standard Cherno↵ inequality for the stationary Markov
process that produces a random reduced word in a free group (cf. (Calegari–
Walker, 2015, Lemma 3.2.2)).

With this definition in place, the statement of the Thin Spine Theorem
is:

Theorem 3.1.2 (Thin Spine Theorem). For any � > 0 there is T � �
and ✏ ⌧ 1/T so that, if r is (T, ✏)-pseudorandom and K is the 2-complex
associated to the presentation G := hF

k

| ri, then there is a spine f : L ! Z
over K for which L is a union of 648 circles (or 5,832 circles if k = 2), and
every edge of Z has length at least �.

The strange appearance of the number 648 (or 5,832 for k = 2) in the
statement of this theorem reflects the method of proof. First of all, observe
that if f : L ! Z is any spine, then since f has degree 3, the total length
of L is divisible by 3. If this spine is over K, then each component of L
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has length |r|, and if we make no assumptions about the value of |r| mod 3,
then it will be necessary in general for the number of components of L to be
divisible by 3.

Our argument is to gradually glue up more and more of L, constructing
Z as we go. At an intermediate stage, the remainder to be glued up consists
of a collection of disjoint segments from L, and the power of our method is
precisely that this lets us reduce the gluing problem to a collection of indepen-
dent subproblems of uniformly bounded size. But each of these subproblems
must involve a subset of L of total length divisible by 3 or 6, and therefore it
is necessary to “clear denominators” (by taking 2 or 3 disjoint copies of the
result of the partial construction) several times to complete the construction
(in the case of rank 2 one extra move might require a further factor of 9).

Finally, at the last step of the construction, we take 2 copies of L and
perform a final adjustment to satisfy the co-orientation condition.

The remainder of this section is devoted to the proof of Theorem 3.1.2.

3.2. Graphs and types

Let L be a labeled graph consisting of 648 disjoint cycles (or 5,832 disjoint
cycles if k = 2), each labeled by r. We will build the spine Z and the map
f : L ! Z in stages. We think of Z as a quotient space of L, obtained by
identifying segments in L with the same labels. So the construction of Z
proceeds by inductively identifying more and more segments of L, so that at
each stage some portion of L has been “glued up” to form part of the graph
Z, and some remains still unglued.

We introduce the following notation and terminology. Let ⇤0 be a single
cycle labeled r. At the ith stage of our construction, we deal with a partially
glued graph ⇤

i

, constructed from a certain number of copies of ⇤
i�1 via

certain ungluing and gluing moves. At each stage, ⇤
i

is equipped with a
labelling, defining a map ⇤

i

! X. We will always be careful to ensure that
⇤

i

is folded, i.e. that the map ⇤
i

! X is an immersion. The glued subgraph
of ⇤

i

is denoted by �
i

, and the unglued subgraph by ⌥
i

. Shortly, the unglued
subgraph ⌥

i

will be expressed as the disjoint union of two subgraphs: the
remainder �

i

and the reservoir ⌦
i

.
Each of these graphs are thought of as metric graphs, whose edges have

lengths equal to the length of the words that label them. Themass of a metric
graph � is its total length, denoted by m(�). The type of a graph refers to the
collection of edge labels (which are reduced words in F

k

) associated to each
edge. A distribution on a certain set of types of graphs is a map that assigns
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a non-negative number to each type; it is integral if it assigns an integer to
each type. We use this terminology without comment in the sequel.

The following properties will remain true at every stage of our construc-
tion. The branch vertices of ⇤

i

(those of valence greater than two) have
valence four. The length of each edge will always be at least �. We will be
careful to ensure that any branch vertex in the interior of the glued part �

i

is good in the sense of Section 2. Vertices in the intersection of the glued and
unglued parts, �

i

\⌥
i

, will always be branch vertices, and will be such that
one adjacent edge is in �

i

, and the remaining three adjacent edges in ⌥
i

have
distinct labels.

In particular, we start with ⇤0 = ⌥0 and �0 = ?. At the last stage of our
construction we will have ⇤8 constructed from 324 copies of ⇤0 (or 2,916 if
k = 2), which is completely glued up; that is, �8 = ⇤8 and ⌥8 = ?. Finally,
the modification in Section 3.12 doubles the mass of ⇤8 in order to ensure
that the co-orientation condition is satisfied. Taking Z to be the result of
this construction and f to be the quotient map L ! Z proves the theorem.

3.3. Football bubbles

We will regard k and � as constants. The first step of the construction is
to pick some very big constant N � � where still T � N (we will explain
in the sequel how to choose T and N big enough) so that N is odd.

Let s be the remainder when |r| � 3� is divided by 3(N + 1)�. By
pseudorandomness, we may find three subsegments in r of reduced form

a1xa2, b1xb2, c1xc2

where a
i

, b
i

, c
i

are single edges, such that the labels a1, b1, c1 are all distinct
and a2, b2, c2 are all distinct, and the length of x is s. We take three copies of
⇤0, fix one of the above subsegments in each copy, and glue the parts of these
subsegments labeled x together to obtain ⇤1. Note that the requirement that
the labels a

i

, b
i

, c
i

are distinct ensures that ⇤1 remains folded. We summarize
this in the following lemma.

Lemma 3.3.1. After gluing three copies of ⇤0 along subsegments of length
s we obtain ⇤1, with the property that the length of each edge of the unglued
subgraph ⌥1 is congruent to 3� modulo 3(N + 1)�. The glued subgraph �1 is
a segment of length s.
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We next decompose the unglued subgraph ⌥1 into disjoint segments of
length 3N� separated by segments of length 3�. Call the segments of length
3N� long strips and the segments of length 3� short strips. Now further
decompose each long strip into alternating segments of length 3�; we call the
odd numbered segments sticky and the even numbered segments free.

We will usually denote a long strip by

x1a2x3 . . . xN

where the x
i

are sticky, the a
i

(or b
i

etc) are free, and all are of length 3�.
When we also need to include the neighboring short strips, we will usually
extend this notation to

a0x1a2x3 . . . xN

a
N+1

where a0 and a
N+1 (or b0, bN+1 etc) denote the neighboring short strips.

Definition 3.3.2. Three long strips are compatible if they (and their adjoin-
ing short strips) are of the form

a0x1a2x3 · · · aN+1, b0x1b2x3 · · · bN+1, c0x1c2x3 · · · cN+1

(i.e. if their sticky segments agree) and if for even i (i.e. for the free segments)
the letters adjacent to each x

i+1 or x
i�1 disagree.

A compatible triple of long strips can be bunched — i.e. the sticky seg-
ments can be glued together in threes, creating (N � 1)/2 football bubbles,
each football consisting of the three segments a

i

, b
i

, c
i

(for some i) arranged
as the edges of a theta graph. See Figure 3.

Figure 3: Bunching three long strips to create football bubbles

By pseudorandomness, a proportion of approximately (1� ✏) of the long
strips in �1 can be partitioned into compatible triples. Then each compat-
ible triple can be bunched, creating a reservoir of footballs (i.e. the theta
graphs appearing as bubbles) and a remainder, consisting of the union of the
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unglued pieces (except for the footballs). In what follows, we will denote the
remainder in ⌥

i

by �
i

and the reservoir by ⌦
i

.
We summarize this observation in the next lemma. By an extended long

strip, we mean a long strip, together with half the adjacent short strips.

Lemma 3.3.3. Suppose that T � 3(N +1)�, and that N is su�ciently large
and ✏ is su�ciently small. After bunching compatible triples in the unglued
graph ⌥1 we obtain the partially glued graph ⇤2 with the following properties.

1. The total mass of the unglued subgraph ⌥2 satisfies

m(⌥2)

3m(⇤0)


1

2
+O(cN)✏

for a constant c = c(k,�).
2. We can decompose the unglued subgraph ⌥2 as a disjoint union �2t⌦2.

The reservoir ⌦2 is a disjoint union of bubbles.
3. The mass of the remainder satisfies

m(�2)

3m(⇤0)
= O(1/N)

as long as ✏ < O(c�N).
4. The distribution of the types of bubbles in the reservoir is within O(✏)

of a constant distribution (independent of N and ✏).

Proof. The number of types of extended long strips is O(cN) for some con-
stant c = c(k,�). The unglued subgraph ⌥1 is still (T, ✏)-pseudorandom,
containing a union of

m(⌥1)

3(N + 1)�
extended long strips. By pseudorandomness, we may restrict to a subset
⌥0

1 ✓ ⌥1 of mass at least (1 � O(cN)✏)m(⌥1) so that the types of extended
long strips in ⌥0

1 are exactly uniformly distributed. (Here we use that T �

3(N + 1)�.) We then randomly choose a partition into compatible triples,
and perform bunching, to produce ⇤2.

We estimate the mass of the unglued subgraph as follows.

m(⌥2) = m(⌥1 r⌥0
1) +

m(⌥0
1)

2

 O(cN)✏m(⌥1) +
(1�O(cN)✏)

2
m(⌥1)

=
(1 +O(cN)✏)

2
m(⌥1)
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and (1) follows immediately.
As described above, the unglued subgraph ⌥2 is naturally a disjoint union

of the remainder �2 and the reservoir ⌦2. The remainder consists, by def-
inition, of the union of ⌥1 r ⌥0

1 and the short strips in ⌥0
1 (after gluing).

Hence

m(�2) < O(cN)✏m(⌥1) +
1�O(cN)✏

N + 1
m(⌥1) =

(1 +O(cN)✏)

N + 1
m(⌥1)

which is O(1/N) as long as ✏ < O(c�N).
Bunching uniformly distributed long strips at random induces a fixed

distribution on subgraphs of bounded size. This justifies the final assertion.

3.4. Super-compatible long strips

At this point, we have bunched all but ✏ of the long strips into triples.
In particular, for su�ciently small ✏, the number of bunched triples is far
larger than the number of unbunched long strips. We will now argue that we
may, in fact, adjust the construction so that every long strip is bunched. The
advantage of this is that after this step, the unglued part consists entirely
of the reservoir (a union of football bubbles) and a remainder consisting of
a trivalent graph in which every edge has length exactly 3�. The key to this
operation is the idea a super-compatible 4-tuple of long segments.

Definition 3.4.1. Four long strips are super-compatible if they are of the
form

a0x1a2x3 · · · aN+1, b0x1b2x3 · · · bN+1, c0x1c2x3 · · · cN+1, d0x1d2x3 · · · dN+1

(i.e. if their sticky segments agree) and if for even i (i.e. for the free segments)
the initial and terminal letters of a

i

, b
i

, c
i

, d
i

disagree. Alternatively, such a
4-tuple is super-compatible if every sub-triple is compatible.

Remark 3.4.2. Notice that the existence of super-compatible 4-tuples depends
on rank k � 3. An alternative method to eliminate unbunched long strips in
rank 2 is given in § 3.13.

Lemma 3.4.3. Let ⇤2 be as above. As long as k � 3 and ✏ is su�ciently
small (depending on N), one can injectively assign to each long strip S0 in
the remainder �2 a bunched triple (S1, S2, S3) in ⇤2 such that the quartet
(S0, S1, S2, S3) is super-compatible.
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Proof. Let S0 be an unglued long strip. As long as k � 3, it is clear that there
is at least one type of bunched triple (S1, S2, S3) such that (S0, S1, S2, S3) is
super-compatible. The total number of types of bunched triples is O(DN)
for some D = D(k,�). Therefore, the proportion of bunched triples that
are super-compatible with S0 is at least 1/O(DN) � O(✏). On the other
hand, the proportion of long strips that are unbunched is O(✏). Therefore,
we can choose a bunched triple for every unbunched long strip as long as
O(✏) < 1/O(DN).

By the previous lemma, we may assign to each unglued long strip S0 in
the remainder �2 a glued triple (S1, S2, S3) such that (S0, S1, S2, S3) is super-
compatible. We may re-bunch these into the four possible compatible triples
that are subsets of our super-compatible 4-tuple, viz:

(S0, S1, S2), (S0, S1, S3), (S0, S2, S3), (S1, S2, S3)

The result of performing this operation on every long strip in the remainder
�2 yields the new partially glued graph ⇤3.

Lemma 3.4.4. Take 3 copies of ⇤2 as above, and suppose that N is suf-
ficiently large and ✏ is su�ciently small. After choosing super-compatible
triples and re-bunching so that every long strip is bunched, we produce the
partially glued graph ⇤3 with the following properties.

1. The partially glued graph ⇤3 consists of a glued subgraph �3, a reservoir
⌦3, and a remainder �3.

2. The reservoir ⌦3 consists of football bubbles and its mass is bounded
below by

m(⌦3)

m(⇤0)
� O(1)

3. The remainder �3 is a trivalent graph with each edge of length 3�, and
its mass is bounded above by

m(�3)

m(⇤0)
 1/O(N)

4. Let ⇢ be the uniform distribution on types of bubbles. Then for any
type B of bubble, the proportion of bubbles in the reservoir of type B is
within O(cN)✏ of ⇢.
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Proof. Consider ⌥1, the unglued subgraph of ⇤1. Then ⌥1 is the union of
three arcs, of total mass 3C(N + 1)� + 9�, where C is the number of long
strips in ⌥1. Recall that ⇤3 is constructed from three copies of ⇤1, and that
for each long strip, one short strip goes into the remainder, and (N � 1)/2
go into the reservoir. Therefore, we have that

m(⌦3)

3m(⌥1)� 9�
=

N � 1

2N + 2

and
m(�3)� 9�

3m(⌥1)� 9�
=

1

N + 1

Since m(⌥1) � 3m(⇤0)�O(N), the estimates (2) and (3) follow.
Finally, we need to check that the re-gluing only has a small e↵ect on the

distribution of bubble types. Recall that the unglued long strips in ⌥2 are
precisely the images of the unglued long strips in ⌥1 r⌥0

1, which is of mass
at most O(cN)✏m(⌥1).

Taking three copies of each of these and three copies of a super-compatible
triple, re-bunching produces four new bunched triples. In particular, for each
three unbunched long strips, we destroy (N �1)/2 bubbles and replace them
with 2(N � 1) new bubbles of di↵erent types. The proportion of unglued
long strips was at most O(cN)✏. It follows that the proportional distribution
of each bubble type was altered by at most O(cN)✏, so the final estimate
follows.

3.5. Inner and outer reservoirs and slack

As their name indicates, the bubbles in the reservoir will be held in re-
serve until a later stage of the construction to glue up the remainder. Some
intermediate operations on the remainder have “boundary e↵ects”, which
might disturb the neighboring bubbles in the reservoir in a predictable way.
So it is important to insulate the remainder with a collar of bubbles which
we do not disturb accidentally in subsequent operations.

Fix a constant 0 < ✓
n

< 1 and divide each long strip in ⇤
n

into two
parts: and inner reservoir, consisting of an innermost sequence of consecutive
bubbles of length 1 � ✓

n

times the length of the long strip, and an outer
reservoir, consisting of two outer sequences of consecutive bubbles of length
✓
n

/2. The number ✓
n

is called the slack. Boundary e↵ects associated to each
step that we perform will use up bubbles from the outer reservoir and at
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most halve the slack. Since the number of steps we perform is uniformly
bounded, it follows that — provided N is su�ciently large — even at the
end of the construction we will still have a significant outer reservoir with
which to work.

3.6. Adjusting the distribution

After collecting long strips into compatible triples, the collection of foot-
ball bubbles in the reservoir is “almost equidistributed”, in the sense that the
mass of any two di↵erent types of football is almost equal (up to an additive
error of order ✏). However, it is useful to be able to adjust the pattern of
gluing in order to make the distribution of football bubbles conform to some
other specified distribution (again, up to an additive error of order ✏).

This operation has an unpredictable e↵ect on the remainder, transforming
it into some new 3-valent graph (of some possibly very di↵erent combinato-
rial type); however, it preserves the essential features of the remainder that
are known to hold at this stage of the construction: every edge of the re-
mainder (after the operation) has length exactly 3�; and the total mass of
the remainder before and after the operation is unchanged (so that it is still
very small compared to the mass of any given football type).

Let µ be a probability measure on the set of all football types, with full
support — i.e. so that µ is strictly positive on every football type. (In
the sequel, µ will be the cube distribution described below, but that is not
important at this stage.) Suppose we have three long strips of the form

a0x1a2x3 · · · aN+1, b0x1b2x3 · · · bN+1, c0x1c2x3 · · · cN+1

so that the result of the gluing produces (N+1)/2 bunches each with the label
x
i

(for i odd), and (N � 1)/2 football bubbles each with the label (a
i

, b
i

, c
i

)
(for i even). We think of the (a

i

, b
i

, c
i

) as unordered triples — i.e. we only
think of the underlying football as an abstract graph with edge labels up to
isomorphism. A given sequence of labels x

i

and (unordered!) football types
(a

i

, b
i

, c
i

) might arise from three long strips s, t, u in 6(N+3)/2 ways, since there
are 6 ways to order each triple a

i

, b
i

, c
i

.
Let ⇢ denote the uniform probability measure on football types, and let

µ0 be chosen to be a multiple of µ such that ⇢ > µ0 for all types. Fix ✓4 > 0
such that minµ0/⇢ > ✓4. As the notation hints, ✓4 will turn out to be the
slack in the partially glued graph ⇤4, and we accordingly partition each long
strip of ⇤3 into an inner reservoir, of proportional length (1 � ✓4), and an
outer reservoir consisting of two strips of proportional length ✓4/2.
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We put all possible triples of long strips labeled as above into a bucket.
Next, color each even index i in [N✓4/2, N(1� ✓4/2)] (i.e. those contained in
the inner reservoir) black with probability

(⇢� µ0(i))

(1� ✓4)⇢

and color all the remaining indices white, where µ0(i) is short for the µ0

measure of the football type (a
i

, b
i

, c
i

) (note that our choice of ✓4 guarantees
that the assigned probabilities are never greater than 1).

Now pull apart all the triples of long strips, and match them into new
triples s, t, u according to the following rule: if a given index i is white, the
corresponding labels s

i

, t
i

, u
i

should all be di↵erent, and equal to a
i

, b
i

, c
i

(in
some order); if a given index i is black, the corresponding labels s

i

, t
i

, u
i

should all be the same, and equal to exactly one of a
i

, b
i

, c
i

. Then we can
glue up s, t, u to produce footballs (a

i

, b
i

, c
i

) exactly for the white labels, and
treat the black labels as part of the neighboring sticky segments, so that they
are entirely glued up.

We do this operation for each bucket (i.e. for each collection of triples
with a given sequence of sticky types x

i

and football types (a
i

, b
i

, c
i

)). The
net e↵ect is to eliminate a fraction of approximately (⇢ � µ0(i))/⇢ of the
footballs with label i; thus, at the end of this operation, the distribution of
footballs is proportional to µ, with error of order ✏.

Although this adjustment operation can achieve any desired distribution
µ, in practice we will set µ equal to the cube distribution, to be described in
the sequel. In any case, for a fixed choice of distribution µ, the slack ✓4 only
depends on k and �, and therefore can be treated as a constant.

We summarize this in the following lemma.

Lemma 3.6.1. Let µ be a probability distribution on the set of types of
football bubbles and let N be su�ciently large. The adjustment described
above transforms ⇤3 into a new partially glued graph ⇤4 with the following
properties.

1. The mass of the reservoir ⌦4 is bounded below by a constant depending
only on k,� and µ.

m(⌦4)

m(⇤0)
� O(1)
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2. The mass of the remainder �4 is bounded above by

m(�4)

9m(⇤0)
 1/N

3. The distribution of football types in the reservoir is proportional to µ,
with error O(cN)✏.

4. The slack ✓4 is a constant.

Proof. As noted above, this operation may completely change the combina-
torial type of the remainder, but leaves invariant its total mass, and the fact
that it is a 3-valent graph with edges of mass 3�. In particular,

m(�4)

9m(⇤0)
⇡

1

N + 1

and so m(�4)/9m(⇤0)  1/N for su�ciently large N . This proves item 2.
We lose a fraction of the reservoir—those indices colored black. An index

i between N✓4/2 and N(1 � ✓4/2) is colored black with probability (⇢ �

µ0(i))/⇢. Therefore, the proportion of bubbles colored white is bounded
below by min

i

µ0(i)/⇢, and so the mass of the reservoir is bounded below by

m(⌦4)

3m(⌥1)� 9�
�

⇣
min

i

µ0(i)/⇢
⌘ N � 1

2N + 2

Since µ0 is a distribution on types of bubbles, depending only on � and k,
the first item holds as long as N is su�ciently large.

We next estimate the distributions of the types of bubbles. Before adjust-
ment, the proportion of each type of bubble in the reservoir ⌦3 was within
O(cN)✏ of the uniform distribution. These can be taken to be uniformly dis-
tributed between the inner and outer reservoirs. Therefore, after adjustment,
the new distribution ⌫ on bubble types satisfies

|⌫ � µ0
|  (µ0/⇢)O(cN)✏

and so, as before, since µ0(i) is bounded above in terms of � and k, the third
assertion follows.

The final assertion about the slack is immediate from the construction.
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3.7. Tearing up the remainder

At this stage the remainder consists of a 3-valent graph in which every
edge has length exactly 3�. The total mass of the remainder is very small
compared to the mass of the reservoir, but it is large compared to the size of
a single long strip. Furthermore, there is no a priori bound on the combina-
torial complexity of a component of the remainder.

We explain how to modify the gluing by a certain local move called a tear1,
which (inductively) reduces the combinatorial complexity of the remainder
(which a priori is arbitrarily complicated) until it consists of a disjoint col-
lection of simple pieces. These pieces come in three kinds:

1. football bubbles;

2. bizenes: these are graphs with 6 edges and 4 vertices, obtained from a
square by doubling two (non-adjacent) edges; and

3. bicrowns: these are complete bipartite graphs K3,3.

The bubbles, bizenes and bicrowns all have edges of length exactly 3�. They
are depicted in Figure 4. Note that bizenes doubly cover footballs and bi-
crowns triply cover footballs. If the labels on a bizene or bicrown happen to
be pulled back from the labels on a football bubble via the covering map,
then we say that the bizene or bicrown is of covering type.

Figure 4: Football bubbles, bizenes, and bicrowns

We now describe the operation of tearing. Take two copies of ⇤4, denoted
by ⇤4 and ⇤0

4 (with vertices, edges and subgraphs of ⇤0
4 denoted with primes

in the obvious manner) and let p and p0 be branch vertices of �4 and �0
4

respectively. These vertices are the ends of disjoint sequences of alternating

1“tear” in the sense of: “There were tears in her big brown overcoat”
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Figure 5: Tearing at p and p0. The “before” picture is on the left, and the “after” picture
on the right. The graph ⇤4 [ ⇤0

4 is transformed by being disconnected at p and p0 and
having three new bigons inserted which connect the new six 1-valent ends of ⇤4[⇤

0
4�p�p0

in pairs. The move also destroys 8 footballs, and creates two bicrowns.

bunched triples and football bubbles. The tearing operation uses up two
(appropriately labeled) sequences of alternating bunched triples and football
bubbles, each of length 3. The precise definition of this operation is best
given by example, and is illustrated in Figure 5.

On the left of the figure we have the vertices p and p0 of ⇤4 and ⇤0
4,

together with two strings of 3 bubbles. These strings are pulled apart and
reglued according to the combinatorics indicated in the figure. Thus, the
labels on the bunched triples at each horizontal level should all agree, and
the labels on the footballs should be such that the result of the gluing is still
folded. The existence of strings of football bubbles with these properties is
guaranteed by pseudorandomness and the definition of the long strips.

Thus the operation of tearing uses up 8 footballs (as in the figure), and it
has several e↵ects on the remainder. First, ⇤4 [ ⇤0

4 is pulled apart at p and
p0, producing six new vertices p1, p2, p3 and p01, p

0
2, p

0
3, and adding two new

edges x
i

and x0
i

(from the footballs separating the adjacent bunched triples)
joining p

i

to p0
i

. Second, two new bicrowns are created, assembled from the
pieces of three identically labeled footballs. Third, the slack at p and p0 is
reduced to approximately half of its previous value. If the strings of three
football segments are taken from the inner half of the outer reservoir, it will
reduce the slack at the vertices of ⇤4 [⇤0

4 at the end of these strips; but the
size of the slack at these vertices will stay large.

Lemma 3.7.1. Suppose that N is su�ciently large, ✏ is su�ciently small
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and the partially glued graph ⇤4 is as above. By applying tearing operations
to 2 copies of ⇤4 we may build a partially glued graph ⇤5 with the following
properties.

1. The mass of the reservoir ⌦5 is bounded below by a constant depending
only on k,� and µ.

m(⌦5)

m(⇤0)
� O(1)

2. The remainder �5 is a disjoint union of bizenes, and bicrowns of cov-
ering type, with mass bounded above by

m(�5)

m(⇤0)
 O(1/N)

3. The distribution of football bubbles of each type is within O(1/N) of the
distribution µ0 (proportional to µ).

4. The slack satisfies ✓5 � ✓4/3.

Proof. As described above, we construct ⇤5 from two copies of ⇤4: let us
denote them by ⇤4 and ⇤0

4, and likewise denote subgraphs, vertices and
edges with primes as appropriate. At each branch vertex p of �4 we have
three unglued (elementary) edges with labels a, b, c (pointing away from p,
say), and one glued edge with label d (also pointing away from p). Denote
by e

x

the short strip in �4 incident at p with outgoing label x. Let p0 be the
corresponding vertex of �0

4, which is of course locally isomorphic to p.
For each such pair of vertices p of �4 and p0 of �0

4, we choose a pair of
bubbles so that we may perform a tear move at p and p0. In order to do
this, we must choose a pair of bubbles B1, B2, with certain constraints on
the labelings at their branch vertices. We next describe one feasible set of
constraints that enables the tearing operation to be performed (there will
typically be other possible configurations).

Necessarily, at each branch vertex of B1 and B2, we need the incident
glued (elementary) edge to have (outgoing) label d. We will also require that
each bubble B

i

is a union of three short strips si
a

, si
b

, si
c

, with the property
that at each branch vertex of B

i

the outgoing label on the short strip si
x

is
equal to x. Since there are only a finite number of possible local labelings at
the branch vertices, and since each type of bubble occurs with roughly equal
distribution, there are many bubbles satisfying this condition.
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Later in the argument, it will also prove necessary that the strips si•
satisfy certain other constraints (see Lemma 3.10.2 below). For the moment,
it su�ces that these constraints are mild enough to guarantee the existence
of the bubbles B

i

.
Given bubbles B1, B2 for a vertex p of �4, we can perform the tearing

operation, in such a way that after tearing, e
a

and e0
a

adjoin s1
b

and s2
c

, e
b

and
e0
b

adjoin s1
c

and s2
a

, and e
c

and e0
c

adjoin s1
a

and s2
b

. Note that the resulting
graph remains folded, and that the remainder �4 has been replaced by a
union of bizenes.

Therefore, in order to perform the tearing operation, we need to find V
pairs of bubbles B1, B2 as above, where V is the number of vertices of �4.
To do this, we divide all football bubbles in the undisturbed segments of the
long strips into consecutive runs of seven. For each vertex of the remainder
�4, we need to choose two such runs of a specified type. We furthermore
insist on choosing these runs of seven from within the ‘innermost’ part of the
‘outer’ reservoir.

The number V is equal to 2m(�4)/9�  m(L)O(1/N). By pseudoran-
domness, the number of runs of seven bubbles of a fixed type is bounded
below by

✓4O(m(⌦4)) � ✓4O(m(L))

(using that ✏ is su�ciently small). Half of these runs of seven come from
within the innermost part of the outer reservoir. Therefore, as long as N is
large enough, we can always choose two suitable runs of seven bubbles for
each vertex of �4, as required.

Since V/m(L) is bounded above by a constant (depending on k,� and µ)
divided by N , the distribution of each bubble type has only been changed
by O(1/N).

After performing tears in this way, we obtain a new partially glued graph
⇤5, with the additional property that the remainder �5 is a disjoint union of
bizenes and bicrowns (the latter of covering type). The mass of the remainder
is still bounded above by

m(�5)/m(L)  12/N

since three half-edges of �4 are replaced by 36 half-edges of �5, as shown in
Figure 5.

Since, by construction, we only used bubbles in the tearing operation
which came from the innermost half of the outer reservoir together with one
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bubble from the outermost part of the outer reservoir, the slack ✓5 is no
smaller than

✓4(1/2�O(1/N)) � ✓4/3

as claimed.

3.8. Adjusting football inventory with trades

It will be necessary at a later stage of the argument to adjust the numbers
of football pieces of each kind, so that the reservoir itself can be entirely glued
up. At this stage and subsequent stages we must be careful to consider not
just the combinatorial graph of our pieces, but also their type — i.e. their
edge labels.

We now describe a move called a trade which has the following twofold
e↵ect:

1. it reduces the number of footballs of a specified type by 3; and

2. it transforms four sets of 3 footballs, each of a specified type, into four
bicrowns each with the associated covering type.

Moreover, unlike the operation described in § 3.6, the trade operation has
no e↵ect on the remainder. Thus, the trade moves can be performed after
the tear moves, to correct small errors in the distribution of football types,
adjusting this distribution to be exactly as desired.

The trade move is illustrated in Figure 6. We start with three strings
of five footballs, each string consisting of the same sequence of five football
types in the same orders. We also assume the labels on the three sets of
four intermediate sticky segments agree. We pull apart the sticky segments
and reglue them in the pattern indicated in the figure, in such a way that
four sets of three footballs are replaced with bicrowns. If the three middle
footballs are of type (a, b, c) then after regluing we can assume that the a
edges are all together, and similarly for the b and c edges; thus these triples
of edges may by glued up, eliminating the three footballs.

To summarize this succinctly, we introduce some notation. ForB a type of
football bubble, we denote by eB the corresponding covering type of bicrown.
For µ a distribution on football bubbles and bicrowns of covering type, we
denote by µ̃ the following distribution on football bubbles.

µ̃(B) = µ(B) + 3µ( eB)
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Figure 6: The trade move; the “before” picture is on the left, and the “after” picture is
on the right. This move eliminates 3 footballs of a given type, and transforms four sets of
3 footballs with a given type into four bicrowns of the given covering type.

Lemma 3.8.1. Let the partially glued graph ⇤5 be as above and suppose that
✏ is su�ciently small. There is a constant C5 2 (0, 1) with the following
property. Let µ5 be the distribution of bubble types in ⌦5 and let ⌫ be any
integral distribution on bubble types such that, for each type B,

µ5(B)(1� C5) < ⌫(B)  µ5(B)

Then we may apply trades as above to 3 copies of the partially glued graph
⇤5 to produce a new partially glued graph ⇤6 such that:

1. the induced distribution µ6 on bubbles and bicrowns satisfies µ̃6 = 3⌫;
2. the mass of the remainder �6 is bounded above by

m(�6)

m(⇤0)
 O(1/N);

3. the slack satisfies ✓6 � ✓5/2.

Proof. Let µ5 be the distribution on football bubbles and bicrowns derived
from ⇤5. From the upper bound on the total mass of the remainder, it follows
that 1  µ̃5/µ5  1 +O(1/N).

We divide the inner half of the outer reservoir ⌦o

5 into strips of five con-
tiguous football bubbles, and call a football bubble fifth if it lies in the center
of such a quintuple. Let µ̄5 denote the distribution of fifth football bubbles
in the inner half of the outer reservoir ⌦o

5.
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Recall that, in the outer reservoir, the bubbles are distributed within
O(cN)✏ of the uniform distribution. Therefore, for any football bubble type
B, |µ̄5(B)� ⇢| < O(cN)✏ (where ⇢ is the uniform distribution, scaled appro-
priately). In particular, taking N su�ciently large and ✏ su�ciently small,
we have

µ̄5(B) > C5µ5(B)

for some constant C5. Hence the hypothesis of the lemma implies that
µ̄5(B) > µ5(B) � ⌫(B) for every type B of football bubble. If N is su�-
ciently large then it follows further that µ̄5(B) � µ̃5(B) � ⌫(B) for every
type B.

Consider each bubble in the center of a quintuple in the outer reservoir of
type B. We color the bubble black with probability (µ̃5(B) � ⌫(B))/µ̄5(B)
and white otherwise.

We now construct ⇤6 from three copies of ⇤5, by performing a trade at
each bubble colored black. Taking three copies of ⇤5 triples the number of
each bubble type. The lemma is phrased so that replacing three bubbles of
a given type by a bicrown of corresponding covering type is neutral. The
only remaining e↵ect of a trade is then to remove exactly three bubbles of
the central type. This proves the lemma.

In the sequel, we will apply this lemma with a particular distribution ⌫,
described in Lemma 3.11.1 below.

3.9. Cube and prism moves

We have two more gluing steps: a small mass of bicrowns and bizenes must
be glued up with footballs (drawn from an almost equidistributed collection
of much larger mass), then the distribution of the footballs can be corrected
by trades so that they are perfectly evenly distributed, and finally an evenly
distributed collection of footballs (i.e. a collection with exactly the same
number of footballs with each possible label) must be entirely glued up. We
next describe three moves which will enable us to glue up bubbles, bizenes
and bicrowns.

3.9.1. The cube move
The idea is very simple: four footballs with appropriate edge labels can

be draped over the 1-skeleton of a cube in a manner invariant under the
action of the Klein 4-group, and then glued up according to how they match
along the edges of the cube. This is indicated in Figure 7.
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Figure 7: Four footballs draped over the 1-skeleton of a cube
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We next give an algebraic description of the cube move in terms of cov-
ering spaces of graphs, which enables us to give a precise description of the
various coverings of the cube moves that we will also need.

Consider two theta-graphs, ⇥ andH. The three edges of ⇥ are denoted by
↵, �, � (oriented so they all pointing in the same direction), and likewise the
three edges of H are denoted by a, b, c. We consider the immersion ⇥ ! H
which maps the edges of ⇥ to concatenations of edges of H as follows:

↵ 7! ab̄c , � 7! bc̄a , � 7! cāb

(as usual, ā denotes a with the opposite orientation etc). To enable us to
reason group-theoretically, we set � = ↵�̄ and ✏ = ��̄, and similarly d = ac̄
and e = bc̄. Fixing base points at the initial vertices of all the edges, ⇡1⇥ is
the free group on �, ✏ and ⇡1H is the free group on d, e. We immediately see
that the immersion ⇥ ! H induces the identifications

� = ↵�̄ = ab̄cb̄ac̄ = (ac̄)(bc̄)2(ac̄) = de2d

and
✏ = ��̄ = bc̄ab̄ac̄ = (bc̄)(ac̄)(bc̄)(ac̄) = ede�1d

The graph ⇥ should be thought of as a bubble, and the graph H as a
pattern for gluing it up. In what follows, we will describe various covering
spaces H• ! H. The fibre product ⇥• of the maps H• ! H and ⇥ ! H,
together with the induced map ⇥• ! H•, will then describe various gluing
patterns for (covering spaces of) unions of bubbles.

We first start with the cube move itself. Consider the natural quotient
map q4 : ⇡1H ! H1(H;Z/2Z) ⇠= V , where V is the Klein 4-group. The
corresponding covering space H4 ! H is a cube with quotient graph H.
Note that the deck group V acts freely on the cube H4, freely permuting the
diagonals. Since q4(⇡1⇥) = 1, the fibre product ⇥4 is a disjoint union of four
copies of ⇥, each spanning a diagonal in the cube H4 and freely permuted
by V . In particular, the map ⇥4 ! H4 precisely defines the cube move.

3.9.2. Gluing bizenes
We next describe a gluing move for bizenes. Consider the quotient map

q8 from ⇡1H to the dihedral group D8 = h�, ⌧ | �4 = ⌧ 2 = ⌧�⌧� = 1i defined
by d 7! � and e 7! ⌧ , and let H8 be the covering space of H corresponding
to the kernel of q8. Since q8 factors through q4, H8 is a degree-two covering
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space of the cube H4 (the graph H8 is in fact the 1-skeleton of an octagonal
prism). We next calculate the restriction of q8 to ⇡1⇥:

q8(�) = q8(de
2d) = �⌧ 2� = �2

while
q8(✏) = q8(ede

�1d) = ⌧�⌧� = 1

The covering space of ⇥ corresponding to the restriction of q8 is therefore a
bizene. It follows that the fibre product map

⇥8 ! H8

describes a double cover of the cube move, which glues four bizenes along an
octagonal prism. We will call this an 8-prism move.

3.9.3. Gluing bicrowns
Finally, we describe a gluing move for bicrowns. Consider the quotient

map q12 : ⇡1H ! D12 = h�, ⌧ | �6 = ⌧ 2 = ⌧�⌧� = 1i defined by d 7! ⌧
and e 7! �. Then, as before, since q12 factors through q4, the kernel of
q12 corresponds to a regular covering space H12 ! H4 of degree three (in
fact, H12 is isomorphic to the 1-skeleton of a dodecagonal prism). Again, we
calculate the restriction of q12 to ⇡1⇥, and find that

q12(�)
�1 = q12(✏) = �2

(an element of order 3). The covering space of ⇥ corresponding to the re-
striction of q12 is therefore a bicrown. In particular, the fibre product map

⇥12 ! H12

describes a triple cover of the cube move, which glues four bicrowns along a
dodecagonal prism. We will call this a 12-prism move.

3.10. Creating bizenes and bicrowns
To complete the proof of the Thin Spine Theorem, we need to glue up

the remaining small mass (of order 1/N) of bizenes and bicrowns using prism
moves, before gluing up the remaining football bubbles using cube moves. We
shall see that trades provide us with enough flexibility to do this, as long as
N is large enough. However, since prism moves require that bizenes are glued
up with bizenes and our bicrowns are glued up with bicrowns, and yet the
reservoir consists only of football bubbles, we will need a move that turns
football bubbles into bizenes and bicrowns of given types.
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3.10.1. Bicrown assembly
Since the bicrowns that we need to assemble are all of covering type, it

is straightforward to construct them from football bubbles. Given a bicrown
of covering type eB, covering a football bubble of type B, there is a move
which takes as input three identical triples of bubbles each of type B, and
transforms them into three bicrowns of type eB, without any other changes
to the unglued subgraph.

The following lemma is an immediate consequence of the fact that a 12-
prism triply covers a cube.

Lemma 3.10.1. For every bicrown of covering type there exist three more
bicrowns of covering type such that the four bicrowns together can be glued
with a 12-prism move.

3.10.2. Bizene assembly
Bizene assembly is more subtle, because the bizenes that we need are

more general than simply of covering type. We assemble bizenes using the
following move.

Consider an adjacent pair of bubbles of type (a, b, c) and (a0, b0, c0), sep-
arated by a sticky strip of type x. Suppose also that the second bubble (of
type (a0, b0, c0)) is followed by a further sticky strip also of type x. Consider
also a second pair of bubbles, of the same type but with the two bubbles
swapped. From these two pairs we may construct two bizenes of the same
type. The pairs of edges with the same start and end points are labeled (a, b)
and (a0, b0), while the edges joining one pair to the other are labeled c and c0.

The bizenes that we may assemble in this way satisfy some constraints,
arising from the fact that both the ends of the following triples must all
be compatible with the start of x: (a, b, c), (a0, b0, c0), (a, b, c0), (a0, b0, c). In
the rank-two case, this creates especially strong constraints, which (up to
relabeling) can be simply stated as requiring that the ends of a, b and c
should be equal to the ends of a0, b0 and c0 respectively. We shall call such a
bizene constructible.

Just as the bizenes that we can construct are constrained, so the bizenes
that we need to glue up from the remainder are also of a special form. Indeed,
in the proof of Lemma 3.7.1 we were free to choose the interiors of the bubbles
B1 and B2 in any way.
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e•

e•

Figure 8: Four bizenes draped over an octagonal prism. A remainder bizene is colored
red; the only constraint in its construction arises from the two identical arcs labeled ↵.
The yellow, green and blue bizenes are constructible. They are constrained only by the
requirements that the circled vertices should be identically labeled.

Lemma 3.10.2. There exist choices of the bubble types B1 and B2 in the
proof of Lemma 3.7.1 such that the resulting remainder bizenes can be glued
with a prism move to three constructible bizenes.

Proof. Such a choice is illustrated in Figure 8. Note that the constrained
vertices of the yellow, green and blue constructible bizenes are disjoint from
each other and from the determined arcs e• of the red remainder bizene.
Therefore, we can start by labeling the two arcs e• and the constrained
vertices, and then label the rest of the 8-prism in any way we want. Doing
this for each e• determines the bubble types B1 and B2.

3.11. Gluing up the remainder

In this section we use the moves described above to completely glue up
the remainder and the reservoir. But first we will address two important
details which we have hitherto left undefined: the distributions µ (of Lemma
3.6.1) and ⌫ (of Lemma 3.8.1).
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We first describe ‘cubical distributions’. Consider any distribution  on
the set of types of cubes with side length �. The cube move associates to each
type of cube a collection of four types of football bubbles. The push forward
of any distribution  to the set of types of football bubbles is called a cubical
distribution. In particular, if  is the uniform distribution on the set of types
of cubes then we call the push forward the uniform cubical distribution, or
just the cube distribution for brevity.

In Subsection 3.6 above we may take µ to be the cube distribution, so
that the set of football bubbles in the reservoir ⌦5 is within O(1/N) of µ0, a
distribution proportional to the cube distribution.

We next address the distribution ⌫ from Lemma 3.8.1. It consists of
two parts: any cubical distribution , and a bizene correction distribution �.
That is, ⌫ = +�. So we need to describe the bizene correction distribution.

The remainder �5 consists of (remainder) bizenes and bicrowns. By
Lemma 3.10.2, to each remainder bizene we associate (some choice of) three
constructible bizenes. Each constructible bizene can in turn be constructed
from a pair of types of football bubble. Thus, to each remainder bizene we
associate six football bubbles. Summing over all bizenes in the remainder �5

defines the distribution �.
In order to apply Lemma 3.8.1, we need to check that there is a cubical

distribution  such that ⌫ = + � satisfies the hypotheses of the lemma.

Lemma 3.11.1. If N is su�ciently large then there exists a cubical distri-
bution  such that the integral distribution ⌫ = + � satisfies

1� C5  ⌫/µ5  1

(where C5 is the constant from Lemma 3.8.1). Furthermore, as long as m(L)
is su�ciently large, we may take  to be integral.

Proof. Since the mass of the remainder is O(1/N)m(L) and µ5 is bounded
below, it follows that �(B)  O(1/N)µ5(B) for each type B of football
bubble, so it su�ces to show that there is an integral cubical distribution 
satisfying

1� C5  /µ5  1�O(1/N)

By the construction of ⇤5, there is a cubical distribution µ0 such that |1 �
µ0/µ5| < O(1/N). Choose a rational ⌘ 2 (1 � C5, 1). As long as N is
su�ciently large we will also have that 1�C5 +O(1/N) < ⌘ < 1�O(1/N),
and it follows that  = ⌘µ0 satisfies the required condition. Furthermore, if
m(L) is su�ciently large then ⌘ can be chosen so that  is integral.
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We can now glue up all the bizenes, using bizene assembly and the 8-prism
move.

Lemma 3.11.2. Let ⇤6 be as in Lemma 3.8.1, using the distribution ⌫ from
Lemma 3.11.1. Then we may apply 8-prism moves to 2 copies of ⇤6 to
produce a partially glued graph ⇤7 such that:

1. every component of the remainder �7 is a bicrown of covering type;
2. the total mass of the remainder �7 satisfies m(�7)/m(⇤7)  O(1/N);
3. if µ7 is the distribution of bubbles and bicrowns in ⇤7 then µ̃7 is cubical;
4. the slack ✓7 satisfies ✓7 � ✓6/2.

Proof. Let �̃ be the distribution of constructible bizenes required to glue
up the remainder bizenes in ⇤6. Take two copies of ⇤6. Using the bizene
assembly move, we construct exactly 2�̃(B) new bizenes of each type B from
the inner half of the outer reservoir. From the definition of B̃ we may now
glue up all the bizenes using the 8-prism move. By the construction of ⇤6,
it follows that µ̃7 = 2µ̃6 � 2� = 2 and so is cubical.

Since the total mass of bicrowns was O(1/N) in ⇤6, the same is true in
⇤7.

The next lemma completes the proof of the Thin Spine Theorem, except
for a small adjustment needed to correct co-orientation, in the case when
k > 2.

Lemma 3.11.3. From 3 copies of ⇤7 as above, we can construct a graph ⇤8

in which the unglued subgraph ⌥8 is empty.

Proof. For each bicrown eB0 (of covering type), there exist bicrowns of cover-
ing type eB

i

(where i = 1, 2, 3) such that the eB
i

for i = 0, 1, 2, 3 can be glued
up using a 12-prism move. Three copies of each of these eB

i

can in turn be
constructed from three consecutive copies of bubbles B

i

, using the bicrown
assembly move from Lemma 3.10.1. Let ↵ be the distribution on bubble
types that, for each bicrown of type eB0 in the remainder, counts three bub-
bles of each type B

i

. Note that, because all the bicrowns are of covering type
and the 12-prism move covers the cube move, the distribution ↵ is cubical.

The partially glued graph ⇤8 is constructed from three copies of ⇤7. Since
the mass of the remainder �7 is bounded above by

m(�7)

m(⇤7)
 O(1/N)
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whereas the mass of the outer reservoir ⌦o

7 is bounded below by

m(⌦o

7)

m(⌦7)
� ✓7 � O(1) ,

for N su�ciently large we may use bicrown assembly to construct three times
the number of bicrowns needed to glue up the remainder, using football
bubbles from the outer reservoir. We can then use 12-prism moves to glue
up all the bicrowns.

The distribution of the remaining football bubbles is still cubical, and so
they can also be glued up with cube moves.

3.12. The co-orientation condition

The result of all this gluing is to produce f : L ! Z which is degree 3,
and whose local model at every vertex of Z is good. What remains is to
check that the construction can be done while satisfying the co-orientation
condition. The obstruction to this condition can be thought of as an element
of H1(L;Z/2Z). Since L has a bounded number of components, it should
not be surprising that we can adjust the gluing by local moves to ensure the
vanishing of the co-orientation obstruction. In fact, it is easier to arrange this
after taking 2 disjoint copies of L, and possibly performing a finite number
of moves, which we now describe.

After the first gluing step, we trivialize the I-bundles (in an arbitrary
way) along the preimage of each of the short segments. This trivialization
determines a relative co-orientation cocycle on each football bubble or com-
ponent of the remainder; we refer to this relative cocycle as a framing. The
set of framings of each component � is a torsor for H1(�;Z/2Z); the four
possible framings of a football bubble are depicted in Figure 9.

Figure 9: Four framings on a football bubble

Subsequent moves all make sense for framed bubbles, bizenes, bicrowns
and so on. Each gluing move can be done locally in a way which embeds in R3
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(embeddings are illustrated in the figures throughout the last few sections);
such an embedding determines a move framing on each of the pieces. The
di↵erence between a given framing and the move framing determines a class
in H1(�;Z/2Z) for each piece, and the sum over all such pieces is the (global)
co-orientation cocycle in H1(L;Z/2Z).

There is a very simple procedure to adjust this global co-orientation co-
cycle, which we now describe. Suppose we have a pair of footballs � and
�0 with the same 3 labels, but with framings which di↵er by a single reflec-
tion at a vertex (i.e. they are of the first two types depicted in Figure 9).
Swapping � and �0 in two cube moves that they participate in adjusts the
cocycle six times, once for each of the six edges in the two bubbles; we call
this a swap move. If three of these edges are in a component L

i

, and three
in L

j

, then the global change to the cocycle is to add a fundamental class
of H1(L

i

[ L
j

;Z/2Z). If we performed our original gluing randomly, every
component L

i

should contain many pairs of footballs with framings which
di↵er in this way. So if we take two disjoint copies of L ! Z, we can trivial-
ize the co-orientation cocycle by finitely many such swaps. This duplication
multiplies the total number of components of L by a factor of 2.

This completes the proof of the Thin Spine Theorem 3.1.2, at least when
k � 3.

3.13. Rank 2

The move described in § 3.4 to deal with an excess of O(✏) long strips
requires rank k � 3, so that long strips can be grouped into super-compatible
4-tuples if necessary. In this section we briefly explain how to finesse this
point in the case k = 2.

Fix some constant C with 1 ⌧ C ⌧ N ; C will need to satisfy some
divisibility properties in what follows, but we leave this implicit. Define a
pocket to be three equal segments of length 3(C + 2)� which can be glued
compatibly. Recall at the very first step of our construction that we glued
compatible long strips in triples by bunching sticky segments to form bubbles.
We modify this construction slightly by also allowing ourselves to create some
small mass of bunched pockets. That is, we bunch triples of long strips of
the form

a0x1a2x3 · · · aN 0 , b0x1b2x3 · · · bN 0 , c0x1c2x3 · · · cN 0

if for even i the letters adjacent to each x
i+1 or x

i�1 disagree, where each
a
i

, b
i

or c
i

has length 3�, and where each x
j

either has length 3�, or has
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length 3(C + 2)�. We insist that the proportion of x
j

of length 3(C + 2)�
is very small, so that most of the bunched triples are of length 3�, but that
some small mass of bunched pockets has also been created. Note that N 0 will
depend on the number of “long” x

j

, but in any case N 0 will be quite close to
N .

We arrange by pseudorandomness that the mass of bunched pockets of
every possible type is O(✏), but with a constant such that this mass is defi-
nitely larger than the number of long strips that will remain unbunched after
the first step.

Now consider a long strip � left unbunched after the first step. We par-
tition this strip in a di↵erent way as

� := e0z1e2z3 · · · eM

where each e
j

has length 3�, and each z
j

has length C�.
We take 9 copies of �. Fix an index j. Suppose we have two sets of three

bunched triples of pockets (hence 18 pockets in all) of the form

a
i

↵
i

x
i

�y
i

�
i

r
i

, b
i

↵
i

x
i

�y
i

�
i

s
i

, c
i

↵
i

x
i

�y
i

�
i

t
i

bunched along the pocket ↵
i

x
i

�y
i

�
i

a0
i

↵0
i

x0
i

�0y0
i

�0
i

r0
i

, b0
i

↵0
i

x0
i

�0y0
i

�0
i

s0
i

, c0
i

↵0
i

x0
i

�0y0
i

�0
i

t0
i

bunched along the pocket ↵0
i

x0
i

�0y0
i

�0
i

for each of i = 1, 2, 3, and satisfying

1. each of a
i

, b
i

, c
i

, r
i

, s
i

, t
i

, x
i

, y
i

and their primed versions have length 3�;
2. each of ↵

i

, �, �
i

and their primed versions have length C�;
3. a1, a2, a3 all end with the same letter and r1, r2, r3 all start with the

same letter, and similarly for b
i

, c
i

, s
i

, t
i

and the primed versions;
4. a

i

, b
i

, c
i

end with di↵erent letters and r
i

, s
i

, t
i

start with di↵erent letters
for each fixed i, and similarly for the primed versions;

5. x1, x2, x3 start with di↵erent letters and end with the same letter and
similarly for the primed versions;

6. y1, y2, y3 end with di↵erent letters and start with the same letter and
similarly for the primed versions;

7. ↵1,↵2,↵3 can be partitioned into an odd number of segments of length
3� which can be compatibly bunched creating a strip of alternate short
segments and bubbles, and similarly for the �

i

and the primed versions;
8. the common last letter of the x

i

is di↵erent from the common last letter
of the x0

i

and from the last letter of e
j

, and the common first letter of
the y

i

is di↵erent from the common first letter of the y0
i

and from the
first letter of e

j+2; and
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9. �, �0 and z
j

can be partitioned into an odd number of segments of length
3� which can be compatibly bunched creating a strip of alternate short
segments and bubbles.

Under these hypotheses, we can pull apart the six bunched pockets, bunch
the ↵

i

in short strips (and similarly bunch the ↵0
i

), bunch the �
i

in short strips
(and similarly bunch the �0

i

), and finally bunch the three sets of �, �0 and z
j

in short strips. Explicitly, we are creating bunched segments of length C� of
the following kinds:

a1↵1x1, b2↵2x2, c3↵3x3; b1↵1x1, c2↵2x2, a3↵3x3; c1↵1x1, a2↵2x2, b3↵3x3;

a01↵
0
1x

0
1, b

0
2↵

0
2x

0
2, c

0
3↵

0
3x

0
3; b01↵

0
1x

0
1, c

0
2↵

0
2x

0
2, a

0
3↵

0
3x

0
3; c01↵

0
1x

0
1, a

0
2↵

0
2x

0
2, b

0
3↵

0
3x

0
3;

y1�1r1, y2�2s2, y3�3t3; y1�1s1, y2�2t2, y3�3r3; y1�1t1, y2�2r2, y3�3s3;

y01�
0
1r

0
1, y

0
2�

0
2s

0
2, y

0
3�

0
3t

0
3; y01�

0
1s

0
1, y

0
2�

0
2t

0
2, y

0
3�

0
3r

0
3; y01�

0
1t

0
1, y

0
2�

0
2r

0
2, y

0
3�

0
3s

0
3;

and finally three copies of

x
i

�y
i

, x0
i

�0y0
i

, e
j

z
j+1ej+2

for each of i = 1, 2, 3.
If we do this for each z

j

in turn, then the net e↵ect is to pair up all the
extra long strips, at the cost of creating a new remainder of mass O(✏), and
using up mass O(✏) of the bunched pockets.

At the end of this step every vertex of the new remainder created is
adjacent to a strip of C/3 consecutive short bubbles; because of this, there
is ample slack to apply tear moves to the new remainder as in § 3.7. Note
that this move requires us to take nine copies of each excess long strip; thus
we might have to take a total of 5,832 copies of L instead of 648 for k � 3.
The rest of the argument goes through as above. This completes the proof
in the case k = 2 and thus in general.

4. Bead decomposition

The next step of the argument is modeled very closely on § 5 from
Calegari–Walker (2015). For the sake of completeness we explain the ar-
gument in detail. Throughout this section we fix a free group F

k

with k � 2
generators and we let r be a random cyclically reduced word of length n,
and consider the one-relator group G := hF | ri with presentation complex
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K. Using the Thin Spine Theorem, we will construct (with overwhelming
probability) a spine f : L ! Z over K for which every edge of Z has length
at least �, for some big �. The main result of this section is that if this con-
struction is done carefully, the immersion M(Z) ! K will be ⇡1-injective,
again with overwhelming probability.

4.1. Construction of the beaded spine

A random 1-relator group satisfies the small cancellation property C 0(µ)
for every positive µ, with overwhelming probability. So to show thatM(Z) !
K is ⇡1-injective, it su�ces to show that for any su�ciently long immersed
segment � ! Z whose image in X under g : Z ! X lifts to r, it already lifts
to L. Informally, the only long immersed segments in Z which are “pieces”
of r are those that are in the image of segments of L under f : L ! Z.

Let Z be a 4-valent graph with total edge length |Z| = O(n), in which
every edge has length � �. For any `, there are at most |Z| · 3`/� immersed
paths in Z of length `. Thus if ` is of order n↵, and � � 1, we would not
expect to find any paths of length ` in common with an independent random
relator r of length n, for any fixed ↵ > 0, with probability 1 � O(e�n

c
) for

some c depending on ↵.
There is a nice way to express this in terms of density; or degrees of free-

dom, which is summarized in the following intersection formula of Gromov;
see Gromov (1993), § 9.A for details:

Proposition 4.1.1 (Gromov’s intersection formula). Let C be a finite set.
For a subset A of C define the (multiplicative) density of A, denoted density(A),
to be density(A) := log |A|/ log |C|. If A1 is any subset of C, and A2 is a
random subset of C of fixed cardinality, chosen independently of A1, then
with probability 1�O(|C|

�c) for some c > 0, there is an equality

density(A1 \ A2) = density(A1) + density(A2)� 1

with the convention that density < 0 means a set is empty.

Note that Gromov does not actually estimate the probability that his
formula holds, but this is an elementary consequence of Cherno↵’s inequality.
For a proof of an analogous estimate, which explicitly covers the cases of
interest that we need, see Calegari–Walker (2013), § 2.4.

In our situation, taking ` = n↵, we can take C to be the set of all reduced
words in F

k

of length `, which has cardinality approximately (2k � 1)n
↵
.
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If � � 1, then the set of immersed paths in Z of length ` has density as
close to 0 as desired; similarly, the set of subwords of a random word r of
length n has density as close to 0 as desired. Thus if these subwords were
independent, Gromov’s formula would show that they were disjoint, with
probability 1�O(e�n

c
).

Of course, the thin spines Z guaranteed by the Thin Spine Theorem
are hardly independent of r. Indeed, every subpath of r appears in L, and
therefore in Z! Thus, we must work harder to show that these subpaths
(those that are already in L) amount to all the intersection. The idea of the
bead decomposition is to subdivide r into many subsets b

i

of length n1�� (for
some fixed �), to build a thin spine Z

i

“bounding” the subset b
i

, and then
to argue that no immersed path in Z

i

of length n↵ can be a piece in any b
j

with i 6= j.
Fix some small positive constant �, and write r as a product

r = r1s1r2s2 · · · rmsm

where each r
i

has length n1�� and each s
i

has length approximately n� (the
exact values are not important, just the order of magnitude). Thus m is
approximately equal to n�; we further adjust the lengths of the r

i

and s
i

slightly so that m is divisible by 3.
We say a reduced word x has small self-overlaps if the length of the

biggest proper prefix of x equal to a proper su�x is at most |x|/3. Almost
every reduced word of fixed big length has small overlaps. Fix some positive
constant C < �/ log(2k � 1), and for each index i mod m/3 we look for the
first triple of subwords of the form a1xa2, b1xb2, c1xc2 in s

i

, s
i+m/3, si+2m/3

such that

1. the a
i

, b
i

, c
i

are single edges;

2. a1, b1, c1 are distinct and a2, b2, c2 are distinct;

3. x has length C log n with C as above; and

4. x has small self-overlaps.

Actually, it is not important that x has length exactly C log n; it would be
fine for it to have length in the interval [C log n/2, C log n], for example. Any
reduced word of length C log n with C < �/ log(2k � 1) will appear many
times in any random reduced word of length n�, with probability 1�O(e�n

c
)

for some c depending on �. See e.g. Calegari–Walker (2013), §. 2.3. Then for
each index imodm/3, the three copies of x can be glued to produce unusually
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long bunched triples l
i

that we call lips. The lips partition the remainder of
r into subsets which we denote b

i

, where the index i is taken mod m/3, so
that each b

i

is the union of three segments of length approximately equal to
n1�� consisting of r

i

, r
i+m/3, ri+2m/3 together with the part of the adjacent s

j

outside the lips. We call the b
i

beads, and we call the partition of r minus
the lips into beads the bead decomposition.

Now we apply the Thin Spine Theorem to build a thin spine f : L ! Z
such that

1. L consists of 648 copies of r (or 5,832 copies if k = 2);
2. Z is cyclically subdivided by the lips l

i

into connected subgraphs Z
i

;
3. the 648 copies of b

i

in L are precisely the part of r mapping to the
Z

i

, and the remainder of L consists of segments mapping to the lips as
above.

We call the result a beaded spine.

Lemma 4.1.2 (No common path). For any positive ↵, we can construct a
beaded spine with the property that no immersed path in Z

i

of length n↵ can
be a piece in any b

j

with i 6= j mod m/3, with probability 1�O(e�n

c
), where

c depends on ↵.

Proof. The construction of a beaded spine is easy: with high probability,
the labels on each b

i

are (T, ✏)-pseudorandom for any fixed (T, ✏), and we
can simply apply the construction in the Thin Spine Theorem to each b

i

individually to build Z
i

, and correct the co-orientation once at the end by a
local modification in Z1 (say).

By the nature of the bead decomposition, the b
i

are independent of each
other. By thinness, there are O(n · 3`/�) immersed paths in Z

i

of length `.
For any fixed positive ↵, if we set ` = n↵, and choose � big enough, then
the density of this set of paths (in the set of all reduced words of length
`) is as close to 0 as we like. Similarly, the set of subwords in b

j

of length
` has density as close to 0 as we like for big n. But now these subwords
are independent of the immersed paths in Z

i

, so by the intersection formula
(Proposition 4.1.1), there are no such words in common, with probability
1�O(e�n

c
).

4.2. Injectivity
We now show why a beaded spine gives rise to a ⇡1-injective map of a

3-manifold M(Z) ! K. First we prove another lemma, which is really the
key geometric point, and will be used again in § 6:
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Lemma 4.2.1 (Common path lifts). For any positive �, with probability
1� O(e�n

c
) we can construct a beaded spine L ! Z ! X with the property

that any immersed segment � ! Z with |�| = �n whose image in X under
Z ! X lifts to r or r�1, already lifts to L.

In words, this lemma says that any path in r of length �n which immerses
in Z lifts to L, and therefore appears in the boundary of a disk of M(Z).

Proof. The proof follows very closely the proof of Lemma 5.2.3 from Calegari–
Walker (2015).

First, fix some very small ↵ with ↵/ log 2k � 1 ⌧ C 0 where C 0 log n is
the length of the lips in the beaded spine. This ensures that a random word
of length n↵ is very unlikely to contain two copies of any word of length
C 0 log n with small self-overlaps; see e.g. Calegari–Walker (2013) Prop. 2.6
and Prop. 2.11 which says that the likelihood of this occurrence is O(n�C)
for some C.

Now, let f
Z

: � ! Z be an immersed path of length �n whose label is a
subpath of r or r�1; this means that there is another immersion f

L

: � ! L
such that the compositions � ! Z ! X and � ! L ! X agree.

Using f
L

, we decompose � into subpaths �
j

which are the preimages of
the segments of b

j

under f
L

. Apart from boundary terms, each of these �
j

has length approximately n1��. By Lemma 4.1.2, no �
j

can immerse in Z
i

with i 6= j mod m/3 unless |�
j

| < n↵, and in fact f
Z

must therefore take all
of �

j

into Z
j

except possibly for some peripheral subwords of length at most
n↵.

But this means that for all j, there is a subpath � ⇢ � centered at the
common endpoint of �

j

and �
j+1, with |�|  n↵, for which one endpoint

maps under f
Z

into Z
j

and the other into Z
j+1. This means that f

Z

must
map � over the lip of Z separating Z

j

from Z
j+1, and must contain a copy of

the word x
j

on that lip. But under the map f
L

, the word � contains another
copy of x

j

. By our hypothesis on ↵, the probability that � contains two
copies of x

j

is O(n�C). If these copies are the same, then the composition
f
L

: � ! L ! Z and f
Z

: � ! Z agree on �. But since Z ! X is an
immersion, it follows that f

L

: � ! L ! Z and f
Z

: � ! Z must agree on
all of �; i.e. that f

Z

lifts to L, as claimed.
So the lemma is proved unless there are two distinct copies of x

j

within
distance n↵ of each lip in the image of �. Since � has length �n, there are n�

such lips; the probability of two distinct copies for each lip is O(n�C), and
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the probabilities for distinct lips are independent, so the total probability is
O(e�n

c
) and we are done.

An immediate corollary is the existence of 3-manifold subgroups in ran-
dom 1-relator groups:

Proposition 4.2.2. Let G = hF
k

| ri be a random 1-relator group where
|r| = n. Then with probability 1 � O(e�n

c
) we can produce a beaded spine

L ! Z ! X for which the associated map M(Z) ! K is ⇡1-injective.

Proof. Suppose not, so that there is an immersed loop � : S1
! Z which is

nontrivial in ⇡1(M(Z)), but trivial in K. There is a van Kampen diagram
D with boundary �. If D is a disk in this diagram with some segment in
common with �, and if @D ! Z lifts to L, then @D bounds a disk in M(Z),
and we can push D across D by a homotopy, producing a diagram with fewer
disks. A diagram which does not admit such a simplification is said to be
e�cient; without loss of generality therefore we obtain an e�cient diagram
whose boundary is an immersed loop � : S1

! Z.
The group G satisfies the small cancellation property C 0(µ) for any posi-

tive µ. Thus by Greedlinger’s Lemma, if we take µ small enough, some disk
D in the diagram has a segment of its boundary of length at least n/2 in
common with �. Note that @D is labeled r or r�1, and has length n. Since
1/2 > � as in Lemma 4.2.1, the boundary of this path actually lifts to L,
whence the diagram is not e�cient after all. This contradiction proves the
theorem.

Note that each boundary component of M(Z) is of the form S(Y ) for
some 3-valent fatgraph Y immersed in Z; thus the same argument implies
that every component of @M(Z) is ⇡1-injective, and therefore M(Z) has
incompressible boundary. Furthermore, since K is aspherical, so is M(Z),
and therefore M(Z) is irreducible, and ⇡1(M(Z)) does not split as a free
product.

To show that M(Z) is homotopic to a hyperbolic 3-manifold with totally
geodesic boundary, it su�ces to show that it is acylindrical, by Thurston’s
hyperbolization theorem—see, for instance, (Bonahon, 2002, Theorem 4.3).
We show this in § 5.

5. Acylindricity

In this section we explain why the 3-manifolds we have produced in ran-
dom 1-relator groups are acylindrical.
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Theorem 5.0.1 (1-Relator Acylindrical Subgroup Theorem). Let G = hF
k

| ri
be a random 1-relator group where |r| = n. Then with probability 1�O(e�n

c
)

for the beaded spine L ! Z ! X guaranteed by Proposition 4.2.2 the 3-
manifold M(Z) is acylindrical. Thus, with overwhelming probability, random
1-relator groups contain subgroups isomorphic to the fundamental group of a
hyperbolic 3-manifold with totally geodesic boundary.

Proof. Each boundary component @
i

⇢ @M(Z) is of the form S(Y
i

) for some
trivalent fatgraph Y

i

! Z immersed in Z. Suppose M(Z) admits an essential
annulus. Then there is a van Kampen diagram on an annulus A with bound-
ary �1, �2 where �

i

immerses in Y
i

for fatgraphs Y
i

associated to boundary
components @

i

as above, and each �
i

is essential in S(Y
i

) (which in turn is
essential in M(Z)).

Assume that A is e�cient. Then by Lemma 4.2.1, for any positive � we
can insist that no segment of @D \ �

i

has length more than �n. For big n,
with probability 1 � O(e�n

c
) we know that K is C 0(µ) for any positive µ;

when µ is small, the annular version of Greedlinger’s Lemma (see Lyndon–
Schupp (1977) Ch. V Thm. 5.4 and its proof) implies that if A contains a
disk at all, then some disk D in the diagram has a segment on its boundary
of length at least n/3 in common with �1 or �2. Taking � < 1/3 we see that
A can contain no disks at all; i.e. �1 and �2 have the same image � in Z.

Now we use the fact that L ! Z is a good spine. At each vertex v
of Z, four local boundary components of M(Z) meet; the fact that � lifts
to paths �1 and �2 in two of these component forces � to run between two
specific edges incident to v, and this determines a unique lift of � to L near
v compatible with the existence of the �

i

. Similarly, along each edge e of Z,
three local boundary components of M(Z) meet; the components containing
�1 and �2 thus again determine a unique lift of � to L along e. These local
lifts at vertices and along edges are compatible, and determine a global lift
of � to L. But this means � is inessential in M(Z), contrary to hypothesis.
Thus M(Z) is acylindrical after all.

6. 3-Manifolds Everywhere

We now show that the acylindrical 3-manifold subgroups that we have
constructed in random 1-relator groups stay essential as we add (2k � 1)Dn

independent random relations of length n, for any D < 1/2. Our argument
follows the proof of Thm. 6.4.1 Calegari–Walker (2015) exactly, and depends
only on the following two facts:
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1. the beaded spine Z has total length O(n), has valence 4, and every
segment has length at least �, where we may choose � as big as we like
(depending on D); and

2. any immersed segment � ! Z of length �n whose label is a subword of
r or r�1 lifts to L, where we may choose � as small as we like (depending
on D).

Beyond these facts, we use two theorems of Ollivier (2007), which give
explicit estimates for the linear constant in the isoperimetric function and
for the constant of hyperbolicity for a random group at density D < 1/2.

6.1. Ollivier’s estimates

We use the following theorems of Ollivier (2007):

Theorem 6.1.1 (Ollivier (2007), Thm. 2). Let G be a random group at
density D. Then for any positive ✏, and any e�cient van Kampen diagram
D containing m disks, we have

|@D| � (1� 2D � ✏) · nm

with probability 1�O(e�n

c
).

Theorem 6.1.2 (Ollivier (2007), Cor. 3). Let G be a random group at density
D. Then the hyperbolicity constant � of the presentation satisfies

�  4n/(1� 2D)

with probability 1�O(e�n

c
).

From this, we will deduce the following lemma, which is the exact analog
of Calegari–Walker (2015) Lem. 6.3.2, and is deduced in exactly the same
way from Ollivier’s theorems:

Lemma 6.1.3. Let M(Z) be a 3-manifold obtained from a beaded spine, and
suppose it is not ⇡1-injective in G, a random group at density D. Then there
are constant C and C 0 depending only on D < 1/2, a geodesic path � in Z
of length at most Cn, and a van Kampen diagram D containing at most C 0

faces so that � ⇢ @D and |�| > |@D|/2.
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Proof. Theorem 6.1.2 says that �  4n/(1 � 2D), and in any �-hyperbolic
geodesic metric space, a k-local geodesic is a (global) (k+4�

k�4� , 2�)-quasigeodesic
for any k > 8� (see Bridson–Haefliger (1999), Ch. III. H, 1.13 p. 405). A
local geodesic in the 1-skeleton of M(Z) corresponding to an element of the
kernel must contain a subsegment of length at most 9� which is not a local
geodesic in K. The lift of this subsegment to the universal cover eK (i.e. the
Cayley complex of G) cobounds a van Kampen diagram D with an honest
geodesic segment in G. But by Theorem 6.1.1, the diagram D must satisfy

72n/(1� 2D) � |@D| � (1� 2D � ✏) · nC 0

where C 0 is the number of faces; thus C 0 is bounded in terms of D, and
independent of n.

6.2. Proof of the main theorem

Theorem 6.2.1 (3-Manifolds Everywhere). Fix k � 2. A random k-generator
group — either in the few relators model with ` � 1 relators, or the density
model with density 0 < D < 1/2 — with relators of length n contains many
quasi-isometrically embedded subgroups isomorphic to the fundamental group
of a hyperbolic 3-manifold with totally geodesic boundary, with probability
1�O(e�n

C
) for some C > 0.

Proof. The proof exactly follows the proof of Thm. 6.4.1 from Calegari–
Walker (2015). Pick one relation r and build L ! Z ! X and M(Z) by the
method of § 3. We have already seen that M(Z) is homotopy equivalent to
a hyperbolic 3-manifold with totally geodesic boundary, and that its funda-
mental group injects into hF | ri; we now show that it stays injective in G
when we add another (2k � 1)Dn independent random relations of length n.

The argument is a straightforward application of Gromov’s intersection
formula, i.e. Proposition 4.1.1. It is convenient to express it in terms of
degrees of freedom, measured multiplicatively as powers of (2k� 1). Suppose
M(Z) is not ⇡1-injective. Then by Lemma 6.1.3 there is an e�cient van
Kampen diagram D with m  C 0 faces (where C 0 depends only on D), and
a local geodesic � which immerses in Z with � ⇢ @D and |�| > |@D|/2. The
choice of � gives n�0 degrees of freedom, where �0 = log(3)↵/� and where
|�| = ↵n, since there are |Z| · 3↵n/� immersed paths in Z of length ↵n, and
we have |Z| = O(n). Taking � as big as necessary, we can make �0 as small
as we like.
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Next, disks in D with boundary label r or r�1 cannot have segments
of length more than �n in common either with themselves or with � in an
e�cient van Kampen diagram, where � as in Lemma 4.2.1 can be taken as
small as we like. Since there are at most m disks in D, two distinct disks
cannot have more than m boundary segments in common. Take � small
enough so that �m < 1/2. Then if we let D0 denote the result of cutting the
disks labeled r or r�1 out of the diagram, and let �0

⇢ @D0 denote the union

�0 := (� \ @D0) [ (@D0
� @D)

andm0 the number of disks inD0, then we have inequalitiesm0
 m, |�0

| � |�|
and |�0

| � |@D0
|/2 with equality if and only if D0 = D.

Each remaining choice of face gives nD degrees of freedom, and each
segment in the interior of length ` imposes ` degrees of constraint. Similarly,
�0 itself imposes |�0

| degrees of constraint. Let I denote the union of interior
edges. Then |@D0

|+ 2|I| = nm0 so |�0
|+ |I| � nm0/2 because |�0

| � |@D0
|/2.

On the other hand, the total degrees of freedom is nm0D + n�0 < nm0/2 if
�0 is small enough, so there is no way to assign labels to the faces to build
a compatible diagram, with probability 1 � O(e�n

C
). There are polynomial

in n ways to assign lengths to the edges, and a finite number of possible
combinatorial diagrams (since each diagram has at most C 0 disks); summing
the exceptional cases over all such diagrams shows that the probability of
finding some such diagram is O(e�n

C
). Otherwise M(Z) is ⇡1-injective, as

claimed.
Finally, we prove that M(Z) is quasi-isometrically embedded in G. In-

deed, as observed already in Calegari–Walker (2015), the above argument
actually shows that for any ✏ > 0 we can construct Z for which ⇡1(M(Z))
is (1 + ✏) quasi-isometrically embedded in G. Controlling ✏ depends only on
applying the argument above to segments � of length at most ↵n for suitable
↵(✏). The constant ↵ then bounds the number of disks in an e�cient van
Kampen diagram, by Theorem 6.1.1.

7. Commensurability

Once we know that random groups contain many interesting 3-manifold
subgroups, it is natural to wonder exactly which 3-manifold groups arise.
For any fixed non-free finitely presented group H, there are no injective
homomorphisms from H to a random group G at fixed density once the
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relators in G get su�ciently long (with overwhelming probability). So it
is probably hopeless to try to understand precisely which subgroups arise,
since this will depend in a very complicated way on the length n of the
relators. However, we are in better shape if we simply try to control the
commensurability class of the subgroups.

Example 7.0.1. There are 24 simplices in the barycentric subdivision of a
regular Euclidean tetrahedron. Three edges of this simplex have dihedral
angles ⇡/2, two have dihedral angles ⇡/3, and one (the edge lying on the
edge of the original simplex) has a dihedral angle of the form 1

2 cos
�1(13),

which is approximately 35.2644�. If we deform the dihedral angle ↵ of this
last edge while keeping the other dihedral angles fixed, the simplex admits
a unique hyperbolic metric for all ↵ > ⇡/6 at which point one vertex of the
simplex becomes ideal. If we try to deform to ↵ < ⇡/6, then three of the
faces of the simplex don’t meet at all, and there is a perpendicular plane
which intersects these three faces in the edges of a hyperbolic triangle with
angles (⇡/2, ⇡/3,↵). If ↵ is of the form ⇡/m for some integer m > 6, the
group generated by reflections in the 4 sides of the (now-infinite) hyperbolic
polyhedron is discrete, and convex cocompact. This group is a Coxeter group
which we denote �(m), and whose Coxeter diagram isr r r rm

The groups �(m) with m < 6 are finite. The group �(6) is commensu-
rable with the fundamental group of the figure 8 knot complement. For any
m � 7 the limit set of �(m) is a (round) Sierpinski carpet. Figure 10 depicts
a simply-connected 2-complex K̃ stabilized by �(7) with cocompact funda-
mental domain which is a “dual” spine to the (infinite) polyhedron described
above. The faces of this 2-complex are regular 7-gons, and the vertices are
all 4-valent with tetrahedral symmetry. As m ! 1, the limit sets converge
to the Apollonian gasket, which has Hausdor↵ dimension about 1.3057. The
convex covolumes of �(m) — i.e. the volumes of the convex hulls of H3/�(m)
— are uniformly bounded above independently of m.

We now observe that we can arrange for the 3-manifold groups we con-
struct to be commensurable with some �(m).

Theorem 7.0.2 (Commensurability Theorem). A random group at any den-
sity < 1/2 or in the few relators model contains (with overwhelming probabil-
ity) a subgroup commensurable with the Coxeter group �(m) for some m � 7,
where �(m) is the Coxeter group with Coxeter diagram
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Figure 10: A polyhedron K̃ on which �(7) acts cocompactly

r r r rm

Proof. The group �(m) acts cocompactly on a simply-connected 2-dimensional
complex K̃ in H3 whose faces are totally geodesic regular hyperbolic m-gons,
and whose vertices are 4-valent and are stabilized by a tetrahedral symmetry
group; the case m = 7 is depicted in Figure 10. So to prove the theorem it
su�ces to show that we can build our thin spines L ! Z in such a way that
each component of L maps over exactly m edges of the 4-valent graph Z. But
this is elementary to arrange: the only point in the construction in which the
number of edges of the components of L might vary is during the operations
of super-compatible gluing, the adjustments in § 3.6, and trades. In each of
these cases all that is relevant is the types of pieces being glued or traded,
and not which components of L are involved. Since types of the desired kind
for each move can be found on any component, we can simply distribute the
moves evenly over the di↵erent components, possibly after taking multiple
copies of L to clear denominators. The proof immediately follows

There is nothing very special about the commensurability classes �(m),
except that their fundamental domains are so small, so that their local com-
binatorics are very easy to describe.

Definition 7.0.3. A geodesic spine K is a finite 2-dimensional complex with
totally geodesic edges and faces which embeds in some hyperbolic 3-manifold
M with totally geodesic boundary as a deformation retract. We say that a 2-
dimensional orbifold complexK 0 is obtained by orbifoldingK if its underlying
complex is homeomorphic to K, and it is obtained by adding at most one
orbifold point to each face of K. Note that each such K 0 has an (orbifold)
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fundamental group which is commensurable with an acylindrical 3-manifold
group.

In view of the level of control we are able to impose on the combinatorial
type of the thin spines we construct in § 3, we make the following conjecture:

Conjecture 7.0.4. For any fixed geodesic spine K, a random group G —
either in the few relators model or the density model with density 0 < D < 1/2
— contains subgroups commensurable with the (orbifold) fundamental group
of some orbifolding K 0 of K (with overwhelming probability).
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