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Abstract:  

Mammalian embryogenesis requires intricate interactions between embryonic and extra-

embryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental 

potential. Here, we combine mouse embryonic stem cells (ESCs) and extra-embryonic 

trophoblast stem cells (TSCs) in a 3D-scaffold to generate structures whose morphogenesis is 

remarkably similar to natural embryos. By using genetically-modified stem cells and specific 

inhibitors, we show embryogenesis of ESC- and TSC-derived embryos, ETS-embryos, depends 

on crosstalk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate 

expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and 

extra-embryonic border, in response to Wnt and BMP signaling. Our study demonstrates the 

ability of distinct stem cell types to self-assemble in vitro to generate embryos whose 

morphogenesis, architecture, and constituent cell-types resemble natural embryos.  
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Main Text:  

Early mammalian development requires the formation of embryonic and extra-embryonic tissues 

and their cooperative interactions.  As a result of this partnership, the embryonic tissue, epiblast, 

will become patterned to generate cells of the future organism. Concomitantly, the extra-

embryonic tissues, the trophectoderm and primitive endoderm, will form the placenta and the 

yolk sac. These embryonic and extra-embryonic tissues become defined before the embryo 

implants into the uterus as a result of cellular heterogeneity, polarization and position 

culminating in a blastocyst structure with three distinct cell lineages (1).  

 

As the embryo implants, the relatively simple architecture of the blastocyst becomes re-

organized in a progressive sequence of spatial and temporal morphogenetic steps into the much 

more complex architecture of the so-called ‘egg cylinder’ (Fig. 1a, top) (2,3). This re-modelling 

is triggered by dialogue between embryonic and extra-embryonic tissues that initiates integrin-

mediated signaling leading the embryonic epiblast cells to polarize, adopt a rosette-like 

configuration, and then undertake lumenogenesis (4). This architectural re-organisation of the 

epiblast is followed by development of the trophectoderm into extra-embryonic ectoderm (ExE) 

that also forms a cavity. Finally, both embryonic and extra-embryonic cavities unite to form a 

single pro-amniotic cavity and the embryo visibly breaks its symmetry to initiate mesoderm and 

primordial germ cell induction (Fig. 1a, top). This key symmetry breaking event occurs at the 

boundary between embryonic and extra-embryonic tissues and involves Nodal, Wnt and BMP 

signalling pathways (5-8).  
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As the embryo grows from the blastocyst into the elongated structure of the egg cylinder, the 

primitive endoderm develops into the visceral endoderm (VE), which becomes regionalised. The 

distal part of the VE (the distal VE, DVE) expresses inhibitors of the Nodal and Wnt signalling 

pathways and migrates anteriorly (anterior VE, AVE) to pattern the anterior epiblast (9-11). At 

the posterior, a BMP4 signal from the ExE induces the activity of Wnt and Nodal in the adjacent 

epiblast. Nodal feeds back positively on BMP, which in turn reinforces Wnt, in a self-sustaining 

interaction loop (12-14). This specifies posterior identity and therefore defines the location for 

primitive streak formation and mesoderm induction.  

 

Pre-implantation epiblast cells have been established as ESCs that can be maintained indefinitely 

in culture (15-16). ESCs retain pluripotency and have the ability to be directed to develop into 

organoids that present an invaluable system to recapitulate many aspects of organ formation in 

vitro (17-22). Embryoid bodies or micro-patterned colonies developed from ESCs are also a 

valuable model for development as they can be induced to express genes associated with 

specification of embryonic lineages using external stimuli (23-26). However, although such gene 

expression can be polarised, the structures formed do not follow the spatial-temporal events of 

embryogenesis and ultimately do not acquire the characteristic architecture of a post-

implantation embryo. We hypothesised that this is because in these systems, ESCs develop with 

a drastically different number and spatial organisation of cells and, in addition, lack signals from 

the extra-embryonic tissues that guide embryo development upon implantation. Here we test this 

hypothesis by taking advantage of our recent understanding of the steps involved in the 

embryonic/extra-embryonic interactions during implantation and early post-implantation 

development (4) and trying to mimic them in stem cells developing in vitro.  
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Experimental strategy  

Our strategy was to attempt to use embryonic and extra-embryonic stem cells to replicate the 

spatial and temporal sequence of events of mouse embryogenesis in vitro (4). To achieve this, we 

used single ESCs and small clumps of TSCs (27) and developed a culture system which would 

enable their interaction within a three-dimensional (3D) scaffold of extra-cellular matrix (ECM) 

in a medium which composition (see Methods) allows both ESCs and TSCs co-develop, which 

we created for this purpose (Fig. 1a, bottom). We hypothesised that 3D scaffold of ECM in 

Matrigel would be able to substitute for the primitive endoderm by providing ECM essential for 

epiblast polarisation and lumenogenesis. We found that in these culture conditions ESCs and 

TSCs developed into an elongated cylindrical architecture typical of the post-implantation mouse 

embryo (Fig. 1b-c; Fig. S1a). Careful examination of morphology, size, cell numbers, and 

expression of lineage markers revealed discrete ESC- and TSC-derived compartments within a 

single cylindrical structure with a central cavity that was remarkably similar to post-implantation 

embryos developing either in vitro or in vivo (Fig. 1b-g, Fig. S1b,c). By determining the 

expression of a typical primitive endoderm marker, Gata4, we confirmed that the formation of 

these embryo-like structures did not involve the presence of primitive endoderm (Fig. 1h). 

 

Development of these ESC- and TSC-derived structures was highly reproducible: in a typical 3D 

culture, 22% of all structures comprised both ESCs and TSCs; 61% were built only from ESCs 

and 17% only from TSCs (Fig. 1i,j; n=400). Of all structures comprising ESCs and TSCs, most 

(92.68%, n=88) had the characteristic cylindrical architecture with single adjoining ESC and 

TSC compartments whereas the remaining 7.32% had two ESC compartments occupying polar 

positions in relation to a single TSC compartment (Fig. 1k). These results indicate that ESCs and 
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TSCs cultured in 3D scaffold of ECM have the ability to self-assemble an embryo architecture, 

leading us to term these ESC- and TSC-derived embryos, ETS-embryos. 

 

Pro-amniotic cavity formation in ETS-embryogenesis 

The first critical morphogenetic event in post-implantation embryogenesis is pro-amniotic cavity 

formation. We therefore wished to determine whether a similar morphogenetic event could take 

place in ETS-embryos.  During mammalian embryogenesis, the embryonic cavity has been 

recently discovered to form not through cell death, as previously thought, but through apical 

cellular constriction followed by lumenogenesis (4, 28). To gain insight into the cavitation of 

ETS-embryos, we examined the localization of a cell adhesion marker (E-cadherin) at sequential 

time-points in development (Fig. 2a-c; Fig. S2). After 72 hours of plating, only a single cavity 

could be detected in ETS-embryos and it was present in the ESC-compartment (Fig. 2a). By 84 

hours, one or more small additional cavities developed within the TSC-compartment (Fig. 2b, 

Fig.S2). Finally, by 96 hours, the cavities in ESC and TSC compartments united into a single 

large cavity (Fig. 2c, Fig. S2). These observations demonstrate that a cavity first forms in the 

ESC-derived embryonic compartment, ahead of cavitation in the TSC-derived extra-embryonic 

compartment and they finally become united into a single cavity spanning the whole cylindrical 

structure by 96 hours after stem cell plating (Fig. 2c).  

 

To support these observations, we also examined the distribution of the transmembrane 

protein Podocalyxin (PCX) together with a marker of apical polarity, aPKC (Fig. 2d-f), in the 

ESC and TSC compartments of ETS-embryos as their development progressed. PCX is a 

negatively-charged silomucin which accumulates on the apical sides of epiblast cells during pro-
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amniotic cavity formation (4). In agreement with these observations in embryos, we detected the 

accumulation of PCX along the apical sides of the cells in the ESC compartment when a single 

lumen was present at 72 hours (Fig 2d, 2g). In contrast, no such accumulation around a cavity 

was evident in the TSC compartment at this stage (Fig. 2d, 2g). By 84 hours, PCX was also seen 

to accumulate on the apical sides of cells in the TSC compartment as multiple individual cavities 

emerged in this compartment (Fig. 2e, 2h). After 96 hours of development, these ESC and TSC 

cavities had unified and PCX lined a central, common cavity and was concentrated at the apical 

sides of cells in both compartments (Fig. 2f-i). This sequence of events is similar to pro-amniotic 

cavity formation during natural embryogenesis (4, 28). We observed a mean of 2 dying cells per 

ESC and TSC compartment, which is a similar incidence of cell death to that we could detect in 

natural embryos (Fig. S3a-e). The site of cell death in ETS-embryos had no relationship to the 

ESC or TSC cavitation or ESC-TSC border, suggesting that apoptosis is not a likely driver 

behind cavity formation and unification, similar to natural embryogenesis (Fig. S3a-e). 

 

How the embryonic and extra-embryonic cavities unite during embryo development is 

currently unknown (4).  Encouraged by our finding of a similar distribution of PCX during 

natural and ETS-embryogenesis at the time of cavity formation and unification (Fig. 3a-b), we 

sought to use the ETS-embryo model to gain insight into how a cavity might develop at the 

embryonic-extra-embryonic interface. Before a continuous cavity formed, the shapes of TSCs at 

the ESC-TSC border differed significantly from columnar morphology of non-border cells (Fig. 

S4a-b). Before cavities merged together, a basement membrane (marked by laminin staining) 

between the compartments was detectable (Fig. 3c, 72 hours, left). This distribution of laminin 

was similar to the basement membrane present between embryonic and extra-embryonic 
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compartments of the E4.75 embryo (Fig. 3d, left and inset).  As ETS-embryos underwent 

cavitation, the laminin boundary became broken (Fig. 3c, 84 hours; Fig. 3e), which mirrored the 

breakdown of the basement membrane during egg cylinder morphogenesis in vivo (Fig. 3d, 

middle). In both the ETS-embryo and the natural embryo, full expansion of the cavity across 

embryonic and extra-embryonic compartments led to the complete disappearance of the 

basement membrane between compartments (Fig. 3c, 96 hours, Fig. 3d, right). During ETS-

embryogenesis, the laminin boundary was displaced towards the TSC compartment whereas, in 

contrast, when two structures comprised of only ESCs fused together, laminin was not displaced 

in any particular direction, suggesting that laminin displacement towards the extra-embryonic 

compartment is a characteristic of the ESC-TSC junction (Fig. 3c, far-right; Fig. 3e). 

Concomitant with laminin displacement, we also noted formation of rosette-like chimeric cell 

arrangements comprising both ESCs and TSCs during cavitation of ETS-embryos (Fig. 3f-g). 

We found that epiblast and ExE cells adopt very similar cell arrangements at the boundary 

between compartments in natural embryos (Fig.3h), which might be involved in the unification 

of cavities during pro-amniotic cavity formation. These results reveal the sequence of events 

leading to embryonic and extra-embryonic cavity unification during ETS-embryogenesis and 

suggest that similar cell-rearrangements occur in the natural embryogenesis, to facilitate 

morphogenesis, as also proposed in other models of epithelialization and branching (29). 

 

Role of Nodal signaling during ETS-embryogenesis 

Although TSCs developing together with ESCs cavitate, the great majority of TSCs developing 

on their own do not cavitate within the same frame of time (Fig. 4a-c), suggesting that the ESC 

compartment might signal to promote development of the TSC compartment. One candidate for 
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such signaling would be Nodal/Activin, which is known to be secreted by ESCs (30) and to be 

essential for early post-implantation development (5, 31-32). Moreover, Nodal/ Activin signaling 

is required for TSC renewal in culture, and in conventional culture conditions is provided by 

mouse embryonic fibroblast (MEF) feeder cells or exogenously in the medium(33-35). Since our 

culture conditions contain neither of these components, we hypothesized that the ESC 

compartment might be providing the Nodal/Activin signal required for development of TSCs 

into the extra-embryonic-compartment. Since the earliest role of Nodal signaling is difficult to 

probe in Nodal knock-out embryos due to the presence of Nodal protein in the reproductive tract 

(36), we used ETS-embryogenesis to gain insight into the role of Nodal/ Activin in the process of 

building the embryo-like structure. We generated ETS-embryos in the presence of the 

Activin/TGF-beta receptor inhibitor, SB431542 (37), which was added to the culture 48 hours 

after cell plating (Fig. 4d, middle). We verified the inhibition of the Nodal/Activin pathway by 

assessing phosphorylation of SMAD2 (Fig. 4d, middle), and interrogated PCX staining intensity 

profiles in different compartments of ETS-embryos to verify cavitation. Although a significant 

majority of control ETS-embryos developed a cavity in the TSC compartment, in the presence of 

10µm SB431542, the TSC compartment failed to cavitate in a significant majority of ETS-

embryos (90% versus 30%, P<0.01, Fisher’s exact test; n=10 in both groups, Fig. 4d, 4f, left), 

whereas cavitation within the ESC compartment was unaffected, although we noted a reduction 

in Oct4 expression (Fig. 4d, middle). To further dissect the role of Nodal/Activin signaling in the 

development of the TSC compartment, we generated ETS-embryos using tamoxifen inducible-

knockout Nodal ESCs (38). Similar to the effect of SB-treatment, we found that the TSC 

compartment failed to cavitate in the majority (80%, P<0.05, Fisher’s exact test; n=10) of Nodal-

/-ESC ETS-embryos (Fig. 4d, bottom; 4f, left). Since these results indicated a role of the 
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embryonic compartment and Nodal/Activin signaling in the development of the extra-embryonic 

compartment, we wished to test whether this might also be so in natural embryos. We recovered 

embryos just before cavitation in the ExE, at E5.0, and cultured them for 36 hours in the 

presence of 10µM SB431542 (Fig. 4e bottom). We found that as with ETS-embryos, the ExE in 

the majority (90%, P<0.05, Fisher’s exact test; n=10) of SB-treated embryos failed to cavitate, 

whereas the majority of control embryos cavitated (85%, P<0.05, Fisher’s exact test; n=14) (Fig. 

4e, 4f right).  Cavitation within the embryonic compartment was unaffected although there was a 

reduction in Oct4 expression (Fig.4e), similarly to what we observed in ETS-embryos (Fig.4d). 

In agreement with these data, addition of exogenous Activin to TSCs cultured without ESCs 

allowed cavitation (Fig. 4g; 70%, P<0.001, Fisher’s exact test; n=20). Together, these 

experiments suggest a role of the embryonic compartment, and specifically Nodal/Activin 

signaling, in supporting the development of the extra-embryonic compartment in ETS- and 

natural embryos developing through early post-implantation stages. 

 

Generation of regionalized mesoderm during ETS-embryogenesis  

Once the pro-amniotic cavity has formed, the next major developmental step is the breaking of 

the embryo’s symmetry to specify the site of germ layer formation. In natural embryogenesis this 

is known to involve cooperation between the trophectoderm-derived ExE, which signals 

development of posterior structures, and the primitive endoderm-derived DVE and AVE, which 

repress posterior signals (2). To determine whether ETS-embryos, which lack DVE and AVE, 

could initiate an asymmetric expression of germ layer markers, we examined if they can progress 

in their development to express T/Brachyury, a mesoderm marker (39-40). In these experiments 

we used ESCs that express a T:GFP reporter to monitor T/Brachyury expression (41). We found 



 11 

that from 96 hours of development, the ETS-embryos expressed T:GFP, in a domain that was 

confined to one side of the ESC compartment extending from the boundary with the TSC 

compartment (Fig. 5a). To address whether this induction of T:GFPexpression in ESC 

compartment was promoted by the neighbouring  TSC compartment, we also generated  

structures comprising ESCs only, and let them develop under the same conditions and for the 

same period of time. A significantly higher proportion of ETS-embryos expressed T:GFP than 

the structures comprised of only ESCs (Fig. 5a,b). We also observed that a significantly higher 

proportion of ESCs developing together with TSCs during ETS-embryogenesis expressed T:GFP 

asymmetrically in comparison to structures comprised of only ESCs (Fig. 5c). To quantitatively 

assess the asymmetry of T expression in relation to the axes of the whole structure, we plotted 

the coordinates of every single cell expressing T upon a projection of all cells in the structure and 

used Fisher’s exact test to determine whether a cell’s position was related to its propensity to 

express T (Fig. 5d-f). As a proof-of-principle, we performed similar analyses on E6.5 embryos 

recovered from the mother (Fig. 5g-i). Such measurements in both ETS- and natural embryos 

revealed highly regionalised induction of T expression. To confirm the identity of T-expressing 

cells as mesoderm lineage, we analysed the expression level of another two mesodermal 

markers, Mixl1 and Hand1. We found significantly increased expression of transcripts of both of 

these markers, as well as T, in T:GFP-positive cells when compared to T:GFP-negative ESCs at 

opposite site of the ETS-embryo (Fig. 5j, top row). These T:GFP-positive cells also expressed 

elevated levels of the transcription factor Snai1 and the intermediate filament protein Vimentin 

which are both expressed in mesenchymal cells, suggesting that cells in the mesodermal region 

were undergoing comparable cellular changes to cells initiating mesoderm formation in the E6.5 

embryo (Fig. 5j, middle). 
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RT-qPCR analysis of cells in the ESC compartment opposite the mesodermal region 

revealed that they expressed markers known to be expressed in the region opposite mesoderm 

specification in the E6.5 embryo (Fig 5j, bottom) (42-43). We also observed an opposing 

gradient of expression of Oct4 and T:GFP across the embryonic compartment (Fig. 5k), as is 

known to occur from anterior to posterior in the embryo (44). Additionally, the mesodermal 

region which became specified in ETS-embryos occupied a similar proportion of the ESC-

derived embryonic compartment when compared with natural embryos of a comparable stage 

(Fig. 5l). These results indicate that the TSC compartment is able to induce regionalised 

expression of mesoderm markers in a manner mimicking the ExE in the embryo.  

 

In normal embryogenesis, Wnt3 expression precedes the induction of mesoderm (6). To 

test whether Wnt signaling might also be required to initiate expression of mesoderm markers in 

the ETS-embryogenesis, we generated ETS-embryos using H2B-GFP:Tcf/LEF reporter ESCs 

(45) and monitored Wnt signaling activity. After 90 hours, localized expression of H2B-

GFP:Tcf/LEF could be detected at the ESC-TSC boundary, but T/Brachyury was not expressed 

at that time (Fig. 6a, left). However, when we cultured ETS-embryos for an additional 6 hours, 

expression of H2B-GFP:Tcf/LEF co-localised with expression of T/Brachyury (Fig. 6a, center). 

This domain of T/Brachyury and H2B-GFP:Tcf/LEF-expressing cells increased in number and 

size over the next 6 hours (Fig. 6a right, 6b), indicating that canonical Wnt signaling precedes 

mesodermal specification. In order to determine whether Wnt signaling is also essential for 

mesodermal specification, we generated ETS-embryos and then let them develop in the presence 

of the canonical Wnt antagonist DKK1 (46), which was added after 48 hours of culture. In 
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contrast to controls, the proportion of ETS-embryos specifying mesoderm was significantly 

reduced after 96 hours (38% of controls expressed T, whereas only 4% of structures treated with 

DKK1 did so, Student’s t-test P<0.001, n=100; Fig. 6c-d). These results indicate that Wnt 

signaling is crucial to induce the expression of mesoderm markers during ETS-embryogenesis, 

as is the case in natural embryogenesis. 

 

Specification of primordial germ cell-like cells in ETS-embryogenesis  

The next major step in embryogenesis is the specification of primordial germ cells (PGCs). In 

vivo, PGCs are specified at the boundary between embryonic and extra-embryonic 

compartments, at the proximal end of the mesodermal domain (47). To test whether ETS-

embryogenesis is able to lead to PGC-like cell specification, we generated ETS-embryos and let 

them develop beyond mesoderm specification and examined expression of several markers 

including Stella, Prdm14, Tfap2c (AP2ɣ),Nanos3, Ddx4 and Dnmt3b (48). After 120 hours in 

culture, we could identify a small cluster of Tfap2c-Oct4 double-positive cells in the ESC 

compartment, at the ESC-TSC boundary, where T was expressed (Fig. 7a). This is a similar site 

to the location of PGC formation in vivo (47-48). To confirm this result, we next generated ETS-

embryos using ESCs that express GFP-tagged Stella (Stella:GFP) (49). In accord with our earlier 

observations, we found a small domain of Stella:GFP expression after 120 hours in culture (Fig. 

7b). To investigate the precise location of these putative-PGCs-like cells, we plotted the 

coordinates of every single cell expressing either of these two PGC markers upon a projection of 

all cells in the structure. This revealed an average of 5 Tfap2c-Oct4 double-positive and 5 

Stella:GFP cells at the boundary between the ESC and TSC compartments (Fig. 7c,d).  The 

precise location of Stella-GFP positive cells at the boundary between compartments contrasted to 
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Stella-GFP expression in structures comprised of ESCs alone, which was distributed in a 

disorganized manner (Fig. S5a, b). To further investigate gene expression characteristic of PGCs, 

we collected T:GFP positive and negative cells from the ETS-embryos (at the boundary with the 

extra-embryonic compartment) and performed RT-qPCR analysis. This revealed, as expected for 

PGCs, upregulated expression of all PGC-marker genes examined: Tfap2c, Stella, Prdm14, 

Nanos3, Ddx4 and downregulation of Dnmt3b when compared with T:GFP-negative cells 

outside this region (Fig. 7e). These results indicate that ETS-embryos have the potential to 

specify PGC-like cells at the boundary between embryonic and extra-embryonic compartments, 

as natural embryos. 

 

Specification of PGCs during embryogenesis is induced by BMP signaling from the 

extra-embryonic compartment (47). We therefore hypothesised that BMP signaling might play a 

similar role in the ETS-embryo model. To test this hypothesis, we first confirmed 

phosphorylation of SMAD1 in ETS-embryos, as in natural embryos, indicating their competence 

to specify PGCs (Fig. 7b, 7f top, Fig. S6a, S6b). We then used ETS-embryogenesis to generate 

ETS-embryos and let them develop in the presence of Noggin, known to inhibit BMP signaling 

(50), which we confirmed (Fig. 7f). Upon BMP inhibition, a significant majority of ETS-

embryos (93%, n=15) failed to express Stella:GFP, in contrast to control ETS-embryos (60%, 

P<0.005, Fisher’s exact test, n=15; Fig. S6c). Finally, we wished to examine whether Wnt 

signaling is also necessary for induction of expression of PGCs markers during ETS-

embryogenesis. To this end, we generated ETS-embryos and treated them with DKK (200ng/ml) 

after 48 hours of culture. This treatment significantly down-regulated expression of PGC marker 

genes and T in ESCs-derived embryonic compartment on the boundary with the TSC-derived 
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compartment, which would undergo PGC specification in control IVEs (Fig. 7g-h). We verified 

that the Wnt signaling pathway was downregulated by analyzing the expression of Axin1 and 

Wnt3 (Fig. 7g). These results indicate that following the induction of expression of mesoderm 

markers, ETS-embryogenesis progresses to induce expression of PGC markers in a similar 

manner to natural embryogenesis. 

 

Discussion: 

At the onset of our study, we hypothesised that development of a stem cell model of mammalian 

embryogenesis might require mimicking the complex spatio-temporal sequence of 

morphogenetic steps occurring during natural embryogenesis.  Our recent work allowed us to 

reveal the sequence of these morphogenetic steps at the time of implantation and early post-

implantation development (3, 4). Here we take advantage of this knowledge and show that by 

fostering close interactions between embryonic and extra-embryonic stem cells in a 3D scaffold 

of ECM and medium in which they can co-develop, ESCs and TSCs self-assemble into a 

structure whose development and architecture is very similar to the natural embryo. This in vitro 

embryogenesis can be broken down into a sequence of five key steps in the development of 

mammalian embryos from implantation stage to germ layer specification: (1) the spontaneous 

self-organisation leading to polarization and then epithelization and lumenogenesis first in the 

embryonic (ESC) and then cavitation in the extra-embryonic (TSC) compartments; (2) the 

unification of embryonic and extra-embryonic cavities into the equivalent of the embryo’s pro-

amniotic cavity; (3) the crosstalk between embryonic and extra-embryonic compartments, 

involving Nodal signalling, that builds characteristic embryo architecture; (4) the self-

organisation of embryonic and extra-embryonic compartments resulting in asymmetric induction 



 16 

of the localized expression of mesoderm markers at the compartment boundary in a Wnt-

dependent manner; and (5) the provision of BMP signaling to specify the PGC-like cells, 

equivalent to their formation in the embryo. These morphogenetic events follow similar spatio-

temporal dynamics during ETS-embryogenesis as they do in natural embryogenesis (Fig. 8). 

 

Our studies demonstrate that stem cell-derived ETS-embryos can mimic formation of the 

embryo’s structure and gene expression pattern more accurately than has been possible before 

using structures derived from ESCs only, such as embryoid bodies (23-26). There are three 

critical differences between the ETS-embryos we describe here and embryoid bodies: the former 

are built from fewer starting numbers of cells to closely resemble cell numbers in the implanting 

embryo; they are cultured in a 3D scaffold of ECM as epiblast cells within the embryo; and the 

ESCs are developing in coordination with TSCs as epiblast cells with trophectoderm cells within 

the embryo.  Our previous studies showed that a small number of ESCs cultured in ECM were 

able to organise themselves into a rosette that undergoes lumenogenesis in a manner resembling 

the natural embryogenesis (4). We show here that these ESC-derived rosettes can develop further 

to spontaneously, i.e without provision of a specific external signal, induce mesoderm gene 

expression. However, we also now show that achieving robust mesoderm induction that, 

importantly, respects the embryo’s architecture, is fostered by the addition of interactions with 

extra-embryonic stem cells. 

 

These results point to a remarkable ability of ESCs to pattern due to their interactions 

with TSCs alone, without a requirement for primitive endoderm-derived structures. This might 

be because we partially substitute for the primitive endoderm function by providing ECM in the 

3D scaffold.  In agreement with this hypothesis, we have recently shown that ECM proteins are 
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able to substitute for primitive endoderm to induce epiblast remodeling at the time of 

implantation (4). However, the induction of asymmetric expression of mesoderm and PGC 

markers during ETS-embryogenesis was surprising to us because during natural embryogenesis, 

primitive endoderm-derived DVE and AVE provide inhibitors to restrict posterior gene-

expression upon their migration anteriorly (8-11).  The lack of noticeable asymmetry in 

pSMAD2 in ETS-embryos could be due to the absence of DVE/AVE but, irrespective of this, 

our results demonstrate that without the localized provision of antagonists, ETS-embryos break 

symmetry to induce regionalized, asymmetric expression of mesoderm and PGC markers. We 

hypothesise that this is either due to a random event or an earlier asymmetric morphogenetic step 

such as the cell re-arrangements that occur during the cavity fusion. Indeed, such re-

arrangements could potentially reposition signaling receptors to sense and transduce signals from 

the neighboring compartment not entirely symmetrically. Regardless of the route by which this is 

achieved, we further hypothesise that a secretion of an inhibitory signal might act to restrict 

mesoderm gene expression in adjacent regions. It will be interesting to shed more light on this 

process in future and, in addition, to determine whether incorporating primitive endoderm stem 

cells (51-52) into the ETS-embryogenesis model would extend the developmental potential of 

this model. 

In conclusion, we demonstrate that enabling crosstalk between embryonic and extra-

embryonic stem cells in a 3D ECM scaffold is sufficient to trigger self-organization 

recapitulating spatio-temporal events leading to construction of embryo architecture and 

patterning. This stem cell model of mammalian embryogenesis, in combination with genetic 

manipulations, might provide a potentially powerful platform to dissect physical and molecular 

mechanisms that mediate this critical crosstalk during natural embryogenesis. 
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Materials & Methods: 

Embryo recovery and culture: 6-week old F1 female (CBAxC57BL/6) mice were naturally 

mated and sacrificed at midnight (E5.0) or midday (E5.5) after 5 days post-coitum. The uterus 

was recovered and embryos were dissected from deciduae in M2 medium and cultured as 

described previously (53). Blastocysts were recovered from the mother at E4.5 by uterine 

flushing. Recovered blastocysts had their mural trophectoderm dissected away, before plating in 

-plates (Ibidi) and cultured in IVC1 and IVC2 media (Cell Guidance Systems). 

 

Embryo immunostaining: Embryos were fixed in 4% paraformaldehyde for 20 minutes at room 

temperature, washed twice in PBT (PBS plus 0.05% Tween-20) and permeabilized for 15 

minutes at room temperature in 0.3% Triton-X-100, 0.1% Glycin. Primary antibody incubation 

was performed overnight at 4˚C in blocking buffer (PBS plus 10% FBS, 1% Tween-20). The 

following day, embryos were washed twice in PBT, then incubated overnight in secondary 

antibody in blocking buffer at 4˚C. On the third day, embryos were washed twice in PBT and 

incubated for 1 hour at room temperature in DAPI plus PBT (5mg/ml). Embryos were mounted 

in DAPI plus PBT prior to confocal imaging. For antibodies used, see Supplementary Table 1. 

 

Cell culture: ESCs were cultured at 37˚C and 5% CO2 on gelatinized tissue-culture grade plates 

and passaged once they reached confluency. Cells were cultured in DMEM with 15% FBS, 2mM 

L-glutamine, 0.1mM 2-ME, 0.1mM NEAA, 1mM sodium pyruvate, and 1% penicillin-

streptomycin) supplemented with PD0325901 (1M), CHIR99021 (3M) (2i) and leukaemia 

inhibitory factor (0.1mM, LIF). 
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TSCs were cultured at 37˚C and 5% CO2, in RPMI 1640 (Sigma) with 20% FBS, 2mM L-

glutamine, 0.1mM 2-ME, 1mM sodium pyruvate, and 1% penicillin-streptomycin, plus FGF4 

(Peprotech) and heparin (Sigma) in the presence of inactivated DR4 MEFs(54). Cells were 

passaged at 80% confluency.   

 

Cell Lines used in the study: All experiments were performed using E14 or 129 mouse ESCs, 

CAG-GFP ESCs (55), Inducible Nodal knockout ESCs (38), T:GFP ESCs (41), H2B-

GFP:Tcf/LEF ESCs (45), Stella:GFP ESCs (49), and wild-type TSCs.  

 

‘3D embedded’ culture: ESC colonies were dissociated to single cells, and TSC colonies 

dissociated into small clumps by incubation with 0.05% trypsin-EDTA at 37˚C. Cells were 

pelleted by centrifugation for 5 min/1,000 rpm, washed with PBS, and re-pelleted. This was 

repeated twice, then ESC and TSC suspensions were mixed and re-pelleted. The pellet was re-

suspended in Matrigel (BD, 356230). The cell suspension was plated on -plates (Ibidi) and 

incubated at 37˚C until the Matrigel solidified. Cells were cultured at 37˚C and 5% CO2. ETS-

embryo medium was as follows: 50% RPMI, 25% DMEM F-12 and 25% Neurobasal A 

supplemented with 10% FBS, 2mM L-glutamine, 0.1mM 2ME, 0.5mM sodium pyruvate, 0.25x 

N2 supplement, 0.5x B27 supplement, or SOS supplement (Cell Guidance Systems Ltd, 

Cambridge) FGF4 (12.5 ng/ml) and heparin (Sigma) 500ng/ml (ETS-Embryo medium, ETM, 

Cell Guidance Systems Ltd, Cambridge). For some experiments, cells were plated using a 3D 

‘on top’ protocol (56). 
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Cell immunostaining: Cells were fixed with 4% paraformaldehyde for 15 minutes at room-

temperature, then rinsed twice in PBS. Permeabilization was performed with 0.3% Triton-X-100, 

0.1% Glycin in PBS for 10 min at room-temperature. Primary antibody incubation was 

performed overnight in blocking buffer (as above) at 4˚C. The following day, cells were washed 

twice in PBS, then incubated overnight in secondary antibody in blocking buffer (as above) at 

4˚C. DAPI in PBS (5mg/ml) was added prior to confocal imaging. For antibodies used, see 

Supplementary Table 1. 

 

Imaging, Processing and Analysis: All images were acquired using a Leica SP5 confocal 

microscope, using a 40x oil-immersion objective. All analyses were carried out using open-

source image analysis software ‘Fiji’ or ‘Bioemergences’ software (57). 

 

Estimation of tissue volume: Tissue volume for ETS-embryos and natural embryos was 

estimated under the assumption that both ETS-embryos and natural embryos were approximately 

cylinder shaped. The length and radius of each compartment was measured using image analysis 

software, then the volume of the cylinder was calculated from these measurements as V= πr
2
l. 

 

Assessment of cells at the embryonic-extra-embryonic boundary: Cells were classified as 

lying on the embryonic-extra-embryonic boundary if they had ‘nearest neighbor’ cells within a 

20µm linear distance which were both an ESC and a TSC. 

 

Measurement of laminin displacement angle: Using image analysis software, a line was drawn 

from ESC compartment to TSC compartment at the middle Z-section of a confocal acquisition of 
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a ETS-embryos. A second line across the boundary was drawn perpendicular. The angle of 

laminin displacement was then measured relative to these lines. Laminin adjacent to the 

boundary would therefore have an angle of 90˚. Ѳ is equal to the angle of the laminin extending 

into the TSC compartment (Ѳ< 90˚).  

 

Assessment of asymmetric gene expression: A line corresponding to the long axis, equivalent 

to the ‘midline’ of a ETS-embryo (perpendicular to the embryonic-extra-embryonic boundary) 

was drawn using image analysis software. At each Z-step, the number of cells positioned either 

side of this line which expressed the marker-of-interest was counted. If >70% of cells were found 

to lie on one side of this line, then expression was judged to be asymmetric. In some cases, this 

method was verified by pointing all cells in a structure using ‘Bioemergences’ image analysis 

software (‘MovIT’) and recording their x, y, and z coordinates. Coordinates of cells expressing 

the marker-of-interest were also recorded. The long axis, corresponding to the ‘midline’ was 

determined from the median coordinates in each dimension, and all coordinates data were run 

through an R script (58) which grouped cells according to their position relative to the long axis/ 

midline and whether they expressed the marker of interest. A Fisher’s exact test was performed 

to determine if position relative to the long axis was related to expression of the gene by 

comparing the distribution of the data to the binomial. 

 

Estimation of proportional area of mesodermal regions in ETS-embryos and E6.5 embryos: 

Image analysis software was used to measure the area occupied by T-positive, mesodermal cells 

at the middle z-section of confocal acquisition data for ETS-embryos and E6.5 embryos. The 

total area of the embryonic region was also measured in this way in each case. The ratio was 
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calculated as: Total area of embryonic region/ total area of mesodermal (T-positive) region in 

each case.  

 

Cell isolation and qRT–PCR: For analysis in Fig. S1b, ESC and TSC compartments were 

collected separately in lysis buffer and RNA was extracted. For analysis of T:GFP-positive cells 

and opposite T:GFP negative cells in Fig. 5j, 7e and 7g, ETS-embryos were  treated briefly with 

an Enzyme Free Hanks'-Based Cell Dissociation Buffer for 2 minutes to remove the Matrigel, 

then had their  TSC-compartment dissected away. The ESC compartment was dissociated to 

single cells by incubation with 0.05% trypsin-EDTA at 37˚C. On average 15-20 GFP positive 

and negative cells were collected separately under a fluorescent microscope and transferred into 

lysis buffer (Life Technologies). Total RNA was extracted using the Arcturus Pico Pure RNA 

Isolation Kit and qRT–PCR was performed using the Power SYBR Green RNA-to-CT 1-Step 

Kit (Life Technologies) and a Step One Plus Real-time PCR machine (Applied Biosystems). The 

amounts of mRNA were measured using SYBR Green PCR Master Mix (Ambion). Relative 

levels of transcript expression were assessed by the ΔΔCt method, with Gapdh as an endogenous 

control. For qPCR primers used, see Supplementary Table 2. 

 

Statistics: Statistical tests were performed on GraphPad Prism 7.0 software for Windows (59). 

Data were checked for normal distribution and equal variances before each parametric statistical 

test was performed. If appropriate, data were normalised using a square-root transformation. 

Where appropriate, t-tests were performed with Welch’s correction if variance between groups 

was not equal. ANOVA tests were performed with a Geisser-Greenhouse correction if variance 

between groups was not equal. Error bars represent standard error of the mean in all cases, unless 
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otherwise specified. Figure legends indicate the number of independent experiments performed 

in each analysis. 

 

Figure legends: 

Fig. 1. Self-assembly of ESCs and TSCs into an ETS-embryo. a. Top: Development of the 

mouse embryo from the pre-implantation blastocyst to post-implantation egg cylinder and 

mesoderm specification. Red cells, epiblast; dark blue cells, trophectoderm/ extra-embryonic 

ectoderm; Green cells, primitive endoderm/visceral endoderm cells; Dark green cells, 

Distal/Anterior Visceral endoderm; Beige cells, mesodermal cells; Sea green cells, Primordial 

Germ Cells; yellow line, basement membrane. Bottom: Scheme of protocol to generate ETS-

embryos. ESCs and TSCs cultured in standard conditions (1). Single ESCs and small clumps of 

TSCs suspended in 3D ECM of Matrigel, plated in drops and allowed to solidify (2), before 

culturing in ETS-embryo medium established for this purpose (3; Materials &Methods). 

Embryo-like structures emerge within 96 hours (4). b. ETS-embryo of size approximately 

100µmx200µm after 96 hours of culture stained to reveal: Oct4, red; Eomes, green, embryonic 

and extra-embryonic markers respectively; DNA, blue; white line highlights cavity. Bar=20µm; 

n=20. Rightmost panel: 3D rendering of same ETS-embryo: Red, Oct4; Cyan, Eomes. c. ETS-

embryo: Oct4, red; DNA, blue. Bar =20µm; n=20. d. Embryo cultured in vitro for 48 hours from 

the blastocyst stage: Oct4, red; Eomes, green; DNA, blue; white line highlights cavity; Bar= 

20µm; n=20. Rightmost panel: 3D rendering of same in vitro cultured embryo: Oct4, red; Eomes, 

cyan. e. Post-implantation embryo recovered at E5.5: Oct4, red; DNA, blue. Bar =20µm; n=20. f. 

ETS-embryos have similar number of cells after 96 hours to natural embryos (cultured for 48 

hours from the late blastocyst stage; equivalent to E5.5 embryos) in embryonic and extra-
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embryonic compartments (Student’s t-test, n=20 per group, (2 separate experiments; not 

significant). Error bars = SEM. g. Mean tissue volumes of embryonic and extra-embryonic parts 

are similar for ETS-embryos after 96 hours and natural embryos cultured for 48 hours in vitro 

from the late blastocyst stage (equivalent to E5.5 embryos). Student’s t-test, n=20 per group, 2 

separate experiments; not significant. Error bars=SEM. NB: Volume occupied by the visceral 

endoderm was excluded from quantification in natural embryos. See Materials & Methods for 

how volume was calculated. h. Upper panels: ETS-embryo stained to reveal: Oct4, red; DNA, 

Blue; Gata4, grey/green. Bar = 20µm. n=10. Lower panels: In vitro cultured embryo for 48 hours 

from the late blastocyst stage: Oct4, red; DNA, Blue; Gata4, grey/green. n=30. Bar = 20µm.  i. 

Examples of live ETS-embryos generated from one single typical experiment using CAG-GFP 

ESCs (Rhee et al, 2006) to mark embryonic compartment and wild-type TSCs after 96 hours. 

Orange, CAG-GFP; Black, Brightfield. Brightfield was false-coloured with the ‘edges’ “Look-

up-table” function in Fiji software. White dotted line marks the outside of the TSC compartment 

for clarity. Bar= 20µm. j. Frequency of ETS-embryos, “twin” (ESC-TSC-ESC) structures, and 

individual TSC or ESC structures in a representative experiment. Red, Oct4; green, E-cadherin, 

cyan, Eomes; blue, DNA. Bar=20µm. 100 structures counted per experiment; 4 separate 

experiments. k. Proportion of ESC- and TSC-structures that form ETS-embryos versus “twin 

structures”. n=88; 4 separate experiments. Error bars= SEM. 

Fig. 2. Morphogenetic steps leading to cavitation of ETS-embryos are similar to natural 

embryos. a-c. ETS-embryos after 72, 84 and 96 hours showing progression of cavitation. Oct4, 

red; E-cadherin, green; DNA, blue/gray. Orthogonal views are shown for E-cadherin staining at 

each time-point. Zoomed fields highlight cavitated areas at each time-point; white or black 

dotted lines highlight cavities. Lower right panel for each time-point show orientation of nuclei 
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in ESC compartments (red) and TSC compartments (blue) – nuclei become aligned to cavities; 

n=20 ETS-embryos per time-point, at least 2 separate experiments per time-point. Bar=20µm. d-

f. ETS-embryos at three successive time-points during cavitation and intensity scans of PCX 

along indicated numerically labelled dashed white lines taken at middle z plane. PCX 

accumulates on the apical sides of cells (marked by aPKC) facing a lumen, so the presence of a 

cavity is indicated by two strong peaks in the intensity profile. Y-axis: PCX fluorescence 

intensity. Staining indicates Oct4/aPKC, red; PCX, green; DNA, blue. Bar=20µm. n=30, 3 

separate experiments. Zoomed images indicate co-localisation of aPKC and PCX (white 

arrowheads). Asterisks indicate small cavities in the TSC compartment at 84 hours. g-h. 

Quantification of number of cavities in respective ESC- and TSC-compartments of ETS-embryos 

at 72, 84, and 96 hours. n=20 ETS-embryos analysed per time-point. i. Schematics depicting 

“ETS-embryo” morphology during cavitation process at 72, 84, and 96 hours (red, embryonic 

compartment; blue, extra-embryonic compartment). 

Fig. 3. Morphogenetic re-arrangement during cavity unification between embryonic and 

extra-embryonic compartments: a-b. Embryos at E5.5 and E5.75 (upper panels) and ETS-

embryos at 72 and 96 hours (lower panels) stained to reveal Oct4, red; PCX, green; DNA, blue. 

Zoomed insets and white arrows highlight cavities; white dashed lines trace outlines of embryo 

and cavity in respective embryonic or ESC compartments or the common cavity at the later 

stage. Bar= 20µm. n=20 embryos or ETS-embryos each analysed in at least 2 separate 

experiments. c. ETS-embryos during cavitation showing: Upper: Oct4, red; DNA, blue; laminin, 

cyan. Lower panel shows the laminin staining inverted for better contrast. Black boxes indicate 

the region of the zoomed inset. Bar =20µm; n=20, 2 separate experiments. Rightmost panel 

shows two fused ESC-structures after 84 hours. Inset shows residual laminin that is not broken 
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down between the fusing compartments. n=8, 2 separate experiments. d. Peri-implantation 

embryos showing breakdown of basement membrane between embryonic and extra-embryonic 

compartments; Upper: E-cadherin, red; DNA, blue; laminin, cyan. Lower panel shows the 

laminin staining inverted for better contrast. Black boxes indicate the region of the zoomed inset. 

Bar=20µm. n=10 per stage, 2 separate experiments. e. Laminin is not displaced from the 

horizontal in ESC-ESC structures (n=8, mean angular displacement Ѳ= 91.05˚; pooled from 2 

separate experiments) compared with ETS-embryos (n=13, mean angular displacement Ѳ= 

80.3˚; pooled from 2 separate experiments). Student’s t-test, P<0.01, Error bars= SEM. For 

description of measurement of angular displacement, see Materials &Methods. f. ETS-embryo 

during cavitation after 84 hours of culture stained to reveal: Oct4, red; laminin, cyan; DNA, blue. 

XZ and YZ orthogonal views also shown. Yellow line outlines cells in chimeric arrangements; 

white dashed lines trace outline of the cavity. Bar= 20µm. n=15, 2 separate experiments. g. 

Another example of a ETS-embryo during cavitation at 84 hours. Oct4, red; laminin, cyan; DNA, 

gray. YZ orthogonal view also shown. White arrowheads indicate residual laminin. Yellow lines 

trace chimeric arrangements of embryonic (dotted) and extra-embryonic (solid) cells at 

boundary; n=15, 2 separate experiments. Bar= 20µm. h. E5.5 embryo. Oct4, red; DNA, gray. YZ 

orthogonal view also shown. Inset highlights chimeric cell arrangement at the boundary (yellow 

dotted line, embryonic cells; yellow solid line, extra-embryonic cells), n=10. Bar=20µm.  

Figure 4: Cavitation of the TSC compartment requires Nodal/Activin signalling. a. TSC 

aggregate at 84 hours in co-culture but not in contact with ESCs, Cdx2, green; DNA, blue; 

aPKC, red (left-hand panel) and F-actin, green; DNA, blue; aPKC, red (right-hand panel). White 

arrowheads indicate cavities. Zoomed inset displays a small cavity opening at a point of aPKC 

and F-actin enrichment. Bar= 30µm. n=20, 2 separate experiments. b. Sole TSC aggregate in 3D 
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Matrigel at 84 hours. Cdx2, green; DNA, blue; aPKC, red. No cavities could be detected and 

aPKC is not polarised. n=20 structures analysed that all displayed this morphology, 2 separate 

experiments. Bar=30µm. c. Quantitation of cavitation in TSC- aggregates cultured either alone or 

in the presence of ESCs for 84 hours. n=10 structures counted per condition per experiment; 2 

separate experiments. Student’s t-test, P<0.001. d. ETS-embryos built from either control or 

Nodal -/- ESCs or cultured in 10µM SB431542 for 96 hours: Oct4, red; PCX, green; DNA, blue; 

P-SMAD2, grey. Bar=20µm. White/ Yellow dashed lines highlight outline of ETS-embryo and 

cavity. XZ and YZ orthogonal views highlight cavity where present. Fluorescence traces are of 

PCX intensity along region indicated by the numbered dotted lines in the ESC and TSC 

compartments. n=10. e. Embryos recovered at E5.0 and cultured in vitro for 36 hours in control 

(DMSO; n=14, 3 separate experiments) or in the presence of SB431542 (10µM; n=10, 3 separate 

experiments). Oct4, red; PCX, green; DNA, blue; P-SMAD2, grey. Inset highlights P-SMAD2 

staining in the extra-embryonic ectoderm in each case. Bar= 50µm. f. Left panel: Quantification 

showing the number of ETS-embryos with cavitated TSC compartments after 96 hours in culture 

in control, SB431542 and Nodal-/- ESC conditions. n=10 per group, 2 separate experiments.  

Count data are presented as a bar chart, and a contingency table was used to perform the 

statistical test. Fisher’s exact test, P<0.05. Right panel: Quantification showing the number of 

embryos with cavitated extra-embryonic compartments when recovered at E5.0 and cultured for 

36 hours in control (n=14) or SB431542 (n=10) conditions, 2 separate experiments. Count data 

are presented as a bar chart, and a contingency table was used to perform the statistical test. 

Fisher’s exact test, P<0.001. g. TSC aggregate cultured in 50ng/ml Activin A for 72 hours (left-

hand panel) Cdx2, green; DNA, blue; aPKC, red. (right-hand panel): F-actin, green; DNA, blue; 
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aPKC, red. Zoomed inset displays small cavity opening where aPKC and F-actin are enriched. 

Bar=50µm. n=20, 3 separate experiments. 

Fig. 5. ETS-embryos develop to express mesoderm markers a. T/Brachyury:GFP-expressing 

ESCs (green) growing alone (right) or as part of a ETS-embryo (left) in Matrigel. Bar=20µm; 

white dotted lines outline each structure and its cavity. n=100 “ETS-embryos”, 4 experiments; 

n=65 ESC-alone structures, 4 experiments. b. Proportion of ETS-embryos expressing T:GFP at 

96 hours is significantly higher in comparison to ESCs-alone structures. Fisher’s exact test, 

P<0.001, n=108: 64 ETS-embryos and 44 ESC-alone structures counted in 2 separate 

experiments. Error bars=SEM. c. Proportion of T/Brachyury expressing ETS-embryos or - 

structures comprising only ESCs with asymmetric domain of T/Brachyury expression with 

respect to the long axis (equivalent to the midline) of the structure (Methods). Student’s t-test, 

P<0.001, n=100 ETS-embryos and n=100 structures comprising only ESCs per experiment. 

Mean of 4 separate experiments, Error bars= SEM. d-f. Quantitative assessment of endogenous T 

asymmetry in a ETS-embryo at 100 hours (d) revealing T, green; DNA, blue. Zoomed inset 

highlights T/Brachyury-expressing region; XZ panel highlights asymmetry in T/Brachyury to 

one side of structure. Bar=20µm. Projection of all cell coordinates in 2D (e):  black points, T 

negative cells; green points, T positive cells. Proportion of T-positive versus T-negative cells 

around mid-line, equivalent to the long axis of each structure (f; Methods). Fisher’s exact-test, 

P<0.001. Error bars=SEM.  g-i. Quantitative assessment of T asymmetry in E6.5 natural embryo 

(g) revealing T, green and DNA, blue. Zoomed inset highlights T/Brachyury-expressing region; 

XZ panel, asymmetry in T/Brachyury. Bar=20µm. Projection of cell coordinates (h) as in panel 

(e). Proportion of T-positive versus T-negative cells around mid-line, long axis of each structure 

(i). Fisher’s exact-test, P<0.001. Error bars=SEM. j. RT-qPCR analysis of the expression of 



 39 

mesodermal markers (T, Mixl1 and Hand1), epithelial-to-mesenchymal transition (EMT)  

markers (Snai1 and Vimentin) and markers known to be elevated in the region opposite to the 

mesoderm region of the E6.5 embryo (Pou3f1, Oct4, Slc7a3, and Utf1)in T:GFP positive cells of 

a ETS-embryo (collected after 100 hours in culture) compared with T:GFP negative cells from 

the ESC compartment of the same structure. Mesodermal and EMT marker expression was 

significantly increased in T:GFP positive cells, whilst cell markers known to be elevated in the 

region opposite the mesoderm region were significantly decreased. Student’s t test, P<0.05. N=4 

biological replicates. Error bars= SEM. Note that for Mixl1, gene expression in some samples of 

T:GFP-negative cells were undetermined, and so were accepted as zero. k. Top: A ETS-embryo 

after 100 hours immunostained to reveal: DNA, left; Oct4, middle; and T:GFP, right. Images are 

maximum projections and are false-coloured with the ‘fire’ “Look-up table” function in Fiji 

software to highlight intensity gradients. Bar=20µm. Bottom: mean intensity profiles for 

immunofluorescence stainings plotted as the mean +/- SEM for eight different cross-sections of 

the embryonic compartment of the ETS-embryo shown. l. Comparable size of T expression in 

ETS-embryos and E6.5 embryos. n=10 per group, Mean ratio of areas of mesodermal 

domain/total epiblast in E6.5 embryo. Student’s t test, not significant, error bars= SEM. For a 

description of how the ratio was measured and calculated, see Materials & Methods. 

Fig. 6. ETS-embryos express mesoderm markers in response to Wnt signaling. a. ETS-

embryos expressing the Wnt reporter H2B-GFP:Tcf/LEF and T/Brachyury at 90, 96, and 102 

hours of culture. Oct4, red; DNA, blue; H2B-GFP:Tcf/LEF, green; T/Brachyury, white. 

Bar=20µm. Inset (Bar=10µm) highlights cells co-expressing Wnt reporter and T/Brachyury. 

n=15 per each time-point. b. Quantification of mean number of Wnt/Brachyury co-expressing 

cells detected in the ESC compartment of ETS-embryos with time. The number of cells is 



 40 

significantly different in each group (ANOVA test, P<0.01).  n=15 per time-point, 3 separate 

experiments. Error bars=SEM. c. Proportion of ETS-embryos expressing T/Brachyury is reduced 

in presence of DKK1 (200ng/ml) compared to controls. Student’s t-test, P<0.001, n=400, 4 

separate experiments. d. Representative ETS-embryos cultured in 200ng/ml DKK1 and control 

conditions for 96 hours. Oct4, red; DNA, blue; T/Brachyury, white. Yellow arrows indicate 

T/Brachyury-positive cells in control conditions, undetectable in DKK1 conditions. Bar= 20µm.  

Fig. 7. ETS-embryos express primordial germ cell (PGC) markers in response to BMP 

signaling. a. ETS-embryo at 120 hours showing asymmetric expression of mesoderm and PGCs 

markers. Oct4, red; T/Brachyury, green; Tfap2c, green; and DNA, blue.  Insets highlight the 

Oct4-Tfap2c double-positive cells which occupy the boundary in the T/Brachyury-positive 

region. Bar= 20µm. n=13, 2 separate experiments. Maximum projection shows merge of Tfap2c-

Oct4-DAPI. b. ETS-embryo at 120 hours expressing Stella:GFP (green) concomitantly with p-

SMAD1 (gray). Oct4, red; DNA, blue. Bar=20µm. n=15, 3 separate experiments. Insets 

highlight Stella:GFP-positive cells in ESC compartment. Maximum projection shows merge of 

Stella:GFP-Oct4-DAPI. c. Projected cell coordinates for the same ETS-embryo as in (a):  black 

points, Oct4 and Tfap2c negative cells; Red points; Oct4 positive, Tfap2c negative cells; green 

points, Oct4 and Tfap2c double positive cells. d. Projected cell coordinates for same ETS-

embryo as in (b). Black points, Stella:GFP and Oct4 negative cells; red points, Oct4-positive and 

Stella:GFP negative cells; green points, Oct4- and Stella:GFP positive cells. e. RT-qPCR 

analysis of the expression of PGC markers in ETS-embryo. Tfap2c, Stella, Prdm14, Nanos3, 

Ddx4 and Dnmt3b in T:GFP positive and T:GFP negative cells from the same ETS-embryos 

collected after 120 hours in culture. Expression of PGC markers is significantly increased in 

T:GFP positive cells, Student’s t-test, P<0.05. n=5 biological replicates. Error bars= SEM. f. 
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ETS-embryos at 96 hours cultured in control conditions or with BMP antagonist Noggin 

(50ng/ml). Oct4, red; DNA, blue; P-SMAD1, grey; Stella-GFP, green. Bar=20µm. n=15, 2 

separate experiments. g. RT-qPCR analysis of the expression of PGC markers in ‘border cells’ 

collected from ETS-embryos in the presence of DKK1 (200ng/ml) versus T:GFP positive / 

negative cells collected from ETS-embryos in control conditions (collected after 120 hours in 

culture). Expression of PGC markers (Blimp1, Stella, and Prdm14) is significantly increased in 

T:GFP positive cells in control conditions,  but this effect is abrogated when DKK1 is introduced 

into culture conditions . ANOVA followed by Tukey test. P<0.05. n=4 biological replicates. 

Error bars= SEM. We confirmed inhibition of the Wnt pathway by DKK1 by analysis of the 

expression of Axin1, Wnt3 and T in all samples. h. Schematic representation of a ETS-embryo 

(ESC compartment white and TSC compartment grey) to illustrate where ‘border cells’ were 

dissected from in DKK-treated samples for RT-qPCR analysis.   

Fig. 8. ETS-embryos as a simplified model of embryo development from the blastocyst 

stage till mesoderm specification post-implantation. Comparison of development of natural 

and “ETS-embryos” mouse embryos. Red cells, ESC/epiblast; dark blue cells, 

TSC/trophectoderm/ extra-embryonic ectoderm cells; beige cells, mesoderm cells; Seagreen 

cells, Primordial Germ Cells; yellow line, basement membrane/ECM. In the embryo, Green cells 

are primitive endoderm/visceral endoderm cells; Dark green cells, Distal/ anterior Visceral 

Endoderm. The ETS-embryo is surrounded by ECM in similar manner to basement membrane of 

visceral endoderm in natural embryo. Mesoderm-expression domain is similarly positioned and 

occupies similar area of the embryonic compartment in both ETS-embryos and natural embryos. 
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Fig. S1. a. Confocal time-lapse images of 4 representative ETS-embryos at indicated times in 

which CAG-GFP ESCs (orange) labels the embryonic compartment. Brightfield was false-

coloured with the ‘edges’ “Look-up-table” function in Fiji software. White dotted line marks the 

outside of the TSC compartment for clarity. Bar=20µm. b. q-RT-PCR analysis of ExE markers 

(Cdx2, Eomes, Elf5, Gata3) and epiblast markers (Oct4, Acsl4, Otx2, Fgf5) in ESC and TSC 

derived compartments of ETS-embryos cultured for 96 hours. Student’s t-test, P<0.05. n=4 

biological replicates. Error bars= SEM. c. Schematic representation of a “ETS-embryo” to 

illustrate how ESC (red) and TSC (blue) compartments were isolated for RT-qPCR analysis. 

Fig. S2. A montage of a complete Z-stack through a representative ETS-embryo to illustrate 

scoring of cavities (outlined with yellow dotted lines and shown in zoomed images in right-most 

two columns). Red, Oct4; Green, E-cadherin; Blue, DNA. Scale bar=20µm. 

Fig. S3. a-b. ETS-embryo stained to reveal: Oct4, red; F-actin, green; DNA, blue; Cleaved-

caspase-3, grey. Bar=20µm. Yellow arrowhead indicates a dying cell. XZ and YZ orthogonal 

views are also shown in (a). c. Quantification of dying cells in ESC and TSC compartments. 

n=15. d. E5.5 embryo recovered from mother and stained to reveal: Cdx2, red; PCX, green; 

DNA, blue; Cleaved-caspase-3, grey. Bar=20µm. Yellow arrowhead indicates a dying cell. e. 

Quantification of dying cells in the embryonic (EPI) and extra-embryonic (ExE) compartments 

of the embryo. n=6. 

Fig. S4. a. ETS-embryo at 84 hours stained to reveal Oct4, red; E-cadherin, green; DNA, blue. 

XZ and YZ orthogonal views also shown. White dotted lines highlight cavities. Insets highlight 

individual cells outlined in yellow dotted lines to indicate cell shape. Bar= 20µm. n=30, 3 

separate experiments. b. Mean cell aspect ratio (width of cell divided by length) is significantly 
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different between ESC and TSC compartments of ETS-embryos at 84 hours of development. 

ANOVA test, P<0.001, n=30 per group, 3 separate experiments. Error bars= SEM.  

Fig.S5 a. Proportion of ETS-embryos expressing Stella:GFP at 120 hours is significantly higher 

in comparison to ESCs-alone structures. Fisher’s exact test, P<0.001, n=80: 40 ETS-embryos  

and 40 ESC-alone structures counted in 2 experiments. Error bars=SEM. b. Stella:GFP-

expressing ESCs (green) growing alone (right) or as part of a ETS-embryo (left) in Matrigel. 

Bar=20µm. n=40 “ETS-embryos”, 2 experiments; n=20 ESC-alone structures, 2 experiments. 

Fig. S6 a. Comparison of P-SMAD1 expression in ETS-embryo; an in vitro cultured embryo and 

an embryo recovered from the mother at E5.5. P-SMAD1, grey; Oct4, red; DNA blue. Bar= 

20µm. b. P-SMAD1 immunofluorescence intensity quantified in ETS-embryos, natural embryos 

recovered from the mother at E5.5 and in vitro cultured embryos at egg cylinder stage. P-

SMAD1 intensity was normalised to the DNA-channel (DAPI, blue) and a mean average was 

taken. ANOVA test, not significant, n=4 per group. Error Bars= SEM. c. Quantification of the 

number of ETS-embryos with Stella:GFP expression at the boundary between ESC and TSC 

compartments after 120 hours in culture in control conditions and in the presence of Noggin. 

Count data are presented as a bar chart, and a contingency table was used to perform the 

statistical test. n=15 per group, 3 separate experiments. Fisher’s exact test, P<0.05. 

 

Supplementary Table 1: Antibodies used in the study. 

 

Supplementary Table 2: qPCR primers used in the study. 


