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ABSTRACT
A long-standing puzzle in the study of black hole accretion concerns the presence or not of
thermal instability. Classical theory predicts that the encircling accretion disc is unstable, as
do some self-consistent magnetohydrodynamic simulations of the flow. Yet observations of
strongly accreting sources generally fail to exhibit cyclic or unstable dynamics on the expected
time-scales. This paper checks whether turbulent fluctuations impede thermal instability. It
also asks if it makes sense to conduct linear stability analyses on a turbulent background.
These issues are explored with a set of MRI simulations in thermally unstable local boxes
in combination with stochastic equations that approximate the disc energetics. These models
show that the disc’s thermal behaviour deviates significantly from laminar theory, though
ultimately a thermal runaway does occur. We find that the disc temperature evolves as a
biased random walk, rather than increasing exponentially, and thus generates a broad spread
of outcomes, with instability often delayed for several thermal times. We construct a statistical
theory that describes some of this behaviour, emphasizing the importance of the ‘escape time’
and its associated probability distribution. In conclusion, turbulent fluctuations on their own
cannot stabilize a disc, but they can weaken and delay thermal instability.
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1 IN T RO D U C T I O N

The assumption that the turbulent stress is proportional to pressure in
accretion discs (the α-model) is a fundamental ingredient of classic
accretion disc theory (Shakura & Sunyaev 1973). It has been par-
tially justified by successful application to quasi-steady systems,
such as the thermal spectrum of dwarf novae and X-ray binaries
(e.g. Warner 1995; Gierliński & Done 2004); but when applied to
more delicate time-dependent dynamics, such as instabilities, the
model has encountered difficulties. For instance, the modelling of
dwarf nova outbursts requires different alphas for the high and low
states (Smak 1984). Another example involves radiation-pressure-
dominated accretion flows which the alpha model predicts are sub-
ject to thermal and viscous instability (Lightman & Eardley 1974;
Shakura & Sunyaev 1976). X-ray observations, however, fail to find
variability on the time-scales expected (Gierliński & Done 2004),
with only the exceptional luminous source GRS 1915+105 and the
intermediate black hole HLX-1 exhibiting anything like cyclic be-
haviour driven by thermal instability (Belloni et al. 1997; Done,
Wardziński & Gierliński 2004; Sun et al. 2016; Wu et al. 2016).
While it is possible the discs are stabilized by an additional but
unknown cooling mechanism, it may be that the heating depends
on temperature in a weaker way than the alpha model assumes. For
example, the turbulent stresses may be proportional to gas pressure
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rather than total pressure, or not on pressure at all (Gierliński &
Done 2004).

Of course, one can bypass the alpha model (and its assumptions)
and simulate the magnetohydrodynamic (MHD) turbulence in these
discs self-consistently, with the turbulence then supplied directly by
the magnetorotational instability (MRI; Balbus & Hawley 1991).
And in fact early work indicated that radiation-pressure-dominated
flows were thermally stable (Hirose, Krolik & Blaes 2009), in agree-
ment with most observations. However, recent local and global sim-
ulations do exhibit thermal runaways (Jiang, Stone & Davis 2013;
Mishra et al. 2016; Sadowski 2016), though these expose additional
complications that may suppress instability, such as numerical ef-
fects (especially box size) and the impact of a mean magnetic flux.
Obviously, both observations and simulations indicate that the onset
and development of thermal instability is far less straightforward
than that predicted by the classical laminar theory.

One very clear complication is the fact that the stress–pressure
relationship can change, for both numerical and physical reasons,
yielding instability or stability depending on conditions in the disc
and in the simulation. A quite separate issue concerns the assump-
tion that thermal instability can be appropriately defined at all, at
least when dealing with quasi-steady turbulent states. The alpha
theory treats the turbulence as a static eddy viscosity, and hence the
equilibrium state as laminar. However, if the state hosts vigorous
fluctuations it may not be well defined, or even make sense, to add a
small linear perturbation on top of the stochastic background field,
and subsequently calculate a growth rate. One envisages that, at the
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very least, non-model, non-exponential behaviour ensues. Indeed,
Jiang et al. (2013) report delayed runaway and algebraic growth
rather than exponential growth in their MHD simulations, while
Janiuk & Misra (2012) show via a stochastic 1D model that fluctu-
ations induce random luminosity variations rather than the regular
outbursts expected. It is to this aspect of the problem that this paper
is devoted, focusing on the constructive and destructive interference
of turbulence on thermal instability.

In order to isolate the essence of the problem, we employ an
idealized model of MRI turbulence and of thermal instability. Un-
stratified shearing box simulations are performed using the code
RAMSES on a state that is MRI turbulent and thermally unstable (at
least according to the laminar alpha theory). Note that radiation pres-
sure is omitted and the gas cools due to a simple cooling function.
We find that the turbulent fluctuations induce thermal behaviour
substantially different to that expected from laminar theory. In par-
ticular, the evolution of the temperature resembles more a biased
random walk than an exponential runaway, with a wide range of
trajectories possible: the temperature in some simulations departs
from the laminar equilibrium relatively rapidly, whereas in others it
can ‘hang around’ for several thermal times.

This motivates a probabilistic interpretation of instability, and
we develop a simple statistical framework based on the model of
geometric Brownian motion (GBM). A key idea is that of the ‘escape
time’ tesc (which replaces the e-folding time). It describes how long
it takes for the system to deviate significantly from the equilibrium.
Reduced models involving both white noise and the power spectrum
of the MRI show that the probability distribution of tesc possesses a
long tail. Thus, there is a reasonable chance in any given simulation
that thermal runaway is delayed. It should be stressed that ultimately
realistic models of discs still undergo thermal runaways: turbulent
fluctuations can impede instability but they cannot destroy it. The
stabilization witnessed in Janiuk & Misra (2012) we attribute to
the peculiarities of their stochastic model and a very large noise
amplitude.

Another feature of our MHD simulations is thermal fragmen-
tation when the cooling rate is too small, and hence the laminar
thermal instability time-scale is too short. The disc then breaks up
into hot and cold clouds. This occurs when the thermal mixing (by
turbulence or radiative diffusion) is inefficient compared to thermal
instability. On a sufficiently long length-scale, this is always pre-
sumably the case, but how this relates to the onset of instability in
hot accretion flows is unclear. Estimates of both radiative diffusion
and turbulent mixing suitable for the inner regions of X-ray binaries
indicate that fragmentation is a marginal possibility.

The paper is organized as follows. In Section 2, we discuss a
number of issues pertinent to thermal instability, stochastic fluctua-
tions and the limits of the alpha theory (not all of which we take up
in this paper). The third and fourth sections contain our numerical
MHD model and the corresponding results, respectively. We then
explore stochastic models in Section 5 and construct a statistical
theory to help explain the MHD simulations. Our conclusions are
then presented in Section 6.

2 TH E O R E T I C A L I S S U E S

2.1 Stress–pressure relationship

The exact dependence of the turbulent stress, �xy, on pressure is
key to the onset of thermal stability in radiation-pressure-dominated
flows. The instability occurs when �xy ∝ (Pgas + Prad), but does
not occur when �xy ∝ Pgas (Piran 1978). Here, Pgas and Prad denote

gas and radiation pressure, respectively. The failure to observe sig-
natures of thermal instability in most X-ray observations has been
attributed to the stress depending on gas pressure alone or possi-
bly the geometric mean of gas and radiation pressure (Gierliński &
Done 2004). It has also been speculated that only exceptionally lu-
minous flows could lead to a situation where �xy ∝ Prad, explaining
the outbursts of GRS 1915+105 (though what exactly causes this
shift in the stress’s behaviour is unclear; Gierliński & Done 2004,
but see also King & Ritter 1998). Numerical simulations of the MRI
have since complicated this picture, as they indeed exhibit instabil-
ity (Jiang et al. 2013), and we are left with the task of numerically
tracing out the non-straightforward behaviour of �xy in different
conditions.

While earlier unstratified shearing box simulations without radi-
ation pressure found only a weak dependence of stress on pressure
(Sano et al. 2004), recent work has shown that �xy ∝ Pgas when
the following conditions are satisfied: the computational domain is
sufficiently large, explicit dissipation is included, and there is no
net magnetic field (Ross, Latter & Guilet 2016, hereafter RLG16).
Small boxes restrict the size of the turbulent eddies and prevent
them from fully responding to an increase in pressure (be it gas
or radiation). This restriction no doubt played a role in the failure
of early radiation-pressure-dominated simulations to show thermal
instability (Hirose et al. 2009): the radial domain was too small,
the eddies unnaturally confined and, as a result, the stress unable to
respond to changes in the total pressure. When larger radial boxes
are used, as in recent work, the instability does in fact materialize
(Jiang et al. 2013).

Another numerical effect uncovered by RLG16 was a sensitivity
to the grid in simulations with no net magnetic field and no explicit
diffusion. As in isothermal runs (Fromang & Papaloizou 2007),
the stress is proportional to grid size and this leads to a signif-
icantly weaker stress–pressure relationship. Local boxes are not
the only domains that exhibit the effect; recent vertically stratified
simulations also show that the stress depends on the grid length
(Ryan et al. 2017). The weaker dependence, both from numerical
dissipation and from the box size, leads to artificially more stable
systems (as can be shown from dimensional analysis). It is therefore
necessary for both of these numerical complications to be consid-
ered when simulating thermal instability involving gas pressure. It
is likely that global disc simulations of the MRI also suffer from
strong numerical effects, though these have yet to be fully explored.

Another intriguing result from RLG16 is that the stress–pressure
relationship depends on the existence and strength of any imposed
magnetic flux. The stronger a mean toroidal flux, the weaker the re-
lationship. If this behaviour generalizes to other field configurations
and to the radiation-dominated regime, then one might speculate that
highly magnetized flows are less prone to thermal instability. Indeed
global simulations of the MRI suggest that it is impeded by strong
magnetic fields (Sadowski 2016), possibly because they weaken the
connection between the stress and pressure. This raises the inter-
esting prospect that to assess susceptibility to thermal instability,
we must also account for the build-up and evacuation of large-scale
magnetic flux, in addition to the turbulent dynamics (e.g. Guilet &
Ogilvie 2012, 2013).

2.2 Time lags

The alpha theory is a turbulence closure model, supplying a sim-
ple eddy viscosity in place of the complicated and chaotic time-
dependent dynamics of the flow. On time-scales and length-scales
much longer than the characteristic scales of the turbulence, this
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approximation provides an adequate description, but its perfor-
mance worsens the shorter the scales of interest. Since thermal
instability can possess growth rates of tens of orbits (or less), then
the detailed turbulent dynamics could potentially interfere with its
onset.

Simulations, as expected, show that on shorter time-scales, the
stress–pressure relationship is more complicated than a mere pro-
portionality. One interesting feature is a time lag of a few orbits
between the stress and pressure. Moreover, it is the pressure that
follows the stress on shorter times, rather than the other way around.
And so the dependence is opposite to that assumed by the alpha
theory: bursts in stress are followed by jumps in pressure (Hirose
et al. 2009). What is happening here is that the bursts in stress drive
fluctuations in the heating rate (once their associated energy has
reached the dissipation scale) and hence cause bursts in pressure a
short time later.

The effect of this time delay on a stable thermal equilibrium
was first explored by Hirose et al. (2009), who argued that if the
direction of causation was from the stress to the pressure then
thermal instability may not work. The argument fails, however,
to acknowledge that the stress–pressure dynamics exhibit different
time-scales, with longer time-scales (>10 orbits) characterized by a
pressure-dependent stress (as in the classical theory), while
the short time-scales show the lags described above (Latter &
Papaloizou 2012, RLG16).

Follow-up work by Lin, Gu & Lu (2011) and Ciesielski et al.
(2012) presents linear instability analyses of an alpha disc model
with a time-delayed alpha. These show that the simulated delay of
1–10 orbits is insufficiently long to stabilize a thermally unsta-
ble state. They also reveal potential inconsistencies in such simple
models: for example, infinite growth rates are possible for certain
time-lags, a physical impossibility. Of course, these models are also
incomplete, as they include only either the short-term or long-term
dependences, but not both concurrently. Lastly, it is possible that
the flow exhibits an additional time delay affecting the long-term
stress-pressure relation, now with the stress lagging behind the pres-
sure. This has not been verified by simulations yet, but if present
may weaken thermal instability.

2.3 Temporal fluctuations

MRI turbulence has strong variation over a range of time-scales,
from tens of orbits to a few shear times (Sano et al. 2004; Lesur &
Ogilvie 2008). In what sense does a thermal equilibrium exist in
such a system? Time-varying perturbations are constantly emerging
which lead to a shifting balance of heating and cooling that the
system continually responds to. On the other hand, if we assume
that there is well-defined mean equilibrium, then it is awash in
finite amplitude fluctuations. How can one then undertake a linear
instability analysis? Is it meaningful to add a tiny perturbation on
top of a sea of finite amplitude perturbations and check if it grows or
not? On long length and time-scales this might work, but certainly
not on shorter scales.

Putting aside the difficulty of interpreting linear stability analyses,
a stochastic system exhibits a range of complicated and sometimes
unexpected behaviour. A classic example is the destabilization of
fixed points deemed stable by laminar theory. Originally studied in
biological population dynamics (e.g. Levins 1969; May 1973), this
feature of noisy systems appears in numerous applications, such
as atmospheric modelling (e.g. De Swart & Grasman 1987), where
the unresolved short time and lengths dynamics are represented by
stochastic terms (see Majda, Timofeyev & Vanden-Eijinden 1999,

2003). On the other hand, the influence of stochasticity on an other-
wise unstable fixed point has been studied in financial mathematics,
where GBM can be used to model volatile stock prices in a rising
market. Despite the mean trend of increasing prices, stochasticity
can depress the price of some stock dramatically, if not stabilizing
the fixed point then delaying a runaway in price for some period of
time.

The very last example is perhaps the most relevant for our study,
as it possesses the key ingredients of (a) an unstable fixed point
(according to a deterministic or ‘laminar’ theory) and (b) stochastic
fluctuations. The competition between them gives rise to behaviour
one might liken to a biased random walk. In between the kicks
delivered by the turbulence, the system drifts according to the de-
terministic unstable dynamics. One can then imagine certain limits:
when the characteristic frequency of the turbulence is much greater
than the thermal instability growth rate, then we may expect an
unbiased random walk, and the system will only weakly sense the
underlying thermal physics. In the opposite limit, when the growth
rate is much greater than the turbulent frequency, the deterministic
laminar dynamics should be reproduced. It is in the intermediate
regime, explored in this paper, that interesting non-trivial behaviour
manifests. There are also other key ratios, such as the size of the
kicks relative to the magnitude of the fixed point or the initial condi-
tion. If these are too small, then we return to the laminar case. But for
intermediate values, as exhibited by our MRI simulations, system
trajectories can deviate markedly from both the laminar behaviour
and a simple unbiased random walk.

2.4 Spatial fluctuations

In the previous subsection, we considered only temporal fluctuations
on the system variables, implicitly regarding them as ‘box averaged’
or mean quantities. Indeed, the α model assumes a homogenized
temperature over ∼H, the disc scaleheight. Turbulent heating, how-
ever, is spatially inhomogeneous with strong dissipation occurring
in current and vorticity sheets and minimal dissipation in the sur-
rounding regions. These spatial fluctuations also complicate the
picture of thermal instability, especially when the instability growth
rate is large.

Some form of thermal mixing is necessary to homogenize the
temperature of the fluid. This can take multiple forms, such as tur-
bulent advection, radiative diffusion or thermal conduction. When
thermal instability is present, the assumption of a uniform temper-
ature is reasonable as long as the instability time-scale is longer
than the mixing time-scale, tinst > tmix. For less efficient mixing or
stronger instability, there exists a maximal thermal coupling length-
scale, l ∼ vmixtinst. Regions separated by more than this only weakly
interact thermally during an e-folding time. This implies that regions
of a disc separated by more than l can undergo thermal runaways
independently, and the disc fragments into cold and hot clouds. Re-
gions of strong kinetic and magnetic dissipation are likely to heat
catastrophically, while those with weak dissipation will cool catas-
trophically. How relevant this scenario is in realistic discs is unclear,
though perhaps marginally possible in X-ray binaries. It is certainly
possible in numerical simulations as we show later.

3 N U M E R I C A L TO O L S A N D S E T U P

3.1 Formulation

We wish to explore the essential features of thermal stability and
its onset in MRI-driven turbulence and so we choose an ideal-
ized set-up to isolate it. We adopt the local shearing box model
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(Goldreich & Lynden-Bell 1965). To prevent complications such as
buoyancy, mass-loss and disc expansion, we consider the unstrati-
fied case. With this model, MRI-driven turbulence can be obtained
when a Keplerian flow profile is assumed (Hawley, Gammie &
Balbus 1995). As is conventional, x, y, z are the radial, azimuthal
and vertical spatial variables and êx , êy , êz are the corresponding
unit vectors. This frame of reference corotates with the disc at some
radius with angular frequency � = �êz. The ideal compressible
MHD equations are hence

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

ρ
∂v

∂t
+ ρ(v · ∇)v = −2ρ� × v + 3xρ�2 êx − ∇P

+ (∇ × B) × B (2)

∂B
∂t

= ∇ × (v × B), (3)

∂ε

∂t
+ v · ∇ε = −P∇ · v + Q − �, (4)

where ρ is the mass density, v is the velocity, P is the gas pressure,
B is the magnetic field and the internal energy is denoted by ε.
Heating is represented by Q and cooling by �. This set of equations
is then closed by relating the internal energy to the pressure by
assuming an ideal gas so that

ε = P/(γ − 1), (5)

where γ is the adiabatic index, taken to be 7/5. The sound speed
is then given by cs = (γ P/ρ)1/2 and the pressure scaleheight by
H = (2/γ )1/2cs/�.

Ideally, we would include viscosity and Ohmic diffusion and so
Q would be given by the sum of the physical dissipative processes;
however, to resolve the diffusion length-scales requires a higher
resolution than is practical. Instead, we rely on numerical dissipation
for heating. By solving equations (1)–(4) in conservative form, the
kinetic and magnetic energy dissipated by the grid is converted to
internal energy. Energy that is extracted from the background shear
is converted to internal energy and ultimately removed via cooling.

Finally, for our cooling function, we take a power law of pressure,

� = θ P m, (6)

where both θ and m are constants. Though this choice is mainly
for convenience, it might crudely approximate an optically thin
medium.

3.2 Numerical methods

All of the simulations that we perform are carried out using RAMSES,
a finite-volume Godunov code based on the MUSCL–Hancock al-
gorithm (Teyssier 2002; Fromang et al. 2006). The HLLD Riemann
solver (Miyoshi & Kusano 2005), and the multidimensional slope
limiter described in Suresh (2000) are used in all the simulations
presented in this paper.

Rather than solving for the total y-momentum, we evolve the
equivalent conservation law for the angular momentum fluctua-
tion ρv′

y = ρ(vy − vK), with vK the Keplerian velocity. An upwind
solver is used for solving the azimuthal advection arising from vK.
The tidal and Coriolis forces are treated as source terms and im-
plemented following the Crank–Nicholson algorithm described in
Stone & Gardiner (2010).

The algorithm solves for the total fluctuation energy E′ ≡
ε + ρv′2/2 + B2/2 and its conservation law is written as

∂E′

∂t
+ ∇ · (

E′v′ + v′ · P
) = −vK

∂E′

∂y

+ (
BxBy − ρvxv

′
y

) ∂vK

∂x
− �, (7)

where P is the total pressure tensor

P = (P + B2/2)I − B B. (8)

The left-hand side of equation (7) comprises the usual energy con-
servation law, which we solve using the MUSCL–Hancock algo-
rithm. The treatment of the two terms on the right-hand side have
been modified: the azimuthal advection of energy is solved with
an upwind solver, and the second term involving the Maxwell and
Reynolds stresses is added as a source term.

For the set of simulations shown in this paper, we used a
box size of (Lx, Ly, Lz) = (4, 5, 4)H0 with a resolution of
(Nx, Ny, Nz) = (128, 100, 128). H0 is a reference scaleheight that
is close to but not exactly the same as the scaleheight at the start
of a simulation. It will be defined in detail later. The grid scale is
defined to be � = Lx/Nx. We set � = 10−3 and cs0 = 10−3 in code
units, where cs0 is the initial sound speed. The resolution is low
in comparison to other MHD shearing box simulations; however,
it is sufficient to capture the basic properties of the MRI, in par-
ticular the turbulent fluctuations. Importantly, it is computationally
inexpensive allowing the simulations to run for �500 orbits.

3.3 Thermal equilibrium

In our shearing box model, the energy is injected into the com-
putational domain by the second term on the right-hand side of
equation (7) which represents the liberation of shear energy by the
total stress:

�xy = BxBy − ρvxv
′
y . (9)

Simulations have found that the box-averaged stress 〈�xy〉 is
roughly proportional to the box-averaged gas pressure to a given
power (Sano et al. 2004; RLG16), though be aware of the caveats
given in Section 2. Therefore, in numerical simulations, the aver-
aged heating rate may be approximated by

〈Q〉 ∝ 〈�xy〉 = α̃〈P 〉q , (10)

where α̃ and q may be calculated from the simulation. Note that the
former is not the same as the α parameter. The exponent q depends
on the field geometry as well as the numerical parameters (RLG16).
For our set-up, q = 0.5, as long as the pressure is sufficiently small
(see later).

Combining this approximation with our cooling prescription, the
evolution of the volume-averaged pressure, 〈P〉, is determined by

d〈P 〉
dt

≈ (γ − 1)
3

2
�〈�rφ〉 − (γ − 1)θ〈P 〉m (11)

∼=a1〈P 〉q − a2〈P 〉m, (12)

where

a1 = 3

2
�(γ − 1)α̃, a2 = (γ − 1)θ. (13)

In the formulation of equation (11), we have made the approxima-
tion that 〈Pm〉 ∼= 〈P〉m, which is reasonable as long as the variance
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Figure 1. For illustrative purposes, the red curve shows the fitted heating
rate calculated from a zero net-flux simulation with resolution 1

64 H0 = �

from RLG16 (shown in green). The blue line is an example cooling function
∝ P0.25. The fixed points are shown by black dots.

of P within the box at fixed time is not too large. This system has
two fixed points

P1 = 0, (14)

P2 =
(

a1

a2

)1/(m−q)

=
(

3�α̃

2θ

)1/(m−q)

. (15)

In shearing box simulations, the thermodynamics have an ad-
ditional complication: stress is independent of pressure once the
scaleheight is larger than the radial and vertical box sizes (RLG16).
The exponent q may then be viewed as a function of the disc tem-
perature, equal to 0.5 for cool discs, while asymptoting to 0 as
the gas heats and the scaleheight H equals the box size Lz. This
behaviour introduces the possibility of an additional stable fixed
point if m < max {q}. In Fig. 1, we plot (a) the heating rate as
a function of pressure from an L = 4H0, � = 1/64 simulation
(appearing in RLG16), (b) a smooth fit to this curve and (c) over-
lay an m = 0.25 power-law cooling. Where the latter two curves
intersect give three thermal equilibria. These are the P1 and P2

fixed points, described above, in addition to a third equilibrium,
P3, which arises from the finite size of the box. Note that a sim-
ilar artificial fixed point will also appear in vertically stratified
simulations.

The above volume-averaged analysis is deterministic, but, tur-
bulent flows are not. The stress fluctuates around its mean value
as a result of the formation and break-up of coherent structures
within the flow. This means that Q can no longer be expressed in
as simple a form as equation (10). Instead, the stress is determined
by the sum of a deterministic term and a fluctuating term. By using
equation (11), we can obtain an estimate of the equilibrium pressure
that the system feels at any given time

Pexp =
(

3�〈�xy〉
2θ

)1/m

. (16)

3.4 Thermal instability

According to a linear analysis of equation (4), the thermal instability
criterion is

dQ

dP
>

d�

dP
(17)

which, given our power-law expressions for Q and �, leads to the
simple condition q > m for P2, and the opposite stability for P1 and
P3.

We calculate the growth rate as

sg = (q − m)(γ − 1)

(
3α̃�

2

)(1−m)/(q−m)

θ (q−1)/(q−m), (18)

which can be used for comparison with the MHD simulations. The
associated instability time-scale we define to be tinst = 1/sg.

If the system was truly laminar, the instability criterion would be
fully determined by p and q and the instability time-scale from
equation (18). Fluctuating systems, however, exhibit non-
exponential and indeed non-monotonic behaviour that is poorly
approximated by the laminar model. In particular, tinst may be
an unsuitable measure for the instability time-scale. In its place,
we introduce the ‘escape time’ tesc of a simulation, which is de-
fined to be the last instance that the system lies within a pres-
sure interval containing the fixed point. Mathematically, it may be
defined via

tesc = max
{
t > 0 : |P (t) − Peqm| = δ

}
, (19)

where Peqm is one of the three equilibria introduced earlier, and
δ is the interval size, outside of which we consider the system to
have unequivocally departed from the fixed point. We are free to
specify the size of δ, and it might reflect the particular problem
of interest. For disc transitions between states differing by many
orders of magnitude in temperature, we might be generous with
δ, permitting it to be up to 10 times the fixed point pressure. For
smaller transitions, then δ must be smaller. Note that the system may
stochastically dip in and out of this interval, but tesc will capture the
time when the system finally leaves it forever. If the disc is laminar,
then

tesc = tinst ln

(
δ

|Peqm − Pinit|
)

, (20)

where Pinit is the initial pressure of the system.

3.5 Initial conditions

If we want a thermal equilibrium to be achievable within our box
and for the stress to depend appreciably on pressure, the initial
conditions must be chosen carefully. An initial state that is too hot
means the box size will unduly influence the stress and weaken Q’s
dependence on P. As a consequence, thermal instability will fail to
occur.

Stress is only observed to be a strong function of pressure
(�xy ∝ P1/2) when � � H < L (Sano et al. 2004; RLG16). There-
fore, P2 must be sufficiently low so that the stress is increasing with
pressure, but sufficiently high so that the characteristic length-scale
of the turbulence is not on (or below) the grid. We choose
√

P2√
Pbox

= H2

L
≈ 0.5, (21)
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Figure 2. The evolution of the box-averaged pressure and stress from sim-
ulation R1.

where Pbox is the pressure at which the scaleheight equals the box
size and H2 is the scaleheight when 〈P〉 = P2. From this, we can
obtain the required value of θ for a given choice of m:

θ = (3/2)α̃

(0.25Pbox)(m−q)
. (22)

To achieve a turbulent state, we first initialize a zero net-flux
simulation with an initial field of B = B0 sin(2πx)êz and no cool-
ing. In code units, B0 = √

2/β which we set with β = 103. Once
a turbulent state is reached, we switch on cooling with θ = 10 and
m = 2. This choice of m is to obtain a P2 which we expect to be
stable, as discussed in Section 3.4. These parameters lead to P2 ≈
3.2 P0, where P0 is the initial pressure, having used that Pbox ≈
16P0. During this steady state, we calculate α̃ ≈ 2.3 × 10−5. This
fully turbulent state in thermal equilibrium is used as our initial
condition. The parameters m and θ are then changed as appropriate.

4 R ESULTS

4.1 Stable system

To fix ideas, we first consider the stable thermal equilibrium associ-
ated with the initial condition, θ = 10, m = 2 (simulation R1). We
run the simulation for over 500 orbits and the resulting stresses and
pressures are shown in Fig. 2. As predicted from the laminar linear
analysis, the equilibrium is ‘stable’ in the sense that both the stress
and pressure fluctuate within some interval enclosing P2. Though
the stress shows substantial variation during the simulation (with
a maximum value of ≈3 times its mean), there is no runaway or
mean drift during the 500 orbits. The variability in the pressure is
less extreme, with a maximum value of ≈1.5 times its mean value.
The turbulence administers random ‘kicks’ to the system, but the
deterministic physics always draws it back to the vicinity of P2. The
stochastic fluctuations in stress are a result of dynamo cycles and
the formation and break-up of coherent structures. The energy in the
flow then cascades down to the dissipation scale, where the mag-
netic and kinetic energies are converted to thermal energy leading
to changes in pressure.

A short-time delay of a few orbits (torb) between the stress and
pressure is clearly visible in Fig. 3, a result of the finite time taken

Figure 3. A zoom-in of the pressure and stress evolution in Fig. 2. The
blue dashed vertical line indicates the time at which the stress achieves its
maximum in this interval.

Figure 4. The evolution of the logarithm of the box-averaged pressure (red)
along with the logarithm of the instantaneous expected equilibrium pressure
calculated using an average stress over the previous 9torb (blue) for the
thermally stable simulation R1. The black dashed line indicates the mean
equilibrium pressure.

for kinetic and magnetic energies to reach the dissipation scale from
the injection scales (Hirose et al. 2009). The variations in pressure
are smoother and longer than those in the stress. However, this
short-time dependence of pressure on stress is distinct to the longer
time dependence of stress on pressure that drives instability/stability
(Latter & Papaloizou 2012).

Though the pressure seems to be drawn back to the mean of P,
in actual fact the equilibrium balance that the system feels at any
given instance is changing with time. A crude approximation to this
is the instantaneous fixed point Pexp, calculated using equation (16).
But because the thermal time-scale is longer than the turbulent
time-scale, a better approximation is the average of Pexp over the
last thermal time. Using equation (18), we estimate this time to be
≈9 orbits. The resulting smoothed and time-dependent equilibrium
is plotted in Fig. 4 in blue, alongside the actual pressure of the
system 〈P〉 in red. It is clear that 〈P〉 follows the ‘equilibrium’ with
a time lag of �10 orbits. Despite the fluctuations, the system senses
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Figure 5. Pressure versus time for the unstable simulations R2a–R2h shown by solid curves. The dashed red line is linear evolution. The filled area indicates
the fixed point region 0.5Peqm < P < 1.5Peqm.

the stable fixed point and is attracted towards it, though because of
those same fluctuations it can never come to rest upon it.

4.2 Unstable systems

Having explored the stable case we now proceed to an unsta-
ble thermal equilibrium. For this set of simulations, we choose
m = 0.25 which we expect to be unstable based on the argument in
Section 3.4.

We present eight simulations (R2a–R2h) that have the same fully
turbulent initial state. In order to vary the initial condition between
runs, these simulations each have slightly different θ ≈ 1.31 × 10−9

and so have slightly different P2. Each of these is within a few per
cent of the initial pressure. In practice, this means that though each
simulation starts from the same initial condition, each corresponds
to a slightly different perturbation from equilibrium.

In Fig. 5, we show the evolution of the box-averaged pressures
alongside the trajectory derived from the laminar linear theory.
Unsurprisingly, the turbulent fluctuations lead to a diversity of out-
comes but do not indefinitely prevent thermal runaway. For example,
a large kick can cause the system to escape from the fixed point on
a shorter time-scale than the laminar time-scale, or the system may
remain close to the fixed point for extended periods of time, longer
than tinst. Our most ‘stable’ simulation remains close to equilib-
rium for 400torb. None of the simulations can be well modelled by
the laminar theory. For P � 5P0, the behaviour is closer to alge-
braic growth than exponential runaway. In fact, the behaviour of the
system is strongly influenced by the fluctuations that occur on time-
scales comparable to the instability time-scale, ∼70 torb for these
parameters. A more apt description of the system could be a biased
random walk, when strong fluctuations in stress repeatedly perturb

the system, while in between kicks the system drifts according to
the deterministic physics.

If we consider some characteristic interval around the fixed point
then we can find the very last time, tesc, the system was within this
band, equation (19). If we define the interval to be rather narrow,
0.5Peq < P < 1.5Peq, then this ‘escape time’ can be compared to
tinst. We find a wide range of escape times in our MHD simulations,
from 0.25 tinst to 5 tinst. Ideally, we would calculate a probability
distribution function for the escape time but this would require
substantially more simulations, which, at this time, is impractical.
The choice of band is arbitrary, but it should be chosen to suit the
problem.

Once P > 10P0, the simulations become cooler than the laminar
model prediction. This might be attributed to the box size beginning
to influence the evolution. At this point, the dependence of stress on
pressure decreases (see Fig. 1) and hence the laminar model is an
overestimate. This numerical effect introduces a third equilibrium
point, P3 > P2, as discussed in Section 3.3. We do not observe a
plateau in pressure associated with the system being attracted to
P3, but we expect that if run for a sufficient duration then a plateau
would appear.

That a runaway heating is limited by the box size is an important
problem, both for these simulations and stratified radiation MHD
simulations. To explore this further, we rescale the simulations by
choosing a larger value of θ , and initialize a simulation with the
same initial turbulent state as in R2a–R2h. However, now the initial
condition is much further away from the putative equilibrium, by
a factor of some 3, and yet box effects remain negligible, because
equation (21) is still satisfied. In these runs, the thermal runaway
was somewhat faster than witnessed in Fig. 5 for the hotter systems.
These few simulations illustrate the numerical limitations inherent
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Figure 6. The pressure probability distribution function PDF(P/P0) from
a heating (red) and a cooling run (blue) at t = 340 torb. The green curve
shows the initial distribution.

in any simulation of catastrophic heating undertaken in a finite
domain.

4.3 Thermal fragmentation

In a turbulent system, heat is not deposited uniformly throughout
the box, but rather is localized in coherent structures such as current
and vorticity sheets. If the instability time-scale, tinst, is large com-
pared to the mixing time-scale, tmix, then the heating inhomogeneity
will have little effect as temperature fluctuations will be smoothed
out. Conversely, if tmix > tinst then regions of fluid can evolve inde-
pendently of each resulting in localized runaway. In Fig. 6, we plot
the pressure probability distribution function, PDF(P), for two R2
simulations at t = 340 torb. Inefficient turbulent mixing would result
in the spreading of PDF(P) during runaway. The figure exhibits
minimal evidence of spreading in the heating run, and the pressure
ensemble evolves with a well-defined and relatively narrow shape.
The pressure in the cooling simulation is attracted to P1 = 0 and in
fact we see a further narrowing of the distribution as the equilibrium
is approached.

To show localized runaway and fragmentation, we consider a
case that we expect to be very unstable, choosing m = 0.1 and
θ ≈ 1.84 × 10−10 (simulation R3). In Fig. 7, we plot PDF(P) at
three instances of time. The width of the distribution quickly in-
creases, indicating localized thermal runaway: initially Var(P/〈P〉)
= 0.0045, but after 4 and 14 orbits this grows to 0.019 and 0.057,
respectively. During this time 〈P〉 itself varies little, which empha-
sizes that the box-averaged properties no longer give a satisfactory
description of the state of the system. Soon after the final snapshot,
very small pressures occur resulting in the termination of the sim-
ulation, preventing further exploration. In Fig. 8, we show x − z
slices in pressure before and during thermal fragmentation. Prior to
thermal fragmentation, there are strong acoustic waves propagating
in the radial direction. These appear to break up into patches that
undergo rapid thermal runaway independent of each other. Because
this behaviour appears to be significantly non-linear and disordered,
we do not attribute it to the action of a linear instability mode with
non-zero kx and kz.

Though it is straightforward enough to achieve fragmentation in
an unstratified local box, how likely is this in the inner regions of an
X-ray binary? In this context, the two major contributors to mixing
are radiative diffusion and turbulent advection. We first consider

Figure 7. The pressure probability distribution function from a fragmenting
run at t = 40 torb. The green, red and green curves show the distribution at
t = 0, 4, 14torb.

radiative diffusion. In the hot dense gas, the opacity is largely dom-
inated by Thomson scattering with opacity κT = 0.33 cm2 g−1. The
radiative diffusion time across a length of l is then trad ∼ l2/cλ,
where c is the speed of light and λ is the mean free path. The insta-
bility time-scale we estimate to be of order, but bounded below, by
the thermal time-scale so that tinst � tth ∼ (α�)−1. If trad ≈ tth, we
have the following condition on l:

l

H
∼

(
α�κ

cs

c

)−1/2
, (23)

∼0.1
( α

0.1

)−1/2
(

�

105 g cm−2

)−1/2 (
T

107 K

)−1/4

, (24)

where � is surface density. Regions separated by more than l will be
unable to mix sufficiently well on the instability time-scale. Typical
values for an X-ray binary indicate that regions 0.1 H apart may in
fact thermally fragment.

What about turbulent mixing? We assume that the turbulent trans-
port of heat by the MRI is similar in efficiency to its transport of
angular momentum (though this is a point that has not been studied
in detail). If we are permitted this assumption, then the turbulent
diffusion time-scale is tturb ∼ l2/(αcsH). If we next assume that the
relevant eddies are of size H (plausible if some form of MHD con-
vection is operative), then tturb ∼ tinst on these outer scales. These
very rough scalings indicate that turbulent heat transport is some-
what more efficient than radiative transport, and moreover that it
may be sufficient to preclude fragmentation – though a simple order
of magnitude treatment is unable to determine precisely when this
might occur. Only realistic simulations themselves can decide on
this issue, and in fact Jiang et al. (2013) do not find fragmentation.
Our simulations are marginally susceptible, in agreement with the
above argument, but they omit important physical effects such as
buoyancy, which may be crucial here, and enhanced compressibility
effects in radiation-dominated flow.

5 R E D U C E D STO C H A S T I C MO D E L S

Because it is impossible to run a sufficient number of simulations to
build reliable statistics, especially regarding the distribution of tesc,
we turn to simpler approximate models that illustrate more fully
the effects of the fluctuations on stability and also permit analytical
results.

MNRAS 468, 2401–2415 (2017)



MRI turbulence and thermal instability 2409

Figure 8. Heat maps of P/P0 in common x − z slices. The top-left panel is from the initial turbulent state, the top-right is from the fragmenting simulation R3
at t = 4 torb. In the latter, the difference in pressure between the coolest and hottest blobs is a factor of 6. For comparison, we show a R2 simulation undergoing
a slow heating runaway at t = 340 torb in the bottom panel. Here, the pressure difference is merely a factor of 1.5.

We work primarily with the averaged energy equation (12) but
model the fluctuating turbulent stress via a random function ζ . Our
model is related to the logistic equation, and may be written as

dx

dτ
= [1 + ζ (τ )] xq − �xm. (25)

This can be derived from (12) by an appropriate rescaling, with
x and τ representing pressure/temperature and time, respectively.
Constant parameters are q, m and �. To simplify the analysis while
not losing much generality, we set q = � = 1 in much of what
follows.

Equation (25) admits the trivial steady state x = 0 and the more
interesting equilibrium xeq = 1. In the ‘laminar’ case of ζ = 0,
this equilibrium is unstable when m < 1 with modes possessing the
growth rate 1 − m.

For ζ (τ ), a random but continuous function, (25) is the Bernoulli
equation with analytic solution

x

xeq
= φ(τ )

[(
x0

xeq

)1−m

− (1 − m)
∫ τ

0
φ(s)m−1ds

]1/(1−m)

, (26)

where

φ(τ ) = exp

{
τ +

∫ τ

0
ζ (s)ds

}
, (27)

and x0 is the initial value of x. As it stands, the analytic solution is too
unwieldy to be useful, even for basic prescriptions for ζ , but it does
illustrate clearly the competition between instability and stochas-
ticity. These manifest as the two terms in the exponent of φ(τ ).
The first describes the deterministic exponential runaway, while the
second stochastic term potentially impedes this tendency. In fact, if∫ t

0 ζ (s)ds behaves like a random walk, then its standard deviation
will be proportional to

√
τ , and so on short-to-intermediate times

the second stochastic term can outcompete the first instability term.
On longer times, however, τ will always defeat

√
τ and the system

will approach the unstable laminar solution, given by

x

xeq
=

⎧⎨
⎩

[(
x0

xeq

)1−m

− 1

]
e(1−m)τ + 1

⎫⎬
⎭

1/(1−m)

. (28)

5.1 Geometric Brownian motion

Before presenting an analysis of the full equation (25), it is worth-
while examining the simpler case of � = 0 and q = 1. The resulting
system isolates cleanly all the main characteristics of more realistic
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Figure 9. The solid curves are sample trajectories of GBM with x0 = 0.1
and σ = 0.5. The dashed black line is the laminar path and the blue dashed
curves are the 10th and 90th percentiles.

systems – an unstable fixed point (x = 0 now) and stochastic noise
– while being analytically tractable. Equation (25) becomes

dx

dτ
= [1 + ζ (τ )] x (29)

with initial condition x0 > 0. For smooth random ζ , the solution is

x(τ ) = x0φ(τ ). (30)

When studying stochastic dynamical systems, white noise is a
convenient choice for modelling the variability. For white noise to
be a good approximation, the fluctuation time-scales of the system
should be much less than the characteristic time of interest. For MRI-
driven turbulence, this choice is not ideal given that the spectrum of
ζ has preferential frequencies. However, we use this as our starting
point as it makes a number of results especially clear. With this
choice of ζ , equation (29) must be written in differential form

dx = xdτ + σxdW, (31)

where σ is the volatility coefficient (or noise amplitude) and dW
is white noise. Here, for simplicity, we have interpreted the calcu-
lus in the Ito sense. Equation (31) actually describes GBM and is
frequently used in financial modelling. Its solution is

x(τ ) = x0 exp

{[
1 − σ 2

2

]
τ + σW (τ )

}
. (32)

Given that x0 > 0, the solution remains strictly positive as a result
of the multiplicative form of the noise. We plot sample trajectories
in Fig. 9 along with the 10th and 90th percentiles. When calculating
these trajectories, we use the Euler–Maruyama method (Kloeden &
Platen 1992). A feature of this collection of sample paths is the
wide variation between them, an attribute that is shared with the
simulations shown in Fig. 5. They are also non-monotonic; fluctu-
ations ‘kick’ the system towards or away from the fixed point. The
light blue curve is particularly striking, exhibiting a trajectory that
remains close to equilibrium, x(τ ) < 0.25, up to time τ ≈ 3. Note
that at τ = 3, a purely deterministic model would have predicted
x to be ≈2, an order of magnitude greater. The stochastic term in
equation (32) has ‘balanced out’ the deterministic drift, at least on
these shorter times.

The reader may note that when σ >
√

2, the stability of x = 0
switches. It becomes an attractor, and the system is stabilized. We
stress, however, this effect is an artefact of multiplicative white
noise in combination with the Ito calculus, and is not to be expected
in real turbulent systems. For instance, the stabilization vanishes in
the Stratonovich calculus and/or with noise models with memory
and which are not multiplicative. We certainly do not expect MHD
turbulence to exhibit the combination of special features that leads
to this stabilization. Indeed, it makes little physical sense that ‘shak-
ing’ an unstable system more vigorously ultimately leads to zero
fluctuations. Moreover, the required amplitude of the fluctuations
must be extremely large, in our case this would require negative α

which is impossible. It is worth pointing out that the autoregressive
stochastic model employed by Janiuk & Misra (2012) shares the
same stabilizing property as white noise in the Ito calculus; con-
sequently, we view their stabilization of thermal instability as an
artefact of their model and not representative of a real fluctuating
disc system.

The probability distribution of the solution trajectories may be
obtained by solving the associated Fokker–Planck equation. If
f(x, τ )dx is the probability of finding a path lying between x and
x + dx at time τ , then

f (τ, x) = 1

σx
√

2πτ
exp

{
− (log(x/x0) − τ )2

2σ 2τ

}
. (33)

The expectation, E, and variance, Var, can also be calculated as

E (x) = x0eτ , (34)

Var (x) = x2
0 e2τ

(
eσ 2τ − 1

)
. (35)

The mean is independent of the volatility and hence agrees with
the laminar model. However, the variance contains a (eσ 2τ − 1)
factor which grows exponentially. This means that as time pro-
gresses, the expectation value grows less and less meaningful be-
cause the distribution becomes increasingly wide and flat. Overall,
trajectories move away from the unstable equilibrium point, but
individual trajectories can deviate from the laminar model dramat-
ically.

Next, we turn to the statistics of the escape time (or ‘last hitting
time’), which can be defined as follows:

tesc = max {τ ≥ 0 : x(τ ) = a} , (36)

where a > xeq = 0. This gives us the last time that a sample path
is within the interval [0, a]. Thus, tesc provides a measure for the
effective instability time-scale, more accurate than the inverse of the
laminar growth rate. If the system was laminar (ζ = 0), however,
the escape time would be simply t lam

esc = log(a/x0).
For GBM, it is possible to derive the probability distribution of

tesc analytically (Kennedy 2010; Profeta, Roynette & Yor 2010).
Because this is not a standard calculation, we go through its details
in the appendix. Denoted by g(ξ ) where ξ = tesc/t

lam
esc , it is a modified

form of the Rayleigh distribution:

g(ξ ) = 1√
2πd2ξ

exp

{
− 1

2d2

(
ξ 1/2 − ξ−1/2

)2
}

, (37)

where the parameters σ , x0 and a have conveniently combined into
d = σ log (a/x0)−1/2. In Fig. 10, we plot g(ξ ) for a range of noise
amplitudes.

The mean and variance of g can be calculated analytically

E(ξ ) = 1 + d2 (38)

Var(ξ ) = d2(1 + 2d2). (39)
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Figure 10. Probability distribution function of the escape times for GBM
with x0 = 0.1 and a = 1.5.

It is clear that the mean of the distribution does not depart greatly
from the laminar escape time. Though the variance does increase
with the volatility of the noise, the spread is not especially dramatic.
Perhaps a more illuminating quantity is the kurtosis:

Kurt(ξ ) = 3
20d2 + 9d2 + 1

(2d2 + 1)2
, (40)

which varies from 3, when d = 0, to 9, when d = 1. A Gaussian
possesses a kurtosis of 3, so our escape time distribution can in fact
be exceptionally ‘fat-tailed’, or ‘leptokurtic’, meaning it generates
a significant number of outliers. Fig. 10 illustrates this point, with
larger σ giving rise to very skewed and broad distributions. Inserted
in the upper right of the figure, we also plot the cumulative distribu-
tion function for various values of d. For d = 1, in particular, we see
that only 30 per cent of systems possess an escape time equal to or
less than the laminar escape time (ξ = 1), while over 10 per cent of
systems possess an escape time of four times or more the laminar
escape time. In fact, the probability that a trajectory possesses a
tesc/t

lam
esc greater than some value ξ 0 may be approximated by the

expression

P(ξ > ξ0) ≈ d√
2πξ0

exp

(
2

d2
− ξ0

2d2

)
,

for large ξ 0. When d = 1 and ξ 0 = 10, the probability is only
about 1 per cent. However, this rises to 10 per cent when d = 2,
indicating the strongly non-linear dependence of the statistics on
noise amplitude. In summary, through the statistics of the escape
time, one can observe stochasticity impeding instability over some
initial period of the evolution.

5.2 Random logistic equation

We return to the more general problem by reintroducing the cooling
term with � = 1

dx

dτ
= [1 + ζ (τ )] xq − xm. (41)

Figure 11. Trajectories for the logistic model, σ = 0.2 with x0 = 1.1.

Again assuming white noise for ζ and setting q = 1, we rewrite the
ODE in differential form

dx = (
x − xm

)
dτ + σxdW. (42)

The equation was solved numerically, and sample trajectories are
shown in Fig. 11. With a fixed initial condition, the system can
either undergo runaway heating or cooling. Note that the initial
perturbation does not give a good indication of which direction the
sample paths eventually go. The trajectories in Fig. 11 qualitatively
resemble those in Fig. 5 from the MHD simulations. Both show
trajectories that remain close to their equilibrium values for multi-
ple thermal time-scales along with trajectories that escape from the
equilibrium faster than the laminar model. One substantial differ-
ence exists however; Fig. 11 shows no indication that the trajectories
will be in general slower than the laminar model as is the case in
Fig. 5.

Unlike GBM, it is difficult to analytically calculate the probability
density function (PDF), and instead this is accomplished by solving
the Fokker–Planck equation numerically

∂f (x, τ )

∂τ
=− ∂

∂x

[(
x − xm

)
f (x, τ )

]+ σ 2

2

∂2

∂x2

[
x2f (x, τ )

]
. (43)

In order to do this, an approximation for the initial distribution
must be made. Rather than using a Dirac–δ function as the initial
condition, it is necessary to use a somewhat smoother function, a
Gaussian distribution with variance 1000. An example solution for
the probability distribution f is plotted in Fig. 12. As earlier, the
distribution becomes increasingly wide and flat as time progresses,
indicating the broad range in possible evolutionary paths.

With the introduction of cooling comes the chance of a sam-
ple path going to zero; hence, our escape time definition must be
modified to include a lower boundary

tesc = sup {τ ≥ 0 : (x = a) or (x = b)} , (44)

where a > xeq > b. For a given sample path, the escape time is
the last instance when the solution is within the interval [a, b],
containing xeq. In Fig. 13, we show the estimated PDF g of tesc for
a range of σ . These are calculated from 100 000 sample paths for
each σ . As expected, for small σ we approach the laminar escape
time, while as σ increases, g undergoes asymmetric broadening,
shifting its maximum to lower tesc and developing a tail at long tesc.
Qualitatively, this behaviour mirrors that shown for GBM, Fig. 10.
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Figure 12. Time evolution of the logarithm of the PDF f(τ , x) for the logistic
equation with x0 = 1.1, σ = 0.1.

Figure 13. Probability distribution of the escape time g for the logistic
model, with x0 = 1.4 with a = 4 and b = 0.25.

And so our conclusions for GBM carry over to the more realistic
logistic case.

5.2.1 Variable q and m

In equation (25), q and m are free parameters which can be chosen to
fit the system of interest. This flexibility allows it to approximately
describe a range of different scenarios. For instance, the classical
Shakura & Sunyaev disc (Shakura & Sunyaev 1973) can be repre-
sented with q = 2 and m = 1. Alternatively, q and m could be chosen
so as to model the vertically stratified, radiation-pressure-dominated
simulations of Jiang et al. (2013) and Jiang, Stone & Davis (2016).
In this case, a large surface density disc yields q = 1.6 and m = 0.98,
while a less dense disc gives q = 1.9 and m = 0.9. Finally, when
the temperature of the gas ensures the opacity is influenced by the
‘iron bump’, the scaling of cooling with central pressure is found
to greatly exceed that of the classical Shukura & Sunyaev model

Figure 14. Probability distribution of the escape time g for the logistic
model with various q and m but keeping fixed: x0 = 1.4, σ = 0.2, a = 4 and
b = 0.25.

Figure 15. The probability that tesc is longer than a multiple of t lam
esc as a

function of m for fixed q = 2.

and m = 1.89 (Jiang et al. 2016). In Fig. 14, we plot the probability
distribution function of the escape time g for various choices of q
and m. As m approaches q from below, the escape time distribution
becomes increasingly elongated to large tesc/t

lam
esc . The deterministic

component weakens and the stochastic drift becomes more impor-
tant, dominating the results.

To better quantify this effect, we compute the probability that a
given trajectory possesses a tesc greater than various multiples of t lam

esc
and plot these probabilities as a function of m for fixed q = 2. These
results appear in Fig. 15. The curves show that as m approaches
q, the escape time can be significantly enhanced. For m = 1.9,
there is approximately 45 per cent chance that it is five times the
laminar prediction, and 5 per cent chance that it is 10 times greater.
It should be noted that as m approaches q, the laminar instability
time-scale itself can be significantly longer than the thermal time
(α�)−1, which further separates the expected turbulent tesc from
the thermal time. The stability uncovered in Jiang et al. (2016), on
the time-scales of their simulations, can be easily explained by the
enhanced delay witnessed in such marginally unstable systems.
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Figure 16. Time-averaged PSD normalized by P0 from simulation R1.
Slope ∝ f−1.2.

5.3 MHD power spectral density

The next step is to replace the white noise with the power spectral
density (PSD) of �xy calculated from the MHD simulations of
Section 4. In Fig. 16, we show the PSD of �xy from simulation R1.
We then represent the fluctuating term in equation (25) by

ζ (τ ) = σ

N
�200

i=1αi(fi) cos (2πfi + φi) , (45)

N = (
�200

i=1αi(fi)
2
)1/2

, (46)

where fi are the frequencies, logarithmically spaced between
[0.05, 750], and φi are phase shifts, chosen randomly from a uniform
distribution on the interval [0, 2π]. Finally, the constant amplitudes
αi(fi) are calculated from a two-slope power law that fits our MHD
simulations (constant for 2πf /� < 0.1 and ∝ f−1.2 otherwise),
which is then multiplied by a random number generated from a
uniform distribution on the interval [0, 1].

To improve the comparison with the simulations R2a–R2h, we
set q = 0.5 and m = 0.25 and thus our model equation is

dx

dτ
= [1 + ζ (τ )] x0.5 − x0.25, (47)

where ζ (τ ) is defined in equation (45). This equation is evolved
forward in time 50 000 times for each choice of σ in order to derive
adequate statistics, especially for the escape time.

We show the resulting escape time distribution in Fig. 17. We
find similar behaviour to both the GBM and the random logistic
equation. As σ increases, the distribution broadens and its tail at
large tesc increases. We estimate that σ ∼ 0.015 gives approximately
the correct fluctuation amplitude when compared to the stress in
Fig. 2. For this choice, Fig. 17 shows a clear tail reaching tesc/t

lam
esc ∼

2.5−3.
We conclude that fat-tailed distributions are a generic feature of

the escape time in turbulent but thermally unstable systems. Such
systems produce a broad range of outcomes, and instability can
be delayed for several instability time-scales. Being fat-tailed they
also exhibit significant outliers – systems that ‘hang around’ for
surprisingly long times before wandering away.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have performed a set of idealized shearing box simulations of
the MRI in order to explore the effects of turbulent variability on

Figure 17. Escape time distribution from our PSD model with q = 0.5 and
m = 0.25.

thermal instability. Our main aim was to check if turbulence in-
terferes with the thermal runaway predicted by laminar theory. In
our simulations, heating comes from numerical dissipation while
a power-law cooling imitates optically thin radiative cooling. Rel-
atively large computational domains are used in order to ensure a
strong dependence of stress on pressure.

Simulations with an expected stable thermal equilibrium are
found to fluctuate around their fixed points. When the cooling
power-law exponent is decreased, and the laminar analysis pre-
dicts instability, our simulations indeed show thermal runaways.
However, the system trajectories deviate from the laminar theory.
The turbulence can stall the onset of instability in a large number
of cases, for multiple thermal times. To better account for the in-
stability time-scale, we introduce the concept of the escape time
which we define to be the last time the system leaves an interval
encapsulating the equilibrium in phase space. Our simulations show
a large range of escape times ranging from ∼1/4 to ∼5 times the
laminar thermal time-scale, for relatively narrow intervals.

Further reducing the cooling power-law exponent results in disc
fragmentation. This is due to localized imbalances between heating
and cooling; the instability time-scale is shorter than the mixing
time-scale and hence distant pockets of fluid evolve independently.
Very rough estimates indicate that thermal fragmentation on length-
scales larger than H are at best marginally possible in the inner
regions of X-ray binaries.

To better understand our results, we construct a probabilistic
theory centred on simple stochastic equations that approximate the
box-averaged thermal equation. These present us with a much larger
sample of possible system outcomes to analyse than the MHD sim-
ulations can afford. First, we analyse GBM, which possesses the
main ingredients of interest (an unstable fixed point and stochastic
variations), while remaining analytically tractable. The distribution
function of tesc exhibits a variance proportional to the square of the
noise amplitude and considerable kurtosis. In general, the distribu-
tion is ‘fat-tailed’, permitting many instances of delayed thermal in-
stability, and outliers for whom the escape time can be ∼10 thermal
times. Our second model introduces a logistic term to incorporate
a power-law cooling and a third model replaces the white noise
with the PSD of the stress from a thermally stable shearing box
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simulation. In both cases, we obtain qualitatively similar behaviour
to before, which instils confidence that its behaviour is generic to
systems sustaining noise and instability. GBM may be thought of
as the model equation for such systems.

In our GBM model, very large amplitude noise can stabilize the
thermal instability, but we believe this is physically implausible. In
fact, this behaviour arises from the special combination of Ito cal-
culus and multiplicative white noise. It is not generic. While GBM
is a convenient model for ‘unresolved’ turbulence, this dynamical
peculiarity must be discarded when applying results to real sys-
tems. The stochastic process employed by Janiuk & Misra (2012)
shares the same properties and thus suffers the same dynamical
artefact. The stabilization witnessed in their simulations we hence
view as unphysical.

The bulk of X-ray binary observations show no indication of limit
cycles that could correspond to radiation-pressure-induced thermal
instability (Gierliński & Done 2004). Notable exceptions are GRS
1915+105 (Done et al. 2004) and HLX-1 (Sun et al. 2016). We
show that it is unlikely that turbulent fluctuations alone stabilize
these discs. However, turbulence can delay and weaken instability.
This weakening might be significant in combination with addi-
tional stabilizing mechanisms, for example: energy lost in the disc
corona or by outflows, magnetic buoyancy effects, alteration of the
pressure–stress relationship by strong magnetic fields, or opacity
shifts near the iron bump (Svensson & Zdziarski 1994; Jiang &
Stone 2016; Sadowski 2016). Finally, separate and important phys-
ical effects may arise from the global nature of the flow, especially
from accretion. The viscous time-scale is probably longer than a
typical tesc, as measured in this paper. But if further delayed by
additional physics, tesc could in some circumstances approach the
accretion time. If this occurs, then the classic limit cycle behaviour
expected from thermal instability could well be impeded, and/or
pushed to smaller radii.
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APPENDI X A : ESCAPE TI ME D I STRI BUT IO N
F O R G B M

Following Kennedy (2010), we derive the PDF for the escape time,
or last hitting time, for GBM. To achieve this, we calculate the
PDF of the last hitting time of Brownian motion with drift and
then perform a change of variables to obtain the last hitting time
for GBM.

In the appendix, Wτ will refer to a standard Brownian motion, the
amplitude of the fluctuations can be represented by a pre-factor of
σ , which we refer to as the ‘volatility’. To begin, consider the first
hitting time of a random function x(τ ), denoted by Ma and defined
by

Ma = inf {τ ≥ 0 : x(τ ) = a} . (A1)

(Here, the infimum can be thought of as the minimum.) Physically,
this represents the first time the function x reaches the value a. In
the special case of x corresponding to standard Brownian motion
with drift, x(t) = Wτ + ετ , the PDF, fMa , of Ma is

fMa (ξ ) = a√
2πξ 3

exp

{
−1

2

(
ε
√

ξ − a/
√

ξ
)2

}
. (A2)

See Kennedy (2010) for a derivation. With this result, we can then
determine the last hitting time of GBM with drift.
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Let T−μτ + b denote the last time that the standard Brownian
motion hits the line (−μτ + b ≥ 0), for some constant b. Then, the
PDF of T−μτ + b is given by

fT−μτ+b
(ξ ) = μ√

2πξ
exp

{
−1

2

(
μ

√
ξ − b/

√
ξ
)2

}
. (A3)

To see why this is true, consider the probability that T−μτ + b > ξ ,
for some ξ :

P
(
T−μτ+b > ξ

) = P (Ws = b − μs, for some s > ξ )

= P
(
sW1/s = b − μs, for some s > ξ

)
= P

(
Wu = bu − μ, for some u <

1

ξ

)

= P

(
M−μ <

1

ξ

)
.

In the second equality, we have used the fact that {sW1/s} is also a
Brownian motion. The probability distribution function of T−μτ + b

is given by the ξ derivative of the above expression. By considering
the probability distribution function of M−μ where the drift is −b
and the threshold −μ, we conclude that

fT−μτ+b
(ξ ) = 1

ξ 2
fM−μ

(
1

ξ

)
(A4)

from which the result follows. Notice that fT−μτ+b
is identical to the

PDF of the last time Brownian motion with drift μ hits the line b.
Let us now finally define the last hitting time, or escape time, for

a random function x(τ ):

Ta = sup {τ ≥ 0 : x(τ ) = a} , (A5)

for some threshold a. If x corresponds to Brownian motion with
drift x(τ ) = ντ + Wτ , for constant ν > 0, then the probability
distribution of Ta is

fTa (ξ ) = ν√
2πξ

exp

{
−1

2

(
ν
√

ξ − a/
√

ξ
)2

}
. (A6)

If however, x(τ ) is a GBM

x(τ ) = x0eσW+μτ , (A7)

and x0 a constant, then the distribution of Tb, for some constant
threshold b, is easy to obtain from equation (A6). Consider the
probability for GBM that Ta < ξ , for some ξ . This corresponds to

P(Ta ≤ ξ ) = P (x(τ ) ≥ b,∀τ ≥ ξ )

= P

(
μτ + σWτ ≥ log

(
b

x0

)
, ∀τ ≥ ξ

)

= P

(
μ

σ
τ + Wτ ≥ 1

σ
log

(
b

x0

)
, ∀τ ≥ ξ

)

which is precisely the probability for Brownian motion with drift,
but with ν = μ

σ
and a = 1

σ
log(b/x0). This supplies us with an ex-

pression for the distribution of Ta for GBM. A rescaling of τ and a
renormalization obtains equation (37).
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